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ONE DIMENSIONAL FRACTIONAL ORDER TGV :
GAMMA-CONVERGENCE AND BILEVEL TRAINING SCHEME∗

ELISA DAVOLI† AND PAN LIU‡

Abstract. New fractional r-order seminorms, TGV r, r∈R, r≥1, are proposed in the one-
dimensional (1D) setting, as a generalization of the integer order TGV k-seminorms, k∈N. The
fractional r-order TGV r-seminorms are shown to be intermediate between the integer order TGV k-
seminorms. A bilevel training scheme is proposed, where under a box constraint a simultaneous op-
timization with respect to parameters and order of derivation is performed. Existence of solutions to
the bilevel training scheme is proved by Γ–convergence. Finally, the numerical landscape of the cost
function associated to the bilevel training scheme is discussed for two numerical examples.
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1. Introduction
In the last decades, Calculus of Variations and Partial Differential Equations (PDE)

methods have proven to be very efficient in signal (1D) and image (2D) denoising prob-
lems. Signal (image) denoising consists, roughly speaking, of recovering a noise-free
clean signal uc starting from a corrupted signal uη =uc+η, by filtering out the noise
encoded by η. One of the most successful variational approaches to signal (image)
denoising (see, for example [36–38]) relies on the ROF total-variational functional

ROF (u) :=‖u−uη‖2L2(I) +αTV (u), (1.1)

introduced in [36]. Here I= (0,1) represents the domain of a one-dimensional image (a
signal), α∈R+, and TV (u) = |u′|Mb(I)

, stands for the total mass of the measure u′ on

I (see [2, Definition 1.4]).

An important role in determining the reconstruction properties of the ROF func-
tional is played by the parameter α. Indeed, if α is too large, then the total variation
of u is too penalized and the image turns out to be over-smoothed, with a resulting loss
of information on the internal features of the picture. Conversely, if α is too small then
the noise remains un-removed. The choice of the “best” parameter α then becomes an
important task.

In [24,25] the authors proposed a training scheme (B) relying on a bilevel learning
optimization defined in machine learning, namely on a semi-supervised training scheme
that optimally adapts itself to the given “perfect data” (see [13,14,27,28,40,41]). This
training scheme searches for the optimal α so that the recovered image uα, obtained as
a minimizer of the functional (1.1), optimizes the L2-distance from the clean image uc.
An implementation of (B) equipped with total variation is the following:

Level 1. αm∈argmin
{
‖uα−uc‖2L2(I) : α>0

}
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Level 2. uα := argmin
{
‖u−uη‖2L2(I) +αTV (u) : u∈SBV (I)

}
, (1.2)

where SBV (I) denotes the set of special functions of bounded variation in I (see,
e.g. [2, Chapter 4]).

It is well known that the ROF model (1.1) suffers drawbacks like the staircasing
effect, and the training scheme (B) inherits that feature, namely the optimized
reconstruction function uαm also exhibits the staircasing effect. One approach
to counteract this problem is to insert higher-order derivatives in the regularizer
(see [9, 11, 16,34]). Two of the most successful image-reconstruction functionals among
those involving mixed first and higher order terms are the infimal-convolution total
variation (ICTV ) [9] and the total generalized variation (TGV ) models [34]. Note that
they coincide with each other in the one-dimensional setting.

For I := (0,1)⊂R, u∈BV (I), k∈N, and α= (α0,. ..,αk)∈Rk+1
+ , the TGV kα regu-

larizer (see [44]) is defined as

|u|TGV 1
α (I) :=α0TV (u),

and

|u|TGV k+1
α (I) := inf

{
α0 |u′−v0|Mb(I)

+α1 |v′0−v1|Mb(I)
+

·· ·+αk−1

∣∣v′k−2−vk−1

∣∣
Mb(I)

+αk
∣∣v′k−1

∣∣
Mb(I)

:

vi∈BV (I) for 0≤ i≤k−1} .

For instance, for k= 1, the TGV 2
α0,α1

regularizer reads as

|u|TGV 2
α0,α1

(I) := inf
{
α0 |u′−v0|Mb(I)

+α1 |v′0|Mb(I)
, v0∈BV (I)

}
.

Substituting TGV 2
α0,α1

for αTV into definition (1.2) provides a bilevel training
scheme with TGV image-reconstruction model. We recall that large values of α1 will
yield regularized solutions that are close to TV -regularized reconstructions, and large
values of α0 will result in TV 2-type solutions (see, e.g., [35]). The best choice of pa-
rameters α0 and α1 is determined by an adaptation of the training scheme (B) above
(see [22] for a detailed study).

In the existing literature a regularizer is fixed a priori, and the biggest effort is
concentrated on studying how to identify the best parameters. In the case of the
TGV k-model, this amounts to set manually the value of k first, and then determine
the optimal αm in definition (1.2). However, there is no evidence suggesting that TGV 2

will always perform better than TV . In addition, the higher order seminorms TGV k,
k≥2, have rarely been analyzed, and hence their performance is largely unknown. Nu-
merical simulations show that for different images (signals in 1D), different orders of
TGV k might give different results. The main focus of this paper is exactly to investigate
how to optimally tune both the weight α and the order k of the TGV kα -seminorm, in
order to achieve the best reconstructed image.

Our result is threefold. First, we develop a bilevel training scheme, not only for
parameter training, but also for determining the optimal order k of the regularizer
TGV k for image reconstruction. A straightforward modification of (B) would be to just
insert the order of the regularizer inside the learning level 2 in definition (1.2). Namely,

Level 1. (α̃,k̃) := argmin
{
‖uα,k−uc‖2L2(I) : α>0, k∈N

}
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Level 2. uα,k := argmin
{
‖u−uη‖2L2(I) + |u|TGV kα (I) : u∈SBV (I)

}
.

Often, in order to show the existence of a solution of the training scheme and also
for the numerical realization of the model, a box constraint

(α,k)∈ [P,1/P]k+1× [1,1/P], (1.3)

where P ∈ (0,1) is a small fixed real number, needs to be imposed (see, e.g. [3, 20]).
However, such constraint makes the above training scheme less interesting. To be pre-
cise, restricting the analysis to the case in which k∈N is an integer, the box constraint
(1.3) would only allow k to take finitely many values, and hence the optimal order k̃
of the regularizer would simply be determined by performing scheme (B) finitely many
times, at each time with different values of k. In addition, finer texture effects, for which
an “intermediate” reconstruction between the one provided by TGV k and TGV k+1 for
some k∈N would be needed, might be neglected in the optimization procedure.

Therefore, a main challenge in the setup of such a training scheme is to give a mean-
ingful interpolation between the spaces TGV k and TGV k+1, and hence to guarantee
that the collection of such spaces itself exhibits certain compactness and lower semicon-
tinuity properties. To this purpose, we modify the definition of the TGV k functionals
by incorporating the theory of fractional Sobolev spaces, and we introduce the notion
of fractional order TGV k+s spaces (see Definition 3.1), where k∈N, and 0<s<1. For
k= 1, our definition reads as follows.

|u|TGV 1+s
α (I) := inf

{
α0 |u′−sv0|Mb(I)

+α1s(1−s) |v0|W s,1+s(1−s)(I)

+α0s(1−s)
∣∣∣∫
I

v0(x)dx
∣∣∣ : v0∈W s,1+s(1−s)(I)

}
.

In the expression above, W s,1+s(1−s)(I) is the fractional Sobolev space of order s and
integrability 1+s(1−s). For every k∈N and s∈ [0,1] we additionally introduce the sets

BGV k+s
α (I) :=

{
u∈L1(I) : |u|TGV k+s

α (I)<+∞
}
,

namely the classes of functions with bounded generalized total-variation seminorm.

