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OPTIMAL CONTROL OF MARKOV JUMP PROCESSES:
ASYMPTOTIC ANALYSIS, ALGORITHMS AND APPLICATIONS TO
THE MODELING OF CHEMICAL REACTION SYSTEMS*

WEI ZHANG', CARSTEN HARTMANN?#, AND MAX VON KLEIST#

Abstract. Markov jump processes are widely used to model natural and engineered processes. In
the context of biological or chemical applications one typically refers to the chemical master equation
(CME), which models the evolution of the probability mass of any copy-number combination of the
interacting particles. When many interacting particles (“species”) are considered, the complexity of the
CME quickly increases, making direct numerical simulations impossible. This is even more problematic
when one aims at controlling the Markov jump processes defined by the CME.

In this work, we study both open loop and feedback optimal control problems of the Markov jump
processes in the case that the controls can only be switched at fixed control stages. Based on Kurtz’s
limit theorems, we prove the convergence of the respective control value functions of the underlying
Markov decision problem as the copy numbers of the species go to infinity. In the case of the optimal
control problem on a finite time-horizon, we propose a hybrid control policy algorithm to overcome the
difficulties due to the curse of dimensionality when the copy number of the involved species is large.
Two numerical examples demonstrate the suitability of both the analysis and the proposed algorithms.

Keywords. Markov jump process, optimal control problem, large number limit, feedback control
policy, hybrid control policy.
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1. Introduction

In the past decades, discrete-state Markov jump processes have been a major re-
search topic in probability theory receiving much attention in applications like eco-
nomics, physics, biology and chemistry; see e.g., [1,16,19,27,58,60]. For example, in
the modelling of chemical reactions, a single state is defined as one possible copy-number
combination of the distinct interacting chemical species. After a random waiting time,
a reaction occurs and changes this copy-number combination. Since the time and order
in which chemical reactions occur is random (referred as intrinsic noise), the evolution
of the state of the system is random as well. The chemical master equation (CME)
models the probability of all possible outcomes over time, giving rise to an extremely
large state space (consisting of all copy-number combinations). Consequently, solving
the chemical master equation or approximating its solution computationally is a non-
trivial, yet unsolved task that has been the objective of intense research over the past
decades (see e.g., [47] for a summary).

In many real world applications, one does not only aim at propagating or simulating
a process forward in time, but also aims at controlling and optimizing it. In this case,
the model equations of a controlled system contain extra terms or parameters that can
be manipulated by the decision maker according to some control policy. The latter
is chosen so that a given cost functional reaches an optimal (e.g., minimum) value.
There are two general approaches to an optimal control task, depending on whether
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the admissible control policies are allowed to depend on the system states (feedback
or closed loop control problem) or not (open loop control problem). In the case of an
open loop control, the control follows a fixed, deterministic policy regardless of the fact
that the underlying dynamics are stochastic. On the other hand, feedback controls are
random in the sense that each realization of the process gives rise to a different control
that is adapted according to the random states of the system. In principle, one can
also consider the case where the control policies depend not only on the current states
of the system but also on the past. However, for Markov jump processes, it is known
that under certain assumptions the optimal cost value can be achieved by a feedback
control policy, which only depends on system’s current states (see Section 4.4 of [52] for
a precise statement).

For small or moderately sized systems, the underlying optimal control problem can
be solved numerically using the dynamic programming principle [5,14,52,61]. How-
ever, for large systems, solving the optimal control policy by dynamic programming
or related methods becomes difficult without suitable approximations or remodelling
steps [8,51,56]. Within the area of systems biology or chemical engineering, one such
remodelling step that has been extensively exploited by control engineers is to replace
the stochastic dynamics by a deterministic system of ordinary differential equations
(ODE) that ignores the intrinsic noise (e.g., see [30,38]). These continuous determinis-
tic reaction rate equations model the concentrations of the interacting chemical species
by one ODE per species. The approximation of the stochastic system using the ODE
system is mainly based on Kurtz’s seminal work [2,28, 29, 31-34] (also see the recent
work on multiscale analysis [10,49]), which shows that the particle numbers per unit
volume of the original Markov jump processes without control can be approximated by
the classical reaction rate equations in the large copy-number regime (parameterized by
either the total number of particles N or the reaction volume V).

In this article, we investigate the relationship between the optimal control problem
for the original Markov jump process and the limiting ODE system. Stochastic con-
trol problems for Markov jump processes are also termed “Markov decision processes”
(MDP) [5,25,52]. We confine our analysis to the situation that the control can only be
changed at given discrete points in time (called control stages). The key contribution of
this paper is twofold. Firstly, applying Kurtz’s limit theorem, we prove convergence of
the cost value of the controlled Markov jump process to the cost value of the controlled
limiting ODE system as N — 0o, both in the open loop and the feedback case; the
convergence results then imply that the optimal open loop control policy for the ODE
system can be applied to control the Markov jump process when N is large where the
optimal cost is achieved asymptotically. Secondly, based on these theoretical results,
we propose a hybrid control policy for the optimal control problem of the Markov jump
process on a finite time-horizon; the hybrid control policy not only exploits the informa-
tion of the optimal control policy for the limiting ODE, but also takes into account the
stochasticity of the jump process and thus improves the optimal control policy from the
ODE approximation in the pre-limit regime when N is moderately large. In terms of
computational complexity, the hybrid algorithm avoids the curse of dimensionality by
using an on-the-fly state space truncation. Broadly speaking, the hybrid control policy
is related to approximative dynamical programming (ADP) and reinforcement learning
that have been extensively studied in the last years [8,51,55,56].

Related work. Although this work is mainly motivated by epidemic, biological,
and chemical reaction models, it is important to note that the asymptotic analysis of the
related optimal control problems appears relevant in scheduling and queueing theory [22,
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59]. In the context of scheduling and queueing problems, the relevant asymptotic regime
is the heavy traffic limit, under which the stochastic model can be approximated by
either a diffusion process or an ODE system. The limit models are named Brownian
network or fluid approximation, depending on whether the limiting differential equation
is stochastic or deterministic. Readers interested in the Brownian network approach
may consult [23,36,37,40,42,59] and references therein. For the fluid approximation
of stochastic queueing networks, we refer to [11,12,40] (cf. [41] for a discussion of
both the fluid and the Brownian network approximation). Optimal control of queueing
networks and their fluid approximations has been studied in [3,4,13,39,43,44,50,57]
(see also [35,48] for an approach using weak convergence techniques).

Despite the vast literature on queueing systems, we emphasize that the models
and problems therein are quite different from the ones studied herein. For example,
for queueing networks, one is often interested in minimizing the total queue length (or
its linear combination) by controlling how each server should allocate the service time
to each queue, which explains why many of the rigorous results are confined to linear
cost functions or birth-death-processes (e.g., [4,50]). In the current work, besides the
differences of the models, the running cost is allowed to be an arbitrary bounded and
(local) Lipschitz function in the system states (see Assumption 2.4 in Section 2) and
the jump rates of the process may depend on the controls. A limitation of our work
is that the controls are switched only at discrete time points (control stages). How-
ever, this assumption allows us to obtain stronger convergence results (with explicit
convergence order in some cases) and covers applications in epidemic or chemical reac-
tion networks [6,14,24,54,61]. Specifically, we will prove the asymptotic optimality of
finite and infinite time-horizon open loop policies arising from the deterministic limit
equations. Our work complements available results on the asymptotic optimality of
the associated closed loop policies or tracking policies (e.g., [3,39,43]) and gives rise to
numerical algorithms that do not require solving the dynamic programming equations
on the whole state space (see Section 4).

Outline. The remainder of this paper is organized as follows: In Section 2, we
introduce the mathematical problem along with the notations used throughout this pa-
per and two paradigmatic examples. Section 3 is devoted to the extension of Kurtz’s
limit theorem for Markov jump processes and its application to optimal control prob-
lems. Based on this analysis, a hybrid control algorithm is proposed and discussed in
Section 4. We present several numerical examples in Section 5, and a technical lemma
is recorded in Appendix A.

2. Mathematical setup

In this section, we will first introduce our problem and the notations used, and
finally sketch two concrete situations in which the problem is relevant.

2.1. Controlled Markov jump processes. Let X be a discrete lattice in
R™ and consider the Markov jump process z(t) on it. Suppose that at time ¢ >0 and
given z(t)=xz €X, the probability for making a transition from x to x+! within the
infinitesimal time interval [t,t+ds) is f(z,l)ds, [ € X. Denoting by 7 the waiting time

TziI;ft{s—t; z(s) #x(t)}, (2.1)

it is known that 7 follows an exponential distribution with the rate A(z)=>", y f(x,1),
ie., 7~Exp(\(z)).
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Jump rates. In this work, we suppose that the jump process z(t) depends on both
a parameter N > 1 and the control v € A, where A is the control set. In applications,
N may be related to system’s volume or the magnitude of particle numbers, while the
control v may affect the jump rates f. To indicate these dependencies, we denote the
jump process as x**"V and also introduce the normalized process 2"V (t) = N~ 1z*N (¢).
It is convenient to think of the normalized variable z as a particle density, which is
why we will sometimes refer to 2%V (t) as the normalized density process. Notice that
2N is a Markov jump process on the scaled lattice and, due to its importance in
our analysis, we use the notation Xy and ffi”N Xy x Xy —RT for its state space and
jump rates, respectively, where R is the set consisting of non-negative real numbers.
X and f¥N:XxX—R* will be reserved for the original process z**™. Notice that
the jump rates of the original process may depend on N. The subscripts “d” and
“0” which appear in the rate functions simply indicate that they refer to either the
normalized density process or the original process. Specifically, we have Xy = { & |z € X}

and fN (2,0) = f*N(Nz,NI) for z,l€Xy.

Controls. We will discuss the control policies and the controlled Markov jump
process in detail. For the sake of simplicity, we will refer to the normalized process 2z
only, stressing that all considerations are transferable to the process 2**". Suppose that
on the time interval [0,7], K +1 time points 0=t¢ <ty <---<t; <tj41 <---<tg =T are
given and fixed. At each time t;, 0<j <K, called a control stage, we are allowed to
select some control v; € A and apply it to the jump process in order to influence its jump
rates. Once a control v; is selected at time ¢;, it will persistently take effect during the
time interval [t;,¢;11). When the selection of controls v; is allowed to depend on the
system’s current states at time ¢;, the control policy is called a feedback control policy
and otherwise it is called an open loop control policy. More generally, we introduce the
sets of open loop and feedback control policies on time [t,T] for 0 <k < K:

Uo ko ={ (Vs Vit1, vk—1) | V€A, k<j< K},

] (2.2)
uf7k:{(1/k7yk+17""1/}'{71) | VjZXN—>A, k§j<K}

Notice that in the feedback case, while each policy v; is a function of the state, the
same notation will be used to denote its value (i.e., the control selected at ¢;) when no
ambiguity exists. For further simplification, let o denote either ‘o’ or ‘f” and we will
write Uy, to refer to either open loop or feedback control policy set.

Given a control policy u €U, j;, we express the corresponding controlled process in
the time interval [ty,T] as 2N (t), i.e., the control v; is applied during time ¢ € [t;,t;41),
k<j< K. The notation 2" (¢; 2) will be used to emphasize that the process starts from
a fixed initial state z € Xy at time ¢ (the starting time may be nonzero). Specifically,
for a fixed control policy

u=(1,v1,v2, VK —1) EUs 0,

2N (t),t>0 is a Markov jump process with the property that the probability for sys-
tem’s state to jump from z*N(t)=2z to z+! within the infinitesimal time interval

[t,t+ds) at tE€tj,tjy1), is f;’j’N(z,l)ds for leXy. That is, application of controls
changes the jump rates of the Markov jump process. With the notation

](t):Z, if te[ti7ti+1)7 (23)

we can denote the control policy which is applied to the process 2% (t) at time t as
Vj(1)- Finally, the notation 2N (t) will also be used when we emphasize that the current
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control policy at time t is v € A, or when we consider the controlled process on a single
stage [t;,t;4+1), in which case only the control policy v applied at time ¢; is relevant.

