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A MODIFIED POISSON–NERNST–PLANCK MODEL WITH
EXCLUDED VOLUME EFFECT: THEORY AND NUMERICAL

IMPLEMENTATION∗

FARJANA SIDDIQUA† , ZHONGMING WANG‡ , AND SHENGGAO ZHOU§

Abstract. The Poisson–Nernst–Planck (PNP) equations have been widely applied to describe
ionic transport in ion channels, nanofluidic devices, and many electrochemical systems. Despite their
wide applications, the PNP equations fail in predicting dynamics and equilibrium states of ionic con-
centrations in confined environments, due to the ignorance of the excluded volume effect. In this work,
a simple but effective modified PNP (MPNP) model with the excluded volume effect is derived, based
on a modification of diffusion coefficients of ions. At the steady state, a modified Poisson–Boltzmann
(MPB) equation is obtained with the help of the Lambert-W special function. The existence and
uniqueness of a weak solution to the MPB equation are established. Further analysis on the limit of
weak and strong electrostatic potential leads to two modified Debye screening lengths, respectively. A
numerical scheme that conserves total ionic concentration and satisfies energy dissipation is developed
for the MPNP model. Numerical analysis is performed to prove that our scheme respects ionic mass
conservation and satisfies a corresponding discrete free energy dissipation law. Positivity of numerical
solutions is also discussed and numerically investigated. Numerical tests are conducted to demonstrate
that the scheme is of second-order accurate in spatial discretization and has expected properties. Ex-
tensive numerical simulations reveal that the excluded volume effect has pronounced impacts on the
dynamics of ionic concentration and flux. In addition, the effect of volume exclusion on the timescales
of charge diffusion is systematically investigated by studying the evolution of free energies and diffuse
charges.

Keywords. Poisson–Nernst–Planck equations; excluded volume effect; mass conservation; energy
dissipation; diffusion timescale.

AMS subject classifications. 35Q92; 65M06; 92C05.

1. Introduction

Ionic transport has been observed in a wide variety of technological applications and
biological processes, such as membrane ion channels, electrochemical energy devices, and
electrokinetics in microfluidics [1, 19, 32, 49, 51]. Based on a mean-field approximation,
the Poisson–Nernst–Planck (PNP) equations can be derived to describe the dynamics
of ions under an electric field. The Nernst–Planck equations model the diffusion and
migration of ions in gradients of ionic concentrations and electrostatic potential. The
Poisson’s equation governs electrostatic potential with the charge density stemming
from transporting ions.

Despite its success in many applications, the PNP theory fails in predicting dynam-
ics and equilibrium states of ionic concentrations. One reason behind this is its ignorance
of the excluded volume effect, which is of importance in confined environments. The
crucial effect of excluded volume is able to prevent unphysical crowding of pointlike
counterions at the vicinity of charged surface by forming a compactly packed layer of
hydrated counterions, called Stern layer. As such, there is a saturation concentration of
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counterions near a charged surface due to steric hindrance. With less adsorbed counte-
rions, the Debye screening length therefore increases [30,54]. In addition, the excluded
volume effect has profound impacts on the dynamics of ionic transport. Analysis on
current-voltage relations of an ion channel shows that the excluded volume effect re-
duces ionic current inside a channel [48]. Nonlinear modification of ionic mobility due
to the excluded volume effect leads to saturation of current through an ionic channel
on account of overcrowding of ions [7].

At the steady state, the PNP equations are reduced to the classical Poisson–
Boltzmann (PB) equation, if zero-flux boundary conditions are imposed. Recently, there
has been growing interest in incorporating the excluded volume effect to such mean-field
models. The classical PB theory has been modified to study the excluded volume effect
on the equilibrium distribution of ions in charged systems [3, 4, 10, 27, 28]. Within the
framework of the PNP theory, several versions of modified PNP theory with the excluded
volume effect have been proposed to describe ionic transport. One common approach
is to add an excess chemical potential to the potential of mean force. Such a correction
is able to address the excluded volume effect [7,13,20–24,26,33,34,40,42,44,47,48,52],
dielectric effects [9, 31, 39, 43], and ion-ion correlations [38, 53]. For instance, the ex-
cluded volume effect is included by considering the entropy of solvent molecules, giving
rise to a model with nonlinearly modified mobilities [26, 42, 48]. A more sophisticated
strategy is to incorporate the excluded volume effect by adding an excess chemical po-
tential, which is described by the density functional theory (DFT) [22, 24, 40, 44], or
by the Lennard-Jones potential accounting for hard-sphere repulsions [13, 20, 34]. To
avoid computationally intractable integro-differential equations, local approximations
of nonlocal integrals are employed to obtain local models [20,21,23,33,34,47].

In this work, we develop a simple but effective modified PNP (MPNP) model,
following the treatment of the excluded volume effect proposed for the diffusion of
hard spheres [6]. The excluded volume effect introduces a modification of diffusion
coefficients depending linearly on ionic concentrations. At the steady state, a modified
Poisson–Boltzmann (MPB) equation is derived by using the principal branch of the
Lambert function. Further analysis establishes the existence and uniqueness of a weak
solution to the MPB equation. In the limit of weak electrostatic potential, the MPB
equation is linearized as the Debye–Hückel equation with a modified Debye screening
length, which is longer than the classical one due to the excluded volume effect. Such
a result agrees with previous models with volume exclusion, and is later confirmed
by numerical simulations. When strong electrostatic potential is considered, the MPB
equation is reduced to a linear equation with a different screening length modified by
volume exclusion. Our numerical results illustrate that the MPNP model is capable
of capturing the effect of volume exclusion on equilibrium ionic distributions and the
timescale of charge diffusion.

Due to nonlinear coupling of electrostatic potential and ionic concentrations, it is
not trivial to solve the PNP equations analytically, even numerically. Many numer-
ical methods have been proposed in the literature. A hybrid numerical scheme that
uses adaptive grids was developed to solve the PNP equations in two dimensions [46].
A second-order accurate finite difference scheme was proposed to discretize the PNP
equations with three important properties, which are total ionic conservation, energy
dissipation, and solution positivity [15]. Recently, a delicate temporal discretization
scheme was designed to preserve energy dynamics [14]. By using Slotboom variables,
Liu and Wang [36] developed a free energy satisfying finite difference scheme that re-
spects those three properties. They also constructed a free energy satisfying discon-
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tinuous Galerkin method, in which the positivity of numerical solutions is enforced
by an accuracy-preserving limiter [37]. He and Pan [18] designed a finite-difference
discretization for the 2D PNP equations, which conserves total concentration and pre-
serves electrostatic potential energy. A finite element discretization that can enforce
positivity of numerical solutions was developed for the PNP equations, as well as the
PNP equations coupling with the incompressible Navier-Stokes equations [45].