In our first main result (see Theorem 3.1) we show that the TGV 1+s seminorm is
indeed intermediate between TGV 1 and TGV 2, i.e., we prove that, up to subsequences,

lim
s↗1
|u|TGV 1+s

α (I) = |u|TGV 2
α (I) and lim

s↘0
|u|TGV 1+s

α (I) =α0 |u′|Mb(I)
. (1.4)

Equation (1.4) shows that, for s↗1, the behavior of the TGV 1+s-seminorm is close
to the one of the standard TGV 2-seminorm, whereas for s↘0 it approaches the TV
functional. We additionally prove (see Corollary 3.1) that analogous results hold for
higher order TGV k+s-seminorms. We point out that working with such interpolation
spaces has many advantages. Indeed, TGV k+s is expected to inherit the properties of
fractional order derivatives, which have shown to be able to reduce the staircasing and
contrast effects in noise-removal problems (see, e.g. [12]). Also, being able to define the
TGV -seminorms in fractional order Sobolev spaces allows us to study the “compactness”
with respect to the order of derivation, and hence lets us improve our training scheme
as detailed below.
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Our second and third main results (Theorems 4.1 and 5.1) concern the following
improved training scheme (R), which, under the box constraint (1.3), simultaneously
optimizes both the parameter α and the order r of derivation:

Level 1. (α̃, r̃) := argmin
{
‖uα,r−uc‖2L2(I) , (α,r)∈ [P,1/P]brc+1× [1,1/P]

}
, (1.5)

Level 2. uα,r := argmin
{
‖u−uη‖2L2(I) +TGV rα (u) : u∈BGV rα (I)

}
.

In the definition above, brc denotes the largest integer strictly smaller than or equal to
r.

We first show in Theorem 4.1 that the fractional order TGV rα functionals

Frα(u) :=‖u−uη‖2L2(I) +TGV rα (u) for every u∈BGV rα (I)

are continuous, in the sense of Γ-convergence in the weak* topology of BV (I) (see [7]
and [15]), with respect to the parameters α and the order r. Secondly, in Theorem
5.1 we exploit this Γ-convergence result, to prove existence of solutions to our training
scheme (R). Note that, according to the given noisy image uη and noise-free image uc,
the Level 1 in our training scheme (R) provides simultaneously an optimal regularizer
TGV r̃ and a corresponding optimal parameter α̃∈ [P,1/P]br̃c+1. We point out that, in
general, the optimal order of derivation r̃ might, or might not, be an integer. In other
words, the fractional TGV r seminorms are not intended as an improvement but rather
as an extension of the integer order TGV k seminorms, which for some classes of signals
might provide optimal reconstruction and be selected by the bilevel training scheme.

Although this paper mainly focuses on a theoretical analysis of TGV r and on show-
ing the existence of optimal results for the training scheme (R), in Section 6 some
preliminary numerical examples are discussed (see Figures 6.1–6.2). We stress that a
complete description of the optimality conditions and a reliable numerical scheme for
identifying the optimal solution of the training scheme (1.5) are beyond the scope of
this work, and are still a challenging open problem. We refer to [21,23] for some prelim-
inary results in this direction. The two-dimensional setting of fractional order TGV r

and ICTV r seminorms, as well as more extensive numerical analysis and examples for
different type of images (with large flat areas, fine details, etc.), will be the subject of
the follow-up work [18].

Our paper is organized as follows. In Section 2 we review the definitions and some
basic properties of fractional Sobolev spaces. In Section 3 we introduce the fractional
order TGV r seminorms, we study their main properties, and prove that they are in-
termediate between integer-order seminorms (see Theorem 3.1). In Section 4 we char-
acterize the asymptotic behavior of the functionals Frα with respect to parameters and
order of derivations (see Theorem 4.1). In Section 5 we introduce our training scheme
(R). In particular, in Theorem 5.1 we show that (R) admits a solution under the box
constraint (1.3). Lastly, in Section 6 some examples and insights are provided.

2. The theory of fractional Sobolev spaces
In what follows we will assume that I= (0,1). We first recall a few results from the

theory of fractional Sobolev spaces. We refer to [26] for an introduction to the main
results, and to [1,30,31,33] and the references therein for a comprehensive treatment of
the topic.

Definition 2.1 (Fractional Sobolev spaces). For 0<s<1, 1≤p<+∞, and u∈
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Lp(I), we define the Gagliardo seminorm of u by

|u|W s,p(I) :=

(∫
I

∫
I

|u(x)−u(y)|p

|x−y|1+sp
dxdy

) 1
p

. (2.1)

We say that u∈W s,p(I) if

‖u‖W s,p(I) :=‖u‖Lp(I) + |u|W s,p(I)<+∞.

The following embedding results hold true ( [26, Theorems 6.7, 6.10, and 8.2, and
Corollary 7.2]).

Theorem 2.1 (Sobolev Embeddings - 1). Let s∈ (0,1) be given.

(1) Let p< 1
s . Then there exists a positive constant C=C(p,s) such that for every

u∈W s,p(I) there holds

‖u‖Lq(I)≤C‖u‖W s,p(I) (2.2)

for every q∈ [1, p
1−sp ]. If q< p

1−sp , then the embedding of W s,p(I) into Lq(I) is also
compact.

(2) Let p= 1
s . Then the embedding (2.2) holds for every q∈ [1,+∞).

(3) Let p> 1
s . Then there exists a positive constant C=C(p,s) such that for every

u∈W s,p(I) we have

‖u‖C0,α(I)≤C‖u‖W s,p(I),

with α := sp−1
p , where

‖u‖C0,α(I) :=‖u‖L∞(I) + sup
x 6=y∈I

|u(x)−u(y)|
|x−y|α

.

The additional embedding result below is proved in [39, Corollary 19].

Theorem 2.2 (Sobolev Embeddings - 2). Let s≥ r, p≤ q and s−1/p≥ r−1/q, with
0<r≤s<1, and 1≤p≤ q≤+∞. Then

W s,p(I)⊂W r,q(I),

and

|u|W r,q(I)≤
36

rs
|u|W s,p(I) .

The next inequality is a special case of [4, Theorem 1] and [32, Theorem 1].

Theorem 2.3 (Poincaré Inequality). Let p≥1, and let sp<1. There exists a constant
C>0 such that ∥∥∥∥u−∫

I

u(x)dx

∥∥∥∥p
L

p
1−sp (I)

≤ Cs(1−s)
(1−sp)p−1

|u|pW s,p(I) .

It is possible to construct a continuous extension operator from W s,1(I) to W s,1(R)
(see, e.g., [26, Theorem 5.4]).
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Theorem 2.4 (Extension Operator). Let s∈ (0,1), and let 1≤p<+∞. Then W s,p(I)
is continuously embedded in W s,p(R), namely there exists a constant C=C(p,s) such
that for every u∈W s,p(I) there exists ũ∈W s,p(R) satisfying ũ|I =u and

‖ũ‖W s,p(R)≤C ‖u‖W s,p(I) .

The next two theorems ( [42, Section 2.2.2, Remark 3, and Section 2.11.2]) yield an
identification between fractional Sobolev spaces and Besov spaces in R, and guarantee
the reflexivity of Besov spaces Bsp,q for p,q finite.

Theorem 2.5 (Identification with Besov spaces). If 1≤p<+∞ and s∈R+ \N, then

W s,p(R) =Bsp,p(R)

Theorem 2.6 (Reflexivity of Besov spaces). Let −∞<s<+∞, 1≤p<+∞ and
0<q<+∞. Then

(Bsp,q(R))′=B−sp′,q′(R),

where (Bsp,q(R))′ is the dual of the Besov space Bsp,q(R), and where p′ and q′ are the
conjugate exponent of p and q, respectively.