Cost functional. For a control policy u= (vy,v1, -+ ,vx_1) €Uy, and the process
2N we define the cost functional

=B [ (r )+ [ ol i) o))
=0 L

where E* denotes the expectation over all realizations of 2% starting at z*"(0)=z
and evolving under the control policy u. We emphasize that in the feedback case
uw€Uyo, we have adopted the convention discussed before, and v; in definition (2.4)
should be interpreted as v; =v; (2% (¢;)). The functions r,¢:R" x A— R, and ¢ : R" —
R correspond to the cost at each control stage t;, the running cost, and the terminal
cost, respectively.

2.2. Limiting process and underlying assumptions. Our analysis in the
course of the paper is based on Kurtz’s limit theorems for jump processes [31-34], which
state that, for u €U, o, the normalized density process 2N converges to a determin-
istic limiting process z" under certain assumptions, and is governed by the ordinary
differential equation (ODE)

dz(t)
dt

= FYio (3%(t)), (2.5)

or, in integral form,

t
Zu(t):Z“(O)Jr/ FYit) (24 (s))ds. (2.6)
0
Here, the vector field F"” is defined as the limit of

FN(2)= Z LfoN(2,0), z€Xy, (2.7)
1eXn

as N — oo (see Assumption 2.2), and we have used the notation j(-) which is defined in
(2.3). Convergence of 2“" to z* will be established below in Theorem 3.1.

Limiting control value. We are interested in substituting the optimal control
policy for the jump process with an optimal open loop control ug €U, o of the limiting
process, such that

In(z,u0)~Un(2)= inf Jn(z,u), (2.8)
uEUs 0
i.e., the infimum (minimum) cost is approximated under the policy uy.

The function Uy is called the wvalue function or control value of the underlying
stochastic control problem. It is known that an optimal control ué\;tﬁ =argmin, Jy(z,u)
exists when A is a finite set; see [52] for more details and possible relaxations of the
assumptions on the set of admissible controls.

For the related deterministic limiting process z* satisfying equation (2.5) under
some open loop policy u €U, y, we define the cost functional by

K-1

J(zu) = Z [T(Z"(tj),yj)—F/ Hl(b(é“(s),uj)ds} +(2“(T)), (2.9)

=0 tj
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and the corresponding value function U(z) =infycy, , J(z,u). Note that when A is a
finite set, the minimizer exists since the number of possible open loop control policies u
is finite and equal to |A|¥, i.e., [Uy 0| =|A|¥. Convergence of the value function Uy — U
will be established in the course of the paper.

Standing assumptions. Let ) be a fixed open subset of the space R™. The
subsequent analysis rests on the following assumptions:

ASSUMPTION 2.1. For some fized 1 <a <2, we assume that

My o:=sup sup ( Z |l|°‘fg’N(z,l)> < 00, (2.10)
veAzeXnyNN leXn
and satisfies
lim MN,a =0.
N—o0

ASSUMPTION 2.2. There exist functions F”:Q—R", such that

W = sup |F”’N(z)—F"(z)| (2.11)
zeXnNNQ,veA
satisfies
lim wy =0.
N—oc0

ASSUMPTION 2.3.  There exists a constant Ly >0, which may depend on the subset
Q, such that

|F¥(2") = F"(2)|<Lp|2 —z|, Vz,2/eQ,veA.

Finally, for the functions related to the cost functional (2.4) of the optimal control
problem, we suppose

ASSUMPTION 2.4.  There exist constants Ly, Ly, Ly, M, Mgy, My >0, which may depend
on the subset ), such that

|r(z1,v) —1(22,v)| < Lp|21 — 22|, |¢(21,v) — d(22,v)| < Lg|21 — 22,
[9(21) = ¥(22)| < Ly|21 — 22},

Vz1,20 € Q, v €A, Moreover, |r(z,v)| < M,, |¢p(z,v)| <My, |¢(2)| <My, VzeR", ve A

REMARK 2.1. We make some remarks on the above assumptions.

(1) Although the constants in Assumptions 2.1-2.4 may depend on the subset €2,
we will omit the dependence, since () is fixed throughout this paper.

(2) Instead of utilizing the jump rate function of the density jump process z*“¥,

the quantity in Assumption 2.1 can also be expressed in terms of the original
jump process V. In fact, using the relation between the functions f('i”N and
N (2.10) is equivalent to

My o=N"%sup sup (Z|l|”‘f(’,”N(Nz,l)> < 00. (2.12)
veAzeXnyNQ lex



WEI ZHANG, CARSTEN HARTMANN, AND MAX VON KLEIST 299

(3) Assumption 2.2 states that F'**V(z) converges to F”(z) uniformly for all v € A
on the subset €2, while Assumption 2.3 states that the family of the limiting
vector fields F¥(z) are (local) Lipschitz functions with Lipschitz constant Lp
on the set €, uniformly for v € A. Similarly, Assumption 2.4 assures that the
functions r,¢,vy are Lipschitz on §2 and are bounded on R™, uniformly for v € A.

2.3. Applications. Here we consider two prototypical examples of Markov
jump processes, which appear relevant in the context of optimal control and to which
our results can be applied.

Density dependent Markov chain. The first example is the density dependent
Markov chain [32], where the jump rates of the original process depend on the density of
the system’s states. Specifically, following the notations of Subsection 2.1 and denoting
the density dependent Markov chain as #**V(-), it holds that the rate of jumping from
state z to z+[ under the control v € A is given by f"V(z,1)=Nn"(x/N,l) for z,l€X,
where ¥ :R" x X — R™ is a function independent of N. As a consequence,

FoN (2,0 /N) = foN(Nz, 1) = Ny (2,1)

is the rate at which the normalized density process 2"V (-)=N~"12z*N(.) jumps from
z=x/N to z+1/N=(x+1)/N. Concrete models of density dependent Markov chains
include the predator-prey model, elementary chemical reactions such as B4+C==D,
and epidemic models [31, 32].

Notice that if we assume

Ma:supsup(2|l|°‘n”(z,l)) <00, (2.13)
veAzeQ lex

then Assumption 2.1 holds, since My o = N'~“M,, with > 1. Furthermore, if we define
FY(2)=)In"(2,0), VzeR", (2.14)
lex
then equation (2.7) becomes
l
FPN()= Y UM )= 5 Nt ) =F¥(), z€Xn,
leXn lex

where the function F”(z) is independent of N. This implies that Assumption 2.2 triv-
ially holds with wy =0.

Chemical reactions. As a second example, we mention systems of chemical re-
actions. Consider a reaction network consisting of n chemical species that can undergo
m different chemical reactions:

> ok Si Y vhSi, k=1,,m. (2.15)
i=1 i=1

Here, S; are the different chemical species, ki is the rate constant of the k-th reaction,
and vy, v}, are the molecule numbers of species S; consumed or generated when the
k-th reaction fires. Now let #()(¢) be the number of molecules of species S; at time ¢
and define

l‘(t) = (x(l) (t)7x(2) (t)7 . 73;(”) (t))T cN" (216)
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to be the state of the chemical system at time ¢. When the k-th reaction fires at time
t>0, the system’s state jumps from xz(t) to z(t)+ (v}, —vg), where

Ok = (Vk1, V82, Okn) L ENT ) = (Vhy, Vg V)T €N (2.17)

In order to fully describe the system as a Markov jump process, we still need to specify
the Poisson intensity of each reaction (propensity function). Let A denote a generic
propensity function. For simplicity, we will restrict ourself to at most binary reactions,
which consume at most two molecules:

(1) 0 "= product, A\=rN

(2) Sz Lproduct, )\:K,Jj(i)

(3) 25; s product, \= %z(i)(x(i) ~1)
(4) Si+8; == product, A\=FzDzl),

where 2 = ()., 2(™) is the system’s state and N is a constant related to the volume
of the system (e.g., the total number of molecules or a test tube volume). In the above
reactions 1 —4, k is a constant of order one and the scaling of A with respect to IV
corresponds to the “classical scaling” considered in [2,28]. We also refer to [21] for
further discussions on the propensity functions. Note that, in general the propensity
function is a function of the system state.

For the reaction network described in (2.15), if we denote the propensity functions
by Ax(x) when the system is at state z, then the dynamics of x(t) can be written as

2(t)=z(0)+ > (v, —vk) Vi (/0 )\k(:c(s))ds), (2.18)

where Yj(+),1<k<m are independent Poisson processes with unit intensity. For the
system of controlled chemical reactions, we use the notation AZ’N(x) to indicate that the
propensities not only depend on N, but also on the control v € A via the rate constants
k=kk(v). From the definition of the reaction events, it is clear that the jump rates
introduced before and the propensity functions are related by

o@D = Y M)
1<k<m,
v;c —vE=Il

Notice that if only reactions of type 1, 2, or 4 are involved, the process defined by f%V
is an instance of the aforementioned density dependent Markov chain. When reactions
of type 3 are involved, then the limiting vector field F¥ can be computed from F*V in
equation (2.7) by exploiting the fact that fg’N(z,l)zN/@z(“(z(i) —N71) for 2,leXy,
where kK =ky(v), if Nl=v},—uv for some 1<k <m (supposing for simplicity only one
such index k exists), and fg’N(z,l) =0 otherwise.

3. Asymptotic analysis of the optimal control problem

In this section, we study optimal control problems in the large number regime based
on Kurtz’s limit theorem [31-34].

As a first step, given an open loop control u €U, o, we establish the approximation
result of the Markov jump process 2% by the ODE limit (2.5). The proof is adapted
from Kurtz’s argument, in particular [32]. However, for completeness we feel it is
necessary to present the proof in detail. As a second step, we confine our attention to
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the open loop control problem which is a direct application of Kurtz’s theorem, given
that the Assumptions in Subsection 2.2 hold. Specifically, we show that Jy(zn,u)—

J(z0,u) for uelyo,2nv €Xn,2nv =20 €Q as N — o0 (Theorem 3.2). Then, as a third
step, we consider the feedback control problem and prove that Uy (zx) — (7(2) if zy —
z, and, in particular, if up €U, ¢ and j(z,uo):l}(z), then |Jn(zn,uo)—Un(zn)|—0
as N — oo (Theorem 3.3). As we will discuss in detail, an important consequence of
Theorem 3.3 is that the optimal (open loop) control policy for the limiting ODE system
is almost optimal for the Markov jump process if N >1, i.e., it is asymptotically optimal
among all feedback control policies in Uy . Finally, we extend the analysis of the finite
time-horizon case to discounted optimal control problems on an infinite time-horizon
(Theorem 3.4).

3.1. ODE approximation of the normalized Markov jump process. Let
u €U, o be some open loop control policy and 2% (t)=N~1z%N (t) denote the normal-
ized density Markov jump process. Recall that €2 is the open subset of R™ introduced
in Subsection 2.2. The convergence of the normalized density process as N — oo is
described by the following theorem.

THEOREM 3.1.  Let 2N (t) be the normalized density jump process under the open
loop policy uweU, o and suppose the ODE (2.5) has a unique solution Z*(t) on t€[0,T]
starting from zg € Q). Furthermore, 3y >0, s.t.