In contrast to the classical PNP equations, not much progress has been made on the
development of numerical methods that can guarantee physical properties respected by
the MPNP equations with the excluded volume effect. Chaudhry et al. [8] developed a
stabilized, mass-conserving finite element for modified PNP equations with the excluded
volume effect. Tu et al. [50] proposed a finite element method with stabilized techniques
to enhance numerical robustness in solving modified PNP equations with the excluded
volume effect in 3D. In this work, we propose a finite difference scheme for the newly
derived MPNP equations with the excluded volume effect. We prove that the numerical
solution has desired properties that total ionic concentrations conserve and the discrete
free energy dissipates monotonically. In addition, we prove the positivity of numerical
solutions for a one-dimensional case that has many realistic applications. We also discuss
several issues involving proving positivity of numerical solutions in high dimensions.

The rest of the paper is organized as follows. In Section 2, we derive a modified
PNP model with with the excluded volume effect and analyze the steady state of the
model. In Section 5, we detail the algorithm of our numerical method for the derived
MPNP model, and prove properties of our numerical method. Section 6 is devoted to
showing our numerical results. Finally, we draw our conclusions in Section 7.

2. Model
We consider an ionic solution occupying a bounded domain Ω in Rd with a boundary

∂Ω, and d= 2,3. We assume there are M ionic species in the solution. Denote by
ψ : Ω→R the electrostatic potential, and cl= cl(t, ·) the local ionic concentration of the
lth species at time t and a spatial point. Note that the electrostatic potential is also
a time-dependent function, since it couples with time-dependent ionic concentrations
through the Poisson’s equation. Denote by ql the valence of the lth ionic species.

We consider the diffusion of ions with the excluded volume effect under the gradi-
ent of given electrostatic potential. It is known that diffusion coefficients of ions have
sensitive dependence on sizes of ions [41]. Electrophoretic mobilities predicted by clas-
sical models that ignore the excluded volume effect are smaller than that measured by
experiments [12]. The collective mobilities of ions are enhanced by the inclusion of ex-
cluded volume effect. We know by the Einstein relation that diffusion coefficients of ions
increase as well. In this work, we assume that diffusion coefficients of ions are functions
of local ionic concentrations. We have the following modified Nernst–Planck equations
for ionic concentrations in a dimensionless form:

∂tc
l=γ∇·

(
Dl(cl)∇cl+qlc

l∇ψ
)
, l= 1,2,·· · ,M, (2.1)

where γ is a positive coefficient from nondimensionalization and Dl(cl) is the diffusion
coefficient for cl. The electrostatic potential ψ is governed by the Poisson’s equation

−ε∆ψ=

M∑
l=1

qlc
l, (2.2)

where ε is a positive dimensionless parameter. For different applications, different
boundary conditions can be imposed for electrostatic potential. For instance, Dirich-
let boundary conditions are prescribed to represent fixed electrostatic potential on the
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boundary, Neumann boundary conditions are imposed to describe surface charge den-
sity on the boundary, and Robin boundary conditions can be used to describe surface
capacitance.

In the literature, many modified Poisson–Nernst–Planck models with the excluded
volume effect can be regarded as modification of diffusion coefficients with respect to
ionic concentrations [7, 26, 42, 47]. By the method of matched asymptotic expansions,
Bruna and Chapman [6] derive a linear functional dependence of diffusion coefficients on
ionic concentrations, to account for the excluded volume effect. Following this treatment
of the excluded volume effect, we use

Dl(cl) = 1+αlc
l,

where αl is a size-related positive parameter arising from volume exclusion interactions.
In summary, we have the modified Poisson–Nernst–Planck equations

∂tc
l=γ∇·

(
∇cl+αlc

l∇cl+qlc
l∇ψ

)
, l= 1,2,·· · ,M, x∈Ω, t>0,

−ε∆ψ=

M∑
l=1

qlc
l, x∈Ω, t>0.

(2.3)

2.1. Related models. We discuss several related models with the excluded
volume effect. By incorporating entropies of solvent molecules, a type of MPNP models
with concentration-dependent diffusion coefficients has also been developed [7, 26, 42].
The diffusion coefficient for each ionic species is a nonlinear function of concentrations
of all ionic species. Another related model has been developed by using local approx-
imations of the Lennard-Jones potential for hard-sphere interactions [20, 21, 34]. The
corresponding modified Nernst–Planck equation is given by

∂tc
l=γ∇·

(
∇cl+qlc

l∇ψ+

M∑
k=1

glkc
l∇ck

)
,

where glk are positive constants related to ionic sizes. It is shown that the corresponding
free energy is strictly convex if and only if the matrix G := (glk) is positive semi-definite
[16]. Our model corresponds to zero off-diagonal entries of G, in which case the MPNP
system is asymptotically stable and does not have multiple steady states [16,34,35]. The
off-diagonal entries of G should be carefully chosen when cross diffusion of different ionic
species is taken into account.

3. Modified Poisson–Boltzmann equation
We investigate the excluded volume effect on the steady state of the MPNP Equation

2.3. To focus on studying our treatment of volume exclusion, we simply use Dirichlet
boundary conditions for the electrostatic potential, i.e., ψ=ψB on ∂Ω. From 2.3, we
obtain equilibrium distributions of concentrations in terms of the electrostatic potential:

cl(ψ) =α−1
l W0

(
αlηle

−qlψ
)
,

where W0(·) is the principal branch of the Lambert function [11], and ηl is a positive

constant determined by ηl= cl∞e
αlc

l
∞ . Here, cl∞ is the ionic concentration when the

electrostatic potential vanishes. As such, we have a modified Poisson–Boltzmann (MPB)
equation

−ε∆ψ=

M∑
l=1

qlα
−1
l W0

(
αlηle

−qlψ
)

with ψ=ψB on ∂Ω. (3.1)
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Following the notation used in Refs. [27, 30], we define

V (φ) =−
M∑
l=1

ql

∫ φ

0

cl(ζ)dζ, ζ ∈R.

Lemma 3.1. The function V :R→R is a C∞ function. Moreover, it is a strictly convex
function that has a bounded second derivative, Minφ∈RV (φ) =V (0) = 0, V ′(0) = 0, and
limφ→±∞V (φ) = +∞.

Proof. Since W0(u) is an analytical function for u>0, it is easy to show V (·) is a
C∞ function. Now we verify that

V ′(0) =−
M∑
l=1

qlc
l(0) =−

M∑
l=1

qlα
−1
l W0 (αlηl) =−

M∑
l=1

qlc
l
∞= 0,

where we use the bulk neutrality condition in the last equation. Also, we have

V ′′(φ) =−
M∑
l=1

ql
[
cl(φ)

]′
=

M∑
l=1

q2
l ηle

−qlφW
′

0

(
αlηle

−qlφ
)

=

M∑
l=1

q2
l α
−1
l

W0

(
αlηle

−qlψ
)

1+W0 (αlηle−qlψ)
,

where in the last equation we use the identity

W ′(u) =
W0(u)

u[1+W0(u)]
.