In view of Theorems 2.5 and 2.6 the following characterization holds true.

Corollary 2.1 (Reflexivity of fractional Sobolev spaces). Let 1<p<+∞ and s∈
R+ \N. Then the fractional Sobolev space W s,p(R) is reflexive.

We conclude this section by recalling two theorems describing the limit behavior
of the Gagliardo seminorm as s↗1 and s↘0, respectively. The first result has been
proved in [5, Theorem 3 and Remark 1], and [17, Theorem 1].

Theorem 2.7 (Asymptotic behavior as s↗1). Let u∈BV (I). Then

lim
s↗1

(1−s) |u|W s,1(I) = |u′|Mb(I).

Similarly, the asymptotic behavior of the Gagliardo seminorm has been character-
ized as s↘0 in [32, Theorem 3].

Theorem 2.8 (Asymptotic behavior as s↘0). Let u∈∪0<s<1W
s,1(R). Then,

lim
s↘0

s|u|W s,1(R) = 4‖u‖L1(R) .

3. The fractional order TGV seminorms
Let r∈ (1,+∞)\N be given. In this section we define the fractional r-order total

generalized variation (TGV r) seminorms, and we prove some first properties.

Definition 3.1 (The TGV r seminorms). Let 0<s<1, k∈N be such that k+s=
r, and let α= (α0,α1,α2,. ..,αk)∈Rk+1

+ . For every u∈L1(I), we define its fractional
TGV k+s seminorm as follows.

Case 1. for k= 1

|u|TGV 1+s
α (I) := inf

{
α0 |u′−sv0|Mb(I)

+α1s(1−s) |v0|W s,1+s(1−s)(I)

+α0s(1−s)
∣∣∣∣∫
I

v0(x)dx

∣∣∣∣ : v0∈W s,1+s(1−s)(I)

}
.
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Case 2. for k>1

|u|TGV k+s
α (I) := inf

{
α0 |u′−v0|Mb(I)

+α1 |v′0−v1|Mb(I)
+

·· ·+αk−1

∣∣v′k−2−svk−1

∣∣
Mb(I)

+αks(1−s) |vk−1|W s,1+s(1−s)(I)

+αk−1s(1−s)
∣∣∣∣∫
I

vk−1(x)dx

∣∣∣∣ :
vi∈BV (I) for 0≤ i≤k−2, vk−1∈W s,1+s(1−s)(I).

}
Moreover, we say that u belongs to the space of functions with bounded total generalized
variation, and we write u∈BGV k+s

α (I) if

‖u‖BGV k+s
α (I) :=‖u‖L1(I) + |u|TGV k+s

α (I)<+∞,

where 0≤s<1, k∈N, α= (α0,α1,α2,. ..,αk)∈Rk+1
+ . Additionally, we write u∈

BGV k+s(I) if there exists α∈Rk+1
+ such that u∈BGV k+s

α (I). Note that if u∈
BGV k+s

α (I) for some α∈Rk+1
+ , then u∈BGV k+s

β (I) for every β∈Rk+1
+ .

We observe that the TGV k+s seminorm is actually “intermediate” between the
TGV k seminorm and the TGV k+1 seminorm. To be precise, we have the following
identification.

Theorem 3.1 (Asymptotic behavior of the fractional TGV seminorm-1). For every
u∈BV (I), up to the extraction of a (non-relabeled) subsequence there holds

lim
s↗1
|u|TGV 1+s

α (I) = |u|TGV 2
α (I) and lim

s↘0
|u|TGV 1+s

α (I) =α0 |u′|Mb(I)
.

Before proving Theorem 3.1 we state and prove an intermediate result that will be
crucial in determining the asymptotic behavior of the TGV 1+s seminorm as s↗1.

Proposition 3.1. Let u∈W 1,∞(I). Then

limsup
s↗1

(1−s)|u|W s,1+s(1−s)(I)≤|u
′|Mb(I).

Proof. Let u∈W 1,∞(I). Then there exists a constant L>0 such that

|u(x)−u(y)|≤L|x−y|s

for every x,y∈ I and every s∈ (0,1). Thus

|u|1+s(1−s)
W s,1+s(1−s)(I)

=

∫
I

∫
I

|u(x)−u(y)|1+s(1−s)

|x−y|1+s(1+s(1−s)) dxdy

≤Ls(1−s)
∫
I

∫
I

|x−y|s2(1−s)|u(x)−u(y)|
|x−y|1+s(1+s(1−s)) dxdy

=Ls(1−s)
∫
I

∫
I

|u(x)−u(y)|
|x−y|1+s

dxdy=Ls(1−s) |u|W s,1(I) .

This implies that

(1−s) |u|W s,1+s(1−s)(I)≤ (1−s)L
s(1−s)

1+s(1−s) |u|
1

1+s(1−s)
W s,1(I)
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=L
s(1−s)

1+s(1−s)

[
(1−s) |u|W s,1(I)

] 1
1+s(1−s)

e
s(1−s)log(1−s)

1+s(1−s) .

Therefore, by Theorem 2.7 we conclude that

limsup
s↗1

(1−s) |u|W s,1+s(1−s)(I)≤ limsup
s↗1

[
(1−s) |u|W s,1(I)

] 1
1+s(1−s) ≤|u′|Mb(I)

.

A crucial ingredient in the proof of Theorem 3.1 is a compactness and lower-
semicontinuity result for maps with uniformly weighted averages and W s,1+s(1−s)-
seminorms.

Proposition 3.2. Let {sn}⊂ (0,1) be such that sn→ s̄, with s̄∈ (0,1]. For every
n∈N let vn∈W sn,1+sn(1−sn)(I) be such that

sup
n≥1

sn(1−sn)

{
|vn|W sn,1+sn(1−sn)(I) +

∣∣∣∫
I

vn(x)dx
∣∣∣}<+∞. (3.1)

Then, for s̄∈ (0,1), there exists v̄∈W s̄,1+s̄(1−s̄)(I) such that, up to the extraction
of a (non-relabeled) subsequence,

vn→ v̄ strongly in L1(I), (3.2)

and

liminf
n→∞

sn(1−sn)|vn|W sn,1+sn(1−sn)(I)≥ s̄(1− s̄) |v̄|W s̄,1+s̄(1−s̄)(I) . (3.3)

For s̄= 1, there exists v̄∈BV (I) such that, up to the extraction of a (non-relabeled)
subsequence,

vn−
∫
I

vn(x)dx→ v̄ strongly in L1(I), (3.4)

and

liminf
n→∞

sn(1−sn) |vn|W sn,1+sn(1−sn)(I)≥|v̄
′|Mb(I)

. (3.5)

Proof. We first observe that for x, y∈ I, 1≤p<+∞, and s<t, we have

|x−y|1+sp
> |x−y|1+tp

.

Hence, in view of definition (2.1) there holds

|u|W s,p(I)≤|u|W t,p(I)

for every u∈W t,p(I).

Without loss of generality (and up to the extraction of a non-relabeled subsequence)
we can assume that the sequences {sn} and {sn(1−sn)} converge monotonically to s̄
and s̄(1− s̄), respectively. According to the value of s̄ only 4 situations can arise:

Case 1: 1
2 ≤ s̄<1: sn↘ s̄ and sn(1−sn)↗ s̄(1− s̄);

Case 2: 0<s̄< 1
2 : sn↘ s̄ and sn(1−sn)↘ s̄(1− s̄);
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Case 3: 1
2 <s̄≤1: sn↗ s̄ and sn(1−sn)↘ s̄(1− s̄);

Case 4: 0<s̄≤ 1
2 : sn↗ s̄ and sn(1−sn)↗ s̄(1− s̄).

