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PRIORITY-BASED RIEMANN SOLVER FOR
TRAFFIC FLOW ON NETWORKS∗

MARIA LAURA DELLE MONACHE† , PAOLA GOATIN‡ , AND BENEDETTO PICCOLI§

Abstract. In this article we introduce a new Riemann solver for traffic flow on networks. The
Priority Riemann solver (PRS) provides a solution at junctions by taking into consideration priorities
for the incoming roads and maximization of through flux. We prove existence of solutions for the solver
for junctions with up to two incoming and two outgoing roads and show numerically the comparison
with previous Riemann solvers. Additionally, we introduce a second version of the solver that considers
the priorities as softer constraints and illustrate numerically the differences between the two solvers.
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1. Introduction
Conservation laws on network is now a mature field with a high number of con-

tributions published in math journals every year. One of the reasons for such success
and interest is the large set of possible applications, which include vehicular traffic [12],
supply chains [1], irrigation channels [2], telecommunications [9] and others. For a com-
plete account of recent results and references we refer the reader to the survey [4], while
here we focus on the vehicular traffic case.

The theory for the scalar case is quite developed (see [7, 13, 15]), with most results
based on the concept of Riemann solver. The latter is the network equivalent to the
classical Riemann solver for conservation laws on the real line and provides a solution
to Riemann problems at junctions, i.e., Cauchy problems with constant initial data on
each road.

To better explain the models proposed and analyzed in the literature, and our
contribution, we take advantage of a simple, yet real and important, situation appearing
in vehicular traffic: a single junction with two incoming and two outgoing roads. The
latter will allow us to illustrate the different mathematical theories at work. To fix
the ideas we parametrize the incoming roads as I1 = I2 =]−∞,0] and the outgoing ones
as I3 = I4 = [0,+∞[, so the junction J corresponds to coordinate x= 0 in all roads.
The dynamics on roads is given by the conservation laws (following the classical LWR
model [17,18]):

∂tρl+∂xfl(ρl) = 0, t≥0,x∈ Il, (1.1)

where l∈{1,2,3,4}, ρl(t,x)∈ [0,ρmax], is the car density, vl=vl(ρl) is the average velocity
and fl=fl(ρl) =ρlvl(ρl) is the flux. A Riemann problem at J is a Cauchy problem
for (1.1) with constant initial datum ρ0,l, l= 1,. ..,4, on each road. As it happens
for conservation laws on the real line (see [3]), a map assigning a solution to every
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Riemann problem is called a Riemann solver. Such solutions are formed by simple waves:
traveling discontinuities called shocks and continuous opening waves called rarefactions.
Moreover, for every fixed Riemann solvers, one can construct approximate solutions via
the Wave-Front Tracking algorithm [16] . Under suitable assumptions, one can also
prove uniqueness and continuous dependence from initial data, i.e. well-posedness of
Cauchy problems [3].

Notice that solving Riemann problems at J is equivalent to assign boundary values
ρ̃l, l= 1,. ..,4, and solve four Initial-Boundary Value Problems (IBVP) on the roads
I1,. ..,I4. Unfortunately (see [3]), solutions to IBVP may not attain the boundary value
ρ̃i and, for vehicular traffic, such solutions may violate conservation of the number of
cars through the junction (see [12]). To ensure that the boundary value is attained by
the solution, one needs to prescribe a sign to wave speeds: for incoming roads the wave
(ρ0,i, ρ̃i), i= 1,2, must have negative speed, while for outgoing ones the wave (ρ̃i,ρ0,j),
j= 3,4, must have positive speed. Under this assumption, one can instead assign the
boundary values of flows fl(ρ̃l) to determine uniquely the boundary values of densities
ρ̃l (see [12] for details). Moreover, the wave speed signs imply limitations on possible
flows, see Proposition 2.1. We call admissible a Riemann solver satisfying the wave
speed sign conditions.

The admissible Riemann solver proposed in [7] was based on two main modeling
assumptions:

(A) Traffic from incoming roads distribute to outgoing roads according to fixed
traffic coefficients;

(B) Traffic flow through the junction is maximized.

To illustrate (A) and (B), let use focus on our simple junction J . The rule (A) is
captured assigning a 2×2 matrix A= (αji), where i= 1,2 ranges over incoming roads
and j= 3,4 over outgoing ones. More precisely αji∈]0,1[ represents the percentage of
traffic going from road i to road j and it holds

∑
jαji= 1, i= 1,2. If γl represents the

flow to or from road l, then rule (A) corresponds to set (γ3,γ4)t=A ·(γ1,γ2)t.

The only rule (A) does not isolate a unique solution. An easy example is as fol-
lows. If ρ0,1 =ρ0,2 =ρmax and ρ0,3 =ρ0,4 = 0, then the constant-in-time solution trivially
satisfies rule (A), since all flows to and from the junction are vanishing (under the hy-
pothesis that fl(0) = 0 =fl(ρmax)). Rule (B) can be mathematically expressed as the
maximization of the flow from incoming roads: γ1 +γ2. If α31 6=α32, then the only
solution satisfying rule (B) is formed by rarefaction waves on all roads and is depicted
in Figure 1.1. Using this solver, solutions to Cauchy problems were defined for arbi-
trary networks, see [7,11,12]. Moreover, a general existence theorem was proved in [13]
for every Riemann solver satisfying three general properties, called (P1)-(P3). Roughly
speaking, (P1) asks for the solver to depend only on the flow limitations (and not on the
specific densities), (P2) is a bound on the increase of the total variation of the flow due
to interactions of waves with junctions, while (P3) asks the flow through the junction
to decrease if the flow from one road decreases. Due to finite speed of propagation of
waves, one can focus on a network with a single junction. Then the existence proof is
based on estimates on the total variation in space of the flow on the whole network in
terms of the total variation in time of the flow Γ through the junction, see Definition
(2.5). In turn, the latter is bounded thanks to the general property (P3).

