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ANALYSIS OF THE EFFECTS OF A FISSURE FOR A
NON-NEWTONIAN FLUID FLOW IN A POROUS MEDIUM*

MARIA ANGUIANOT AND FRANCISCO JAVIER SUAREZ-GRAU#

Abstract. We study the solution of a non-Newtonian flow in a porous medium which characteristic
size of the pores € and containing a fissure of width 7n.. The flow is described by the incompressible
Stokes system with a nonlinear viscosity, being a power of the shear rate (power law) of flow index
1 <r<+4o00. We consider the limit when size of the pores tends to zero and we obtain different models
depending on the magnitude 7. with respect to .
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1. Introduction

In this paper we consider an incompressible viscous non-Newtonian flow in a pe-
riodic porous medium with characteristic size of the pores € and containing a fissure
{0<z, <n:} of width n. with £,m. two small parameters meant to tend to zero (see
Figure . Modeling of non-Newtonian flow in fractured medium has encountered a
renewed interest because it is essential in hydraulic fracturing operations, largely used
for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact
with pre-existing rock fractures also during drilling operations, enhanced oil recovery,
environmental remediation, and other natural phenomena such as magma and sand
intrusions, and mud volcanoes.

The aim of this work is to find the effective system corresponding to the limit when
the size of the pores, and so the width of the fissure, tends to zero. Homogenization
has been applied to the study of perforated materials for a long time. The question
of a medium containing a fissure with properties different from those of the rest of the
material has been the subject of many studies previously, see Ciarlet et al. [8], Panasenko
[11] and Chapter 13 of Sanchez—Palencia [12] among others. A similar problem of the
one considered in this paper, but for the Laplace’s equation, was studied in Bourgeat and
Tapiero [4]. The peculiar behavior observed for the Laplace’s equation when 7). ~ £3 has
motivated the analogous study for the Newtonian Stokes system in Bourgeat et al. [5)
(see Zhao and Yao [15] for the Newtonian Navier—Stokes system).

A lot of fluids used in industrial practice are modeled with a shear thinning law.
For this reason, in this paper we extend the previous studies obtained for Newtonian
fluids to the case of power law fluid, whose situation is completely different. The main
reason is that the viscosity is a nonlinear function of the symmetrized gradient of the
velocity. In this sense, we consider that the viscosity satisfies the nonlinear power law,
which is widely used for melted polymers, oil, mud, etc. If u is the velocity and Du the
gradient velocity tensor, denoting the shear rate by D[u] = 1(Du+ D'u), the viscosity
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as a function of the shear rate is given by
ne (D)) = plD[u] "2, 1<r<+oc,

where the two material parameters >0 and r are called the consistency and the flow
index, respectively.

Recall that =2 yields the Newtonian fluid. For 1 <r <2 the fluid is pseudoplastic
(shear thinning), which is the characteristic of high polymers, polymer solutions, and
many suspensions, whereas for > 2 the fluid is dilatant (shear thickening), whose be-
havior is reported for certain slurries, like mud, clay, or cement, and implies an increased
resistance to flow with intensified shearing.

We consider fluids satisfying the non-Newtonian Stokes system in the domain de-
scribed above, and our goal is to generalize the study of Bourgeat et al. |5] to the
non-Newtonian case. We first establish a priori estimates in the framework of Sobolev
spaces and variational formulations. To find these estimates and then the order of the
limits, we use a variant of the Korn’s inequality for this type of domain. The results
obtained here correspond to three characteristic situations depending on the parameter
1 with respect to e:

o If 7. < 7T the fissure is not giving any contribution. In this case, in order to
find the limit, we use the theory developed by Allaire [2] and Nguesteng [10] of
two-scale convergence and we obtain a nonlinear Darcy’s law.

o If 5.>> %1 the fissure is dominant. We introduce a rescaling in the fissure
in order to work with a domain with height one, and then we prove that the
limit of the velocity is a Dirac measure concentrated on {x,, =0} representing
the corresponding tangential surface flow. Meanwhile in the porous medium
the effective velocity is equal to zero.

o If nezerr—l with ns/arr—l — A, 0< A< 400, it appears a coupling effect and
the effective flow behaves as Darcy flow in the porous medium coupled with the
tangential flow of the surface {z, =0}. Compared to the first case 7. < ez -1,
the effective velocity has now an additional tangential component concentrated
on {x, =0}. Moreover, the limit problem is now given by a new variational
equation, in which appears the parameter A\, and consists of a nonlinear Darcy
law in the porous medium and an additional Reynolds problem on the surface
{z,=0}.

2. The domain and some notations
Let QCR™, n=2 or 3, be a bounded open domain and

Qp=0n{z, >0}, Q_=0n{z,<0}, X=0n{z,=0}.
For some 79 >0 we define the domain
DZQ,U(H()en-FQjL)U(EX [07770]).

Let € >0 and 0<7. <19 be two small parameters meant to tend to zero. With 2
we associate a microstructure through the periodic cell Y =(0,1)" made of two com-
plementary parts: the solid part A, which is a closed subset of Y, and the fluid part
Y*=Y\ A. Defining YF=k+Y, k€Z", we set A¥ and Y** =Y*\ A as the solid and
fluid part in Y* respectively.