For convenience of the reader we subdivide the proof into three steps.

Step 1: We first consider Case 1. By (3.1) there exists a constant C such that

sup
n≥1

{
|vn|W sn,1+sn(1−sn)(I) +

∣∣∣∫
I

vn(x)dx
∣∣∣}≤C. (3.6)

We point out that the function f : (0,1)→R, defined as

f(x) :=x− 1

1+x(1−x)
for every x∈ [0,1], (3.7)

is strictly increasing on [0,1]. In particular, since sn≥ s̄, there holds f(sn)≥f(s̄), namely

sn−
1

1+sn(1−sn)
≥ s̄− 1

1+ s̄(1− s̄)
.

By applying Theorem 2.2 with s=sn, r= s̄, p= 1+sn(1−sn), and q= 1+ s̄(1− s̄),
we obtain that there exists a constant C such that

|vn|W s̄,1+s̄(1−s̄)(I)≤C |vn|W sn,1+sn(1−sn)(I) (3.8)

for every n∈N. The uniform bound (3.6) yields then that there exists a constant C
such that

sup
n≥1
|vn|W s̄,1+s̄(1−s̄)(I)≤C. (3.9)

In view of Theorem 2.3, Corollary 2.1, and estimates (3.6) and (3.9) there exists
v̄∈W s̄,1+s̄(1−s̄)(I) such that, up to the extraction of a (non-relabeled) subsequence, we
have

vn⇀v̄ weakly in W s̄,1+s̄(1−s̄)(I). (3.10)

Since s̄(1+ s̄(1− s̄))<1, and 1< 1+s̄(1−s̄)
1−s̄(1+s̄(1−s̄)) , by Theorem 2.1 (1), the embedding of

W s̄,1+s̄(1−s̄)(I) into L1(I) is compact. Property (3.2) follows then by property (3.10).

By the lower semicontinuity of the W s̄,1+s̄(1−s̄)(I) norm with respect to the weak
convergence, and by inequality (3.8) we deduce the inequality

s̄(1− s̄) |v̄|W s̄,1+s̄(1−s̄)(I)≤ liminf
n→+∞

s̄(1− s̄) |vn|W sn,1+sn(1−sn)(I)

= liminf
n→+∞

sn(1−sn) |vn|W sn,1+sn(1−sn)(I) ,

which in turn yields inequality (3.3).

Step 2: Consider now Case 2. The function g : (0,1)→R, defined as

g(x) :=
1

1+x(1−x)
for every x∈ (0,1),

is strictly decreasing in (0, 1
2 ]. By the definition of the maps f (of definition (3.7)) and

g there holds

g(s̄)+f(s̄) = s̄.
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Therefore, by the monotonicity of g in (0, 1
2 ] there exist 1

2 >ŝ> s̄, and λ∈ (0,1), such
that g(ŝ)+f(s̄)>λs̄, namely

s̄− 1

1+ s̄(1− s̄)
>λs̄− 1

1+ ŝ(1− ŝ)
.

By the monotonicity of f on [0,1], and the fact that sn≥ s̄ for every n∈N, we have

sn−
1

1+sn(1−sn)
=f(sn)>f(s̄) = s̄− 1

1+ s̄(1− s̄)
>λs̄− 1

1+ ŝ(1− ŝ)
.

By property (3.1) there exists a constant C such that

sup
n≥1

{
|vn|W sn,1+sn(1−sn)(I) +

∣∣∣∫
I

vn(x)dx
∣∣∣}≤C. (3.11)

Since 1
2 >ŝ> s̄, and sn(1−sn)↘ s̄(1− s̄), there exists n0∈N such that

1+sn(1−sn)<1+ ŝ(1− ŝ) for every n≥n0.

Hence, choosing s=sn, r=λs̄, p= 1+sn(1−sn), and q= 1+ ŝ(1− ŝ) in Theorem 2.2,
we deduce that there exists a constant C such that

|vn|Wλs̄,1+ŝ(1−ŝ)(I)≤C |vn|W sn,1+sn(1−sn)(I)

for every n≥n0. In particular, property (3.1) yields the uniform bound

sup
n≥1
|vn|Wλs̄,1+ŝ(1−ŝ)(I)≤C.

In view of Theorem 2.3, Corollary 2.1, and estimate (3.11) we deduce the existence of
a map v̄ such that, up to the extraction of a (non-relabeled) subsequence,

vn⇀v̄ weakly in Wλs̄,1+ŝ(1−ŝ)(I). (3.12)

Since λs̄(1+ ŝ(1− ŝ))<ŝ(1+ ŝ(1− ŝ))<1, and 1< 1+ŝ(1−ŝ)
1−λs̄(1+ŝ(1−ŝ)) , by Theorem 2.1 (1)

the space Wλs̄,1+ŝ(1−ŝ)(I) embeds compactly into L1(I). Hence, the convergence (3.12)
holds also strongly in L1(I), and the convergence (3.2) follows. In particular, Fatou’s
Lemma yields

|v|1+s̄(1−s̄)
W s̄,1+s̄(1−s̄)(I)

≤ liminf
nk→+∞

|vnk |
1+snk (1−snk )

W
snk

,1+snk
(1−snk )

(I)
,

which in turn implies inequality (3.3).

Step 3: We omit the proof of the result in Case 4, and in Case 3 for s̄<1, as they
follow from analogous arguments. Regarding Case 3 for s̄= 1, by Hölder’s inequality we
have ∫

I

∫
I

|vn(x)−vn(y)|
|x−y|1+ sn

2−sn
dxdy

≤

∫
I

∫
I

(
|vn(x)−vn(y)|
|x−y|1+ sn

2−sn

)1+sn(1−sn)

dxdy

 1
1+sn(1−sn)
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=

∫
I

∫
I

|vn(x)−vn(y)|1+sn(1−sn)

|x−y|1+ sn
2−sn+sn(1−sn)+

s2n
2−sn (1−sn)

dxdy

 1
1+sn(1−sn)

. (3.13)

Now,

1+
sn

2−sn
+sn(1−sn)+

s2
n

2−sn
(1−sn)<1+sn+s2

n(1−sn)

for n big enough (because sn↗1). Thus

1

|x−y|1+ sn
2−sn+sn(1−sn)+

s2n
2−sn (1−sn)

<
1

|x−y|1+sn+s2n(1−sn)

for every x,y∈ I, x 6=y, and by inequality (3.13) we obtain

|vn|
W

sn
2−sn

,1
(I)
≤|vn|

1
1+sn(1−sn)

W sn,1+sn(1−sn)(I)

for every n∈N. Property (3.1) yields the existence of a constant C such that

sup
n∈N

(1−sn)
(
|vn|

W
sn

2−sn
,1

(I)
+
∣∣∣∫
I

vn(x)dx
∣∣∣)≤C. (3.14)

Setting tn := sn
2−sn , there holds tn→1 as n→+∞, and the bound (3.14) implies

sup
n∈N

(1− tn)

{
|vn|W tn,1(I) +

∣∣∣∫
I

vn(x)dx
∣∣∣}≤C.

Properties (3.4) and (3.5) are then a consequence of [5, Theorem 4].

We now prove Theorem 3.1.

Proof. (Proof of Theorem 3.1.) Fix ε>0. Let v0∈BV (I) be such that

|u|TGV 2
α (I)≥α0 |u′−v0|Mb(I)

+α1|v′0|Mb(I)−ε.

Let vk0 ∈W 1,∞(I) satisfy ∣∣|(vk0 )′|Mb(I)−|v
′
0|Mb(I)

∣∣<ε,
and ∥∥v0−vk0

∥∥
L1(I)

<ε.