To better capture the possibility that one incoming road has a priority over the
other, one can introduce a priority vector P = (p1,p2) (with pi>0 and

∑
ipi= 1) and

require the incoming flow vector (γ1,γ2) to be parallel to P , [10, 19]. However, such
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(b) Outgoing roads

Fig. 1.1: Solution of the problem using the Riemann solver proposed in [7].

rule would not guarantee flow maximization, thus we define our Riemann Solver so
that the road with highest priority will use the maximal possible flow (respecting the
incoming and outgoing maximal flows given by Proposition 2.1 and priority vector),
then the second road will use the remaining capacity of the junction (if there is enough
demand). Let us illustrate what this means for the 2×2 junction J . As shown in
Figure 1.2, let us suppose that we have two incoming roads 1 and 2 and that the
flux of cars from each one of the incoming roads would reach either road 3 or road
4. The priority parameter tells us exactly which ones of the cars in the intersection
has the right of way with respect to the other. Our construction can be generalized
to junctions with an arbitrary number of n incoming and m outgoing roads. Again,
the road with the highest priority will use the maximal flow taking into account also
outgoing roads constraints. If some room is left for additional flow, then the road with
the second highest priority will use the left space and so on. A precise definition of this
new Riemann solver, that we call Priority Riemann Solver, is based on an m×n traffic
distribution matrix A (Definition 3.1), a priority vector P = (p1,. ..,pn) (with pi>0 and∑
ipi= 1) and requires a recursion method, which is described in Algorithm 1. We also

model special situations in which some outgoing roads do not absorb traffic from some
incoming ones and propose an alternative solver with softer priorities, see Algorithm 2.
During the writing of this manuscript we discovered that our priority-based Riemann
solver may be obtained as limit of solvers defined by Dynamic Traffic Assignment based
on junctions with queues [5].
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Fig. 1.2: Illustration of a 2×2 intersection.

The general existence theorem of [13] can not be applied to our case. Indeed the
property (P3) is not satisfied by the Priority Riemann Solver (see the Appendix: case A2
with flux increase corresponding to Figure A.2a). Therefore, we achieve existence via a
new set of general properties. Property (P1) is the same as in [13], while we modify (P2)
and (P3) by using estimates involving not only Γ but also the maximal flow along the
priority vector P in the set of admissible flows, see Definition (3.3). We apply the general
theory to the Priority Riemann Solver by proving that the new properties (P1)-(P3)
are satisfied for junctions with at most two incoming and two outgoing roads. Then, to
illustrate the properties of the Priority Riemann Solver and the one with soft priorities,
and compare with existing Riemann Solvers, we implement numerical simulations via
Godunov scheme.

The paper is organized as follows. In Section 2 we introduce the basic definitions
of the theory of conservation laws on networks, then in Section 3 we define our Priority
Riemann Solver and prove existence of solutions to Cauchy problems in Section 4.
In Section 5, an alternative definition of the Riemann Solver with softer priorities is
described and lastly, in Section 6, we propose a numerical discretization and show some
numerical simulations comparing our Solvers to existing ones. The Appendix A collects
the proof of the main theorem of the paper.

2. Basics
In this section we recall the basic definitions and results of the theory of conservation

laws on networks, based on the concept of Riemann solver at junctions. Due to finite
propagation speed of waves, to achieve existence results for Cauchy problems it is not
restrictive to focus on a single junction. For details on how to extend the results to a
general network, we refer the reader to [12,13].

Fix a junction J with n incoming roads I1,. ..,In and m outgoing roads
In+1,. ..,In+m, where Ii=]−∞,0] (i∈{1,. ..,n}) and Ij = [0,+∞[ (j∈{n+1,. ..,n+
m}). The traffic on each road Il (l∈{1,. ..,n+m}) is modeled using the celebrated
Lighthill–Whitham–Richards model (briefly LWR, see [17,18]):

∂tρl+∂xf(ρl) = 0, t≥0,x∈ Il, (2.1)

where ρl(t,x)∈ [0,ρmax], is the car density, vl=vl(ρl) is the average velocity and fl=
fl(ρl) =ρlvl(ρl) is the flux. For simplicity, throughout the paper we assume ρmax = 1
and fl=f for all l= 1,. ..,n+m.
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We make the following assumptions on the flux function f :

(H) f : [0,1]→R is a Lipschitz continuous and concave function satisfying

(1) f(0) =f(1) = 0;

(2) there exists a unique ρcr∈ ]0,1[ such that f is strictly increasing in [0,ρcr[
and strictly decreasing in ]ρcr,1].

As usual, entropic solutions and weak solutions at junctions are given by:

Definition 2.1. A function ρl∈C([0,+∞[;L1
loc(Il)) is an entropy-admissible solution

to equation (2.1) in the arc Il if, for every k∈ [0,1] and every ϕ : [0,+∞[×Il→R smooth,
positive and with compact support in ]0,+∞[×(Il \{0}), it holds∫ +∞

0

∫
Il

(
|ρl−k|∂tϕ+sgn(ρl−k)(f(ρl)−f(k))∂xϕ

)
dxdt≥0. (2.2)

Definition 2.2. A collection of functions ρl∈C([0,+∞[;L1
loc(Il)), (l∈{1,. ..,n+m})

is a weak solution at J if

(1) for every l∈{1,. ..,n+m}, the function ρl is an entropy-admissible solution to equa-
tion (2.1) in the road Il;

(2) for every l∈{1,. ..,n+m} and for a.e. t>0, the function x 7→ρl(t,x) has a version
with bounded total variation;

(3) for a.e. t>0, it holds

n∑
i=1

f(ρi(t,0−)) =

n+m∑
j=n+1

f(ρj(t,0+)), (2.3)

where ρl stands for the version with bounded total variation of 2.

A Riemann problem at the junction J is a Cauchy problem with constant initial data
on each road. More precisely, given ρ1,0,. ..,ρn+m,0∈ [0,1], the corresponding Riemann
problem at J is given by{

∂tρl+∂xf(ρl) = 0,

ρl(0,·) =ρ0,l,
l∈{1,. ..,n+m}. (2.4)

For a collection of functions ρl∈C([0,+∞[;L1
loc(Il)) (l∈{1,. ..,n+m}) such that,

for every l∈{1,. ..,n+m} and a.e. t>0, the map x 7→ρl(t,x) has a version with bounded
total variation, we define the functionals

Γ(t) :=

n∑
i=1

f(ρi(t,0−)) (2.5)

and

TVf (t) :=

n+m∑
l=1

TV(f (ρl(t,·))) . (2.6)

Notice that Γ is the flux through the junction, i.e. the total number of cars crossing the
junction J per unit of time, while TVf is the total variation of the flux on the whole
network. From the flux bounds we easily derive:

0≤Γ(t)≤nf(ρcr). (2.7)



190 PRIORITY BASED RIEMANN SOLVER

A Riemann solver at J is defined by:

Definition 2.3. A Riemann solver RS is a function

RS : [0,1]n+m −→ [0,1]n+m

(ρ1,0,. ..,ρn+m,0) 7−→ (ρ̄1,. .., ρ̄n+m)

satisfying the following properties

(1)
n∑
i=1

f(ρ̄i) =
n+m∑
j=n+1

f(ρ̄j);

(2) for every i∈{1,. ..,n}, the classical Riemann problem
ρt+f(ρ)x= 0, x∈R, t>0,

ρ(0,x) =

{
ρi,0, if x<0,
ρ̄i, if x>0,

is solved with waves with negative speed;

(3) for every j∈{n+1,. ..,n+m}, the classical Riemann problem
ρt+f(ρ)x= 0, x∈R, t>0,

ρ(0,x) =

{
ρ̄j , if x<0,
ρj,0, if x>0,

is solved with waves with positive speed.