W or={7 €R" | inf |- <v}cq. (3.1)

Let 7% be the stopping time for the jump process 2N to leave the set QZ 20.[0.T]" i.e.,
: N
TN :=g%{s| 2% (s) ¢ Qz,zo,[O,T]}' (3.2)
(1) Suppose Assumption 2.3 holds. We have

E“| sup ‘z“N(s)—éu(s)‘

0<s<tATY

< [E|ZU’N(0) — Z()‘ +CT,N} eLFt, (33)

for 0<t<T, where the constant

CTVN:TCUNJr

a (4TMN7a)é7 (3.4)

20—\ a-1

with a€(1,2], and wy, My o are defined in equations (2.11) and (2.10), respec-
tively.
(2) Suppose Assumptions 2.1-2.3 are satisfied with constant o € (1,2] and that

lim E[z“"(0)— 20| =0.

N—o00

Then for any control policy ueU, o, we have

lim E*| sup |z“N(s)—2"(s)|| =0. (3.5)

N—o0 0<s<tATY
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Furthermore, let p>0 be given such that p< é’ye*LFT. Then ANy >0 which may
depend on p, such that

1

AT M
P(r% <T)< p L |E|2“N (0) — @ ( N’“)‘” 3.6
(k<7 <o BV 0) -+ 5 ()] @

whenever N > Ny, where P is the probability with respect to the process 2N under
the control u. In particular, we have

lim P(r} <T)=0.
N —oc0

Proof.
(1) Let w*" be the martingale

wu’N(t) _ zu’N(t> _ ZU»N(O) _ /t Fl’j(b')vN(z“’N(s))ds, (37)
0

and consider the coupled Markov process (2 (¢),w*“ " (t)). For a differentiable
function ¢ of w, Dynkin’s formula [15,46] entails

E" [go(w“’N(t/\T}{,))] —E* [(p(w“’N(O))]

:Eu{ /OtAr;c [ ) (@(Z—Fw%N(s)) (N () 1 V@(wqu(s)))

leXn
X J N (2N (s),0)] ds}.

In particular, setting ¢(z)=|z|%, where a € (1,2] is the constant in Assump-
tion 2.1, and using Lemma A.1 from Appendix A, we obtain

@ 4t 4t M N
E4w N (tArh)|* < ————sup sup ( lo‘fV’N z,1 )zi’a ,
¥ AT)|" < ey SR sw ngu D) =

which, by Holder’s inequality and Doob’s maximal inequality, implies that

Q=

E"| sup |w“’N(S/\T}\‘;)|] < {Eu( sup |wu’N(S/\7'J%I)|a)]
0<s<t 0<s<t

Q=

- ul, u w |

= Q(aa— ) (421\@1,@ ) g (38)

Combining equations (3.7) and (2.6) and taking Assumption 2.3 into consider-
ation, it follows that

‘z“’N(t/\T}\L,) — 2“(25/\7'}(,)|

tATR,
<|2N (0) — zo| + L /0 " |2 (5) - 59(s)|ds

EATR
+/ N ’F”J‘<S>’N (2N (s)) = F¥i (24N (s)) |ds+ ’w“’N(t/\T}\‘,)|
0
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LATR,
S‘z“’N(O)—zo’—&—LF/O N‘z"’N(s) ‘ds+th+|w (tATR)]-

Now let 4N (t)= sup |2*N(s)—Z"(s)|. Then
0<s<tATY

t
y“’N(t)Syu’N(O)‘FLF/ N(s)ds+Twy+ sup |w™N (sAt)],
0 0<s<T

and Gronwall’s inequality implies

YN (t) < {y N(0)+Twy+ sup |w™N (sATg)|[e"r". (3.9)
0<s<T

The estimate (3.3) follows by taking expectations on both sides of the above
inequality and using inequality (3.8).

(2) Assertion (3.5) follows directly from inequality (3.3) by taking the limit N —
oo and applying Assumptions 2.1 and 2.2. To prove assertion (3.6), we first
choose Ny >0 such that Twy <p whenever N > Ny. This is possible due to
Assumption 2.2.

From the definitions of y*™ (¢), the subset Q*
(3.9), we can deduce that

[0,7) 10 (3.1), and the inequality

Y520,

y“’N(O) <p and sup |w“’N(s/\T}\‘,)| <p
0<s<T

— M) <3pel™T <y — 7L>T,
and therefore that

P(ri <T) <Py (0)> p) +P( sup [w N (sATE)| > p)
0<s<T

<p ! [EIZ“’N(@ — 20|+ Q(aa— 1) (

4TMN701 ) é
a—1 ’
where we have used the fact that y*~ (0)=[2%"(0) — 2|, the inequality (3.8)

and the Chebyshev’s inequality.
O

We conclude this subsection with the following remarks.

REMARK 3.1. From the proof, it is straightforward to see that when z%™(0) is
deterministic and 2"V (0) — 20| < p < ye~EF T estimate (3.6) can be improved to

AT My o
P(T;@<T)<p—1[ a ( ,

2(a—1)

REMARK 3.2. For the density dependent Markov chain introduced in Subsection 2.3,

it holds that wy =0 and My « = N'=*M,, where M, is given in definition (2.13) with
€ (1,2]. Therefore, the constant in equation (3.4) satisfies

)“] <p~'Crn. (3.10)

a—1

CT,N:O( %*1>. (3.11)

Assuming E|z%"(0) — 2| — 0 fast enough as N — oo, the above implies that the con-
vergence speed in both estimates (3.3) and (3.6) is explicitly of order N1
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The simplest case is when 2% is a one-dimensional process and the control set A is
a singleton. For simplicity, we will omit the control u in the notations in the remainder
of this paragraph. Suppose that n(z,1) =1 and n(z,l) =0 for [ # 1, z>0. Then definition
(2.14) implies that F'(z) =1, which is Lipschitz continuous with Lipschitz constant Ly =
0. For the initial value zp =0, equation (2.6) yields Z(t)=t and 2™ (t)=N"1P(Nt),
where P(-) is a Poisson process with unit intensity. We can also choose the subsets
Q0,071 =2=R". Further note that Assumption 2.1 holds with « =2 and M, =1, so
that Theorem 3.1 implies

o aw [F00 ] < ()"

0<s<T TN

3.2. Optimal control on finite time-horizon. In this subsection, we apply
the previous approximation result to study both open and closed loop optimal control
on a finite time-horizon.

Open loop control. As a straightforward consequence of Theorem 3.1 and As-
sumptions 2.3-2.4, we have the following result for the open loop control problem.

THEOREM 3.2.  Suppose that Assumptions 2.1-2.4 hold true. Let zo € Q and letuelU,
be any open loop control policy of the form u= (vo,v1,--,vg—1) withv; € A, 0<j< K.
Suppose the ODE (2.5) has a unique solution on [0,T] and furthermore the condition
(3.1) is satisfied for some v>0. Recall that the cost functionals Jy and J are defined
in equations (2.4), (2.9), respectively. Let zy € XyNQ and zy — 29 as N — +oo. Then
Ny >0, s.t. for N> Ny, we have

|JN(ZN,u) — j(zo,u)’ < <|ZN — 20| —&—CT,N) {ngeLFLi + (KLy+ Ly +M)€LFT} ,
" (3.12)
with the convention % =T if Lp=0, and the constant
M =6y (KM, +TMy+My). (3.13)

The constant Cp n is defined in equation (8.4) and the other constants are given in
Assumptions 2.3-2.4. In particular, when the condition (3.1) is satisfied for all u €U, o
for some common >0, we have

lim |Jy(zn,u) —J(z0,u)| =0, (3.14)
N—o00

uniformly for all control policies u €U, .

Proof. First of all, let us define the quantity

K-1 tirt
I=>" [T(Z“’N(tj)%) —r(2“(t;),v5) +/ <¢(2"’N(S),Vj) - ¢(2“(s),uj)) ds}
=0 ¢

i
(N (1) — 6 (3(T)).
Then the boundedness conditions in Assumption 2.4 immediately imply |I| <2(K M, +

TM, —&-Mw). Recalling the stopping time 7% in equation (3.2) and the Lipschitz condi-
tions in Assumption 2.4, we also have

K-1

1< 7 { L2 (1)~ 24(1) +L¢/:”1 2499 ) — 74

=0 J
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+ Ly | 2N (T) - 2(T), (3.15)
as long as 73 >T'. Therefore, using the definitions of the cost functions Jy, J. , we have

’JN(ZN7U') —j(Zo,U)‘ = |EZN I|
<[BL (- Limgor)|+ B2 (T L <y
<EL, (] Ly o)) +2(K My + TMy+ My P (73 <T),

where 1 denotes the indicator function. For the first term above, noticing the fact

EZ, [( sup |ZU7N(S)2U(S>|)]‘{T}G2T}:| SELLN{ sup |z“’N(s)72"(s)|},

0<s<t 0<s<tATy
using inequality (3.15), and applying Theorem 3.1, we obtain

EY, (- 1gru>1y)

K-1

tjt+1
§(|ZN—ZO|+CT,N) [ (L¢/ eLFSds—l—LTeLFt")—i—LweLFT}
t]

=0
LFT_l
< {L¢6LF+ (KLT+L¢)6LFT} (|ZN_ZOH‘CT,N)~

Now fix the constant p= %'ye’LFT and choose Ny such that |2y — 29| < p when N > Nj.
The assertion (3.12) then follows after we estimate P (7 <T') by applying Theorem 3.1
(see estimate (3.10) in Remark 3.1). The convergence of the cost function Jy to J
follows from estimate (3.12) directly. O

Feedback control. Now we consider the case of a feedback control problem. In
accordance with definition (2.4), we define the cost functional for uely, z€XyNQ,
0<k< K, and the corresponding value function as

K-l tjt1

JN(Z7u7k):E?k,z Z(T(ZU’N(tj)7Vj>+[ (ZS(ZU,N(S)vVJ)dS)+¢(ZM7N(T)) )
=k i

Un(z,k)= inf Jn(z,u,k), (3.16)

u€Uy

with the shorthand E _[] =E"[-|2% N (t},) = 2] for the conditional expectation over all
realizations of the controlled process starting at 2%V (¢;,) = z. Notice that, following the
convention in Subsection 2.1, we have used the same notation v; to denote both the
control policy function which depends on system’s state, and the value of the control
selected at ¢, i.e., we have v; =v; (2 (¢;)) in definition (3.16) (see the discussion after
(2.2)). By definition, the value function Uy, also called the optimal cost-to-go, is the
minimum cost value from time t; to T as a function of the initial data (z,tx). In
particular, it holds that Uy (z,K)=1(z).
Then, in complete analogy with the above definitions, we define

K-1

J(z,u,k)= Z (r(%“(tj),uj)—I—/ o (25(5”(8)71/3')(13) +¢(Z2UT)), uE€Uop,
=k t

Ul(z,k)= inf J(z,u.k),

u€Uo,
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for 2 €€, to be the cost functional and the value function of the deterministic limiting
process. In what follows, we will omit the dependence of Jy, J and U N U on k when
k=0 so that the notations are consistent with definitions (2.4) and (2.9).