It is easy to see that

0<V ′′(φ)<

M∑
l=1

q2
l α
−1
l .

Therefore, V (φ) achieves its minimum value V (0) = 0, and V ′(φ)>0 for φ>0 and
V ′(φ)<0 for φ<0. Simple calculations can verify that limφ→±∞V (φ) = +∞.

We now consider the existence of a weak solution to the boundary value problem
3.1. We use standard notation for Sobolev spaces [17]. Let

H1
ψB

(Ω) =
{
φ∈H1(Ω) :φ=ψB on ∂Ω

}
.

Theorem 3.1. Let Ω be a nonempty, bounded, and open subset of R3. Assume the
boundary ∂Ω is of C2. There exists a unique weak solution ψ∈H1

ψB
(Ω)∩L∞(Ω) to the

boundary value problem 3.1.

Proof. From Lemma 3.1, we know that the Theorem 2.1 given in [28] (and a
correction of the proof in [29]) apply to our case. We therefore omit the proof here.

To explore more about the MPB model, we consider the limit of weak electrostatic
potential, which gives a modified Debye screening length due to the excluded volume
effect.

Theorem 3.2. In the limit of weak electrostatic potential, i.e., |ψ|�1, the modified
Debye screening length is given by

λ̂WD =

[
M∑
l=1

q2
l c
l
∞

ε(1+αlcl∞)

]− 1
2

.



256 A MODIFIED PNP MODEL WITH EXCLUDED VOLUME EFFECT

Proof. By Taylor expansions, we have for |ψ|�1 that

−ε∆ψ=

M∑
l=1

qlα
−1
l W0

(
αlηle

−qlψ
)

=

M∑
l=1

qlα
−1
l

[
W0 (αlηl)−αlηlqlW

′

0 (αlηl)ψ+O(ψ2)
]

=

M∑
l=1

qlα
−1
l W0 (αlηl)−

M∑
l=1

q2
l α
−1
l W0 (αlηl)

1+W0 (αlηl)
ψ+O(ψ2)

=

M∑
l=1

qlc
l
∞−

M∑
l=1

q2
l c
l
∞

1+αlcl∞
ψ+O(ψ2).

Ignoring O(ψ2) terms, we have the Debye–Hückel equation

∆ψ= (λ̂WD )−2ψ

with the Debye screening length λ̂WD =
[∑M

l=1
q2l c

l
∞

ε(1+αlcl∞)

]− 1
2

.

We remark that, in contrast to the classical Debye screening length λD =(∑M
l=1q

2
l c
l
∞/ε

)− 1
2

, the excluded volume effect leads to a longer modified Debye screen-

ing length. This result agrees with other PB models with volume exclusion [30]. In our
numerical simulations, we observe that less counterions are adsorbed to charged sur-
face on account of the excluded volume effect, giving rise to higher surface electrostatic
potential. This indicates that the Debye screening length becomes longer.

Near charged surface, it is of practical interest to study the behavior of counterions.
Denote by J the set of indices for counterions species. It is reasonable to assume that
the electrostatic potential near surface has an opposite sign to the counterions, i.e.,
qlψ<0 for l∈J . When the surface potential is strong (|ψ|�1), we consider the limit
that e−qlψ�1. From an asymptotic approximation that W0(u)∼ ln(u) for large positive
u, we have by keeping leading order terms that

−ε∆ψ=
∑
l∈J

qlα
−1
l [ln(αlηl)−qlψ] .

We rewrite it in the form

∆ψ= (λ̂SD)−2ψ+R,

where λ̂SD =
(∑

l∈J
q2l
εαl

)− 1
2

and the constant R=−
∑
l∈J

q2l
εαl

ln(αlηl). It is interesting to

see that, in the strong limit of electrostatic potential, the leading order terms of the MPB
3.1 becomes an equation resembling the Debye–Hückel equation with a constant charge
source arising from the bulk. The corresponding screening length λ̂SD depends on the
parameters αl arising from the excluded volume effect, rather than bulk concentrations.

4. Dynamics
In this and following sections, we study the dynamics of ionic concentrations and

electrostatic potential in a closed system that has an impenetrable boundary with certain
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surface charge density. We focus on the physical properties of the system, and develop
a suitable numerical scheme to capture the properties discretely. The corresponding
discrete properties are established and confirmed by numerical simulations.

To model the closed system with boundary surface charge, we use zero-flux bound-
ary conditions for ionic concentrations:(

∇cl+αlc
l∇cl+qlc

l∇ψ
)
·n= 0 on ∂Ω,

and Neumann boundary conditions for the electrostatic potential:

ε∇ψ ·n=σ on ∂Ω.

Here n is the exterior unit normal vector, and σ is the surface charge density. The
initial conditions,

cl(x,0) = clin(x),

are set to satisfy the neutrality condition

∫
∂Ω

σdS+

M∑
l=1

∫
Ω

qlc
l
indx= 0,

which is necessary for solvability of the problem. In summary, we study the following
initial-boundary value problem

∂tc
l=γ∇·

(
∇cl+αlc

l∇cl+qlc
l∇ψ

)
, l= 1,2, ·· · ,M, x∈Ω, t>0,

−ε∆ψ=

M∑
l=1

qlc
l, x∈Ω, t>0,

cl(0,x) = clin(x), x∈Ω,

ε∇ψ ·n=σ,
(
∇cl+αlc

l∇cl+qlc
l∇ψ

)
·n= 0, x∈∂Ω, t>0.

(4.1)

Since cl represents concentrations of ions, it is reasonable to assume that cl(t,x)>0
for x∈Ω and t>0. By zero-flux boundary conditions and the Nernst–Planck equations,
we have ionic mass conservation in the sense that

d

dt

∫
Ω

cl(t,x)dx=

∫
Ω

γ∇·
(
∇cl+αlc

l∇cl+qlc
l∇ψ

)
dx

=

∫
∂Ω

γ
(
∇cl+αlc

l∇cl+qlc
l∇ψ

)
·ndS= 0.