Moreover, the Riemann solver RS must satisfy the consistency condition if

RS(RS(ρ1,0,. ..,ρn+m,0)) =RS(ρ1,0,. ..,ρn+m,0)

for every (ρ1,0,. ..,ρn+m,0)∈ [0,1]n+m.

For future use, we now provide some definitions for the LWR model and for Riemann
problems at junctions, for more details see [12].

Definition 2.4. We say that (ρ1,0,. ..,ρn+m,0) is an equilibrium for the Riemann
solver RS if

RS(ρ1,0,. ..,ρn+m,0) = (ρ1,0,. ..,ρn+m,0).

Definition 2.5. We say that a datum ρi∈ [0,1] in an incoming road is a good datum
if ρi∈ [ρcr,1] and a bad datum otherwise.

We say that a datum ρj ∈ [0,1] in an outgoing road is a good datum if ρi∈ [0,ρcr]
and a bad datum otherwise.

We also define the following function:

Definition 2.6. Let τ : [0,1]→ [0,1] be the map such that:

(1) f(τ(ρ)) =f(ρ) for every ρ∈ [0,1];

(2) τ(ρ) 6=ρ for every ρ∈ [0,1]\{ρcr}.

Clearly, the function τ is well defined and satisfies

0≤ρ≤ρcr⇐⇒ρcr≤ τ(ρ)≤1, ρcr≤ρ≤1⇐⇒0≤ τ(ρ)≤ρcr.

Given initial data (of Riemann type) ρ1,0,. ..,ρn+m,0∈ [0,1] we define:
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(1) for every i∈{1,. ..,n}

γmaxi =

{
f(ρi,0), if 0≤ρi,0≤ρcr,

f(ρcr), if ρcr≤ρi,0≤1;
(2.8)

(2) for every j∈{n+1,. ..,n+m}

γmaxj =

{
f(ρcr), if 0≤ρj,0≤ρcr,

f(ρj,0), if ρcr≤ρj,0≤1;
(2.9)

(3) for every l∈{1,. ..,n+m}

Ωl= [0,γmaxl ]. (2.10)

Moreover, we have the following result (see [13]):

Proposition 2.1. It holds:

(1) For every i∈{1,. ..,n}, an element γ̄ belongs to Ωi if and only if there exists ρ̄i∈ [0,1]
such that f(ρ̄i) = γ̄ and point 2 of Definition 2.3 is satisfied.

(2) For every j∈{n+1,. ..,n+m}, an element γ̄ belongs to Ωj if and only if there exists
ρ̄j ∈ [0,1] such that f(ρ̄j) = γ̄ and point 3 of Definition 2.3 is satisfied.

3. Definition of the priority Riemann solver
In this section we define a new Riemann solver based on priorities. For this purpose,

we first fix a matrix A belonging to the set of matrices:

A :=

A={aji} i=1,...,n
j=n+1,...,n+m

:

0≤aji≤1 ∀i,j,
n+m∑
j=n+1

aji= 1∀i

 (3.1)

and a priority vector P = (p1,. ..,pn)∈Rn, with pi>0,
∑
ipi= 1, indicating priorities

among incoming roads.
Consider the closed, convex and non-empty set

Ω =

(γ1, ·· · ,γn)∈
n∏
i=1

Ωi :A ·(γ1, ·· · ,γn)T ∈
n+m∏
j=n+1

Ωj

 , (3.2)

and define:

h̄= sup{h∈R+ :hP ∈Ω}. (3.3)

Given Riemann data (ρ1,0,. ..,ρm+n,0), we define a vector Q= (γ̄1,. .., γ̄n) of incom-
ing fluxes by a recursive procedure. First we explain the procedure in steps and then
provide a pseudo-code in Algorithm 1.

• STEP 1. For every i∈{1,. ..,n} define

hi= max{h :hpi≤γmaxi }=
γmaxi

pi
,

and for every j∈{n+1 .. .,n+m} define

hj = max

{
h : (A ·(hP ))j =h

(∑
i

ajipi

)
≤γmaxj

}
=

γmaxj∑
iajipi

.
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In other words, hi is the maximal t so that hP verifies the flux constraint for
the i-th road, similarly for hj .
Set ~= minij{hi,hj}.
We distinguish two cases:

– CASE 1. If there exists j such that hj =~, then we set Q=~P and we are
done.

– CASE 2. Otherwise, let I1 ={i∈{1,. ..,n} :hi=~} (by assumption I1 6=∅).
We set Qi=~pi for i∈ I1 and we go to next step.

• STEP S. In step S−1 we defined a set IS−1 and, by induction, all components
of Q are fixed for i∈JS = I1∪···∪IS−1. We let |JS |<n denote the cardinality
of JS and denote by JcS the complement of JS in {1,. ..,n}. We now define hi
for i∈JcS by:

hi= max{h :hpi≤γmaxi }=
γmaxi

pi
,

and for every j∈{n+1 .. .,n+m} define

hj = max

h :
∑
i∈JS

ajiQi+h

∑
i∈Jc

S

ajipi

≤γmaxj

.
We then proceed similarly to STEP 1, setting ~= minij{hi,hj} and distinguish-
ing two cases:

– CASE 1. If there exists j such that hj =~, then we set Qi=~Pi for i∈JcS
and we are done.

– CASE 2. Otherwise, let IS ={i∈JcS :hi=~} (by assumption IS 6=∅). We
set Qi=~pi for i∈ IS . If JS∪IS ={1,. ..,n} then we stop, otherwise we go
to next step.