By the dynamic programming principle [52], the necessary conditions for optimality
are given in terms of Bellman’s equations for the two value functions:

tht1
Uxlew) = LB [rloxt [ 0 (6))ds U txs) kD).

tr

U(z,k)= inf {r(z,u)—i—/ Hl¢(2”(s),u)ds+ﬁ(g”(tkﬂ),k—i—l)}, (3.17)

veA e

with 0 <k < K —1, where 2"V (t3) = 25 € Xy, 2 (tx) = 2 € Q and the terminal conditions

Un(zn,K)=19(zn), U(z,K)=1v(z). (3.18)
Notice that in equation (3.17), we have used the notation EV =E}
tional expectation and 2"V (t), 2 (t) for the processes, since the involved quantities and
processes only depend on the control v selected at tg, rather than the whole control
policy.
Before we proceed, we shall first introduce some constants in order to simplify the
analysis later on. Let h:max{\tjﬂ —tj\: 0<j<K-— 1}. In accordance with equation
(3.4), we set

for the condi-

1

« 4hMNa o
= d . .1
Cr th+2(a1)( a—1 ) (3:.19)

We also introduce the sequences of numbers ag,bg, 0 <k < K, satisfying the recursive
relations

ap =L, +L¢6LF}”h+MeLFh —|—ak+1eLF

(3.20)
b, =LyCh "™t g1 — 1) +2MChne™ " + ap 11 Cp ne™ " + by i1,

for 0<k< K —1 and ax = Ly, bx =0, where M is defined in equation (3.13). The last
two expressions can be made more explicit:

eLrh(K—k) _q

elrh 1

L.+ Lyelrhh+Melrh [elrh(K—k) _q
bk:ChyNeLFh{ng(T_tk)"‘[ d)eLFh_l eLFh—l —(K—k)
eLrh(K—k) _

1 J—

(K—k)Lph
)

ak:<LT+L¢eLth—|—MeLFh) +Lye

for 0<k< K. Notice that under Assumptions 2.1 and 2.2, both C} x and b, go to zero
as N — 0.
Similar to (3.1), we also introduce the set

szzy[tiytj] = {Z/ S Rn

inf |2/ — 24(t)| < } 3.22
B AVl (3.22)
between two control stages t; <t; where 2%(¢;) =z, u€U, ;. The notation Qv it ]
will be used when only the control policy v € A at the control stage t; is relevant.
have the following approximation result of the value functions.
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THEOREM 3.3. Suppose Assumptions 2.1-2.4 hold. Given 0<k<K and z €, s.t. the
ODE (2.5) has a unique solution Z* on [ty,T] for all u€U, , and furthermore, 3y >0,
s.t. Qiz’[tk"T] CQ foralluel, . Let zy € XnyNQ be random with E|zy —z| <oco. Then
dNE >0, s.t.

E|Un(zn,k) —Ul(z,k)| < arE|zn — 2| + by, (3.23)

for N > Ny, with a,by as given by formulas (3.20) or (3.21). Further suppose that
Uy €U, o is the optimal (open loop) control policy for the process Z*, i.e., J(z,uo) =U(z),
and zy € XyNQ is deterministic satisfying zy —z as N —o00. Then ANy >0, s.t. when
N > Ny,

|In(2n,u0) = Un(2n)]
LFT_ 1

e
§b0+a0\szz\+ L¢

+(KLT+Lw+M)€LFT:| (CT7N+|ZN72|>. (3.24)
Lp

In particular, it holds that

lim |JN(ZN,’LL0)7UN(ZN)| =0.
N —oc0

Proof. We first prove inequality (3.23) by backward induction from k=K to
k=0. Let E denote the expectation with respect to the random variable zy € XyNQ
and recall that E” is the shorthand of the conditional expectation Ef, . . For k=K,
since z,zy €2, the terminal condition (3.18) and the Lipschitz continuity of the terminal
cost ¥ in Assumption 2.4 imply that

E|Uy (2, K) — U (2,K)| = E[$:(25) = ()] < Ly Blzy — 2|

Therefore (3.23) holds with ax = Ly, bx =0 and for any Nk >0.
Now suppose inequality (3.23) is true for k4+1< K. First notice that we have the
simple estimate

Un(2n,k) = U(2,k)| <2[(K — k)M, + (T —ty) My + My]

Lg

under Assumption 2.4. Then, fixing the constant p= %'ye* h and using the Bellman

Equation (3.17) for the value function, we can estimate

E|Un (2n,k) —U(2,k)|

=E|[Un (2n k) = Uz R Loy a1z | + B[ [Un (250 ) = U (20| Loy —sp51]
<E[|Ux (25.0) = U (2,0)] - L2151

+6y el [(K — k)M, + (T —te) My + My| E|zy — 2|

[ (60 -0t (109 s

<E (sup{|r(zN,u) —r(z,u)| +E¥
L \rveA

+E

Un (ZV’N(tk+1),k+1) —ﬁ(i”(tw&),k—&-l) ‘ }) .]1{|ZN—Z§P}:|
+Melr"E|zy — 2|, (3.25)

where Chebyshev’s inequality has been used and we recall that the constant M is defined
in equation (3.13).
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In the following, let us consider a fixed zx € Xy such that |z — 2| < p. We consider
the process 2™V (s) on [ty,try1] with 2V (¢) = zx and, similar to definition (3.2), we
define the stopping time

. v
&= inf {s12"¥ ) 292 o

For the notation, see the paragraph following (3.22). Since Q:,z’[tk,T] CQforalluel,

trivially implies Qf’y ol ten] CQ, Theorem 3.1 when considered on the time interval
[tk,tr+1] guarantees that IN' >0, s.t. when N > N’ we have

B[ sup  [smV(s)=2%(s)|] < (| — 2]+ o ) FFOT, bty thsa)
t <s<EATE

P(r% <tpy1) <3y lelrCy v, (3.26)

where the second inequality follows from estimate (3.10) in Remark 3.1.

We continue to estimate each of the three terms within the supremum in estimate
(3.25). For the first term, noticing that |2y — 2| < p <+ implies zx € 2, and the function
r is Lipschitz in Q,

|r(zn,v) —1(z,v)| < L.|2n — 2|.

For the second term, using a similar argument as in the proof of Theorem 3.2 and the
estimate (3.26), we can obtain, for N > N,

B [ (0 9 0t 5)9) s

tr

tet1
=B K/ [$(2"(s),0) = (=" (3).0)] ds) Lirg Ztk+1}:| +2hMyP (T <tki1)

tr

<L, <|ZN —z| +C}L,N> eLFh(tk_,_l —tx) +6h’y_1M¢eLFhCh7N.

For the third term, we notice the simple fact that Qg e 7] S Q for all uel, ) implies
QZ\Z, [t 0, T] CQ for all w€lU, j41, where 2’ =2"(tx41), and also that 75 >t,11 implies
2"N(t41) €Q. We have

EI/

U (2™ (1) k1) = 0 (2" (br2) i+ 1)
<E*[|Un (2" () b+ 1) = T () K+ 1] T,
42 {(K—k— 1) M, + (T—tk+1)M¢+M¢} P (7% <tis1)
<E*[|Un (2" (i) b4 1) = U2 () R+ 1)] | 75 2 by | P75 2 )
6y [(K — k= 1) M+ (T —tpp1) M, +M¢} elrh Oy y
<ap EY [|Z"’N(fk+1) — 2 (te41)|- ]]'{TKJZtk+1}:| +bp 1+ Me " Cy
<ap1(|zn — 2| +C'h,N)€LFh + b1+ MmOy N,

for N>max{N’,Nk+1}. In the above, we have used the conclusion for k+1 to the
conditional expectation E”(-| 75 > tp+1).
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Substituting the above estimates into (3.25), we conclude

E|Un(zn,k)—U(z,k)|
<E [LT|ZN —Z| +L¢<|ZN —Z‘ +Ch7N)€LFh(tk+1 —tk) +6h’y_1M¢eLFhCh,N
+ak+1(|zN 7Z|+Chl7N)€LFh+bk+1 +M6LFhOh7N +€LFhME|ZN72|
§(Lr+L¢6Lth+ak+1eLFh+MeLFh)E|zNfz|

+LyCh nelF Pty — 1) +2MCh ne" " +ag 41 Cn ye T by gy
:akE|zN 7Z| +bk,

where the recursive relation (3.20) has been used in the last equation. This proves
estimate (3.23) for k with Ny :max{N’,N;H_l}.

Equation (3.24) now follows from estimate (3.23) and Theorem 3.2, using the tri-
angle inequality: 3Ny >0, s.t. N > Ny, we have

|In (2n,u0) —Un(2n)]

<|In (2 10) = T (2,u0)|+]U(2) = Un (2n))|
LFT—l

§b0+a0|zN —Z| + <L¢6L + (KLT. + Ly —|—M)€LFT> (CT,N + ‘ZN — Z‘)

F
Convergence |Jn (zn,up) —Un(2n)| — 0 as N — oo readily follows from Assumptions 2.1
and 2.2. ]

REMARK 3.3. As discussed in Remark 3.2, we have CT,N:O(Né_l) and thus
bo=O(N="1) for the density dependent Markov chain introduced in Subsection 2.3.

As a consequence, in this case we can explicitly compute the order of convergence in
Theorems 3.2 and 3.3. That is, 3Ny >0, s.t. when N > Ny,

[T (2, 0) = T (20,0) | SCNE ™Y, w€ldy,
and
|In (2 u0) — Un(2n)| <CNa 1,

with C'>0 being a generic constant, uy being the optimal open loop policy for the
limiting process 2%, and Uy being the value function of the stochastic feedback optimal
control problem.

3.3. Feedback optimal control on infinite time-horizon with discounted
cost. As a final step of our analysis, we consider the discounted optimal control
problem on an infinite time-horizon. While the open loop control problem on a finite
time horizon that is addressed in Theorem 3.2 will be useful later on in Sections 4 and 5,
open loop control on an infinite time-horizon for stochastic processes seems to be less
relevant in applications. Therefore, in the following, we consider the feedback optimal
control problem with cost functional

J

In(z,u)=EY Ze‘mi <T(Z"’N(tj),1/j)—|—/ j+1¢(z"’N(s),1/j)ds> ) (3.27)
=0 !
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where 5> 0 is a discount factor, u € Uy with
uf:{(yo,yl,...) | v Xy — A, O§j<oo}, (3.28)

and where again the shorthand v; =v;(2*" (¢;)) has been used in equation (3.27).

We assume that the control set A is finite, which guarantees the existence of the
optimal control policy and will simplify the proof of Theorem 3.4 (see below). We
emphasize that this assumption is not essential and can be relaxed since we will only
consider e-optimal control policies in Theorem 3.4. Also see the related discussions in
Subsection 2.2. Furthermore, we only focus on the case when the time stages at which
the controls can be changed are uniformly distributed, i.e., t; = jh for some h>0. This
uniformity in time allows us to define value functions which only depend on the system’s
states and will simplify the discussions below.

It is known (e.g., [52]) that the value function Un(z)= inf Jy(z,u) solves the
u€Uy

Bellman equation

Un(z)=minE?
veA

(z,v) /qs VN (s),v)ds 4+ A\Un (2" (h))], (3.29)

where A\=e"#"<1. Moreover, it is known [52] that there is a map mn: Xy — A4,
such that uep = (7N, 7N, ) €Uy is an optimal feedback policy that satisfies Uy (z) =
Jn (2, uopt) and can be determined by the dynamic programming (i.e., Bellman) equation
via

h
T (z) € argmin{r(w) FE[ [0 (5).v)ds+ AUN (5N (1) } . reXa
veA 0

In correspondence with the stochastic control problem, we also consider the optimal
control of the deterministic limit dynamics z2%(-) which satisfies ODE (2.5), where

UGUOI:{(Vo,I/l,"') ’ Vj GA, 0§]<OO}

In this context, it is necessary that the solution Z%(-) exists on [0,400). Recalling the
set defined in (3.1), in the following we consider the subset Q4 C € with the following
properties:

(1) zey = 2¥(t) €Qy, YO<t<o0, Yuell,, and

(2) for all T>0, we can find >0, such that Q [0,7] CQ holds for all uel,,
VzeQy.