For the MPNP model 2.3, we propose the following total free energy

F =

M∑
l=1

∫
Ω

cl lncldx+
1

2

M∑
l=1

∫
Ω

αl(c
l)

2
dx+

1

2

M∑
l=1

∫
Ω

qlc
lψdx+

1

2

∫
∂Ω

σψdS,

where the first term represents entropic contributions, the second term is the ionic
interaction energy due to volume exclusion, and the third and fourth terms are the
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electrostatic energies. We consider time evolution of the free energy

dF

dt
=

M∑
l=1

∫
Ω

∂tc
l
(
lncl+1+αlc

l+qlψ
)
dx

+

M∑
l=1

∫
Ω

1

2
ql∂tc

lψ+
1

2
qlc

l∂tψ−ql∂tclψdx+
1

2

∫
∂Ω

∂tσψ+σ∂tψdS

=

M∑
l=1

∫
Ω

γ
[
∇·
(
∇cl+αlc

l∇cl+qlc
l∇ψ

)](
lncl+1+αlc

l+qlψ
)
dx

+

∫
Ω

−1

2
ε∂tψ∆ψ+

1

2
ε∆(∂tψ)ψdx+

1

2

∫
∂Ω

∂tσψ+σ∂tψdS

=−
M∑
l=1

∫
Ω

γ

cl
∣∣∇cl+αlc

l∇cl+qlc
l∇ψ

∣∣2dx+

∫
∂Ω

∂tσψdS.

Assuming that the surface charge density is time independent, we have free energy
dissipation law dF

dt ≤0. In summary, we assume the following three dynamical properties
for any solution to system (2.3):

(P1): cl(x,t)>0 for x∈Ω and t>0, (4.2a)

(P2):

∫
Ω

cl(t,x)dx=

∫
Ω

clin(x)dx for t>0, (4.2b)

(P3):
d

dt
F ≤0 for t>0. (4.2c)

5. Numerical method

5.1. Reformulation. For conciseness we present our method in R2, while the
algorithm can be extended to R3 in a dimension by dimension manner. We formally
reformulate the system by using Slotboom variables [36]

gl(t,x,y) = cl(t,x,y)eqlψ(t,x,y)+αlc
l(t,x,y),

to obtain the following two sets of equations

clt=γ(e−(qlψ+αlc
l)glx)x+γ(e−(qlψ+αlc

l)gly)y, (5.1)

−ε(ψxx+ψyy) =

M∑
l=1

qlc
l. (5.2)

We now describe our algorithm by first partitioning the square domain [a,b]× [a′,b′]
with a uniform partition of xi=a+h(i−1/2) and yj =a′+h(j−1/2) for i= 1, ·· · ,Nx
and j= 1, ·· · ,Ny.

5.2. Algorithm.
(1) We use cli,j to approximate cl(t,xi,yj) and ψi,j to approximate ψ(t,xi,yj). Given

cli,j ,i= 1, ·· · ,Nx, j= 1,·· · ,Ny, we compute the potential ψi,j by

−εψi+1,j−2ψi,j+ψi−1,j

h2
−εψi,j+1−2ψi,j+ψi,j−1

h2
=

M∑
l=1

qlc
l
i,j , (5.3)
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where ψi,1−ψi,0 =−σi,1/2h/ε, ψi,N+1−ψi,N =σi,N+1/2h/ε, ψ1,j−ψ0,j =
−σ1/2,jh/ε, and ψN+1,j−ψN,j =σN+1/2,jh/ε. Here σi,1/2, σi,N+1/2, σ1/2,j and
σN+1/2,j are boundary conditions at y=a′, y= b′,x=a and x= b, respectively.
For definiteness, we set ψ1,1 = 0 at any time t to single out a particular solution
since ψ is unique up to an additive constant.

(2) With the above obtained ψi,j ,i= 1, ·· · ,Nx, j= 1, ·· · ,Ny, the semi-discrete ap-
proximation of the concentration cl satisfies

d

dt
cli,j =

γ

h

[
e
−(qlψi+1

2
,j

+αlc
l

i+1
2
,j

)
ĝlx,i+ 1

2 ,j
−e
−(qlψi− 1

2
,j

+αlc
l

i− 1
2
,j

)
ĝlx,i− 1

2 ,j

]
+
γ

h

[
e
−(qlψi,j+1

2
+αlc

l

i,j+1
2

)
ĝly,i,j+ 1

2
−e
−(qlψi,j− 1

2
+αlc

l

i,j− 1
2

)
ĝly,i,j− 1

2

]
:=Qi,j(c

l,ψ), (5.4)

where

ψi+ 1
2 ,j

=
ψi+1,j+ψi,j

2
, ψi,j+ 1

2
=
ψi,j+1 +ψi,j

2
,

cli+ 1
2 ,j

=
cli+1,j+cli,j

2
, cli,j+ 1

2
=
cli,j+1 +cli,j

2
,

ĝlx,i+ 1
2 ,j

=
gli+1,j−gli,j

h
=
cli+1,je

qlψi+1,j+αlc
l
i+1,j −cli,jeqlψi,j+αlc

l
i,j

h
,

ĝly,i,j+ 1
2

=
gli,j+1−gli,j

h
=
cli,j+1e

qlψi,j+1+αlc
l
i,j+1−cli,jeqlψi,j+αlc

l
i,j

h
,

ĝlx,1/2,j = 0, ĝlx,Nx+1/2,j = 0, ĝly,i,1/2 = 0, and ĝly,i,Ny+1/2 = 0.

(3) Discretize t uniformly and let tn= t0 +kn, cl,ni,j ∼ c(tn,xi,yj) and ψni,j∼
ψ(tn,xi,yj), we then solve equation (5.2) by

cl,n+1
i,j −cl,ni,j

k
=Qi,j(c

l,n,ψn). (5.5)

5.3. Numerical properties. In this section we investigate the properties of our
algorithm. We will show the desired properties, such as conservation and free energy
dissipation for our Algorithm 5.2 in the following.

Theorem 5.1. Let cli,j = cl(t,xi,yj) and ψi,j =ψ(t,xi,yj) be semi-discrete solu-

tions from equations (5.4) and (5.3) respectively; and let cl,ni,j = cl(tn,xi,yj) and ψni,j =
ψ(tn,xi,yj) be the fully discrete solutions from equation (5.5).