Algorithm 1 Recursive definition of PRS
Set J =∅ and Jc={1,. ..,n}\J .
while |J |<n do

∀i∈Jc → hi= max{h :hpi≤γmaxi }=
γmax
i

pi
,

∀j∈{n+1 .. .,n+m} → hj = sup{h :
∑
i∈J ajiQi+h(

∑
i∈Jc ajipi)≤γmaxj }.

Set ~= minij{hi,hj}.
if ∃ j s.t. hj =~ then

Set Q=~P and J ={1,. ..,n}.
else

Set I={i∈Jc :hi=~} and Qi=~pi for i∈ I.
Set J =J ∪I.

end if
end while

We are now ready to define the Priority Riemann Solver (briefly PRS).

Definition 3.1. Let Q= (γ̄1,. .., γ̄n) be the vector of incoming fluxes defined by
Algorithm 1, then the vector of outgoing fluxes is given by A ·QT = (γ̄n+1,. .., γ̄n+m)T .
For every i∈{1,. ..,n}, set ρ̄i equal either to ρi,0 if f(ρi,0) = γ̄i, or to the solution to
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f(ρ) = γ̄i such that ρ̄i≥ρcr. For every j∈{n+1,. ..,n+m}, set ρ̄j equal either to ρj,0 if
f(ρj,0) = γ̄j, or to the solution to f(ρ) = γ̄j such that ρ̄j≤ρcr. Finally, PRS : [0,1]n+m→
[0,1]n+m is given by

PRS(ρ1,0,. ..,ρn+m,0) = (ρ̄1,. .., ρ̄n, ρ̄n+1,. .., ρ̄n+m). (3.4)

4. Existence result for Cauchy problems
Given initial data of bounded variation ρ0,1(·),. ..,ρ0,n(·) : [0,+∞[→ [0,1] and

ρ0,n+1(·),. ..,ρ0,n+m(·) :]−∞,0]→ [0,1] the corresponding Cauchy problem is defined by:{
∂tρl+∂xf(ρl) = 0,

ρl(0,x) =ρ0,l(x),
l∈{1,. ..,n+m}. (4.1)

To solve Cauchy problems one can construct approximate solutions via Wave Front
Tracking (WFT). In simple words, one first approximate the initial data by piecewise
constant functions, then solve the corresponding Riemann problems within roads and
at junctions approximating rarefaction waves by a fan of rarefaction shocks and solve
new Riemann problems when waves interact with each other or with the junction. We
refer the reader to [12] for details. Notice that all waves in a WFT approximate solution
are shocks, i.e. traveling discontinuities. For every wave we will usually indicate by ρl,
respectively ρr, the left limit, respectively right limit, of the approximate solution at
the discontinuity point. To prove convergence of WFT approximations, one needs to
estimate the number of waves, the number of wave interactions and provide estimates
on the total variation of approximate solutions. The general theory of [13] is based on
three properties which guarantee such estimates. Along the same idea we define three
general properties (P1)-(P3) which will ensure existence of solutions.

The first property requires that equilibria are determined only by bad data values
(and coincides with (P1) in [13]), more precisely:

Definition 4.1. We say that a Riemann solver RS has the property (P1) if the
following condition holds. Given (ρ1,0,. ..,ρn+m,0) and (ρ′1,0,. ..,ρ

′
n+m,0) two initial data

such that ρl,0 =ρ′l,0 whenever either ρl,0 or ρ′l,0 is a bad datum, then

RS(ρ1,0,. ..,ρn+m,0) =RS(ρ′1,0,. ..,ρ
′
n+m,0). (4.2)

The second property requires for bounds in the increase of the flux variation for
waves interacting with J . More precisely the latter is bounded in terms of the strength
of the interacting wave as well as the sum of the changes in the incoming fluxes and in
h̄ (see definition (3.3)). Moreover, the increase in h̄ is bounded by the strength of the
interacting wave.

Definition 4.2. We say that a Riemann solver RS has the property (P2) if there
exists a constant C≥1 such that the following condition holds. For every equilibrium
(ρ1,0,. ..,ρn+m,0) of RS and for every wave (ρi,ρi,0) for i= 1,. ..,n (respectively (ρj,0,ρj)
for j=n+1,. ..,n+m) interacting with J at time t̄>0 and producing waves in the arcs
according to RS, we have

TVf (t̄+)−TVf (t̄−)
≤Cmin

{
|f(ρl,0)−f(ρl)|, |Γ(t̄+)−Γ(t̄−)|+

∣∣h̄(t̄+)− h̄(t̄−)
∣∣} (4.3)



194 PRIORITY BASED RIEMANN SOLVER

and

h̄(t̄+)− h̄(t̄−)≤C |f(ρl,0)−f(ρl)| . (4.4)

Finally, we state the third property: if a wave interacts with J and provokes a flux
decrease then h̄ decreases and the increase of Γ is bounded by the change in h̄.

Definition 4.3. We say that a Riemann solver RS has the property (P3) if the
following holds. For every equilibrium (ρ1,0,. ..,ρn+m,0) of RS and for every wave
(ρi,ρi,0) with f(ρi)<f(ρi,0) for i= 1,. ..,n (respectively (ρj,0,ρj) with f(ρj)<f(ρj,0)
for j=n+1,. ..,n+m) interacting with J at time t̄>0 and producing waves in the arcs
according to RS, we have

Γ(t̄+)−Γ(t̄−)≤C
∣∣h̄(t̄+)− h̄(t̄−)

∣∣ , (4.5)

h̄(t̄+)≤ h̄(t̄−). (4.6)

Theorem 4.1. If a Riemann solver satisfies properties (P1)-(P3), then every Cauchy
problem with initial data of bounded variation admits a weak solution.

In order to prove Theorem 4.1, we need first to provide some definition and results.
We start by giving the following:

Definition 4.4. A wave along a WFT approximate solution generated at time t= 0
inside a road is called original, while the ones generated by J are called not original. If
two original waves interact, then the resulting wave is still called original, while if an
original wave interacts with a not original wave then the resulting wave is not original.

We now have the following result:

Proposition 4.1. Let (ρl,ρr) be a wave generated on an incoming road I from the
junction at time s̄. Assume that there exists a time t̄> s̄ at which the wave interacts with
J (after interacting with waves inside I) and call ρ̄l, respectively ρ̄r, its left, respectively,
right limit at t̄−. If I is an incoming road then we have ρ̄r≥ρcr and f(ρ̄l)<f(ρ̄r). If I
is an outgoing road then we have ρ̄l≤ρcr and f(ρ̄r)<f(ρ̄l).