We emphasize that this (nonempty) subset €, can be easily constructed as long
as () is large enough and it doesn’t have to be unique. In fact, when the solution
zZ% of the ODE (2.5) starting from z“(0) =z exists on [0,400) and stays in  for all
time (without approaching its boundary) for any u€l,, it is easy to see that the set
Qg :={2"(t) | t>0,uel,} satisfies the above two conditions.

The natural candidate for the deterministic cost functional reads

(F+1)h
Ze ( “(jh),v;) + /h QS(E“(S),Vj)ds), (3.30)
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where z €(),. Notice that again, following the convention in Subsection 2.1, we use the
same notation v; to denote both the control policy function which depends on system’s
state, and the value of the control selected at ¢;. See the discussion after equation (2.2).

By the dynamic programming principle, the corresponding value function U(z)=

inf J(z u) satisfies
u€EU,

U(z)= mm{rzy /d) v)ds+ AU (2 ())}, (3.31)

where 27(0) =2z €Q,. We will assume that a map 7 :Q, — A exists such that

. )Eargmln{rzy /¢ V)ds+ AU (2 (h))}, (3.32)

veA

where 27 (0)=z€Q,.
Assumption 2.4 implies that

. > ) (G+1)h M.+ M. h
J(zu) <Y e (MTJF/ M¢ds> = # =:M;. (3.33)
J

Similarly, Jy(2,u) < M and therefore the same upper bound applies to U (z) and Uy (z).
The next theorem provides the relations between the stochastic optimal control
problem and the optimal control problem of the limiting ODE.

THEOREM 3.4. Let the nonempty subset £, C) be given.

(1) Suppose that Assumptions 2.5-2.4 hold. For every ¢ >0, there exists Ce >0
such that

sup |U(2)—~U(z")|<C.R+¢, VR>O.
z,z’GQg
l2=2/|<R

(2) Suppose that Assumptions 2.1-2.4 hold. Then for all € >0, there exists 6 >0
and N' €N, such that when N> N',

Un(2n)—U(2)| <e, (3.34)

for all zy eXnyNQ, 2€Qy, and |2y — 2| <0.

(3) Suppose that Assumptions 2.1-2.4 hold. Given 0<€' <e, z€Q,, and an € -
optimal open loop policy uw= (vo,v1, ) EU, of the limiting ODE system which
satisfies

Uz)<J(zu) <U(2) +¢

there exist constants N'€N and 6 >0, depending on €,¢' and z, such that for
N> N', we have

In(zn,u) <Un(zn)+e€

for all zy e XNNQ and |zy —z|<d. That is, u is an e-optimal control policy
for the feedback optimal control problem (3.27).
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Proof.

(1)

Consider two starting points z,2’ € Q, and let v =m(z). Let 2¥(s;2), 2¥(s;2)
be the solutions of the ODE (2.6) on the time interval [0,h] starting from z,z’
at s=0, respectively. Notice that z,2’ € Q, implies both solutions stay in § all
time.

By the Lipschitz continuity of the cost functions in Assumption 2.4, and equa-
tions (3.31)—(3.32), we have

h ~
U(z')fU(z)gr(z',z/)+/0 &(2¥ (s;2'),v)ds+ AU (z" (h;2))
h ~
—7"(,271/)—/0 d(2"(s;2),v)ds— AU (2" (h; 2))

SLT|Z—Z/|+/0}LL¢|2V(S;ZI)—2”(8;2)‘(18
FA|U (" (h;2)) — U (2" (h:2))].- (3.35)
Using Assumption 2.3, the standard ODE theory implies
|2"(t;2) — 2 (t;2))| <ePrt|z—2|, 0<t<h. (3.36)
Now for all R>0, we define the function

G1(R) = sup. U (21) ~Ul(z2)), (3.37)
21,22€8,,
|z1—22|<R

and it follows from inequality (3.33) that G1(R)<2M;, VR>0. Combining
estimates (3.35) and (3.36), we find

G1(R) < (Ly+ Lge"""h) R+ MGy (" " R)

which, upon iterating the above inequality k times, leads to
1— AkBLF kh

Gr(R) < (L Loe" ") T e

R+42X\FM ;. (3.38)
The first conclusion follows by noticing that A < 1.

Given €>0 and since A< 1, we could first choose k>0 such that 2\*M; < 5
From the definition of the subset €,, we know 3v>0, s.t. Q:,z,[o,kh] CcQis

satisfied for all z€Q, and uel,. Let the constant 0 < < %e’LFh and zy €
XNNQ, such that |z —zy|<J. Given v € A, we consider the stopping time

rio=inf {s| |2 (s) = 2(5) > 35" | A, (3.39)

where z¥"N(0)=zy and 7”(0)=z. In fact, under Assumptions 2.1-2.3 and
using the fact that Qf/z [0,h] CQ (see the discussion before Theorem 3.3 on

the notations), the same argument in Theorem 3.1 on the time interval [0,h]
implies that 3N’ >0, s.t. when N > N’, we have

P(r5 <h) <67 'Chn, (3.40)
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where the constant Cj, n is defined in equation (3.19). Also see estimate (3.10)
in Remark 3.1.
More generally, for R >0, we define the function

Go(R)=  sup  |Un(2)-U(2)],
2 EXNNQ,2EQ,
|z’ —z|<R

and notice that Assumption 2.4 implies |G2(R)| <2M;, YR >0.
Letting v =7 (2) € A, using the dynamic programming equations (3.29) and
(3.31), and the estimate (3.40), we can obtain

Un(zn)-U(z)

N
<EY. /¢ VN (5),1)ds+ AU (2 ] /(;5 V)ds— AT (2" (b))

<EZ, (/O |6(="" (5),v) = $(2" (5), )| dS) ' ﬂ{rwh}]

B [|Un (2 (1) = T (E (1) 1o,y | +2(h Mg+ AM )Py < )

. )
<k, |( /0 L¢|ZV7N<5>—z”(s>|ds+A|UN(z"*N(h))—U(é”(h>)|)-H{T;Zh}l

+ 2(;LM¢ +AM;)P(tk <h)
<3Lge"""h+ \G2(35e"7") +26 1 (hMy+AM ;) Ch -
In the above, we have used the facts that
2€Qy = 2" (h)€Qy,

X >h = sup |2"V(s)—3(s)|<30eEFM <y = 2N (h)€QY

0,n) €2
0<s<h

7,2

Since the same upper bound holds for U(z) — Uy (zy) as well, taking the supre-
mum over zy € Xy NE, z€Qy, such that |2y — 2| <4, we obtain

G2(8) <3Lgde™""h+\G2 (36e"" ") +26 1 (hMy+AM;)Ch n,

as long as 6 < Je Lri N> N'.
Notice that sz [0,h] CQ implies Qz,z,’[ih’kh} CQ for the same >0, where

' =z"(ih), 0<i<k, Vu €U,. Therefore, iterating the above inequality k times
and using the inequality Go <2M, gives

(Brelriyk—1

< LFh
G2(5) 73L¢56 h 3/\6LFh_1

+2X\k M,
—k)\ke—kLrh _q

3= e Lrh—1
Lon, (BhelrM)k—1 ¢
S0 e 1 T3

—k\ke—kLrh _1
3-1)\e-Lrh 1

+26°1 (hM¢ +)\M])Ch’]\7

+2(5_1(hM¢+/\MJ)Ch)N
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for § <3 ke klrhy N> N'.

Since Assumptions 2.1-2.2 imply that Cj y —0 as N — o0, we can first choose
0 and then N’ such that G5(d) <e when N > N’. The conclusion follows readily.

We estimate the cost using the definition (3.27). Notice that the constant
A=e A" <1 and that the open loop control u is €’-optimal for the deterministic
optimal control problem (3.30). For any k> 1, recalling the stopping time in
definition (3.2) and Assumption 2.4, we obtain

JIn(zn,u)

k i1 > )
<EY, > N <7”(Z“’N(tj)’Vj)+/ ¢(Z”’N(S)7Vj)d5> + Y N (M +hMy)
j=0 ¢

j j=k+1

k tit1 oo .
<3NV <r(zU(tj),uj)+ / qb(i“(s),uj)ds)-i- > N (M, +hMy)

j=k+1

P | N ) =1 )|
7=0
k tit1
+EZ [ ) N P(2"N (5),v5) — (3" (s),v;)|ds
) g
<YW (mzu(tj),yjﬁ / ’“¢<2u<s>,vj>ds>+2 S N(M,+hM,)
=0 2] j=k+1
k .
+EY, [(Z/\J‘T(zw]v(tj)ayj)_r(gu(tj)vyj)‘)']l{'rl"{,>kh}:|
=0
k tj+1
FB (N [ 06N 6)0) = 92(9.05)|d5) Lo |
k
+2(M, +hMy)P(rh <kh)> "N
j=0

k
<t (s 126 =20 Lirgoum | (Lot i) 3N
7=0

0<s<kh
N M, +hM
+J(z,u)+2g(x’“+l+P(T}¢<kh))
-

_ ) L,+hLy
<U(z)+€+E} ( sup |2%N(s)—2%(s )-]l ru }T
@+ +BE | s 2% (6) =26 Lgoun | 15

+2M; ()\k“ +P(1% < kh))

<Un(zn)+|Un(zn) *(7(2)| +2M;, <)\k+1 +P(ry < kh)) +é

L,+hL,

+BY, (s 0= 2 O) o] T

0<s<kh

Now for € > ¢, we can first choose k>0 and then obtain v > 0 using the property
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of the subset Q, with T'=kh. Applying Theorem 3.1 on the time interval [0,kh],
inequality (3.34), and Assumptions 2.1-2.2, we can find N’ €N and § > 0, such
that

In(zn,u) SUn(2n) +e

if z€Qy, zv €XyNQ, and |z—2zn| <. The conclusion follows immediately.
0

4. Algorithms

In this section, we discuss some numerical aspects of the control problems studied in
this paper. The main motivation is that, although our previous analysis suggested that
the optimal open loop control of the limiting ODE system is a reasonable approximation
whenever N is sufficiently large, in applications it is often difficult to verify how large N
should be such that the approximation is satisfactory. On the other hand, the optimal
feedback control becomes increasingly difficult to compute due to the rapid growth of
the state space when N is large. The main purpose of this section is to construct
an algorithm which further improves the optimal open loop policy by utilizing the
information of the system state (i.e., by adding feedback), while avoiding the curse of
dimensionality that is inherent to the dynamic programming approach.

In contrast to the previous sections, this part involves some heuristics, and we
confine ourselves to the optimal control problem for a Markov jump process on a finite
time-horizon [0,7"] with a finite control set .A. To this end, we assume that the parameter
N is large, and we remind the reader again that 2%~ denotes the original Markov jump
process with a control policy u, and 2N = N~12"" stands for the normalized density
process. The state spaces on which 2% and z%" live are denoted by X and Xy,
respectively.

4.1. Tau-leaping method. In order to compute the optimal control policy,
it is necessary to simulate trajectories of the underlying Markov jump process and to
estimate the corresponding cost. The stochastic simulation algorithm (SSA) [17,18,21]
is a typical Monte Carlo method: At each time step, it determines the waiting time
in definition (2.1) as well as the next state according to the jump rates between the
current state and the next possible states. When N is large, however, the system
becomes numerically stiff because a large number of jump events occur within a short
time interval. Since SSA traces every single jump event of the system, the effective step
size of the method decreases rapidly, which renders the SSA inefficient.