We also denote
A== ] Ak, At= | A%,
kezn keZn
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all the solid parts in R™, where Z* ={k:k€Z", k, <0} and Z§k ={k:keZ", k,>0}.
It is obvious that E* =R™\ (A~ UA™) is an open subset in R™.
Following Allaire [1], we make the following assumptions on Y*, E*, A and A*=
ATUA:
i) Y* is an open connected set of strictly positive measure, with a locally Lipschitz
boundary.

ii) A has strictly positive measure in Y.

iii) E* and the interior of A* are open sets with boundaries of class C%! and are
locally located on one side of their boundaries. Moreover E* is connected.

We also define

Y;_*k:gy*k, kGZn,

A

:&‘A—7 A+ =Te€n +5A+a 56775 :a(AE_ UAZ_UE)'

EMNe

We denote by

Ay, = A7 UA;'% - the solid part of the domain D,

D., . =D\ A.,. - the fluid part of the domain D (including the fissure),
I,,=¥x(0,n.) - the fissure in D,

Qe =Dy \ I, - the fluid part of the porous medium,

and
Qf =Dy {zn>n.}, Q, =Dey N{x, <0}, T, =0%x(0,n.).
Finally we define
D,=Dn{z,>0}, D_=Q_.

We denote by O, a generic real sequence which tends to zero with € and can change
from line to line. We denote by C a generic positive constant which can change from
line to line.

3. Setting and main results

In the following, the points x € R will be decomposed as x = (2’,2,,) with 2’ € R* 1,
z, €R. We use the notation ~ to denote a generic function of R" 1.

In this section we describe the asymptotic behavior of an incompressible viscous non-
Newtonian fluid in the porous medium with a fissure. The proof of the corresponding
results will be given in the next sections.

Our results are referred to the non-Newtonian Stokes system. Namely, for fe
C(D)" let us consider a sequence (U, ,pen.) € Wy (Dep, )" X Ly (Derp,), 1<r <400,
which satisfies

{ —div (ﬂm[usna”TiQD[usne]) +Vpen. =f in Dey,, (3.1)

divie,, =0in D,
where 1> 0 is the consistency, 7’ =7/(r — 1) is the conjugate exponent of r and L, (D.,.)
is the space of functions of L™ (Dep.) with null integral. We may consider Dirichlet
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FIGURE 2.1. View of the domain Dey,

boundary conditions without altering the generality of the problem under consideration,

Uen. =0 on 0Dy . (3.2)

It is well known that problem (3.1)-(3.2) has a unique solution (ue,,pey. )€

Wy (Dep.)™ X Ly (D<) for every e,m.>0 (see the classical theory [14] for more de-
tails).

Our aim is to study the asymptotic behavior of u.,_and p.,. when € tends to zero.

As usual, in order to study the behavior of u.y,_, pey. in the fissure we rewrite our
equations in the unit cylinder I; =% x (0,1) by introducing the change of variable

:Z:’W,
z=—, 3.3
Te (3:3)

which transform I, in a fixed domain I;. We define the new functions

U (l‘/,Z) = Uen, ('7;/77752); pere ('75/72) = Den. (33/,7762) — Cenys (3'4)

and

e € € €
U le :(u17757u2ns7___7u Te )7

n—1
with

1
canizl—/ Den. dx. (3.5)
.| Jr

Ne

Let us introduce some notation which will be useful in the following. For a vectorial
function v=(,v,), we will denote Dy [v]=3(Dyv+Dlv) and 9, [v]=1(0.v+9%v),
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where we denote 9, = (0, ,a%)t, and associated to the change of variables 1) we
introduce the operators: I, n. and div,_, by

e

1 1
D, [v]= 3 (Dy.v+ Dflsv) , divy v=divy 0+ n—ﬁzvn,

g

1
(Dy.v)ij=0g,v; for i=1,....n, j=1,....n—1, (Dy.v)in=—0.v; for i=1,... n.
€

Using the transformation (3.3]), the system (3.1]) can be rewritten as

{ ~divy, (Do, ) Dy U)) 49 P = G ) i B g
div, U= =0in I,
with Dirichlet boundary condition,
U =0 on 90X x(0,1). (3.7
In order to simplify the notation, we define S, as the r-Laplace operator
SHE)=¢I"7%E, VEERDD, 1<r< oo,
and K :R™—R" as a function defined by
K(&):/*wg(y)dy, VEER", (3.8)

where wé(y), for every £ €R"™, denote the unique solution in W#T(Y*)” (# denotes
Y -periodicity) of the local problem

—div, S (D[wt]) +V,7¢ = ¢ in V™,
divyw® =0 in Y™,
w® =0 in dA,

wé, ¢ Y — periodic.

(3.9)

Our main result referred to the asymptotic behavior of the solution of problem

(13.1)-(3.2) is given by the following theorem.

THEOREM 3.1.  Let n.~e¥ 1, with nE/eﬁ =X, 0<A<+00, 1<r<+oo and let
(Uen, ,Per.) be the solution of problem —. Then there exist a Darcy velocity
veL"(D)", a Reynolds velocity V € L"(2)", with V,, =0, and a pressure pe W' (D)
such that

e T Uy, Ky ATI Vs in M(D),

o (3.10)
Pen. =P in L™ (D),

where 0y, is the Dirac measure concentrated on X, and M(D)™ is the space of Radon
measures on D. The velocities v and V are given by

v(w) = %K(f(x) _Vp(z)), in D, (3.11)
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where the pressure Pe WY () is connected with the pressure p by the relation
p(z',0)=P(z')+C, CeR.