In view of Proposition 3.1 there holds

limsup
s↗1

|u|TGV 1+s
α (I)≤ limsup

s↗1

{
α0

∣∣u′−svk0 ∣∣Mb(I)
+α0s(1−s)

∣∣∣∫
I

vk0 (x)dx
∣∣∣

+α1s(1−s)
∣∣vk0 ∣∣W s,1+s(1−s)(I)

}
≤α0

∣∣u′−vk0 ∣∣Mb(I)
+α1

∣∣(vk0 )′
∣∣
Mb(I)

≤α0 |u′−v0|Mb(I)
+α1 |v′0|Mb(I)

+(α0 +α1)ε
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≤|u|TGV 2
α (I) +(α0 +α1 +1)ε.

The arbitrariness of ε yields

limsup
s↗1

|u|TGV 1+s
α (I)≤|u|TGV 2

α (I) . (3.15)

To prove the opposite inequality, for every s∈ (0,1) let vs0 ∈W s,1+s(1−s)(I) be such
that

α0 |u′−svs0|Mb(I)
+α1s(1−s) |vs0|W s,1+s(1−s)(I) +α0s(1−s)

∣∣∣∫
I

vs0(x)dx
∣∣∣

≤|u|TGV 1+s
α (I) +s. (3.16)

In view of inequality (3.15) and Proposition 3.2, there exists ṽ∈BV (I) such that, up
to the extraction of a (non-relabeled) subsequence,

vs0−
∫
I

vs0(x)dx→ ṽ strongly in L1(I), (3.17)

as s→1, and

lim
s↗1

s(1−s) |vs0|W s,1+s(1−s)(I)≥|ṽ
′|Mb(I)

. (3.18)

Additionally, by inequalities (3.15) and (3.16) there holds

s‖vs0‖L1(I)≤|u
′|Mb(I)

+‖u′−svs0‖Mb(I)
≤|u′|Mb(I)

+ |u|TGV 1+s
α (I) +s≤C

for every s∈ (0,1). Thus, there exists a constant C such that

lim
s→1

∫
I

vs0(x)dx=C.

In particular, setting v := ṽ+C, by properties (3.17) and (3.18) there holds

vs0→v strongly in L1(I),

and

lim
s→1

s(1−s) |vs0|W s,1+s(1−s)(I)≥|v
′|Mb(I)

.

Passing to the limit in inequality (3.16) we deduce the inequality

|u|TGV 2
α (I)≤α0 |u′−v|Mb(I)

+α1 |v′|Mb(I)
≤ liminf

s↗1
|u|TGV 1+s

α (I) ,

which in turn implies the thesis.

To study the case s↘0, we first observe that

sup
s∈(0,1)

|u|TGV 1+s
α (I)≤α0|u′|Mb(I). (3.19)

Thus we only need to prove the opposite inequality. To this aim, for every s∈ (0,1) let
vs0 ∈W s,1+s(1−s)(I) be such that

α0 |u′−svs0|Mb(I)
+α1s(1−s) |vs0|W s,1+s(1−s)(I) +α0s(1−s)

∣∣∣∫
I

vs0(x)dx
∣∣∣
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≤|u|TGV 1+s
α (I) +s. (3.20)

Since s(1+s(1−s))<1 for s∈ (0,1), by inequalities (3.19) and (3.20), and in view of
Theorem 2.3, there exists a constant C such that

s

∫
I

vs0(x)dx→C, and svs0→C strongly in L1(I).

Passing to the limit in inequality (3.20) we deduce the inequality

α0 |u′|Mb(I)
≤α0|u′−C|Mb(I) +α0C≤ liminf

s↘0
|u|TGV 1+s

α (I) .

The thesis follows owing to inequality (3.19).

Corollary 3.1 (Asymptotic behavior of the fractional TGV seminorm-2). Let k≥2.
For every u∈BV (I), up to the extraction of a (non-relabeled) subsequence there holds

lim
s↗1
|u|TGV k+s

α (I) = |u|TGV k+1
α (I) and lim

s↘0
|u|TGV k+s

α (I) = |u|TGV kα̂ (I) ,

where α̂ := (α0,. ..,αk−1)∈Rk+.

Proof. The result follows by straightforward adaptations of the arguments in the
proof of Theorem 3.1.

We proceed by showing that the minimization problem in Definition 3.1 has a
solution.

Proposition 3.3. If the infimum in Definition 3.1 is finite, then it is attained.

Proof. Let k= 1. Let α∈R2
+, and let u∈BGV 1+s

α (I). We need to show that

|u|TGV 1+s
α (I) = min

{
α0 |u′−sv|Mb(I)

+α1s(1−s) |v|W s,1+s(1−s)(I)

+α0s(1−s)
∣∣∣∫
I

v(x)dx
∣∣∣ : v∈W s,1+s(1−s)(I)

}
. (3.21)

We first observe that u∈BV (I).

Indeed, let δ>0, and let v∈W s,1+s(1−s)(I) be such that

α0 |u′−sv|Mb(I)
+α1s(1−s)|v|W s,1+s(1−s)(I) +α0s(1−s)

∣∣∣∫
I

v(x)dx
∣∣∣≤|u|TGV 1+s

α (I) +δ.

By Hölder’s inequality there holds

α0 |u′|Mb(I)
≤α0 |u′−sv|Mb(I)

+α0s‖v‖L1(I)

≤α0 |u′−sv|Mb(I)
+α1s |v|W s,1+s(1−s)(I) +α0s‖v‖L1+s(1−s)(I) +α0s(1−s)

∣∣∣∫
I

v(x)dx
∣∣∣

≤|u|TGV 1+s
α (I) +δ+α1s

2 |v|W s,1+s(1−s)(I) +α0s‖v‖L1+s(1−s)(I) ,

which implies the claim.

Let now {vn}⊂W s,1+s(1−s)(I) be a minimizing sequence for equality (3.21). Since
s(1+s(1−s))<1 for s∈ (0,1), by Theorem 2.1 (1) there exists a constant C such that

sup
n∈N
‖vn‖W s,1+s(1−s)(I)≤C.
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Thus, by Corollary 2.1 there exists v̄∈W s,1+s(1−s)(I) such that, up to the extraction
of a (non-relabeled) subsequence, there holds

vn⇀v̄ weakly in W s,1+s(1−s)(I),

and hence by Theorem 2.1 (1),

vn→ v̄ strongly in L1(I).

The thesis follows now by the lower semicontinuity of the total variation and the
W s,1+s(1−s)-norm with respect to the L1 convergence and the weak convergence in
W s,1+s(1−s)(I), respectively.

For k= 2, let {vn0 }⊂BV (I) and {vn1 }⊂W s,1+s(1−s)(I) be such that

lim
n→+∞

{
α0|u′−vn0 |Mb(I) +α1|(vn0 )′−svn1 |Mb(I) +α2s(1−s)|vn1 |W s,1+s(1−s)(I)

+α0s(1−s)
∣∣∣∫
I

vn1 (x)dx
∣∣∣}=TGV 2+s

α (I).

Since s(1+s(1−s))<1 for s∈ (0,1), by Theorem 2.1 (1) we obtain that {vn1 } is uni-
formly bounded in W s,1+s(1−s)(I). Therefore, {vn0 } is uniformly bounded in BV (I),
and there exist v0∈BV (I) and v1∈W s,1+s(1−s)(I) such that, up to the extraction of a
(non-relabeled) subsequence,

vn0
∗
⇀v0 weakly* in BV (I),

and

vn1 ⇀v1 weakly in W s,1+s(1−s)(I).

In particular, by Theorem 2.1 (1),

vn1 →v1 strongly in L1(I).