As a remedy to this problem, the tau-leaping method [9, 20, 21, 26, 53] aims at
increasing the effective step size by updating the state vector according to the transitions
that may occur within a given time interval. Roughly speaking, instead of computing
the waiting time and the next jump, the idea of the tau-leaping method is to answer the
question “How many times will each type of jumps occur within a given time interval?”
and then update the state vector accordingly. With a proper and carefully chosen step
size [9], the tau-leaping method can approximate the SSA quite well and meanwhile
reduce the simulation time by up to 1 or 2 orders of magnitude. In our implementation
(see the numerical examples in Section 5), we use the explicit tau-leaping method where
the leaping time step sizes are determined according to [9].

4.2. State space truncation. The computational complexity for solving
the feedback optimal control problem is proportional to the number of states in X
considered (which is of order N™, with n being the number of species). Therefore,
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truncating the state space X is necessary before numerically solving the optimal feed-
back control. One such approach to truncating the state space is to consider only
states 2 = (1), 2(?) ... 2(")) € X that lie within a hypercube defined by =) € [¢; N, ¢, N],
1<i<n, where 0 <¢; < ¢} are estimations of the lower and upper bounds of the average
densities per species. The cut-off values ¢;, ¢} could, for example, be determined by
launching independent simulations of the jump process controlled by candidate open
loop control policies.

Once a truncated state space X.,; has been constructed, then a simple algorithm
(Algorithm 1) to compute the optimal feedback control policy can be based on the
necessary optimality condition (3.17) with the terminal condition Uy (-, K)=1 where
the expectation value in (3.17) is estimated by a Monte Carlo average. If T is the total
simulation time, At > 0 is the average time step size used to generate trajectories (e.g., by
SSA or tau-leaping) and we use M independent realizations for each starting state to
approximate the expectation value, the overall computational cost of Algorithm 1 is

O(M - | AJ-[Xeut] - [T/AL])

Algorithm 1 Compute the optimal feedback control policy on truncated state space
1: Set Un(+,K)=1.
2: for k+ K—1to 0 do

3: for each z € X,,; do

4: for each v A do

5 Starting from x at time t;, generate M trajectories xi’N till time tg41,
such that x;-"N(tkH) € Xeur (generate new realization if in’N(tkH) ¢ Xeut)-

6: Let z=xz/N, z;"N:xi”’N/N, compute

1 - tet v,N v,N
QW) =373 (re)+ [ o s - U ) k1) ).

ty
7: end for
8: Set v (z) =argmin@Q(v) and Un(z, k) =minQ(v).
veA veA
9: end for
10: end for

4.3. Hybrid control. Solving the feedback control problem may be compu-
tationally infeasible even after truncation of the state space. As already mentioned at
the beginning of this section, we will utilize an adaptive state space truncation strategy
which exploits information from the (optimal) open loop control policies. The key idea
is to assume that the typical states visited by the jump process when an optimal open
loop policy is applied are also important states for computing a sufficiently accurate
feedback control policy. To this end, the following algorithm generates states (for each
control stage) whose densities are scattered around the density values of the system
controlled by reasonable open loop control policies.

Adaptive truncation strategy. Let S§; C X denote the finite state set at the j-th
control stage after truncation, 0 < j < K. We construct sets S; using the following steps.

(1) Compute “good” (open loop) candidate policies for the Markov jump process on
time [0,7]. A control policy u, €U, is called “good” if k<ny and Jy(ug) < (1+
€o1)JJn (ug) for appropriately chosen ny, €N, ny > 1 and €, >0 (in particular, g is
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the optimal open loop control policy for the jump process). Sort all “good” control
policies uy € U, 0 by their costs in non-decreasing order.

(2) Compute statistics of the controlled jump processes under “good” policies. For each
“good” open loop policy uy, record the average densities 2z ; € R™ and the standard
deviations o0y, ; €R™ of the controlled normalized density process at each stage 7,
0<j<K.

(3) Compute the truncated sets S;. For each “good” open loop policy uy, generate My,
trajectories and add the states x € X of each trajectory at stage j to the set S; if

@ /N e [Z](sz —CO’,(;)J,Z,(G% —|—CO’,(€Z;H, Vie{l,...,n} (4.1)

where ( >0 is a pre-selected constant, and x(i),z,(cg,a,(cg are the ith components of
T, 2k, Ok; ER™ .

REMARK 4.1. A few remarks about the above algorithm are in order.

(1) In the case that the jump process starts from a fixed initial value =, So={z}
is a singleton containing only the initial state.

(2) Step 1 can be accomplished by enumerating all possible (finite) uy €U, ¢ and
computing the cost J(ug) by simulating trajectories using SSA or the tau-
leaping method. Parameters n, and €,; are introduced in order to determine
the number of “good” open loop policies which might carry important infor-
mation and will be used to construct the truncated state sets S; in Steps 2,
3 above. By the central limit theorem (see [33]), the state distributions of
the jump process under “good” open loop policies are approximately Gaussian
whenever N is large. Hence the standard statistical estimators for the means
and standard deviations computed in Step 2 can capture the distributions to a
good approximation.

(3) Ideally, for every “good” control policy uy and every control stage j, we would
like to record all possible (i.e., reachable) discrete states that satisfy condition
(4.1). However, this set may be very large. Therefore, we sample these reachable
states in Step 3 with a tunable parameter M,;, which can control the number
of states in §;. The drawback is that important states may be missing when
they are not visited by the M, trajectories (see below for a patch).

Hybrid control policy. Having the state sets S; at hand, the task of computing
a feedback control policy is to determine maps v;:S; =+ A, 0<j < K, according to a
modification of Algorithm 1. Keeping in mind that the sets S; may be only partially
sampled, it is quite possible that, at some control stage j, the system fails to reach S;
under control v;_;. To remedy this defect, we propose the following strategy: Denote
the best available open loop policy as ug=(v3,1%,---,v% ), and consider the j-th
control stage, 0<j <K where we suppose that the system has ended up in a state
x ¢ S;. Further, let 2’ be one of the nearest states to x among all states in Sj, i.e., 2’ €
argming ¢, |z —2'|. Then we apply the control v;(z') if |z —2'|/N < €near, Where €,eqr
is a cut-off parameter, and otherwise we use (. In other words, we replace the original

j
candidate control by the modified control policy uw= (7,1, -+ ,UKx_1) €Uy with

DjZX%A, Dj 0

(a’;): Vj(x/)7 if |x/_x|/N<€near (42)
vy, otherwise.
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In the following, we keep using v; instead of ¥; when no ambiguity exists. This strategy
can prevent problems that arise when the feedback policy v; at stage j cannot be
computed because some rare, but important states are missing due to the insufficient
sampling when constructing the set S;. Notice that the algorithmic modification can
be easily switched off by setting €, =0. In this case, the feedback policy is applied
only when the states belong to S;, while open loop policies are applied otherwise. In
agreement with the notation used in Sections 1-3, we define

uh,k:{(yk,f/k-i—la"'aDK—l) | l/jZSj—>./4,]<i§j<K}, 0§]€<K, (43)

as the set of all hybrid control policies, where 7; is defined as in (4.2). The algorithmic
task now boils down to finding the optimal hybrid control policy w&lp . In order
to solve this task, we consider the cost function Jy(z,u,k) as in (3.16) and define a
modified value function as

Un(z,k)= inf Jn(z,u,k), Nz€S. (4.4)

ueEUR k

By definition, the value function satisfies the terminal condition Uy (z,K)=1(z)
and a modified Bellman equation as a necessary optimality condition:

Un(z,k) :,r,%iﬁEy z_: (r(z“’N(tj),I/j (z“N(tJ)))
=k

+ / " ¢(z“’N(s),Vj(z“’N(tj))) ds) +Un (ZU’N(tT),T)‘| , NzeS;, (4.5)

tj

where 2N (ty) =z, u= Vg, V41, V1) With vy =v and V41, VK —1) EUp k41 is
the optimal hybrid control policy starting from stage k+1. The terminal index 7 is a
stopping time, depending on the particular realization, and is either the smallest stage
index such that k<7< K and N2“"(t,)€S,, or 7=K otherwise. Notice that in (4.5),
only values of Un(z,k) at states z such that Nz €Sy, are involved. Based on it, we
can compute the optimal hybrid control policy by backward iterations in Algorithm 2
below.

A computational bottleneck in computing the hybrid control policy for €,cq >0 is
the solution of the minimization problem argmin, cg |z —2'[, i.e., to find the nearest
neighbor of z in §;. The computational complexity of a direct minimization based
on a pairwise comparison is (9(|Sj|), which would increase the computational cost of
Algorithm 2 to O(M -|A|-|S;|?-[T/At]) (assuming 7=k +1 and |S;| are constant for
simplicity). However, by employing the so-called k-d tree data structure [7] to store
the states in S;, the computational complexity of finding the nearest neighbor can be
reduced to O(In|S;|), by which the total computational cost is of the order

O(M | A]-|8;|-In|S;|- [T/At]).

In the numerical examples in Section 5 below, our implementation uses the ANN (Ap-
proximate Nearest Neighbor) library [45], which provides operations on k-d trees and
efficient algorithms for finding the first k-th (k=1 in our case) nearest neighbors.
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Algorithm 2 Compute the optimal hybrid control policy
1. Set Un (-, K)=1.
2: for k< K—1to 0 do
3: for each z € Si do

4: for each v € A do

5: Set u= (V,Vk+1,+,VKk—1), where v; is the optimal policy function on the
j-th stage, k<j < K —1 (already computed).

6: Generate M trajectories :L';L’N from time ¢y, to ¢, where k<7; and ¢, is
either the first time when 2" (t,,) €S, or ; =K, 1<i< M.

7: Let z=z/N, zf’N :z;"N/N, compute

1 M -1 . oy tia1 . .
Q) =7 A X [N e+ [ oG 0N ) ds)

i=1  j=k j

—|—UN(ZZTL’N(tT,i),T¢)}.

8: end for

9: Set v (z) =argmin@(v) and Uy (z,k) =minQ(v).
veA veA

10: end for

11: end for

5. Numerical examples
In this section, we consider two numerical examples in order to demonstrate the
analysis and the algorithms discussed in the previous sections.

5.1. Birth-death process. First, we consider the one-dimensional birth-death
process which can be described as

-1 g, (5.1)

where € NT. We suppose that the process has a density dependent birth rate which is
x- k4 when the current state is =, and similarly, - x_ for the death rate. We fix T'=3.0
and K =3, i.e., the control can be switched at time t=0.0,1.0,2.0. Two control/parame-
terization sets A;, As shown in Table 5.1 are considered. Each set contains two controls
v(© (1) that affect the jump rates x_ and k4. For the optimal control problem, let
N (t) be system’s state at t€[0,7] with control u €U, and set r(z,v)=1(z)=0,
¢(z,v)=|2—1.0| for v€ A;, i=1,2, leading to the cost function

3
JN(Z(),U):EZO |:/ |ZU’N(t)—1.O|dt R ueug,o, (52)
0

with 2%V (t) =2%N (t)/N and 2% (0) = z;. Minimizing a cost as in equation (5.2) may
arise when one wishes to keep the density of the system (5.1) not far away from 1.0
by controlling the jump rates (depending on the system’s states). Fixing zp=1.2 and
one of two control sets Aj, As, we shall compare the optimal open loop and feedback
control policies for the jump process as N increases, as well as the optimal (open loop)
control policy for the related deterministic ODE

dz(t)
dt

= (ky —K_)ZU(t),  2U(0)=1.2. (5.3)
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Open loop control. In the case of open loop control, there are |U, | =2%=8
different control policies in total for both the jump process (5.1) and the deterministic
ODE (5.3), regardless of the value N, since one of the two controls v(?) () can be
selected at any of the three control stages. The optimal control is obtained by simply
comparing the costs of all 8 possible policies. In Figure 5.1, the evolutions of the means
and the standard deviations of the density 2%~ (t) are shown for different N. For both
control sets Aj, As, it is observed that the standard deviations decrease and the means
get closer to that of the ODE controlled by the optimal control policy as N grows larger.
For the control set A, we observe that the suboptimal policy us = (1,1,0) leads to a cost
which is close to the optimal cost (that is determined by choosing the optimal policy
u;=(1,0,1)) of the ODE system. (For the ease of notation, we use the index of the
control action to denote the control policy, e.g., (1,0,1) means (v, () (1)) For the
jump processes with N =40 or N =100, us performs even better than wuy; cf. Figure 5.3.