Proof. We prove the result for an incoming road, the other case being similar.
First notice that (ρl,ρr) must have negative speed, thus if ρl<ρcr then ρr>τ(ρr)≥ρcr,
while if ρl≥ρcr then ρr≥ρcr. Therefore in both cases we have ρr≥ρcr. If the wave
interacts with waves coming from the left then the value of ρr does not change. If the
wave interacts with a wave (ρr, ρ̂) coming from the right, then the wave was generated
from the junction J (or obtained by interactions of waves generated from J) and thus
must satisfy ρ̂≥ρcr. Finally, ρ̄r≥ρcr. Then, since (ρ̄l, ρ̄r) must have positive speed, we
deduce that ρ̄l<ρcr and f(ρ̄l)<f(ρ̄r), thus we conclude.

From Proposition 4.1 we have the following:

Corollary 4.1. If a wave (ρl,ρr) interacts with J from an incoming road and satisfy
f(ρl)>f(ρr) then it is an original wave. If a wave (ρl,ρr) interacts with J from an
outgoing road and satisfy f(ρr)>f(ρl) then it is an original wave.

Proof. [Theorem 4.1] We will prove that the variation of the flux is bounded along
WFT approximate solutions. Then, a bound on the number of waves is obtained using
property (P1) following the same proof of Proposition 10 of [13].
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We now prove that the total variation of the flux TV(f) remains uniformly bounded
in time along WFT approximate solutions. The main idea is to first bound the total
variation in time of h̄ and then of Γ. This in turn will provide the desired estimate.
Let us indicate with PV the positive variation of a function and with NV the negative
one. Then:

TV(h̄) = PV(h̄)+NV(h̄)

and

PV(h̄) = PVO(h̄)+PVR(h̄),

where PVO is the variation due to interactions of original waves with the junction and
PVR the one due to returning waves (i.e. not original).
From property (P2) we get:

PVO(h̄)≤CTV(f(ρ0))≤C max
ρ∈[0,1]

|f ′(ρ)| TV(ρ0)

and from property (P3) and Corollary 4.1 it follows PVR(h̄) = 0. Then PV(h̄) is bounded
and, since h̄≤fmax/maxipi, also TV(h̄) is bounded. Similarly, for Γ we can write

TV(Γ) = PV(Γ)+NV(Γ)

and

PV(Γ) = PVO(Γ)+PVR(Γ).

Following the proof of [13, Lemma 12], (P2) implies

PVO(Γ)≤ (C+2)TV(f(ρ0))≤ (C+2) max
ρ∈[0,1]

|f ′(ρ)| TV(ρ0).

From property (P3) we have that

PVR(Γ)≤CTV(h̄),

which we just proved to be bounded. Therefore TV(Γ) is also bounded.
Now, define Int the set of times at which a wave interacts with the junction J and, for
s∈ Int let us indicate by ∆TVf (s) the change due to the interaction. By property (P2)
we have

TV(f(t))≤TV(f(ρ0))+
∑

s∈Int,s≤t

∆TVf (s)

≤ max
ρ∈[0,1]

|f ′(ρ)| TV(ρ0)+C(TV(Γ)+TV(h̄)).

Once TV(f) is bounded, one can obtain a bound on TV(ρ) as in [13] and conclude
by passing to the limit in WFT approximate solutions.

Proposition 4.2. The Priority Riemann Solver PRS satisfies properties (P1)-(P3)
for junctions with n≤2, m≤2 and 0<aji<1 for all i,j.

The technical proof is deferred to Section A.
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γ1

γ2

P

Q

γ4

γ3

(a) Priority Riemann Solver

γ1

γ2

PQ

γ4

γ3

(b) Solver with softer priorities

Fig. 5.1: Different solution for the two solvers: PRS and SPRS. The distribution matrix A satisfies
a13 = 0, i.e. no cars enter road 3 from road 1. Correspondingly the constraint on the flux γ3 is
represented by a vertical line. The PRS selects the point Q in (a), while SPRS the point Q in (b).
Since priorities are softer the flux through the junction of the SPRS solution is higher than that of
the PRS.

5. Solver with softer priorities
In this section we define a different version of the Riemann solver that uses priorities

as softer constraints. In particular, this solver will differ from the solver PRS defined
in Section 3 when one of the entries of the matrix A, as in definition (3.1), vanishes, see
Figure 5.1. Notice that the softer priority of the SPRS will allow some flow from road
2 to pass through the junction, when the maximal flow from road 1 is already reached.
This reflects the situation where the physical geometry of the junction allows for traffic
from road 2 to road 4 (no traffic goes from 2 to 3) even if the traffic from road 1 to road
3 is maximal and has higher priority. For this purpose, we consider a matrix A that
may have aji= 0 for some i,j and a priority vector P = (p1,. ..,pn)∈Rn, with pi>0,∑
ipi= 1.

Then the Riemann solver with softer priorities (briefly SPRS) can be defined by the
following recursive algorithm:

Algorithm 2 Recursive definition of SPRS
Set J =∅ and Jc={1,. ..,n}\J .
while |J |<n do

∀i∈Jc → hi= max{h :hpi≤γmaxi }=
γmax
i

pi
,

∀j∈{n+1 .. .,n+m} → hj = sup{h :
∑
i∈J ajiQi+h(

∑
i∈Jc ajipi)≤γmaxj }.

Set ~= minij{hi,hj}.
if ∃ j s.t. hj =~ then

Set I={i∈Jc :aji 6= 0} and Qi=~pi for i∈ I.
else

Set I={i∈Jc :hi=~} and Qi=~pi for i∈ I.
end if
Set J =J ∪I.

end while
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We are now ready to define the Softer Priority Riemann Solver.