(1) Both the semi-discrete scheme (5.4) and Euler forward discretization (5.5) are
conservative in the sense that the total concentration ci,j remains unchanged in
time,

d

dt

Nx∑
i=1

Ny∑
j=1

cli,jh
2 = 0, l= 1, ·· · ,M, t>0 (5.6)

Nx∑
i=1

Ny∑
j=1

cl,n+1
i,j h2 =

Nx∑
i=1

Ny∑
j=1

cl,ni,j h
2, l= 1, ·· · ,M. (5.7)
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(2) Assuming σ is independent of time and cli,j are positive, the semi-discrete free
energy

F =h2
M∑
l=1

Nx∑
i=1

Ny∑
j=1

(
cli,j lncli,j+

1

2
qlc

l
i,jψi,j+

1

2
αl
(
cli,j
)2)

+
h

2

Ny∑
j=1

(σ1/2,jψ1,j+σN+1/2,jψN,j)+
h

2

Nx∑
i=1

(σi,1/2ψi,1 +σi,N+1/2ψi,N )

(5.8)

satisfies

dF

dt
=− γ

h2

M∑
l=1

Nx∑
i=1

Ny−1∑
j=1

e−ql(ψi,j+1+ψi,j)/2−αl(cli,j+1+c
l
i,j)/2

(
lngli,j+1− lngli,j

)
(gli,j+1−gli,j)

− γ

h2

M∑
l=1

Nx−1∑
i=1

Ny∑
j=1

e−ql(ψi+1,j+ψi,j)/2−αl(cli+1,j+c
l
i,j)/2

(
lngli+1,j− lngli,j

)
(gli+1,j−gli,j)

≤0, (5.9)

therefore the semi-discrete free energy is non-increasing.

Proof.
(1) With the the zero flux boundary conditions ĝx, 12 ,j = 0, ĝx,N+ 1

2 ,j
= 0, ĝy,i, 12 = 0

and ĝj,i,N+ 1
2

= 0, summing equation (5.4) leads to equation (5.6). Similarly,

summing equation (5.3) leads to equation (5.7).

(2) A direct calculation using

Nx∑
i=1

Ny∑
j=1

ċli,j :=

Nx∑
i=1

Ny∑
j=1

d

dt
cli,j = 0 gives

d

dt
F =h2

M∑
l=1

Nx∑
i=1

Ny∑
j=1

[(
lncli,j+qlψi,j+αlc

l
i,j

)
ċli,j+

1

2
ql

(
cli,jψ̇i,j− ċli,jψi,j

)]

+
h

2

M∑
l=1

Ny∑
j=1

σ(ψ̇1,j+ ψ̇N,j)+
h

2

M∑
l=1

Nx∑
i=1

σ(ψ̇i,1 + ψ̇i,N ). (5.10)

By equation (5.4), we further have(
lncli,j+qlψi,j+αlc

l
i,j

)
ċli,j

=
γ

h
lngli,j

[
e
−(qlψi+1

2
,j

+αlc
l

i+1
2
,j

)
ĝlx,i+ 1

2 ,j
−e
−(qlψi− 1

2
,j

+αlc
l

i− 1
2
,j

)
ĝlx,i− 1

2 ,j

]
+
γ

h
lngli,j

[
e
−(qlψi,j+1

2
+αlc

l

i,j+1
2

)
ĝly,i,j+ 1

2
−e
−(qlψi,j− 1

2
+αlc

l

i,j− 1
2

)
ĝly,i,j− 1

2

]
.

(5.11)

Summing equation (5.11) over all l,i,j leads to

h2
M∑
l=1

Nx∑
i=1

Ny∑
j=1

[(lnci,j+qψi,j+αlci,j) ċi,j ]
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=− γ

h2

M∑
l=1

Nx∑
i=1

Ny−1∑
j=1

e−q(ψi,j+1+ψi,j)/2−αl(ci,j+1+ci,j)/2 (lngi,j+1− lngi,j)(gi,j+1−gi,j)

− γ

h2

M∑
l=1

Nx−1∑
i=1

Ny∑
j=1

e−q(ψi+1,j+ψi,j)/2−αl(ci+1,j+ci,j)/2 (lngi+1,j− lngi,j)(gi+1,j−gi,j),

(5.12)

where the zero flux boundary conditions are used again.
Using the discrete Poisson equation (5.3), we have remaining non-boundary
terms in d

dtF as

h2

2

M∑
l=1

ql

(
cli,jψ̇i,j− ċli,jψi,j

)
=− ε

2
[(ψi+1,j−2ψi,j+ψi−1,j)+(ψi,j+1−2ψi,j+ψi,j−1)]ψ̇i,j

+
ε

2

[
(ψ̇i+1,j−2ψ̇i,j+ ψ̇i−1,j)+(ψ̇i,j+1−2ψ̇i,j+ ψ̇i,j−1)

]
ψ̇i,j . (5.13)

Summing equation (5.13) over all i,j leads to

h2

2

M∑
l=1

Nx∑
i=1

Ny∑
j=1

ql

(
cli,jψ̇i,j− ċli,jψi,j

)

=− h
2

Ny∑
j=1

(σ1/2,jψ1,j+σN+1/2,jψN,j)−
h

2

Nx∑
i=1

(σi,1/2ψi,1 +σi,N+1/2ψi,N ). (5.14)

Finally the desired inequality (5.9) follows by combining equations (5.12) and
(5.14), and using the fact that (lnα− lnβ)(α−β)≥0 for any α>0 and β>0.

Remark 5.1. In Theorem 5.1, we proved the conservation and free energy dissipation
in 2D, with the assumption of ci,j>0. The proof is readily extensible to 3D systems.
For the positivity of ci,j , we can only theoretically prove it in 1D for a system of single
species in Appendix A. Our numerical simulations, however, indicate that the discrete
concentrations cni,j remain positive in long time for the MPNP system in high dimension

with multiple species. To theoretically prove the positivity in high dimensions (R2 and
R3), it is critical to establish L∞ bounds for the numerical solutions of concentrations
and electrostatic potential. We are currently working on the matter and will report the
findings in our future work.

6. Numerical simulations

6.1. Numerical test. We first consider a closed system with one species of coun-
terion. Such a system, for instance, describes a membrane with ionizable groups that
release one species of ions into aqueous solutions, giving rise to an oppositely charged
membrane with the same amount of charges carried by counterions. We numerically
solve the Equation 2.3 on Ω = [0,1]× [0,1]. We take q= 1,ε= 1,γ= 1, and α= 4. The
initial and boundary conditions are given respectively by

c(0,x,y) = 2, ψ(0,x,y) = 0,
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and

(∇c+αc∇c+qc∇ψ) ·n= 0, ε
∂ψ

∂n
=

{
−1 {(x,y)|x= 1 or y= 0}
0 else,

on ∂Ω.

Note that the results calculated with nonzero α are denoted by the MPNP, and the
results obtained with α= 0 are denoted by the PNP.
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Fig. 6.1. Steady-state solutions of concentration, c, and electrostatic potential, ψ, for the classical
PNP and modified PNP.

Figure 6.1 depicts the steady-state solutions for the classical PNP and MPNP equa-
tions. Clearly, we can see that the concentration close to the charge surface for the
MPNP is much lower due to the effect of excluded volume of ions. With less ions
adsorbed to the charged surface, screening effect stemming from the ions is therefore
much weaker, leading to higher electrostatic potential at the charged surface. This
phenomenon indicates that our modified PNP model is able to capture the excluded
volume effect of counterions. The result agrees well with other models having the ex-
cluded volume effect [3, 25, 26, 30, 47, 54]. Also, the numerical result agrees with the

analysis presented in Section 3.1 that the modified Debye screening length λ̂WD becomes
longer due to volume exclusion. We also want to point out that the numerical solutions
cni,j remain positive in all our simulations for large time, such as T = 5, which is long
after the system becomes steady.