Feedback control. Now we turn to the feedback control problem, in which case the
optimal control policy can be obtained by iterating the dynamic programming equations
(3.17)-(3.18) by backward iterations. As the state space X=NT is infinite, finite state
truncation is necessary for Algorithm 1 to work. Based on a rough estimation of the
solution of ODE (5.3), and taking account of the form of the cost functional (5.2), the
initial condition zp=1.2, as well as the jump rates xk4,x_, we truncate the space into
the finite subset Xt ={N/2,N/2+1,--- . 2N} CN* (see discussions in Subsection 4.2).

Figure 5.2 shows the means and the standard deviations of 2"V (¢) under the optimal
feedback control policy as a function of time for increasing N. Generally, for both
control sets A; and As, the optimal feedback control policies lead to smaller costs as
compared to the optimal open loop controls (Figure 5.3). Specifically, we observe in
Figure 5.2(a) that, for the control set A;, the standard deviations decrease and the
means converge to the densities of the optimally controlled ODE system (by us) as
N increases. For the control set As, due to the existence of the competing policy us
(in this case, u; =(1,0,1) is optimal for the ODE system), some states with density
close to z=1.0 may select the control vV at stage t=1.0, while others select /(%)
(see Table 5.1), which leads to a significant rise in the standard deviation at the next
control stage t=2.0 (see Figure 5.2(b)); we moreover notice that the convergence of
the empirical means of the controlled jump process at time t=2.0 to the ODE solution
is slower than in case of the control set A; as IV increases. The last observation is in
agreement with Figure 5.4(a) which shows the bimodal probability density function of
the optimally controlled process at time ¢=2.0 that becomes even more pronounced
for larger values of N. Nevertheless, Figure 5.3 clearly shows the convergence of the
cost values of both open loop and feedback control policies as IV increases, in line with
the theoretical prediction. Also notice that, in Figure 5.3(b), the optimal costs using
feedback and hybrid policies for finite N can be smaller than the optimal cost of the
limiting ODE system, i.e., the convergence may be not monotonically decreasing from
above. As a final demonstration, Figures 5.3(a) and 5.4(b) show a comparison of the
SSA and the tau-leaping methods, with the clear indication that the results using the
tau-leaping method are close to the SSA prediction, but at much lower computational
cost.

Hybrid control. Finally, we consider the hybrid control policy following the pro-
cedure discussed in Subsection 4.3 and we confine our attention to the control set As. To
assess the approximation quality of the hybrid control algorithm, we compute the cost
under the open loop control policies for various values of N and with 5000 trajectories
for each possible policy. As “good” control policies, we define the suboptimal controls
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Ay As
K_ Ky | ko Ky
0 v©O 106 1.0]08 1.0
1 p(1) 1.0 08| 1.0 0.8

No. | control

TABLE 5.1. Two different control sets Ay, Aa for the birth-death jump process. Each set contains
two controls where the underlined entries indicate different control actions in A1 and As.

1.6 1.6
—1J N = 40 o. deviation O~ N = 40 0. deviation
¥ N =100 »= N =100
14 oo N=500 Mé 14 oo N=500 ,D,Dﬂ
. Vv N = 2000 0.1 Mﬁ . Vv N = 4000 01 ﬁ—g—g—
212 --- ODE 1 2 210 --- ODE / 2
%] %]
c c
[ [
el il
1.0
0.8]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
time time
(a) Control set A3 (b) Control set Az

FIGURE 5.1. Birth-death process. Evolution of the empirical means and the standard deviations
(inset plot) of the normalized density process 2% N under the optimal open loop control policies in
comparison with the ODE solutions. Here N is the scaling number and controls are switched at times
t=0.0,1.0,2.0. (a) Control Set Ai. The optimal policy is ua = (1,1,0) both for the jump process for
all N and for the ODE system. (b) Control Set Az. The optimal policy is uz =(1,1,0) for the jump
process with N =40,100, but it becomes w1 =(1,0,1) for N =500,4000 and the ODE system.

with ny =2 and €,; =0.05 (see page 316). Sets S; are computed from M,; = 5000 realiza-
tions for each “good” open loop policy according to (4.1) with (=2.5. As Figure 5.4(c)
illustrated, the cardinality of the sets &; and Sy is much smaller than the cardinality
of Xt used in the feedback control case, which can lead to a tremendous reduction
of the computational effort as compared to Algorithm 1 at almost no loss of numerical
accuracy (see Figure 5.3).

5.2. Predator-prey model. In this subsection, we consider a two dimensional
predator-prey model on the state space X=NT xN*. We call A and B the prey and
predator species, and let x:(x(l),x(z)) €X denote the numbers of species A and B.
We suppose that both the prey and predator reproduce or decease naturally, with the
predator eating the prey in order to reproduce. Recalling the notations explained in
Subsection 2.3, the dynamics of A, B species can be modelled as a jump process on X
according to the rules (see [31])

(1) A2524, A0
(2) B22:92B, B0
(3) A+B—5B, A+B—3A+2B.

A control corresponds to a vector v = (A1, fi1, A2, 12,b,¢), where each parameter takes
positive real values. Now we define the jump vectors I; =(1,0), I3 =(0,1) and consider
the normalized state vector z = (21 2(2)) =z /N € R? for a fixed scaling parameter N >
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1.6 — 1.6 ‘ ——
0—1 N = 40 . deviation o—0 N =40 o deviation
L4 = N=100 L% s n=s00
’ o—o N =500 1.4 o—o N = 4000
v N=2000 °* o 13 v N=8000 "

0.8 . -
0'8.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
time time
(a) Control set Ay (b) Control set Az

FIGURE 5.2. Birth-death process. Evolution of the empirical means and the standard deviations
(inset plot) of the mormalized density process 2N under the optimal feedback control policies in
comparison with the ODE solutions. N 1is the scaling number and controls are switched at times
t=0.0,1.0,2.0. (a) Control set Ai: as N increases, the standard deviations decrease and the empirical
means get closer to the ODE solution under the optimal policy uz=(1,1,0). (b) Control set Asz:
the policies u1 =(1,0,1) and uz =(1,1,0) are the dominant (sub)optimal control policies for the ODE
system.

0.7 0.7
O~ open loop, SSA [3—£1 open loop, SSA, u,
o6 %=X open loop, tau-leaping 06 »=>< open loop, SSA, u,
’ &6 feedback, SSA ’ &o feedback, tau-leaping
¥-v feedback, tau-leaping hybrid, tau-leaping
0.5 ODE 0.5; ®
k7] @
o o
o o
0.4 0.4
03k - B 0.3
02735 100 200 500 1000 2000 4000 8000 02735 100 200 500 1000 2000 4000 8000
N N
(a) Control set Ay (b) Control set Aa

FIGURE 5.3. Birth-death process. Cost values for the jump processes with different scaling number
N. Both SSA and tau-leaping methods are used to sample trajectories. For the control set Az, uj =
(1,0,1), u2 =(1,1,0) are the best two open loop policies.

1. The jump rates for the normalized density process are then given by

W, h v, N by

d (27N)=>\1Nz(1), y (Z,—N)ZN(M1+bz(2))z(1),

v l v [
d,N(Z7N2):N(AQ_'_CZO))Z@)a d,N(Z7_N2)::u2NZ(2)7 (54)

which indicate that the process is density dependent (see Subsection 2.3), with the
vector fields F'**V(z) in (2.7) given by

FY(2)=F"N(2)= (()\1 —p1)20 —bz W23 (M) _(yy — )\2)2(2)) . (5.5)

Our aim is to study the optimal control problem on a finite time-horizon [0, 7], with
terminal time T'=>5.0 and K =5 control stages at times t =7 x 1.0, 0<j <4. We define
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00 feedback, SSA 00 feedback
1ot = feedpack, tau-leaping > hybrid, t=1.0
OO hybrid, tau-leaping 010" 0=0 hybrid, t=2.0
£
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(a) Probability densﬂ;y at t=2.0 (b) Run time (¢) Number of states

FIGURE 5.4. Birth-death process. Dynamics under the control set Az. (a) The probability
distribution of states of the jump process at time t=2.0 under the optimal feedback control. (b) The
CPU run time (in seconds) for different values of N, where the algorithm is run in parallel using 10
processors in each case. (c) Number of states in the sets Xeut (feedback control) and Si, So (hybrid
control).

the cost functional as
5.0 N N N
JN(zo,u):EgOU (|z§1)’“’ — 2D | ) (D —1.5|>dt}, welyy,  (5.6)
0

where 2N (t) = (zﬁl)’"’NJ,gz)’u"N) = N~t2%N(t) is the normalized density jump process

with initial condition 2" (0)=zp. In our numerical experiment, we set zo=(1.0,0.4)
and choose N =50, 100, 200, 500, 1000, 2000, 4000.

The particular choice of the cost functional Jy is aimed at maintaining the density
of the prey species around z(!) =1.5 over time [0,5.0], with roughly about two times
more prey than predator. The control set A contains three different controls and is
shown in Table 5.2: Observe that, in comparison with v(9), the prey reproduces faster
under the control (1) and the predators decease more slowly, while the control »(?) has
the reverse effect.

Open loop control. We do a brute-force calculation of the optimal open loop
control policy based on ranking all possible 3% =243 policies in U, o according to their
cost. In each case, 50000 trajectories are sampled using both SSA and tau-leaping
methods. From Table 5.3, we conclude that for large N (>500), tau-leaping method
outperforms the SSA, as is indicated by the large increment of the effective time step
sizes. Except for the system with N =50 whose optimal open loop control policy is
u; =(0,2,1,0,2) with the corresponding cost 11.26, the optimal policies for other larger
N are all ug =(0,2,1,2,2), which is also the optimal policy for the limiting ODE system
(for N =50, usg is the second best policy with cost 11.30), see Figure 5.7. The empirical
means and the standard deviations of the normalized density process 2%~ are shown in
Figure 5.5 for various values of N. As can be expected from the theoretical predictions,
we observe that the mean values approach the solution of the limiting ODE, with the
standard deviations decreasing as N increases. Convergence of the cost values to the
cost value of the limit ODE system is also observed in Figure 5.7.

Hybrid control. We continue to study the hybrid control policy introduced in
Subsection 4.3. Firstly, all 243 possible open loop control policies are ordered by their
costs, among which we identify all “good” policies with n, =3, €,; =0.05. Then, sec-
ondly, we estimate the empirical means and the standard deviations of the process under
all “good” policies based on 5000 independent realizations of the process. Thirdly, for
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No. | control | Ay 1 Ao e b c

(0 25 0.2 02 20 20 20
vy 127 02 02 1.5 20 20
) 25 0.2 02 25 20 20

N = O

TABLE 5.2. Predator-prey model. The control set A contains three different controls to modify

the rates in the predator-prey model. The major differences among the controls are indicated by the
underlined rates.