Definition 5.1. Let Q= (γ̄1,. .., γ̄n) be the vector of incoming fluxes defined by Algo-
rithm 2, then the vector of outgoing fluxes is given by A ·QT = (γ̄n+1,...,n+m)T .
For every i∈{1,. ..,n}, set ρ̄i equal either to ρi,0 if f(ρi,0) = γ̄i, or to the solution
to f(ρ) = γ̄i such that ρ̄i≥ρcr. For every j∈{n+1,. ..,n+m}, set ρ̄j equal either
to ρj,0 if f(ρj,0) = γ̄j, or to the solution to f(ρ) = γ̄j such that ρ̄j≤ρcr. Finally,
SPRS : [0,1]n+m→ [0,1]n+m is given by

SPRS(ρ1,0,. ..,ρn+m,0) = (ρ̄1,. .., ρ̄n, ρ̄n+1,. .., ρ̄n+m). (5.1)

6. Numerical scheme and numerical simulations
To illustrate the PRS and SPRS dynamics we provide some simulations based on

the well-known Godunov scheme [14] on networks (see [12]), which is based on solutions
to Riemann problems.
Define a numerical grid on [0,T ]×R given by:

• ∆x is the fixed space grid size;

• ∆tν , ν ∈N, is the time grid size satisfying the CFL condition [8]:

∆tνmax
j∈Z

∣∣f ′(uνj )
∣∣≤ 1

2
∆x (6.1)

• (tν ,xj) = (tν−1 +∆tν ,j∆x) for ν ∈N and j∈Z are the grid points.
Consider a scalar conservation laws equipped with initial data:

∂tu+∂xf(u) = 0, x∈R, t∈ [0,T ],
u(0,x) =u0(x), x∈R. (6.2)

An approximate solution of the problem is constructed first by taking a piecewise con-
stant approximation of the initial data

u0j =
1

∆x

∫ x
j+1

2

x
j− 1

2

u0(x)dx, j∈Z, (6.3)

and then defining uνj recursively from u0j as follows. Under the CFL (6.1) the waves
generated by different Riemann problem at the cell interfaces do not interact and the
scheme can be written as follows

uν+1
j =uνj −

∆tν

∆x

(
G(uνj ,u

ν
j+1)−G(uνj−1,u

ν
j )
)
, (6.4)

where the numerical flux G is given by

G(u,v) =

{
minz∈[u,v]f(z) if u≤v
maxz∈[v,u]f(z) if v≤u. (6.5)

To impose boundary conditions and conditions at junctions we use the classical approach
introduced in [6].

Boundary conditions.
Each road is divided into M cells, numbered from 1 to M . Boundary conditions are
imposed using ghost cells. For an incoming road Ii we define:

uν+1
i,1 =uνi,1−

∆tν

∆x

(
G(uνi,1,u

ν
i,2)−G(uνi,0,u

ν
i,1)
)

(6.6)
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where uνi,0 is the value of the density at the boundary.
The outgoing boundary for Ij is treated in the same way by defining:

uν+1
j,M =uνj,M −

∆tν

∆x

(
G(uνj,M ,u

ν
j,M+1)−G(uνj,M−1,u

ν
j,M )

)
(6.7)

with uνi,M+1 the value of the density at the outgoing boundary.

Conditions at the junction.
For Ii with i∈{1,. ..n} that is connected at the junction at the right endpoint we set:

uν+1
i,M =uνi,M −

∆tν

∆x

(
Qνi −G(uνi,M−1,u

ν
i,M )

)
for i∈{1,. ..n}, (6.8)

while for the outgoing roads, connected at the junction with the left endpoint we have:

uν+1
j,1 =uνj,1−

∆tν

∆x

(
G(uνj,1,u

ν
j,2)−Qνj

)
for j∈{n+1,. ..n+m}, (6.9)

where Qνi ,Q
ν
j are the incoming and outgoing fluxes given by the Riemann solvers at

junction corresponding to the initial data

(uν1,M ,. ..,u
ν
n,M ,u

ν
n+1,1,. ..,u

ν
n+m,1)

(see Algorithms 1, 2).

6.1. Numerical results. For the simulations, we set the length of each road
equal to 1 and incoming roads are parametrized by the interval Ii= [−1, 0] while out-
going roads are given by Ij = [0, 1], with the junction placed at x= 0. Moreover, we fix
f(ρ) =ρ(1−ρ), thus ρcr = 0.5.

(1) Case I: Comparison PRS vs. SPRS.
This case illustrates the different dynamics given by the two Riemann solvers pro-
posed in this article.
We consider a junction with 2 incoming roads (I1, I2) and 2 outgoing roads (I3,I4).
We fix the matrix A and the priority vector P as follows:

A=

[
0.6 0
0.4 1

]
P =

[
0.7 0.3

]
.

We consider the following initial data:

ρ1,0 = 0.6, ρ2,0 = 0.2, ρ3,0 = 0.85, ρ4,0 = 0.2.

The different results of the simulations (see Figures 6.1) can be seen in particular
in road 2 ad 4. We observe that SPRS allows more flux through the junction than
PRS, for which we observe the formation of a big shock moving backwards on road
2.

(2) Case II: Comparison PRS vs. RSCGP.
We propose here a comparison between the PRS with the Riemann solver proposed
by Coclite, Garavello and Piccoli in [7] and briefly referred to as RSCGP.
We consider a 2×2 junction and we fix the matrix A and the priority vector P as
follows:

A=

[
0.5 0.6
0.5 0.4

]
P =

[
0.7 0.3

]
.
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Fig. 6.1: Case I : Solution of the problem using PRS on the left and SPRS on the right.
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Fig. 6.2: Case II: Solution of the problem using PRS on the left and RSCGP on the right.
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We consider the following initial data:

ρ1,0 = 0.2, ρ2,0 = 0.6, ρ3,0 = 0.3, ρ4,0 = 0.8.

The simulations (see Figures 6.2) show clearly the different solutions of the Riemann
solvers. In particular, RSCGP creates a big shock in the incoming road 1 decreasing
its flux. This wave does not appear in our Riemann solver PRS.

(3) Case III: 3×2 junction.
We fix the matrix A and the priority vector P as follows:

A=

[
0.5 0.6 0.2
0.5 0.4 0.8

]
P =

[
0.5 0.3 0.2

]
.

We consider the following initial data:

ρ1,0(x) = max(sin(8πx),0), ρ2,0 = 0.6, ρ3,0 = 0.3,

ρ4,0 = 0.8, ρ5,0 = 0.2.
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Fig. 6.3: Case III: Solution of the problem using PRS
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This situation displays multiple waves arising in different roads. Due to the lower
priorities given to roads 2 and 3 we can see that queues are created in the two
incoming roads, see Figure 6.3. Note also that this case cannot be handled by
RSCGP since n>m.
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Fig. 6.4: Case III: Time evolution of TVf

Figure 6.4 shows the time evolution of TVf . We remark that the oscillatory behavior
is due to the viscosity present in the Godunov scheme and to the lack of a maximum
principle for f(ρ) across ρcr.

Appendix A. Proof of Proposition 4.2. The construction of PRS depends only
on the matrix A, the priority vector P and the sets Ωl. The latter, in turn, depends
only on bad data, thus property (P1) holds true.