The minimality of v0 and v1 is a consequence of lower semicontinuity. The thesis for
k>2 follows by analogous arguments.

We observe that the TGV k+s seminorms are all topologically equivalent to the total
variation seminorm.

Proposition 3.4. For every k≥1 and 0<s<1, we have

BV (I)∼BGV k(I)∼BGV k+s(I),

namely the three function spaces are topologically equivalent.

Proof. We only show that

BV (I)∼BGV 1+s(I)∼BGV 2(I). (3.22)

The proof of the inequality for k>1 is analogous. In view of inequality (3.19), to prove
the first equivalence relation in expression (3.22) we only need to show that there exist
a constant C and a multi-index α∈R2

+ such that

|u′|Mb(I)
≤C |u|TGV 1+s

α (I) .
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By Theorem 2.1 we have

|u′|Mb(I)
≤|u′−sv0|Mb(I)

+s‖v0‖L1(I)

≤|u′−sv0|Mb(I)
+Cs|v0|W s,1+s(1−s)(I) +s(1−s)

∣∣∣∫
I

v0(x)dx
∣∣∣

= |u′−sv0|Mb(I)
+

C

(1−s)
s(1−s) |v0|W s,1+s(1−s)(I) +s(1−s)

∣∣∣∫
I

v0(x)dx
∣∣∣

for every v0∈W s,1+s(1−s)(I). Thus

|u′|Mb(I)
≤C |u|TGV 1+s

1, C
(1−s)

(I)

for every s∈ (0,1). This completes the proof of the first equivalence in expression (3.22).
Property (3.22) follows now by [8, Theorem 3.3].

4. The fractional r-order TGV r functional
In this section we introduce the fractional r-order TGV r functional and prove a

Γ-convergence result with respect to the parameters α and s.

Definition 4.1. Let r∈ [1,+∞), α∈Rbrc+1
+ , and uη ∈L2(I). We define the functional

Frα :BV (I)→ [0,+∞) as

Frα(u) :=

∫
I

|u−uη|2dx+ |u|TGV rα (I)

for every u∈BV (I). Note that the definition is well-posed due to Proposition 3.4.

The main result of this section reads as follows.

Theorem 4.1 (Γ-convergence of the fractional order TGV functional). Let k∈N and
uη ∈L2(I). Let {sn}⊂ [0,1] and {αn}⊂Rk+1

+ be such that sn→s, and αn→α. Then,
if s∈ (0,1], the functional Fk+sn

αn Γ-converges to Fk+s
α in the weak* topology of BV (I),

namely for every u∈BV (I) the following two conditions hold:

(LI) If

un
∗
⇀u weakly* in BV (I),

then

Fk+s
α (u)≤ liminf

n→+∞
Fk+sn
αn (un).

(RS) There exists {un}⊂BV (I) such that

un
∗
⇀u weakly* in BV (I),

and

limsup
n→+∞

Fk+sn
αn (un)≤Fk+s

α (u).

The same result holds for s= 0, by replacing α= (α0,. ..,αk) with α̂ := (α0,. ..,αk−1) in
(LI) and (RS).
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Remark 4.1. We recall that Γ-convergence is a variational convergence, originally
introduced by E. De Giorgi and T. Franzoni in the seminar paper [19], which guarantees,
roughly speaking, convergence of minimizers of the sequence of functionals to minimizers
of the Γ-limit. The first condition in Theorem 4.1, known as liminf inequality ensures
that the Γ-limit provides a lower bound for the asymptotic behavior of the TGV k+sn

αn
functionals, whereas the second condition, namely the existence of a recovery sequence
guarantees that this lower bound is attained. We refer to [7] and [15] for a thorough
discussion of the topic.

We subdivide the proof of Theorem 4.1 into two propositions. The next result will
be crucial for establishing the liminf inequality.

Proposition 4.1. Let k∈N and uη ∈L2(I). Let {sn}⊂ [0,1] and {αn}⊂Rk+1
+ be

such that sn→s, and αn→α. Let {un}∈BV (I) be such that

sup
n∈N
Fk+sn
αn (un)<+∞. (4.1)

Then, there exists u∈BV (I) such that, up to the extraction of a (non-relabeled) subse-
quence, there holds

un
∗
⇀u in BV (I). (4.2)

In addition, if s∈ (0,1] there holds

|u|TGV k+s
α (I)≤ liminf

n→+∞
|un|TGV k+sn

αn (I) . (4.3)

If s= 0 we have

|u|TGV kα̂ (I)≤ liminf
n→+∞

|un|TGV k+sn
αn (I) , (4.4)

where α̂∈Rk+ is the multi-index α̂ := (α0,. ..,αk−1).

Proof. We prove the statement for k= 1. The proof of the result for k>1 follows
via straightforward modifications.

For k= 1, we have {αn}⊂R2, and

(αn0 ,α
n
1 )→ (α0,α1) . (4.5)

By Proposition 3.3 we deduce that there exists vn0 ∈W sn,1+sn(1−sn)(I) such that

|un|TGV 1+sn
αn

(I) =αn0 |u′n−snvn0 |Mb(I)
+αn1 sn(1−sn) |vn0 |W sn,1+sn(1−sn)(I)

+αn0 sn(1−sn)
∣∣∣∫
I

vn0 (x)dx
∣∣∣. (4.6)

We preliminary observe that properties (4.1), (4.5), and (4.6) yield the existence of a
constant C such that

sn(1−sn)
(
|vn0 |W sn,1+sn(1−sn)(I) +

∣∣∣∫
I

vn0 (x)dx
∣∣∣)+ |u′n−snvn0 |Mb(I)

≤C |un|TGV k+sn
αn

(I)≤C (4.7)

for every n∈N. For convenience of the reader we subdivide the proof into three steps.
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Step 1: Assume first that s∈ (0,1). By Proposition 3.2 there exists v0∈W s,1+s(1−s)(I)
such that

vn0 →v0 strongly in L1(I), (4.8)

and

liminf
n→∞

sn(1−sn)|vn0 |W sn,1+sn(1−sn)(I)≥s(1−s) |v0|W s,1+s(1−s)(I) . (4.9)

By properties (4.1), (4.5), (4.6), and (4.8) there exists a constant C such that

|u′n|Mb(I)
≤C,

and hence, again by property (4.1),

sup
n∈N
‖un‖BV (I)≤C sup

n∈N
‖un‖BGV 1+sn

αn
(I)<+∞

which implies the convergence (4.2).
By properties (4.2), (4.6), (4.8), (4.9), and since 0<s<1, there holds

liminf
n→∞

|un|TGV 1+sn
αn

(I)≥ liminf
n→∞

αn0 |u′n−snvn0 |Mb(I)

+liminf
n→∞

αn1 sn(1−sn) |vn0 |W sn,1+sn(1−sn)(I) +liminf
n→∞

αn0 sn(1−sn)

∣∣∣∣∫
I

vn0 (x)dx

∣∣∣∣
≥α0 |u′−sv0|Mb(I)

+α1s(1−s) |v0|W s,1+s(1−s)(I) +α0s(1−s)
∣∣∣∣∫
I

v0(x)dx

∣∣∣∣≥|u|TGV 1+s
α (I) ,

where in the last inequality we used the definition of the TGV 1+s
α -seminorm. In partic-

ular, we deduce inequality (4.3).