Moreover, the pressure pe Vs ={o e WH"' (D) : ¢(-,0) e W' ()} is the unique solution
of the variational problem

/v(ac)~V<p(x)d$+)\%/f/(x')-vgcmp(x’,O)dx’:O, VoeVs. (3.13)
D )

REMARK 3.1. Formally, problem (3.13) is the weak formulation of the following
boundary value problem

{ —divo(z) —/\%divx/ (l}(x/)(;z:) =0 in D, (3.14)

v(@) v+ AT T V(@ )dox 7 =0 on D,

where v is the outward normal to 0D and 7 is the outward normal to 0.
In the case A=0, i.e. n. Ke?—1, then the fissure is not giving any contribution. In
fact, if A\ tends to zero in problem ([3.14)) we obtain the following Darcy’s law on D

{ —divu(z) =0 in D, (3.15)

v(xz)-v =0 on 0D,

where v is given by equation . ‘

On the other hand, in the case A=+o00, i.e. 9> aﬁ, then the fissure is dominant.
In fact, multiplying system by A7 and tending A to +o0o, we obtain the
following Reynolds problem on X

T /N /: .
{Ndlva(x) 0 inX, (3.16)

V(z')-v=0 on 9%,

where V is given by equation 1'

REMARK 3.2. The monotonicity and coerciveness properties of the permeability
function K given by definition can be found in sections 2 and 4 in [7], which
implies that system is well posed. On the other hand, the r’-Laplace operator is
well know that is monotone and coercive (see [9] for more details), which implies that
system is well posed. Therefore, the problem is also well posed.

In Section[d] we establish a priori estimates of the velocity and the pressure. Section
is devoted to prove Theorem whose proof is divided in three subsections. In Sub-
section we analyze the problem in the porous part (7. <<E2T+1) while in Subsection
the problem in the fissure part (775>>6TT—1) is analyzed, which give the rigorous

proof of problems (3.15) and (3.16)), respectively. Finally, in Subsection we prove
that there is a balanced interaction between the fissure and the porous medium giving

Theorem B.11

4. A priori estimates
Let us begin with the following variant of the Korn’s inequality in the porous
medium €Q.,_, which will be very useful (see for example Bourgeat and Mikelic in [6]).

LEMMA 4.1.  There exists a constant C independent of €, such that, for any function
veWL (D, )™ and v=0 on S.,_, one has

HU||Lr(sz€%)n <Ce|D[v] ||L7‘(Q€,,E)"><” , l<r<+oo. (4.1)
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Next, we give an useful estimate in the fissure I,

LEMMA 4.2. There exists a constant C independent of €, such that, for any function
vEWT (D, )™ and v=0 on S.,,., one has

1 1

HU”U([,]E)n <Cne?(n-+¢)? | D[v] HLT(DE,]E)WM ; I<r<+oo. (4.2)

Proof. Because the thickness of I, is 7., we have, by the classical Poincaré
inequality,

||'U||Lr(]715)n S0n5||DU||LT(InE)nX7L. (43)

Next, if we choose a point x; € A,,,_, which is close to the point x € I,_, then we have
v(z) —v(z1) = Do(§)(z —x1) < (e+7¢) | Do.
Since v(z1) =0 because z1 € A.,,_, we have
lo(@)| (£, y» < Cle+n) | DvllLr (1, ymxn-
Multiplying the above inequality with inequality we obtain
10ll 1,y < Cn? (e +E) 2 [DV]| o g, ynxn SCNZ (e +E)2 [DV] o, yuens  (4:4)

and from the classical Korn inequality we obtain estimate (4.2]). O

Let us give the classical estimate [3], for the a function in L™ when we deal with a
fissure.

LEMMA 4.3. There exists a constant C independent of €, such that, for any function
veL"(I,.) with [, vdx=0, one has
Ne

o]

C
Lr(Iy,) S i”vvnw—lm([%)n, 1<r<+oo.

Now, we are in position to obtain some a priori estimates for u.,,_.

LEMMA 4.4. There exists a constant C independent of 5, such that if uey €
Wy (Dep. )", with 1 <7< 400, is the solution of the problem (3 (l one has

1

<C(n." 7 e t4en)m, (4.5)

ene =

||uen5

— 2r—1

HuEnaHLr([%)nSCOk 1776 "
2r-1 1

Dty SO +e) 7T, (7)

||Du€’l]5||L7 e )X SC( +5) . (48)
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Proof.  Multiplying by u.,_ in the first equation of system (3.1) and integrating
over De,_, we have

T S /D - ttey, d. (4.9)

Using Hélder’s inequality and the assumption of f, we obtain that there exists a constant
C such that

ten | ey m 1 ey yn 1ten: L@y ms

ene )™

1
[t de<Cn? Il
D

ENe

and by inequalities (4.1)) and (4.2)), we have

1 1 1
/ fettzn, dz < (n et e+ ne) ) Dl e (5, e
D

ENe

1 1 11
<C (nne+neneded +2) IDuey, Nl b,y e

Therefore, from equation (4.9) we get

_1_
r—1

1 1 11
HD[UE%]HLT(DE%)TLXTL <C (775 " Ne+Nem N 2E2 —|—€>

1 101 1 L1, 1 1 101
Since 1.7 n.2e2 <n. 7. if e<n. and nd' n2e? <nd'e<eif . <e, the term 7.7 n.2¢2
can be dropped. Taking into account that 1/r'+1=(2r—1)/r, this gives inequality
and from the classical Korn inequality we have inequality .
Applying inequality together with inequality we obtain inequality .
Finally, applying inequalities and we get