From Figure 6.1, we have seen that the solutions of concentration are positive on
Ω. To test the property of mass conservation, we study the total concentration of the
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Fig. 6.2. Profiles of the free energy (solid line) and total concentration (dashed line) for the
MPNP equations against time evolution.

ions with respect to the time evolution. Figure 6.2 clearly shows that our numerical
scheme perfectly conserves the total concentration. Also, we can see from Figure 6.2
that, as time evolves, the energy (5.8) decays monotonically and robustly. Overall, such
results confirm our numerical analysis presented in Section 5.3 on the properties of mass
conservation and energy dissipation.

h l∞ error in c Order l∞ error in ψ Order
0.25 0.0013665 – 0.00017634 –
0.2 0.00087098 2.0182 0.00012124 1.6788
0.1 0.00020778 2.0676 3.3199e-005 1.8687
0.05 4.1572e-005 2.3214 7.0764e-006 2.2300

Table 6.1. The l∞ error and convergence order for c and ψ.

To test the accuracy of our numerical scheme, we solve the problem with various
spatial step size h and temporal step sizes k, with k=O(h2). Table 6.1 lists the l∞ errors
and their convergence orders. A reference solution with a highly refined mesh is used
to calculate the errors, since the exact solution is not available in this case. In Table
6.1, we observe that the l∞ error decreases as the mesh is refined. The convergence
order is around 2 for both the concentration and electrostatic potential, which implies
that our numerical scheme has expected accuracy, i.e., second-order accurate in spatial
discretization and first-order accurate in temporal discretization.

6.2. Charge dynamics. To study the charge dynamics of the MPNP equations,
we consider a closed, neutral system that consists of two large parallel blocking surfaces
with surface charges and two species of ions. We assume that the system is homogeneous
in y and z directions. The Equation 2.3 are reduced to one dimension. We set M =
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Fig. 6.3. Dynamics of concentrations and electrostatic potential for the MPNP (upper panel) and
PNP (lower panel) equations.

2,q1 =−q2 = 1,α1 =α2 = 8,ε= 0.02,γ= 0.1, and initial and boundary conditions

c1(x,0) = 1, c2(x,0) = 1, −ε∂xψ(t,−1) =σa=−0.1, ε∂xψ(t,1) =σb= 0.1,(
∂xc

l+αlc
l∂xc

l+qlc
l∂xψ

)∣∣
x=−1,1

= 0 for l= 1,2.

We study the dynamics of concentrations and potential in an applied electric field in-
duced by two charged surfaces. From Figure 6.3, we can see that the surface charges
attract oppositely charged ions both for the MPNP and PNP equations, and that elec-
trostatic potential at the surfaces decreases due to the screening effect from adsorbed
counterions. Comparing with the results of the MPNP equations, the ionic concen-
trations at the vicinity of surfaces are much higher for the PNP equations, because
counterions can accumulate at the charged surfaces without steric hindrance. There-
fore, the electrostatic potential at the surfaces for the PNP is lower due to stronger
screening effect.

It is of interest to study the excluded volume effect on the dynamics of flux for
each ionic species. As shown in Figure 6.4, each species has large flux between charged
surfaces and gradually relaxes to zero, reaching an equilibrium. In contrast to the results
of the MPNP, the sum of flux, I, for the PNP has a larger magnitude due to its ignorance
of excluded volume effect of ions. During the charge diffusion, the sum of flux for the
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Fig. 6.4. Dynamics of flux of the MPNP (upper panel) and PNP (lower panel) equations. The
flux for each species is defined by Jl=−

(
∂xcl+αlc

l∂xcl+qlc
l∂xψ

)
, and the sum of flux I is given by

I=J1 +J2.

MPNP in the middle region grows much faster than that of the PNP, indicating that
the excluded volume effect speeds up the transport of ions through collisions between
ions. Therefore, the system reaches an equilibrium in a smaller timescale if the steric
effect is taken into account.

6.3. Effect of αl. As discussed above, the excluded volume effect that is
reflected by αi has a pronounced impact on the dynamics of charge diffusion. The value
of αi is related to the size of each species of ions. It can be understood as a fitting
parameter, either in the modification of diffusion constants of ions [6] or the sizes of
ions in the Lennard-Jones potential [34]. We vary the value of αi and investigate its
effect on the dynamics and equilibrium concentration distributions.

In our simulations, we use the same setting as the previous section, except that
c1(x,0) = c2(x,0) = 2 and σb=−σa= 0.2. First we study the effect of α2 by testing
different values of α2 (2, 4, and 8) with fixed α1. From Figure 6.5, we observe that
the dynamics of the concentration c2 change significantly as α2 grows. Because of
the steric hindrance, larger ionic sizes result in lower ionic concentration adsorbed to
charge surfaces. In addition, ions with larger sizes reach an equilibrium much faster
due to more frequent collisions between particles. With less accumulated counterions
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Fig. 6.6. Energy decay for the MPNP and PNP.

at surfaces, for instance c2 at the right charged surface, electrostatic potential is less
screened and therefore has stronger repulsion against coions (i.e., c1). As such, we can
see that the minor effect of α2 on c1 is mainly through the variation of electrostatic
potential. Direct interactions between c1 and c2 can be taken into account by including
cross diffusion between different ionic species. We defer this investigation to our future
work.
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Fig. 6.7. Total diffuse charges ρ(t) for the modified PNP and classical PNP.

6.4. Timescales in charge diffusion. As revealed in previous two examples,
there is a significant difference in timescales of relaxation dynamics whether the excluded
volume effect is included or not. In this case, we probe the relaxation timescales in the
charge diffusion through analyzing the free energy and total diffuse charges. We consider
a system with the same setting as in Section 6.2 except ε= 1,γ= 1,c1(x,0) = c2(x,0) = 1,
and α1 =α2 = 8. As expected, Figure 6.6 displays monotone energy profiles against
time steps. For ease of reading, we shift each energy profile by the free energy of its
final equilibrium state. When larger surface charge is applied, the energy difference
between the initial state and the equilibrium state is much higher, implying that more
energy is stored in adsorbed counterions. It is easy to notice that the energy for the
MPNP relaxes quickly to a constant value for T >0.1; whereas, the energy for the PNP
decreases gradually with a long tail. Such a discrepancy clearly demonstrates that the
relaxation process for the MPNP is much faster than that of the PNP. This can be
explained by the fact that the excluded volume effect contributes to the diffusion of
the ionic concentration through particle collisions and therefore promotes the energy
relaxation of the whole system.