We prove properties (P2) and (P3) for the case n=m= 2 and distinguish between
three different generic situations for the initial equilibrium: demand constrained, de-
mand/supply constrained and supply constrained (where demand indicates flow from
incoming road and supply flow to outgoing ones). In the first situation the incoming
roads act as constraint in the definition of the set Ω (see definition (3.2)) and the equi-
librium corresponds to the point Q0 as in Figure A.1a. The second case corresponds
to one incoming and one outgoing road acting as constraint and to the point Q0 as in
Figure A.4a. Finally, the third case corresponds to outgoing roads acting as constraint
and to the point Q0 as in Figure A.8a.

• Case A: Demand constrained. By symmetries, it is not restrictive to assume
that the priority line hP , h>0, intersects the constraint γinc2 =γ2,0. We have
to distinguish several subcases:

Case A1: The incoming wave is (ρ1,ρ1,0) (on road 1). Since γ1,0 is an active
constraint, ρ1,0≤ρcr and ρ1≤ρcr. We distinguish the two situations:

− If f(ρ1)>f(ρ1,0) we define γ1,1 =
γ3−a32γ2

a31
and γ1,0≤γ1,1≤γ1 (see Figure

A.1a). We get:

TV(f)+ = |γ1−γ1,1|+a31 |γ1,1−γ1,0|+a41 |γ1,1−γ1,0| ,
∆TV(f) = (a31 +a41−1)|γ1,1−γ1,0|,
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∆Γ =γ1,1−γ1,0>0,

∆h̄= 0.

Hence, property (P2) holds and property (P3) doesn’t need to be verified.

− If f(ρ1)>f(ρ1,0), we define γ1,1 =
p1
p2
γ2, hence γ1,0≥γ1,1≥γ1 (see Figure

A.1b ). We have:

TV(f)−= |γ1−γ1,0|,
TV(f)+ =a31 |γ1−γ1,0|+a41 |γ1−γ1,0|,
∆TV(f) = (a31 +a41−1)|γ1−γ1,0|,

∆Γ = (γ1−γ1,0)<0,

∆h̄=
1

p1
(γ1−γ1,1)<0.

Hence, properties (P2) and (P3) hold.

γ2

γinc2

γ3

γ1,0 γ1,1 γ1 γinc1

Q0
Q1

(a) Increasing γ1

γ2

γ1,1 γ1,0γ1 γinc1

γinc2

Q0Q1

(b) Decreasing γ1

Fig. A.1: Case A1

Case A2: The incoming wave is (ρ2,ρ2,0) (on road 2). Since γ2,0 is an active
constraint, ρ2,0≤ρcr and ρ2≤ρcr.

−If f(ρ2)>f(ρ2,0), we define

γ2,1 =
γ3−a31γ1

a32
and γ2,2 =

p2
a31p1 +a32p2

γmax
3

so that γ2,0≤γ2,1≤γ2,2≤γ2, see Figure A.2a. Note that this case is the same
as in A1 except for the case in the drawing. In this case we have:

TV(f)−= |γ2−γ2,0|= |γ2−γ2,2|+ |γ2,2−γ2,1|+ |γ2,1−γ2,0|,

TV(f)+ =
a32
a31
|γ2,2−γ2,1|+ |γ2−γ2,2|+a32 |γ2,1−γ2,0|
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+

∣∣∣∣a42 |γ2,1−γ2,0|+(a42−a41 a32a31

)
|γ2,2−γ2,1|

∣∣∣∣ ,
∆TV(f) =

(
a32
a31
−1

)
|γ2,2−γ2,1|+(a32−1)|γ2,1−γ2,0|

+

∣∣∣∣a42 |γ2,1−γ2,0|+(a42−a41 a32a31

)
|γ2,2−γ2,1|

∣∣∣∣ ,
∆Γ = (γ2,1−γ2,0)+

(
1− a32

a31

)
(γ2,2−γ2,1),

∆h̄=
1

p2
(γ2,2−γ2,0)

Hence, property (P2) holds while property (P3) doesn’t need to be checked.

− If f(ρ2)<f(ρ2,0) one has γ2<γ2,0, see Figure A.2b. Therefore:

TV(f)−= |γ2−γ2,0| ,
TV(f)+ = (a32 +a42)|γ2−γ2,0| ,
∆TV(f) = 0 (recall that a32 +a42 = 1),

∆Γ = (γ2−γ2,0)<0,

∆h̄=
1

p2
(γ2−γ2,0)<0.

Hence, properties (P2) and (P3) hold.

γ2,1

γ2,0

γ2,2

γ2

γinc1

γinc2

Q0

Q1

γ3

(a) Increasing γ2

γ2,0

γ2

γinc1

γinc2

Q0

Q1

(b) Decreasing γ12

Fig. A.2: Case A2

Case A3: The incoming wave is (ρ3,0,ρ3) (on road 3, the case of road 4 being
similar).

− If f(ρ3)<f(ρ3,0) We define γ3,1 =

(
a31

p1
p2

+a32

)
γ2 so that γ3≤γ3,1≤γ3,0
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(see Figure A.3):

TV(f)−= |γ3−γ3,0| ,

TV(f)+ =
a41 +1

a31
|γ3,1−γ3,0|+

(a41 +1)p1 +(a42 +1)p2
a31p1 +a32p2

|γ3−γ3,1| ,

∆TV(f) =
a41
a31
|γ3,1−γ3,0|+

(
(a41 +1)p1 +(a42 +1)p2

a31p1 +a32p2
−1

)
|γ3−γ3,1| ,

∆Γ =
1

a31
(γ3,1−γ3,0)+

a41p1 +a42p2
a31p1 +a32p2

(γ3−γ3,1)<0,

∆h̄=
1

a31p1 +a32p2
(γ3−γ3,1)<0.

Hence, properties (P2) and (P3) hold.

− If f(ρ3)>f(ρ3,0) and γ3>γ3,0 then we stay demand constrained and nothing
happens.