11, 2r-1 1
||U577€||LT(I”E)”SC(?]5+775252)(7]5 T de) T

1
_ 2r—1 1\ 71 r—1 2r—1 r—1 r—1 r+l\ r—
SC(nJ e en” 1) 1+(77e A ) i,
Since . T . e T < i pe>eand T o e T < T et if g <
r—1 r—1 r—1
e, the term n. 2 1. "% can be dropped, and inequality 1) holds. 0

In order to investigate the behavior of solutions to problem —, as e —0, we
need to extend the pressure p.,, to the whole of D. Extending the pressure is a difficult
task. The extension is closely related to the construction of a restriction operator. Such
extension for the case of a porous medium without fissure is given in Tartar [13] for the
case r=2. We need a restriction operator, RS, between W, " (D)" into W, (Ds,_ )"
with similar properties, which is given in [6]. Since the construction of the operator is
local, having no obstacles in I,,, means that we do not have to use the extension in that
part.

Next, we give the properties of the restriction operator R: (see Lemma 1.2. in [6]
for more details).

LEMMA 4.5. There exists a linear continuous operator R; acting from Wol’T(D)" wmnto

W57T(Den5)"7 1<r<+4oo, such that
(1) Rev=uv, ifve W," (D, )"
(2) div(Rév)=0, if divo=0



MARIA ANGUIANO AND FRANCISCO JAVIER SUAREZ-GRAU 281
(3) For any ve W, " (D)™ (the constant C' is independent of v and ¢),
1Rl Lo,y SOVl prpyn + Cel DOl Lr(pynsn s

C
IRl L (b, g < Z W0l pr(yn + CIDV] Dy

In order to extend the pressure to the whole domain D, we define a function Fy,, €

W’lv’"'(D)” by the following formula (brackets are for the duality products between
WL and Wy"):

(Fen,v) p =(Vpen. . Bov)p, , for any ve W (D), (4.10)

where RZ is the operator defined in Lemma [£.5] We calculate the right-hand side of
formula (4.10]) by using system (3.1)) and we have

(Fep. ) p = (v (1Dfuuey, )" Dlucy,]) Biv) 4+ (£ R0 (4.11)
ENe
and by using the third point in Lemma [4.5] for ﬁxed €, ne we see that it is a bounded
functional on W,"" (D)3, and in fact Fo eW=b (D).
Moreover, if ve VVO1 "(Dgy.)™ and we continue it by zero out of D,,_, we see from

formula and the first point in Lemma that Fy,.|p.,. = Vpen..

On the other hand, if divv=0 by the second point in Lemma and formula
, we have that (Fi,_,v),=0 and this implies that F;,_is the gradient of some
function in L™ (D). This means that F,_is a continuation of Vp,,_to D, and that this
continuation is a gradient. We also may say that p., has been continuated to D. We
denote the extended pressure again by p.,. and since it is defined up to a constant we
take pe,, such that [, p., dz=0. Moreover, we have

Foy =Vpe,, .
For such extended pressure we obtain the following result.

LEMMA 4.6.  There exists a constant C independent of €, such that if pep_ GLEI (D),
with ' the conjugate exponent of r and 1 <r <400, is the extended pressure to the whole
domain D, one has

41
Ne
[Pl (py <C ( - 6 +1> ) (4.12)

3
[Pen. — CEWEHLrU) C(Ua“ n), (4.13)
g

where c.p,. 1s given by definition .

Proof. Let us first estimate Vp, . To do this we estimate the right side of
equation (4.11). Using Hoélder’s inequality and from inequality (4.7)) we have

. r—2 r—1
|<dw(u|muman Dluey,]) Bv) | S ulDlucn 5nip,, yoen IDRE Lo, yoen

ENe

<c(na +5> (22 P——
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Using the assumption of f, we obtain that there exists a constant C' such that

(£, B0},

Then, from equation (4.11)), we deduce

<C ”RiU”LT(DE"&)n :

|(Vpen. 0} p| SC (057 +€) IDRE] o,y + CIREVl o -

Taking into account the third point in Lemma [4.5] we have
1
|(Vpen. ) p| <€ (57 +e) ( ol oy + ||Dv|Lr(D)nxn)

).

+C (Jlv

L™ (D)m

Then, as e < 1, we can deduce that

2r—1
I

n
|<VP€%’U>D|§C< - +1> ||UHW01’T(D)713

for any v € W,""(D)". Therefore, we obtain

2r—1
[Vpen w1 D)"<C< - +1>

and the estlmate ) follows by using the Necas inequality in D.
Let ve W, ( ns)" then

(Vpen. 0)y,, = (v (uID[ucy, )" Dluy ) 0)  +(f0),

Ne

We estimate the right-hand side. Using Hélder’s inequality and inequality (4.7) we have

<C(775 K +€> ||D'I}||Lr(1 ynxn.