To further understand the timescales of charge diffusion, we also study the evolution
of total diffuse charges in left half of the electrolytes [2]:

ρ(t) =

∫ 0

−1

m∑
l=1

qlc
l(x)dx.

From Figure 6.7, we find that the total diffuse charges for the MPNP increases quickly
and reaches a plateau. In contrast, the total diffuse charges in the PNP keeps growing
over a relatively long period. As such, the timescale of the charge diffuse for the MPNP
is much smaller. Again, collisions between ions with excluded volume effect accounts
for the smaller timescale exhibited in charge diffusion modeled by the MPNP. Also, the
MPNP successfully predicts many less diffuse charges, since the charges carried by ions
are sterically hindered from adsorbing to the surface. All the results demonstrate that
the MPNP theory has effectively captured the excluded volume effect of ions.
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7. Conclusions and discussions

In this work, we proposed a simple yet effective modified PNP (MPNP) model
with the excluded volume effect. Our model used a linear concentration-dependent
diffusion coefficient to incorporate the excluded volume effect of ions. With the help
of the Lambert-W special function, we obtained the corresponding modified Poisson-
Boltzmann (MPB) equation for the steady state. A further analysis showed that there
exists a unique weak solution to the MPB equation. In the limit of weak electrostatic
potential, the MPB is approximated by a Debye–Hückel equation with a modified Debye
screening length, which is longer than the classical one. This prediction agrees with
other modified PB models in the literature and is later confirmed by our numerical
simulations. In the limit of strong electrostatic potential, the MPB is approximated by
a linearized equation with a different modified Debye screening length that depends on
parameters arising from volume exclusion.

In addition, we developed an accompanying conservative and energy dissipative
finite difference method for the proposed MPNP model. Our analysis confirmed that
the numerical scheme conserves total concentration and satisfies a corresponding discrete
energy dissipation law. Positivity of numerical solutions was proved for a system with
single species in 1D. Numerical experiments were conducted to demonstrate that the
scheme is of second-order accurate in spatial discretization and has expected properties.
Extensive numerical simulations revealed that the excluded volume effect of ions has
significant impacts on the dynamics of ionic concentration and flux. From the evolution
of free energies and diffuse charges, we found that the excluded volume effect leads to
a decrease of the timescales of charge diffusion through ionic collisions.

We now discuss several issues and possible further refinements of our work. In our
current model, cross interactions between different species that arise from the excluded
volume effect have not been taken into account. The model is effective when there is only
one species in the environment, such as counterions adsorbing to charged surfaces. When
multiple species of ions present, the cross interactions can be considered by including
nonlinear cross-diffusion terms in the Nernst–Planck equations [5,20,34]. It is interesting
to explore the impact of cross interactions on the dynamics of ions. The corresponding
numerical schemes that have properties of mass conservation, solution positivity, and
energy dissipation will be one of our future studies as well.

As proved in Theorem 5.1, we can show that our numerical scheme respects ionic
mass conservation and energy dissipation. In our numerical examples, we have numer-
ically verified that the numerical solutions of concentrations keeps being positive in
long time simulations. Unfortunately, we are not able to rigorously prove the positivity
of numerical solutions of concentrations except for the 1D case, see Appendix A. The
main difficulty lies in the establishment of L∞ bounds for the numerical solutions of
electrostatic potential and concentrations. One possible improvement is to design a
novel discretization scheme for the Nernst–Planck equations, so that the positivity of
numerical solutions of concentrations can be guaranteed.

Finally, it is of great interest to develop implicit schemes for the MPNP model. In
our current implementation, the Nernst–Planck equations are discretized explicitly and
the Poisson’s equation is solved in each time step. The discretization time step has to
be small for stability reasons. This treatment becomes computationally inefficient for
3D cases. In future, we will focus on the development of implicit schemes that have
mass conservation, positivity of numerical solutions, and energy dissipation.
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Appendix A. Positivity in 1D. We investigate the positivity of concentration
c in single species system varying only in one direction. This kind of system applies
to many situations, e.g., two parallel blocking plates with charged surfaces shown in
Example 2.

Theorem A.1. Assume the system (2.3) with single species, M = 1, is varying only
in y−direction, i.e., c(i,j) = cj and ψ(i,j) =ψj. The discrete concentration cnj remains
positive in time: if cnj >0, then

cn+1
j >0

provided the condition k<h2λ0/γ where

λ0 =
e
α(σa+σb)

hq2

e
−hq2σb

2 +e
−hq2σa

2

. (A.1)

Proof. Define Anj = qψnj+1−qψnj , the boundary condition gives An0 =−qhσa/ε and

AnN = qhσb/ε. Let mesh ratio be denoted by λ=kγ/h2, we can rewrite equation (5.5) as

cn+1
j =cnj

(
1−λ

(
e
−q(ψnj+1−ψ

n
j )

2 e
−α(cnj+1−c

n
j )

2 +e
q(ψnj −ψ

n
j−1)

2 e
α(cnj −c

n
j−1)

2

))
+λcnj+1e

q(ψnj+1−ψ
n
j )

2 e
α(cnj+1−c

n
j )

2 +λcnj−1e
q(−ψnj −ψ

n
j−1)

2 e
−α(cnj −c

n
j−1)

2 . (A.2)

As in [36], the discrete Poisson equation implies

Anj −Anj−1 =−q2cnj h
2/ε. (A.3)

This indicatesAnj is monotonic. Along with boundary conditions we haveAnj is bounded,
i.e.,

hσb≤Anj ≤−hσa.

Furthermore, the discrete Poisson equation implies

h2q2(cnj −cnj−1) =−(Anj −2Anj−1 +Anj−2). (A.4)

Combining equations (A.3) and (A.4), we have the following for equation (A.2)

e
q(ψnj −ψ

n
j−1)

2 e
α(cnj −c

n
j−1)

2 +e−
q(ψnj+1−ψ

n
j )

2 e
−α(cnj+1−c

n
j )

2 ≤e
hq2σa

2 −α(σa+σb)

hq2 +e
−hq

2σb
2 −α(σa+σb)

hq2

=e
−α(σa+σb)

hq2 (e−
hq2σa

2 +e−
hq2σb

2 )
(A.5)

Thus, we have cn+1
j >0 if λ≤λ0 as in definition (A.1).
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[12] A. Delgado, F. González-Caballero, R. Hunter, L. Koopal, and J. Lyklema, Measurement and
interpretation of electrokinetic phenomena, J. Colloid Interface Sci., 309:194–224, 2007.

[13] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis EnVarA of ions in water
and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys.,
133:104104, 2010.