Step 2: Consider now the case in which s= 1. In view of Proposition 3.2, estimate
(4.7) yields the existence of a map ṽ0∈BV (I) such that

vn0 −
∫
I

vn0 (x)dx→ ṽ0 strongly in L1(I) (4.10)

and

|ṽ′0|Mb(I)
≤ liminf
n→+∞

sn(1−sn) |vn0 |W sn,1+sn(1−sn)(I) . (4.11)

On the other hand, by inequality (4.7) there holds∣∣∣∣u′n−sn∫
I

vn0 (x)dx

∣∣∣∣
Mb(I)

≤|u′n−snvn0 |Mb(I)
+sn

∥∥∥∥vn0 −∫
I

vn0 (x)dx

∥∥∥∥
L1(I)

≤C

for every n∈N . Thus, there exists ũ∈BV (I) such that

un−un(0)−sn
(∫

I

vn0 (x)dx
)
x
∗
⇀ũ weakly* in BV (I). (4.12)

By property (4.1) and by Definition 3.1, we have

sup
n≥1
‖un‖L1(I)≤C. (4.13)
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In view of the convergence (4.12), testing the map un−un(0)−sn
(∫

I
vn0 (x)dx

)
x against

the function x− 1
2 , we obtain that

lim
n→+∞

∫
I

un(x)

(
x− 1

2

)
dx+

sn
6

∫
I

vn0 (x)dx=

∫
I

ũ(x)

(
x− 1

2

)
dx.

Thus, by (4.13),

sn
6

∣∣∣∫
I

vn0 (x)dx
∣∣∣≤ ∣∣∣∣∫

I

un(x)

(
x− 1

2

)
dx+

sn
6

∫
I

vn0 (x)dx

∣∣∣∣+ 1

2
‖un‖L1(I)≤C (4.14)

for every n∈N. By combining properties (4.10), (4.11), (4.12), and (4.14) we deduce
that there exists v0∈BV (I) such that

vn0 →v0 strongly in L1(I), (4.15)

and

|v′0|Mb(I)
≤ liminf
n→+∞

sn(1−sn) |vn0 |W sn,1+sn(1−sn)(I) . (4.16)

In particular, by combining properties (4.7), (4.15), and (4.16) we have that

|u′n|Mb(I)
≤C

for every n∈N, which by property (4.1) yields the convergence (4.2).

Step 3: Consider finally the case in which s= 0. In view of inequality (4.7), and by
Theorem 2.3 there holds ∥∥∥∥vn0 −∫

I

vn0 (x)dx

∥∥∥∥
L1(I)

≤C (4.17)

for every n∈N. On the other hand, (4.7) yields

sn

∣∣∣∫
I

vn0 (x)dx
∣∣∣≤C (4.18)

for every n∈N. Combining the bounds (4.17) and (4.18) we conclude that there exists
a constant λ∈R such that, up to the extraction of a (non-relabeled) subsequence there
holds

snv
n
0 →λ strongly in L1(I). (4.19)

As a result, in view of property (4.1), Definition 3.1, and the bound (4.7) we deduce
the existence of a map u∈BV (I) such that, up to the extraction of a (non-relabeled)
subsequence,

un
∗
⇀u weakly* in BV (I). (4.20)

Hence, by properties (4.6), (4.19), and (4.20) we have

liminf
n→∞

|un|TGV 1+sn
αn

(I)≥ liminf
n→∞

αn0 |u′n−snvn0 |Mb(I)

+liminf
n→∞

αn1 sn(1−sn)|vn0 |W sn,1+sn(1−sn)(I) +liminf
n→∞

αn0 sn(1−sn)

∣∣∣∣∫
I

vn0 (x)dx

∣∣∣∣
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≥α0 |u′−λ|Mb(I)
+α0|λ|≥α0 |u′|Mb(I)

,

which in turn implies inequality (4.4). This concludes the proof of the proposition.

The following result is instrumental for the construction of a recovery sequence.

Proposition 4.2. Let k∈N and uη ∈L2(I). Let {sn}⊂ (0,1] and {αn}⊂Rk+1
+ be

such that sn→s, and αn→α. Let u∈BV (I). Then, if s∈ (0,1] there holds

lim
n→∞

|u|TGV k+sn
αn (I) = |u|TGV k+s

α (I) , (4.21)

and if s= 0,

lim
n→∞

|u|TGV k+sn
αn (I) = |u|TGV k+s

α̂ (I) , (4.22)

where α̂∈Rk+ is the multi-index α̂ := (α0,. ..,αk−1).

Proof. We prove the proposition for k= 1. The thesis for k>1 can be proven
by analogous arguments. The special cases s= 0 and s= 1 have already been analyzed
in Theorem 3.1, in the situation in which αn=α for all n∈N. The thesis for gen-
eral sequences {αn} follows by straightforward adaptations. Therefore, without loss
of generality, we can assume that s∈ (0,1). As a consequence of Proposition 4.1 we
immediately have that

liminf
n→∞

|u|TGV 1+sn
α (I)≥|u|TGV 1+s

α (I) . (4.23)

To prove the opposite inequality, fix ε>0. By the definition of the TGV 1+s
α (I)-

seminorm, and in view of [26, Theorems 2.4 and 5.4], there exists v0∈C∞(I)∩
W s,1+s(1−s)(I) such that

|u|TGV 1+s(I)

≥α0|u′−sv0|Mb(I)
+α1s(1−s)|v0|W s,1+s(1−s)(I) +α0s(1−s)

∣∣∣∣∫
I

v0(x)dx

∣∣∣∣−ε.
In particular, there holds v0∈C∞(I)∩W sn,1+sn(1−sn)(I) for every n∈N. Hence

|u|TGV 1+sn
α (I)≤α0 |u′−snv0|Mb(I)

+α1sn(1−sn) |v0|W sn,1+sn(1−sn)(I) +α0sn(1−sn)

∣∣∣∣∫
I

v0(x)dx

∣∣∣∣ ,
for every n∈N, and

limsup
n→∞

|u|TGV 1+sn
α (I)≤|u|TGV 1+s

α (I) +ε. (4.24)

The thesis follows by the arbitrariness of ε, and by combining inequalities (4.23) and
(4.24).

We conclude this section by proving Theorem 4.1.

Proof. (Proof of Theorem 4.1.) Property (LI) is a direct consequence of
Proposition 4.1. Property (RS) follows by Proposition 4.2, choosing un=u for every
n∈N.
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5. The bilevel training scheme equipped with TGV r regularizer
Let r∈ [1,+∞) be given and recall brc denote the largest integer smaller than or

equal to r. We propose the following training scheme (R) which takes into account the

order of derivation r of the regularizer and the parameter α∈Rbrc+1
+ simultaneously.

We restrict our analysis to the case in which α and r satisfy the box constraint

(α,r)∈ [P,1/P ]brc+1× [1,1/P ] (5.1)

where P ∈ (0,1) small is a fixed real number.

Our new training scheme (R) is defined as follows:

Level 1. (α̃, r̃) := argmin
{
I(α,r), (α,r)∈ [P,1/P ]brc+1× [1,1/P ]

}
, (5.2)

Level 2. uα,r := argmin{Frα(u) : u∈BV (I)} (5.3)

where I(α,r), defined as

I(α,r) :=‖uα,r−uc‖2L2(I) (5.4)

is the cost function associated to the training scheme (R), Frα is introduced in Definition
4.1, the map uc∈L2(I) represents a noise-free test signal, and uη ∈L2(I) is the noise
(corrupted) signal.

Note that we only allow the parameters α and the order r of regularizers to lie within
a prescribed finite range. This is needed to force the optimal reconstructed signal uα̃,r̃
to remain inside our proposed space BV (I) (see Proposition 4.1). In particular, if some
of the components of α̃ blow up to ∞, we might end up in the space W r,1(I), which
is outside the purview of this paper. We point out that P can be chosen as small as
the user wants. Thus, despite the box constraint, our analysis still incorporates a large
class of regularizers, such as TV and TGV 2 (see, e.g., [22]).