Me

(i (1D ey 72D 1) ),

Using again Holder’s inequality and assumption of f, we obtain that there exists a
constant C' such that

[0 E g i Paesey ] PR
and by the estimate (4.4), we have
’<f,'U>I" <C( +T]ET/7752€2)||DUHLT YrXmy

Then, we have
HvPEUaHW 1! (I )"SC<TI€ +"75 7752€Z+€)

Reasoning as in the proof of Lemma we observe that n.* 7]5252 can be dropped
and so we obtain

HVPEHEHW*”'(HE)" SO(775 +€)

Using Lemma we obtain the estimate (4.13)). O
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5. Proof of the main result

In view of estimates of the velocity and estimate of the pressure,
the proof of Theorem 3.1] Wlll be d1V1ded in three characteristic cases: 7. LeTT , Ne >
e7-1 and .~ e 1, with 1. /eT—1 = X, 0< X < +00.

5.1. Problem in the porous part ng<<€m. In this subsection, we need to
extend the velocity ue, by zero in the fissure I,_, and we will denote the extended
velocity by vey,, i.e.

S uep. in Qg
Ven: = { 0 in I, (5.1)
LEMMA 5.1. Let 1. <e=1 with 1<r<+oo and let (Ven. sDen.) be the extended

solution of problem -. Then there exist subsequences of Ve, and pey_ still
denoted by the same, and functions ve L™ (D)", pe L (D) such that

r

e 0., —v in L'(D)", pe,.—p in L7 (D). (5.2)
Moreover, v satisfies

divv=0 in D, v-v=0 ondD. (5.3)

Proof. From estimates and - taking into account the extension of the
velocity by zero to D and 7. << £%7-1, we have the following estimates

[ven. [l (py» < Cer, [Pen. | (D) < C.

Then there exist v € L™ (D)™ and pe L™ (D) such that, for a subsequence still denoted
DY Vep., Pen., it holds

e T v, —v in L'(D)", pey. —p in L7 (D).

Next, we prove that the Convergence of the pressure is in fact strong. Let w. € VV1 "(D)™
be such that w. —w in W,'"(D)™. Then (brackets are for the duality products between
WL and Wy'):

|< VPen. ,we >p — < Vp,w>p| <|< Vpey. ,we —w >p|+|< Vpey. — Vp,w >p.

On the one hand, we have
|< VDer, —Vp,w>p] :/ (Pen. —p)divwdz —0, ase—0.
D

On the other hand, we have

|<Vp5n5aws_w>D|:’<VPEn57Ri(w€_w) >Den.
= aiv (1D luey. " Bluey,]) B (w0 =) b, = (f, R (we = w))p,, |,

and using Holder’s 1nequauhty7 estlmate . the estimates of the restricted operator
RS given in Lemma n.<er T and e < 1, we get

1
|<vp57757w5 ’UJ>D|<O(77€ +€) <€||w€_w|L7‘(D)n+|DwE_Dw||LT(D)TLX7l>

+C ([|lwe = w|| r(pyn +€l| Dwe — Dwl| Lr(pynxn)
SO(H'LUE —UJ”LT(D)n +5||Dw5 —DwHLr(D)an) —0 as € —0.
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Therefore, we have that Vp,, — Vp strongly in WL’ (D)™, which implies the strong
convergence of the pressure given in expression (5.2)).
Finally, from divve, =0 in D and the weak convergence of the velocity given in

expression ([5.2]), we easily obtain condition ([5.3)). O

The proof of the following result will be showed by using the two-scale convergence
introduced by Nguesteng in the L?-setting and developed by Allaire [2], who also
introduced the L"-setting. By 2 we denote the limit in the two-scale sense.

LEMMA 5.2. Let . <e¥-1 with 1 <r<+oo and let Uey,. be the extended solution of
problem —. Then there exist subsequences of ve,_ still denoted by the same,
and O(x,y) € LT(D;W#T(Y*)”) such that

e T T, —0(z,y) in L'(DXY*)", £ 771 Du.,y —Dyi(z,y) in L'(DxY*)"™<",
(5.4)
The weak limit v(x) and the two-scale limit 0(x,y) are related as follows

ow)= [ ie)dy )
Moreover, ¥ satisfies

divyo(z,y)=0 YY" ©0=0 inY\Y", (5.6)

div, (/*ﬁ(x,y)dy) —0 inD, (/*ﬁ(x,y)dy) =0 ondD. (5.7

Proof. From estimates (4.5)) and 1D and taking into account that 7). <<5ﬁ, we
get

_r_ _1
HUE"]s HLT(D)" S 05"‘71 3 ||DUE',7£ ||L7‘(D)n><n S C€T71 .

Thus, from Lemma 1.5 in @7 there exist subsequences of v.,_, still denoted by v.,,_, and
a function @EL’"(D;W;T(Y*)") such that the convergences given in expression 1)
hold.

Relation (5.5) is a classical property relating weak convergence and two-scale con-
vergence, see Allaire |2] and Bourgeat and Mikelic [@ for more details. From divve, =0
in D, then condition (5.6)) is straightforward. Finally, conditions (5.3) and (5.5)) imply

a0

condition (5.7)).
LEMMA 5.3. Let n. <e¥1 with 1<r<+oco and let (Ven. ,Pen.) be the extended

solution of problem —. Let (v,p) € L"(D)" x L™ (D) be given bi; Lemma .