N 50 100 200 500 1000 2000 4000
At [1.8x107% 9.0x107%F 45x107% 1.8x107% 9.0x107° 4.5x107° 22x107°
At [1.8x107% 9.0x107* 45x107* 39x107™* 1.1x107% 2.7x107% 3.2x107°

TABLE 5.3. Predator-prey model. Average time step sizes when the SSA (row with label Ast) or
tau-leaping method (row with label Art) are used to generate realizations of the predator-prey model.

deviation deviation

oNBO®ONRO®

00000

FIGURE 5.5. Predator-prey model. Evolution of the empirical means and the standard deviations
(inset plot) of the normalized predator and prey states (densities) under the optimal open loop policy.
The curve labeled by “N =50, sub” corresponds to the jump process of size N =50 that is controlled by
the suboptimal policy uz, which becomes the optimal policy for larger N. “ODE” corresponds to the
limiting ODE under the optimal policy uz.
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FIGURE 5.6. Predator-prey model. Evolution of empirical means and standard deviations (inset
plot) of the normalized predator-prey system under the hybrid control policy.



WEI ZHANG, CARSTEN HARTMANN, AND MAX VON KLEIST 325

N 50 100 200 500 1000 2000 4000

Ny 5 ) 3 3 3 3 3

M, 5000 10000 10000 10000 20000 20000 30000

11<Ili£l4 |S;| | 4090 8738 12024 11545 23120 26060 40463
<i<

max |S;] | 11420 30572 25784 14587 29369 29597 44513
<<

9N? 22500 90000 360000 2250000 9000000 36000000 144000000

TABLE 5.4. Predator-prey model with hybrid control. The row “ON2” shows the estimated state
space cardinalities after truncation if a simple cut-off criterion is used. The row “Ng” shows the
number of the “good” open control policies, and “M,;” denotes the number of trajectories generated
for each “good” open policy in the calculation of the sets Sj. The other two rows contain the minimum
and mazimum numbers of states in the sets Sj.

€ncar N 50 100 200 500 1000 2000 4000
Tol 13.6% 13.6% 38.1% 66.1% 66.6% 73.2% 74.7%
0.0 | time 1.0h 5.3h 5.6h 7.1h 5.0h 5.0h 8.2h
cost 10.72 9.88 9.58 9.27 9.18 9.13 9.11
Tol 33% 11% 09% 06% 03% 04% 0.3%
002 | Tnear 10.2% 12.0% 36.4% 65.5% 66.3% 72.9% 74.3%
' time 1.1h 5.5h 5.5h 7.0h 5.7h 5.5h 7.2h
cost 10.60 9.81 9.47 9.25 9.18 9.13 9.11

«“ »

TABLE 5.5. Predator-prey model with hybrid control. The rows “ro;” and “rpeqr”’ Tecord the
relative frequencies of using an open loop policy or a feedback policy of a nearest neighbor when the
hybrid control policy is applied (see Subsection 4.3). The row “time” shows the CPU run time (in
hours) needed to compute the optimal hybrid control policy with 20 processors running in parallel for
each N.

11.5

= OL, optimal
11.0 e—e hybrid, ¢, =0
A=A hybrld' €near

=0.02
10.5 1

ODE

cost

10.0

9.5

9.0

FIGURE 5.7.  Predator-prey model. Cost values of the predator-prey model under the optimal
open loop (“OL”) control policy, the hybrid control policies with €near =0 and 0.02, for various values
of N. The dotted horizontal line is the optimal cost for the limiting ODE system.

each “good” policy, we generate M, trajectories once again and collect the accessed
states at time ¢; in S;, 1<j <M according to the criterion (4.1) for (=3.0. (Note
that Sp contains only a single element). The minimum and maximum cardinalities

min |S;| and max |S;| of sets S; are shown in Table 5.4.
1<jsM—-1 1<j<M—1

The reader should bear in mind that, if we wanted to compute the optimal feedback
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control policy on a globally truncated state space X.,; (see Subsection 4.2), then it
would be necessary to include states whose normalized components are within [0,3.0] x
[0,3.0] as suggested by the empirical means and standard deviations of the process
(see Figure 5.5), which would result in roughly 9N? states in total; even for moderate
predator-prey populations, computing the optimal feedback policy on X.,; is therefore
extremely costly. Compared to this approach, the adaptive state truncation that gives
rise to the sets §; is much more efficient in the sense that the overall number of states
involved in the computation of the optimal hybrid policy is much smaller; see Table 5.4
and Figure 5.8.

Finally, we compute the optimal hybrid policy using Algorithm 2 and apply it
to the predator-prey model in the way explained in Subsection 4.3. The resulting
cost values that were estimated based on 50000 independent realizations are shown in
Table 5.5, Figure 5.7 and clearly demonstrate the superiority of the hybrid controls over
the optimal open loop control policies (in particular, see Table 5.5 for N =50,100,200).
To explain the observed gain in the numerical speed-up, Table 5.5 also records the
relative frequencies r,; of switching to an open loop policy: For €,cq, =0.0, we observe
that the hybrid control frequently switches to the optimal open loop policy, which is an
indicator that the sets S; are too small as the dynamics often hits an “unknown” state
outside S;. Yet, for €,ecqr =0.02, we find that r,; decreases significantly which suggests
that the sets §; contain almost all states that are close to the accessible states under
the given control policy. Note moreover that the resulting cost value for €,¢q, =0.02 is
slightly improved over the choice €4, =0.0.

Before we conclude, we would like to stress an important observation that the
standard deviations of the process are smaller under the hybrid control policy (similarly
for the feedback policy) than that under the optimal open loop policy. This effect can
be revealed by comparing Figure 5.5 with Figure 5.6 for the same value of N, and it
suggests that besides providing smaller costs, both hybrid and feedback control policies
have a positive effect on stabilizing the stochastic process.

6. Conclusions and future directions

Due to their wide applicability, Markov Decision Processes have been the subject
of intensive research. While the theory is well developed, algorithms for numerically
computing optimal controls are restricted to small or moderately sized systems.

The aim of this paper was to analyze optimal control problems for Markov jump
process in the large number regime (parameterized by the “particle” number N > 1),
i.e., when the state space is too large to compute the optimal feedback controls using
standard algorithms. Based on Kurtz’s limit theorems, we have established convergence
results for the value functions of the optimal control problems on finite and infinite time-
horizons as N — oco. Our results suggest that the optimal open loop control policy for
the limiting deterministic system is a good substitute for the controlled Markov jump
process, for which the optimal feedback policy may be difficult to compute. Nonetheless,
for a given jump process with a possibly large, but finite N, the approximation error
induced by replacing the optimal stochastic (feedback) control with the limiting deter-
ministic control is difficult to assess; even for large values of IV the stochastic dynamics
controlled by a deterministic open loop control policy is not robust under the intrinsic
random perturbations, and may hence deviate considerably from the optimal regime.
To account for this lack of robustness, we proposed an algorithmic strategy to compute
a hybrid control policy that is based on a combination of deterministic (open loop) and
stochastic (closed loop) controls. The key idea is to truncate the state space adaptively
in time, exploiting data gathered from stochastic simulations under near-optimal open
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FIGURE 5.8. States selected to construct the hybrid control policy in the predator-prey model for
N =100. The value at each grid point x:(x(1>,x(2>) counts how many sets S; contain the state x,

4
i.e., the value at x €X is equal to - 1s, ().
i=1

loop policies, and then to apply the optimal feedback control policy for all times in which
the stochastic realizations resides inside the truncated state space (for all other states,
the optimal open loop policy is applied). Both the accuracy and the practicability of
the proposed hybrid algorithm have been demonstrated numerically with birth-death
and predator-prey models.

Before we conclude, it is necessary to mention several related topics which go beyond
our current work. Firstly, throughout the article, we have assumed that the cost can
be expressed as a function of the normalized density process 2V (t) =N ~'z" (¢), which
in many cases is the natural variable scaling. In some cases, however, such as complex
chemical reaction networks, it might be necessary to consider a more general scaling of
the form 20N (t) = N2 z():N(¢) a; >0, in which each chemical species comes with its
own scaling order. Then, in the limit N — oo it may happen that the limit of z(i)’N(t)
can be deterministic, stochastic or even hybrid when some of the «; are equal to zero and
others are positive. We emphasize that in these cases determining the correct scaling
of the variables is not a trivial task and the convergence analysis is also more involved
(see [2,28]). Secondly, besides the large copy-number N, systems in realistic applications
may also contain many different species. While our analysis is still valid in this case,
it may become computationally challenging to compute the hybrid policy proposed in
the current work. One idea to alleviate the difficulty is to first reduce the dimension
of the system (in particular when there are both slow and fast reactions or when the
quasi-stationary assumption is satisfied), and then utilize the information of the reduced
system to design numerical algorithms. Thirdly, it is also interesting to consider the
asymptotic analysis of the optimal control problem in the case that the control policy
can be switched at any time or when there is uncertainty in the observation of the
system’s states. We leave these aspects for future work.
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plex Systems”.

Appendix A. A technical lemma. The following inequality has been used in
the proof of Theorem 3.1.

LEMMA A.1.  Let p(2)=|z|%, where z€R" and 1 <a<2. We have

0§<p(z+w)f<p(w)—z'Vg0(w)§%g@(%), Vz,weR™ (A.1)

Proof.  The case w=0 can be readily verified. Now assume w#0 and consider

z=(21,0,0,---,0)T, w=(wy,w)T where z;,w; €R, w' €R""L. Defining g(r)=r* for
r >0, it follows that

p(zt+w) —p(w) —z-Vo(w)

w1z
:g(¢<z1+w1>2+|wf|2)—g(\/w%+|wf|2)—g'( w} + fof|?) e
T+

+g/( (stwn? P (

(s+wi)?

" (s+wy)?+|w 2)
1) | | (s+w1) +|w/|2

! - (stw) 3>]dsdr
(stwi)?+ w2 ((s4w)2+|w|?)?

- [ [ Vi) (e

‘w/‘Qg/( (S+w1 2+|w/|2)
3 dsdr.
((s+wi)?+[w'[?)?
Since 1< <2, we know that ¢',¢"” >0, and g ( = a:(’"l) =ar®~? is non-increasing for
b
r>0. We also have the simple mequahty t <5, Va,b>0. Therefore

0 <¢(Z+w) —p(w) —z-Vp(w)

(S+’LU1)2+ 1 |w/|2
"V (s+wp)?+|w 2) a-l dsdr
= o (Vermr ) S

1
<— / / g’ \/ (s+w1)? +\w/|2)dsdr
a—=1Jy Jo
1
Si/ /g”(\s+w1\)dsdr
o Jo
2 (= 4 EA 4 ||
s)dsdr<——g| —=— |=——g( = ).
sz a(3) st
For the general case, let A be an n x n rotation matrix, such that Az =(21,0,0,---,0)7,
z1 €R. Then

(2 +w) —p(w) — 2- Vp(w)
—g(lz+w]) — g(jw]) — g (Jw]) = -z

|w|
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Aw
|[Aw]

=p(Az+ Aw) —p(Aw) — Az-Vp(Aw)

4 (1A 4 (e
“a—19\2 ) Ta=19\ 2 )

:g(\AerAwDfg(|Aw|)—g’(|Aw|) Az

therefore the conclusion also holds for general z € R™. a0
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