Before we state the main theorem of this section, we prove a technical lemma and
show that expression (5.3) has a unique minimizer for each given (α,r).

Lemma 5.1. For every r∈ [1,1/P] and α∈Rbrc+1
+ , there exists a unique uα,r ∈BV (I)

solving the minimization problem (5.3).

Proof. Let {un}⊂BV (I) be a minimizing sequence for expression (5.3). By
Proposition 3.4, {un} is uniformly bounded in BV (I). Thus there exists uα,r ∈BV (I)
such that

un
∗
⇀uα,r weakly* in BV (I),

and hence also strongly in L2(I). The minimality of uα,r follows then by Proposition
4.1, whereas the uniqueness of the minimum is a consequence of the strict convexity of
the functional.

The next result guarantees existence of solutions to our training scheme.

Theorem 5.1. Let uη,uc∈BV (I) be given. Under the box constraint (5.1), the train-
ing scheme (R) admits at least one solution (α̃, r̃)∈ [P,1/P ]br̃c+1× [1,1/P ] and provides
an associated optimally reconstructed signal uα̃,r̃ ∈BV (I).

Proof. The result follows by Theorem 4.1 and by standard properties of Γ-
convergence. We highlight the main steps for convenience of the reader.
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Let {(αn,rn)} be a minimizing sequence for expression (5.2) with {rn}⊂ [1,1/P ].
Then, up to the extraction of a (non-relabeled) subsequence, there exists r̃∈ [1,1/P ]
such that rn→ r̃, and Ñ ∈N large enough such that for all n≥ Ñ , one the following two
cases arises.

(1) rn∈ [br̃c,br̃c+1], or

(2) rn∈ [br̃c−1,br̃c].
Suppose statement 1 holds (statement 2 can be handled by an analogous argu-

ment), then for n≥ Ñ , we have (αn,rn)⊂ [P,1/P ]br̃c+1× [br̃c,br̃c+1] for all n≥ Ñ , and,
up to extracting a further subsequence, αn→ α̃ with α̃∈ [P,1/P ]br̃c+1. Let uαn,rn be
the unique solution to equation (5.3) provided by Lemma 5.1. By equation (5.3) and
Proposition 3.4, there holds

‖uαn,rn‖BGV rnαn (I)≤|uη|TGV rnαn (I)≤C
∣∣u′η∣∣Mb(I)

for all n≥ Ñ . Next, in view of Proposition 4.1, there exists a ũ∈BGV r̃α̃ (I) such that

uαn,rn
∗
⇀ũ weakly* in BV (I).

Thus, in particular, strongly in L2(I).

We claim that

ũ=uα̃,r̃ = argmin
{
F r̃α̃(u) : u∈BV (I)

}
.

Indeed, by Propositions 4.1 and 4.2 there holds∫
I

|ũ−uη|2dx+ |ũ|TGV r̃α̃ (I)≤ liminf
n→+∞

∫
I

|uαn,rn−uη|2dx+ |uαn,rn |TGV rnαn (I)

≤ lim
n→+∞

[∫
I

|v−uη|2dx+ |v|TGV rnαn (I)

]
≤
∫
I

|v−uη|2dx+limsup
n→∞

|v|TGV rnαn (I)

=

∫
I

|v−uη|2dx+ |v|TGV r̃α̃ (I)

for every v∈BV (I), where at the last equality we used equality (4.21) or (4.22). This
completes the proof of the claim and of the theorem.

Remark 5.1. The box constraint (5.1) is only used to guarantee that a minimizing
sequence {(αn,rn)} has a convergent subsequence whose limit is bounded away from 0.
Alternatively, different box-constraints for each parameter α and r might be enforced,
such as

(α,r)∈ [P1,Q1]× [P2,Q2]×···× [1,Qbrc+2]

where 0<Pi<Qi<+∞, i= 1,. ..,brc+1 and 1<Qbrc+2<+∞.

6. Examples and insight
In order to gain further insight into the cost function I(α,r) of definition (5.4), we

compute it for a grid of values of α and r. We perform this analysis for two signals
presenting different features, namely for a signal exhibiting corners (see Figure 6.1a) and
for a signal with flat areas (see Figure 6.1b). In both cases, for simplicity, we assume
α0 =α1 =α and we consider the discrete box-constraint

(α,r)∈{0, 0.005, 0.01, 0.015,. ..,2.5}×{1, 1.0025, 1.005, ... , 2} (6.1)
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(a) uc in red and uη=uc+η in blue.
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(b) uc in red and uη=uc+η in blue.

Fig. 6.1: The artificial noise η is generated by using a Gaussian noise distribution.
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(a) optimal (α̃, r̃)=(0.29,1.97)
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(b) optimal (α̃, r̃)=(0.05,1.35)

Fig. 6.2: Numerical landscape (contour map) for the cost function I(α,r). Darker colors correspond
to smaller values of I(α,r). We remark that the optimal parameters in Figure 6.2a and Figure 6.2b
are chosen from the discrete grid (6.1).

(see Remark 5.1). The reconstructed signal uα,r in definition (5.3) is computed by using
the primal-dual algorithm presented in [10] and [29].

The numerical landscapes of the cost function I(α,r) are visualized in Figure 6.2a
and Figure 6.2b, respectively.

As we can see, in Figure 6.2b the optimal r̃, chosen from the discrete grid (6.1),
seems to lie away from the boundary of the discrete box-constraint (6.1), which are
the integer values r= 1 and r= 2, showing an example in which the optimal signal
reconstruction with respect to the L2-distance can be achieved by the fractional order
TGV r. We can also see in Figure 6.3 that the denoising results are quite satisfactory,
even with the optimal parameters are chosen from the discrete grid. However, it is also
possible that the optimal result r̃ is an integer (in Figure 6.2a r̃ is indeed very close to an
integer). For example, for a complete flat signal, i.e., uc≡1, then uα,1 =uc for α large
enough, provided that the noise η satisfies

∫
I
η(x)dx= 0 (zero-average assumption on

noise is a reasonable assumption, see [43]). We point out once more that the introduction
of fractional r-order TGV r only meant to expand the training choices for the bilevel
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scheme, but not to provide a superior seminorm to integer order TGV k. The optimal
solution r̃∈ [1,1/P ], fractional order or integer order, is completely up to the given data
uc and uη.

Although from the numerical landscapes the cost function I(α,r) (Figure 6.2) ap-
pears to be almost quasiconvex (see, [6, Section 3.4]) in the variable α, this is not the
case. In the forthcoming paper [21] some explicit counterexamples showing that at
least for certain piecewise constant signals I (α,1) is not quasiconvex will be presented.
Additionally, Figure 6.2a and 6.2b both show that I(α,r) is not quasiconvex in the r
variable. The non-quasiconvexity of the cost function I(α,r), implies that the training
scheme (R) may not have a unique solution, i.e., the global minimizer of I(α,r) might
be not unique. In particular, the non-quasiconvexity of I(α,r) prevents us from using
standard gradient descent methods to find a global minimizer (which is the optimal
solution we are looking for in equation (5.2)). Therefore, the identification of a reliable
numerical scheme for solving the bilevel problem (upper level problem) remains an open
question.

As a final remark, we point out that the development of a numerical scheme to
identify the global minimizers of I(α,1), α∈R+ has been undertaken in [21], where the
Bouligand differentiability and the finite discretization of I(α,1) will be analyzed.
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(a) The denoised signal uα̃,r̃ in blue
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(b) The denoised signal uα̃,r̃ in blue

Fig. 6.3: The denoised signal uα̃,r̃, with optimal parameters chosen from the discrete grid (6.1), are
in both cases very close to the given clean signal.
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