Then, pe W' (D) and (v,p) is the unique solution of Darcy’s law .
Proof.  Considering ¢ € Wy (D)™, we define w.(z) = ¢(z) —e T, (z) as test
function in problem (3.1)-(3.2) and we have
[ 18, (Bluey. ) Dl da= (7 = T, )
D

Observe that

7‘

Sr(D[ven. |) =&"S(D[e™ 7T vep. ).
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Therefore,

[ 15.®pur):Dlwda= [ 15, (Bl o)) Dlgldo= [ pleDle 0 )1 o

Using Hélder’s and Young’s inequalities in the first term of the right-hand side, we can
deduce

/ 15, (Dvey.]) : D] de < / H 1Dyl / H\eDle= 10, ] 7 de,
D DT DT

and so the variational formulation of problem (3.1)-(3.2)) is equivalent to

[ Bleptllr = [ Bleble o )1 doz [ foweda—(Vpopwp. (59
DT DT D

Now, we choose ¢ (z,y) "~ € D(Dy_;CF(Y*)"). There exists 11 >0 such that supp
Y(z,y)t~ C D/I,. for every n. € (0,1m1). Let n. <. We define ¢ ()"~ = (z,z/e)"
and we insert ¢ =11~ in inequality . In the sequel, we use the elementary prop-
erties of the two scale convergence. Using the two-scale convergence of e_ﬁvens given

in expression (5.4), we have

D+f~wsdz—>/[)+/yf-(¢—@)dxdy,

and using divv,, =0 in D and the strong convergence of the pressure (5.2), we have

<VP£175 awa>D+, = /

Dy

pgnsdivwgdx%/ /pdivzw(x,y)dmdy, as € —0.
_ pi_Jy

Therefore, passing to the limit in the variational formulation (5.8) and taking into
account condition (5.7)), we get

/D+/Y/:|]D>[1/J]Td:cdy—/D+/YifD[@]|rdxdy><f(x)—vp(x)7/(¢_@)dy>D+_

Y

Consequently, there exists # € L" (D; L™ (Y*)/R) such that (,7) satisfies the homoge-
nized problem

—div, (u|Dy [0]]"*D, [8]) + V7= f(z) — Vp(z) in Y™, (5.9)
div,o(z,y)=0 in Y™, (5.10)
(0,7) is Y —periodic, =0 inY\Y", (5.11)

by using the variant of de Rham’s formula in a periodic setting (see Nguetseng |10] and
Temam [14]). Reasoning as in Theorem 8 in [6], we get that the pressure p belongs to
Wb (D).

Finally, the derivation of system (3.15) from the effective problems (5.9)-(5.11) is
straightforward by using the local problems (3.9) and definitions of the permeability

functions (3.8). o

It remains to prove the convergence of the whole velocity

e " Tu., —v in L"(D)", (5.12)
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which is equivalent to prove that the velocity in the fissure tends to zero, i.e. to prove
&7 uen, -z, )» —O. (5.13)
For this, it is sufficient to prove that
&7 uen, lzr(r,.yn =0 for p <, (5.14)
and

__r_ 1 2’/‘—1
e T Juey, || Lo, y» =0 for e<ne v, l<a< — (5.15)

for a g which will be defined below.
Using inequality (4.6) and using 7. <&, we have

G TR,
—-r_ 1> € €
e | uey, | Lrr, ym <C TWL*‘F(*) )

gr—1 e £

so that the limit (5.14) easily holds. Using Holder’s inequality with the conjugate

exponents 2 and ﬁ we obtain

T

ER— 11 114
- Ned "~ Net © Ned ©
e ! ||“6ns||Lq(I,,E)" §O< — + + T .
gr—1 1 £2

Now we take 7). —cw. Then we find that

T

g1 uen,llLa(r, y» <C (5%(%+ﬁ)_r—l peali—rtt)-t +€%(%_%+%)_%> .

We seek an optimal ¢ such that the right-hand side in equality (5.1) tends to zero. It is
easy to prove that we have a convergence to zero for any ¢ € (1, m) Therefore,
the convergence ([5.15) holds and so we have the convergence (5.13))

5.2. Problem in the fissure part n. > eT1, Using estimates in Lemma
the functions (3.4) and compactness, we prove the following lemma.

LEMMA 5.4.  Let 7. >e%-1 with 1 <r <400 and let (U=, P be the solution of
system (@—. Then there exist subsequences of U and P"= still denoted by the
same, and functions U € L"(I,)", with U, =0, P L" (I,) such that

N TIUTE U in LI, P =P in L" (). (5.16)

’
r

Moreover, P=P(z/') e W () and U is given by
) =25 (D) =[] ) ) - 9 P 2 (w0 - VPl
b T'//,Lrl_l 2 2 ) x ) xr .
(5.17)
Proof. Taking into account 775>>6ﬁ and estimates l , 1l li we have

U | 1y <O 7T (5.18)
IVt || 1y o1y SO (5.19)
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[0U || 1 (1yyn—1 <Cme7T, (5.20)
1P N L (1) <C- (5.21)

From the estimates (5.18) and (5.21)), there exist & € L"(I)", PeL" (I) such that
convergence ([5.16[) holds. Moreover

N TTOUTE 9, U in LT(I)".
Let ¢ € C§°(11)™, then

ns_ﬁ/ (divﬂﬁ'z;{enE +77€7182u7in€) pdx
Iy

:—We_ﬁ/l:{ensD;c'@diﬁ—??e_fl/ U - 0,pdr=0.
I I

Taking the limit € -0 we obtain

/ U, 0,pdx=0,

Iy

so that U, =U, (z").