[14] A. Flavell, J. Kabre, and X. Li, An energy-preserving discretization for the Poisson–Nernst–
Planck equations, J. Comput. Electron., 16:431–441, 2017.

[15] A. Flavell, M. Machen, R. Eisenberg, J. Kabre, C. Liu, and X. Li, A conservative finite difference
scheme for Poisson–Nernst–Planck equations, J. Comput. Electron., 13:235–249, 2014.

[16] N. Gavish, Poisson–Nernst–Planck equations with steric effects -non-convexity and multiple sta-
tionary solutions, arXiv preprint, 1:07164, 2017.

[17] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-
Verlag, Second Edition, 1998.

[18] D. He and K. Pan, An energy preserving finite difference scheme for the Poisson–Nernst–Planck
system, Appl. Math. Comput., 287:214–223, 2016.

[19] B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Third Edition, 2001.
[20] Y. Hyon, B. Eisenberg, and C. Liu, A mathematical model for the hard sphere repulsion in ionic

solutions, Commun. Math. Sci., 9:459–475, 2011.
[21] Y. Hyon, C. Liu, and B. Eisenberg, PNP equations with steric effects: a model of ion flow through

channels, J. Phys. Chem. B, 116:11422–11441, 2012.
[22] S. Ji and W. Liu, Poisson–Nernst–Planck systems for ion flow with density functional theory for

hard-sphere potential: I-V relations and critical potentials. part I: Analysis, J. Dynam. Diff.
Eqs., 24:955–983, 2012.

[23] Y. Jia, W. Liu, and M. Zhang, Qualitative properties of ionic flows via Poisson–Nernst–Planck
systems with Bikerman’s local hard-sphere potential: Ion size effects, Discrete Contin. Dyn.
Syst., 21:1775–1802, 2016.

[24] J. Jiang, D. Cao, D. Jiang, and J. Wu, Time-dependent density funcational theory for ion diffusion
in electrochemical systems, J. Phys.: Condens. Matter., 26:284102, 2014.

[25] M.S. Kilic, M. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied
voltages. I. Double-layer charging, Phys. Rev. E, 75:021502, 2007.

[26] M.S. Kilic, M. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied
voltages. II. modified Poisson-Nernst-Planck equations, Phys. Rev. E, 75:021503, 2007.

[27] B. Li, Continuum electrostatics for ionic solutions with nonuniform ionic sizes, Nonlinearity,
22:811–833, 2009.

[28] B. Li, Minimization of electrostatic free energy and the Poisson–Boltzmann equation for molec-
ular solvation with implicit solvent, SIAM J. Math. Anal., 40:2536–2566, 2009.

[29] B. Li, Erratum: Minimization of electrostatic free energy and the Poisson–Boltzmann equation
for molecular solvation with implicit solvent, SIAM J. Math. Anal., 43:2776–2777, 2011.

[30] B. Li, P. Liu, Z. Xu, and S. Zhou, Ionic size effects: generalized boltzmann distributions, counte-
rion stratification and modified debye length, Nonlinearity, 26(10):2899, 2013.

[31] B. Li, J. Wen, and S. Zhou, Mean-field theory and computation of electrostatics with ionic con-

https://doi.org/10.1103/PhysRevE.70.021506
https://doi.org/10.1103/PhysRevLett.79.435
https://doi.org/10.1016/S0013-4686(00)00576-4
https://doi.org/10.1063/1.4767058
https://doi.org/10.1103/PhysRevE.85.011103
http://iopscience.iop.org/article/10.1088/0951-7715/25/4/961/meta
https://doi.org/10.4208/cicp.101112.100413a
https://link.springer.com/article/10.1007/s11538-016-0196-7
https://doi.org/10.1529/biophysj.106.099168
https://link.springer.com/article/10.1007/BF02124750
https://doi.org/10.1016/j.jcis.2006.12.075
https://doi.org/10.1063/1.3476262
https://link.springer.com/article/10.1007%2Fs10825-017-0969-8
https://link.springer.com/article/10.10072Fs10825-013-0506-3
https://link.springer.com/book/10.1007/978-3-642-61798-0
https://doi.org/10.1016/j.amc.2016.05.007
https://www.biology-online.org/books/ion_channels_excitable_membranes.html
http://dx.doi.org/10.4310/CMS.2011.v9.n2.a5
http://pubs.acs.org/doi/10.1021/jp305273n
https://mathscinet.ams.org/mathscinet-getitem?mr=3000611
https://doi.org/10.1103/PhysRevE.84.021901
http://iopscience.iop.org/article/10.1088/0953-8984/26/28/284102/meta
https://doi.org/10.1103/PhysRevE.75.021502
https://doi.org/10.1103/PhysRevE.75.021503
http://iopscience.iop.org/article/10.1088/0951-7715/22/4/007/meta
https://doi.org/10.1137/080712350
https://doi.org/10.1137/100796625
http://iopscience.iop.org/article/10.1088/0951-7715/26/10/2899/meta


F. SIDDIQUA, Z. WANG, AND S. ZHOU 271

centration dependent dielectrics, Commun. Math. Sci., 14:249–271, 2016.
[32] D. Li, Electrokinetics in Microfluidics, Academic Press, 2, 2004.
[33] G. Lin, W. Liu, Y. Yi, and M. Zhang, Poisson–Nernst–Planck systems for ion flow with density

functional theory for local hard-sphere potential, SIAM J. Appl. Dyn. Syst., 12:1613–1648,
2013.

[34] T. Lin and B. Eisenberg, A new approach to the Lennard-Jones potential and a new model:
PNP-steric equations, Commun. Math. Sci., 12:149–173, 2014.

[35] T. Lin and B. Eisenberg, Multiple solutions of steady-state Poisson–Nernst–Planck equations with
steric effects, Nonlinearity, 28:2053–2080, 2015.

[36] H. Liu and Z. Wang, A free energy satisfying finite difference method for Poisson–Nernst–Planck
equations, J. Comput. Phys., 268:363–376, 2014.

[37] H. Liu and Z. Wang, A free energy satisfying discontinuous galerkin method for one-dimensional
Poisson–Nernst–Planck systems, J. Comput. Phys., 328:413–437, 2017.

[38] P. Liu, X. Ji, and Z.Xu, Modified Poisson–Nernst–Planck model with accurate coulomb correlation
in variable media, submitted, 2016.

[39] P. Liu, M. Ma, and Z. Xu, Understanding depletion induced like-charge attraction from self-
consistent field model, Commun. Comp. Phys., 22:95–111, 2017.

[40] W. Liu, X. Tu, and M. Zhang, Poisson–Nernst–Planck systems for ion flow with density func-
tional theory for hard-sphere potential: I-V relations and critical potentials. part II: Numer-
ics, J. Dynam. Diff. Eqs., 24:985–1004, 2012.
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