Since U, O,U € L™ (I1)™ the traces U(a’,0), U(z',1) are well defined in L"(3)™. Anal-
ogously to the proof of Lemma we choose a point B, € A.y_, which is close to the
point o, € 3, then we have

/|Z/{57]E(x/,0)|rdl‘/=/|ugn5($/,0)‘rdl‘/§0/ </ Dusns'(aw’_ﬂw’)dg) dx’,
by b) Y (Byrrogr)

so that, by Holder’s inequality,
247 (2", 0) [ sy < CEl| Dtten, [ 1r .,y
Taking into account estimate and n.>e7 -1, we have
0T U (2! 0) [y < Cznme 0 as €0,

which implies that

U(x',0)=0,
and analogously
U, 1)=0
Consequently
U, =0,

which proves the convergence ([5.16)). Finally, we need to identify the effective system
and compute the expression of the solution. For this, thanks to Propositions 3.1 and
3.2 in Mikelié¢ and Tapiero [9] we have that the effective system is given by

~0. (j0.U]"20.U) =251 (f(@',0) -~ Vo P@)), in Iy,

div, (foll;{(x’,z)dz) =0 in X%, (foli/{(x’,z)dz> =0 on 9%,
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taking into account Proposition 3.3. in @I] we have that P=P(z') e W' (£) and thanks
to Proposition 3.4 in ﬂgﬂ we have that the expression of the solution is given by formula
(5.17)).

0
It remains to prove the convergence of the whole velocity
N T Uy, S VO in M(D)", (5.22)

where V(z fo 2’,z)dz is given by equation (3 1.' and also prove that the pressure
P is the unlque solutlon of the Reynolds problem ([3.16).

Taking as test function ¢ € C°°(D) in divue,, =0 in D, we obtain

/divuenscpdx:—/Uens-Vgodx—ng/UE”E~V¢(m’,nez)dx’dz:0,
D D I

so that multiplying by n.~ 1,

/ N T IU N (2! mez) da’ dz
I

- / e 5 vy, Vioda / U 0o o) dalde. (5.23)
D I

Using inequality |i and taking into account 1. > e -1, we obtain

. 1
e 0 ven. e (pyr SC | —ar + —ar | 0 as €0, (5.24)
776 r 7]8 r—1

Taking the limit in equation ([5.23)) as € — 0, using convergence (5.16)) and U, =0, we
have

U-Vyp(x',0)de'dz=0,
I

and by definition (3.12]), we get the Reynolds problem ([3.16). Consequently, P is the
unique solution of problem (3.16]) (see Proposition 3.4 in Mikelic and Tapiero ﬂgﬂ for
more details). Finally, we consider ¢ € Cyp(D)™ and so we have

_2r=1 _2r=1 ——r_ en / !/

Ne ~1 usng<)0dx: Ne 71 Uan5¢d$+ Ne U E‘P(x a"]sz)dx dz.

D D I
Using inequality (5.24)) and convergence (5.16|) and U,, =0, we obtain

/ns—zf = Uey, pdr — L{(x 2)p(a’,0)dz’dz

D

:/f)(m/)@(fl;/,o)dfﬂ/:<V($I)6Z,@>M(D)n’CO(D)n,
b

which implies the convergence ([5.22)).
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5.3. Effects of coupling 1. ~e?-1. The conclusion of the previous two subsec-
tions is that for any sequence of solutions (vey,_,pey.) With 7. < ez-1 and (Y=, Pe7e)
with 7 >e%-1, and letting e —0, we can extract subsequences still denoted by
Ven., Pen., UT", P"= and find functions ve L"(D)", pewhr’ (D), Z;{GLT(Il)”’l,
PeW' (%) such that

E_ﬁvgna —v in L"(D)", pep.—p in L",(D),

- ~ / 5.25
Ne iU =Y in L"(I,)™ with U =(U,0), P"=—=P in L" (Iy). ( )
Moreover such limit functions v, p, U, P necessarily satisfy the equations
1
=—K(f(x)—Vp(z)) inD, v-v=0 on dD,
© (5.26)

=25 ((3)" |5 —=") 1F@.0) - Var Pla)"2(f(a'.0) - Vor P(a")) im I,

We are going to find the connection between the functions p and P, i.e. to find the
coupling effects between the solution in the porous part and in the fissure.

LEMMA 5.5. Let nszaﬁ, with ne e T 5\, 0<A<+4o00, 1<r<-+oo, and let
{pen.} CL" (D), pe WL (D), PEWHT () be such that the convergence and
equations hold. Then,

LK (f(2) - Vp(2) - Vep(a)da
DM

+)\T E / ’f 7T/) (x) (f(x’,O)—Vm/P(x’))-Vx,go(ac’,O)dx':0, (527)
27 (r+1)p 1

for every p e Vy.

Proof. Let p€Vx. Taking into account the definitions (5.1)) of v, and (3.4) of
U, and from divue, =0 in D we have

/s_ﬁuEnE-Vgadxz/s_ﬁvmg-Vgodx
D D

2r—1

r—1
+( nf) / ne " T1U - Vp(a' ,n.2)da’dz=0.
I

g2r—1

Taking the limit as e — 0, using the convergence (5.25), U, =0 and 7. /e¥1 — \, we
obtain

/ v(z) - Ve(x)de+ A7 | Ua,2) Vap(a',0)da'dz=0,
D I

and taking into account expressions and -, we get equality (5.27] - 0

In the following result, we are going to prove the relation between the pressures p
and P.

LEMMA 5.6. Let n. zaﬁ, Ne eI =X, 0<A<+00, 1<r<+4oo and let p, P be the
limit pressures from expression . Then, there exists C' €R such that

p(',0)=P(z')+C, (5.28)
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and p € Vx, is the unique solution of the variational problem .

Proof. We need to extend the test functions considered in the proof of Lemma
to the fissure I,,_. To do this, we define B, =D_UXUI,_ and Y'=Y N{z,=0}, and
we consider ¢(y) € CZ° (B, )" be such that ¢(y)=0 in Y'\Y* and div,é(y) =0 in Y.
We define

6(5) b,
Pe(z) = K,e, inl,, where K,= [ ¢,(y,0)dy
Y,
Let o€ C§°(B1), with By =D_UXUI; be such that
/gp(x’,O)dm’:O. (5.29)
>

We define

p(z) inD_
on. (2) = @(iﬂ/ Ln) in I, .
Taking in system (3.1]) as test function

()¢ (L) —e " Tv., inD_,
(a: m")Knen in I,,_,

Ve

H

we obtain

/ ST(ID)[uE%]):DwEdm:/ f~w5dx—/ Pen. divwe de. (5.30)
B, B B

Ne Ne

Taking into account that

K/ f(p( )endx nKn | f-p(@,2)e,dr’dz—0 ase—0,
I, I

and by using estimates ([5.19)), (5.20)), that
/ S (D[U]) D, (2!, =) dx| =
E

= ’K Sr (D, [U))D.p(2',2) da' d
SC’?]Eﬁ —0, ase—0,
from equation ([5.30]), we obtain

[ 50lve)): Dt

€

:/ f-wgdx—&-/ psnsdivwedm—i—Kn/ peneazncp(x',x—n)dx—&—Oe. (5.31)
D_ D_ I, n
For the last term on the right-hand side, we have

K / p5775 ln 1' 7)d$

g
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In Tn,
:Kn/ (Pen. _Cane)aanp(x/vn*)dx‘FKn/ Csnsaon(x/»?)dzv
I, I,

€ €

where c.,,_ is given in definition (3.5]). Using the convergence (5.25) and condition ([5.29)

we obtain

Kn/ (pgns—csns)azngo(m',x—n)dle(n P9, 0(2',2)d2' dz
Iy75 T]E Il (532)
—>Kn/ P(x’)azgp(x’,z)dx’dz:—Kn/P(a:’)go(a:’,O)da:’, as € —0,
I 5

where P is given by definition (3.4)), and
Kncgns/ axnw(:r’,x—n)dzancgm d,0(x',2))dx'dz=0.
I, e I

Passing to the limit in equation (5.31)) similarly as in the proof of Lemma we
know that ¢ and p are related by the variational formulation of problem (5.9)-(5.11)),
and taking into account the convergence (5.32)) and

/ p() div,, (p(2)é(y)) dady
DxY

— [ Veplo)e(@)ély) dudy+ / p(' 0) (e’ ,0)gn (40 da'dy/
DxY YxY’

—— | Vap(a)p(a)o(y) dedy + K, / p(a’,0)p(a’,0)da’,
DXxXY >

then we have

[0l 0P pla’0) s’ =0,
so that

[0 0P v ar -0

for every ¢ € C§°(X) such that [ t1pda’=0. Finally we conclude that there exists a
constant C € R such that equation holds and p(-,0) € WLT'(E), i.e. peVy. Using
equations and , we obtain the variational formulation for the limit pressure
p in the space Vx in the form

LK (f(2) - Vp(e) V(o) dz
DM

! (f(x',0) =V p(z',0)) Vap(a',0)dz’ =0,

s

27‘—1/ ‘fl(xlao)*vm/p(zlvo)
by 27 (r4+1)pm 1

(5.33)

for every p € Vx.
Since K and S, are coercive and monotone (see Remarkfor more details), it can
be proved that equation ([5.33) has a unique solution in the Banach space Vs /R equipped
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with the norm |v|vy, = [v]y1. () +[0(+,0) 1.7 (), by direct application of Lax-Milgram
Theorem. Therefore the whole sequence converges to p, the unique solution of the

problem ([3.13]). |

Proof. (Proof of Theorem [3.1]) It remains to prove the convergence (3.10) of
the whole velocity.
Let ¢ € Co(D)™. Then

—_T_
/ € T Uy, -pdx
D

2r—1
=1
:/ wlvangwdw*( = ) / Ne " TIUE (! .2) da d.
D

g2r—1 I

Taking the limit as € =0, using the convergence |i U, =0 and ng/sﬁ — A, we
obtain

/ £ T Uy, 'godx%/ ’U'QOdJC+)\%/ Uz’ 2)p(z’,0)dz'dz.
D D Iy
Taking into account that

d(xlaz)ﬁﬂ(fvo)da?/dz:/V($/)<P(37/70)d$/:<V52,<P>M(D)n,co(0)n,
I )

where V(2') is given by equation (3.12)), we get the convergence ((3.10)). d
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