γ3,0

γ3,1γ3

γinc1

γinc2

Q1

Q0

Fig. A.3: Case a3 - Decreasing γ3

• Case B: Supply constrained, priority line intersects a demand con-
straint. Even in this case, it is not restrictive to assume that the priority line
hP , h>0, intersects the constraint γinc1 =γ1,0. We spit the proof in several
subcases depending on the origin of the incoming wave:

Case B1: The incoming wave is (ρ1,ρ1,0) (on road 1). We define γ1,1 =
a42−a32

a31a42−a32a41
γ1 (see Figure A.4a and A.4b). We distinguish the two sit-

uations:

− If f(ρ1)>f(ρ1,0) we get γ1,0≤γ1,1≤γ1,2≤γ1, where γ1,2 =
p1

a41p1 +a42p2
γ4

(see Figure A.4a). Then we have:

TV(f)−= |γ1−γ1,0| ,

TV(f)+ = |γ1−γ1,2|+
(
a41
a42

+

∣∣∣∣a31−a32 a41a42

∣∣∣∣) |γ1,2−γ1,1|
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+

(
a31
a32

+

∣∣∣∣a41−a42 a31a32

∣∣∣∣) |γ1,1−γ1,0| ,
∆TV(f) =

(
a41
a42

+

∣∣∣∣a31−a32 a41a42

∣∣∣∣−1

)
|γ1,2−γ1,1|

+

(
a31
a32

+

∣∣∣∣a41−a42 a31a32

∣∣∣∣−1

)
|γ1,1−γ1,0| ,

∆Γ =

(
1− a31

a32

)
(γ1,1−γ1,0)+

(
1− a41

a42

)
(γ1,2−γ1,1),

∆h̄=
1

p1
(γ1,2−γ1,0).

Hence, property (P2) holds and property (P3) doesn’t need to be checked.

− If f(ρ1)<f(ρ1,0) and γ1,0≥γ1,1≥γ1,2≥γ1 (see Figure A.4b), we define γ1,2 =
γ3−a32γ2

a31
and we get:

TV(f)−= |γ1−γ1,0| ,

TV(f)+ = (a31 +a41) |γ1−γ1,2|+
(
a31
a32

+

∣∣∣∣a41−a42 a31a32

∣∣∣∣) |γ1,2−γ1,1|
+

(
a41
a42

+

∣∣∣∣a31−a32 a41a42

∣∣∣∣) |γ1,1−γ1,0|,
∆TV(f) =

(
a31
a32

+

∣∣∣∣a41−a42 a31a32

∣∣∣∣−1

)
|γ1,2−γ1,1|

+

(
a41
a42

+

∣∣∣∣a31−a32 a41a42

∣∣∣∣−1

)
|γ1,1−γ1,0| ,

∆Γ = (γ1−γ1,2)+

(
1− a31

a32

)
(γ1,2−γ1,1)+

(
1− a41

a42

)
(γ1,1−γ1,0),

∆h̄=
1

p1
(γ1−γ1,0)<0.

Hence, properties (P2) and (P3) hold.

Case B2: The incoming wave is (ρ2,ρ2,0) (on road 2).

− If f(ρ2)>f(ρ2,0): nothing happens (see Figure A.5a).

−If f(ρ2)<f(ρ2,0) (see Figure A.5b) we define γ2,1 =
p1
p2
γ1 and we compute:

TV(f)−= |γ2−γ2,0|,
TV(f)+ = (a32 +a42)|γ2−γ2,0| ,
∆TV(f) = (a32 +a42−1)|γ2−γ2,0|= 0,

∆Γ = (γ2−γ2,0)<0,

∆h̄=
1

p2
(γ2−γ2,1)<0.

Hence, properties (P2) and (P3) hold.

Case B3: The incoming wave is (ρ3,0,ρ3) (on road 3).
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γ1,0 γ1,1 γ1,2 γ1

γ3 γ4

γinc1

γinc2

Q0

Q1

(a) Increasing γ1

γ1,0γ1,1γ1,2γ1

γ4

γ3

γinc1

γinc2

Q0

Q1

(b) Decreasing γ1

Fig. A.4: Case B1

γ1

γ2,0

γ2

γ3

γinc1

γinc2

Q0 =Q1

(a) Increasing γ2

γ1

γ2,0

γ2

γ2,1

γ3

γinc1

γinc2

Q0

Q1

(b) Decreasing γ2

Fig. A.5: Case B2

− If f(ρ3)>f(ρ3,0) (see Figure A.6a), we define

γ3,1 = min

{
a31γ1 +a32γ

max
2 ,

a31γ1 +
a32
a42

(γmax
4 −a41γ1).
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We get:

TV(f)−= |γ3−γ3,0| ,

TV(f)+ =

(
1

a32
+
a42
a32

)
|γ3,1−γ3,0|+ |γ3−γ3,1| ,

∆TV(f) =

(
1

a32
+
a42
a32
−1

)
|γ3,1−γ3,0| ,

∆Γ =
1

a32
(γ3,1−γ3,0)>0,

∆h̄= 0.

Hence, property (P2) holds and property (P3) does not need to be checked.

− If f(ρ3)<f(ρ3,0) (see Figure A.6b), we define γ3,1 =

(
a31 +a32

p2
p1

)
γ1 and

we compute:

TV(f)−= |γ3−γ3,0| ,

TV(f)+ =
p1

a31p1 +a32p2
|γ3−γ3,1|+

1

a32
|γ3,1−γ3,0|+

p2
a31p1 +a32p2

|γ3−γ3,1|

+
a42
a32
|γ3,1−γ3,0|+

a41p1 +a42p2
a31p1 +a32p2

|γ3−γ3,1| ,

∆TV(f) =

(
(1+a41)p1 +(1+a42)p2

a31p1 +a32p2
−1

)
|γ3−γ3,1|+

(
1+a42
a32

−1

)
|γ3,1−γ3,0| ,

∆Γ =
p1 +p2

a31p1 +a32p2
(γ3−γ3,1)+

1

a32
(γ3,1−γ3,0)<0,

∆h̄=
1

a31p1 +a32p2
(γ3−γ3,1)<0.

Hence, properties (P2) and (P3) hold.

Case B4: The incoming wave is (ρ4,0,ρ4) (on road 4).

− If f(ρ4)>f(ρ4,0) nothing changes.

− If f(ρ4)<f(ρ4,0): the same as case B3 decreasing exchanging the roles of γ3
and γ4.

• Case C: Supply constrained, priority line intersects a supply con-
straint. It is not restrictive to assume that the priority line hP , h>0, in-
tersects the constraint a31γ

inc
1 +a32γ

inc
2 =γ3,0. We distinguish the following

subcases, depending on the origin of the incoming wave:

Case C1: The incoming wave is (ρ1,ρ1,0) (on road 1).

− If f(ρ1)>f(ρ1,0), nothing changes.

− If f(ρ1)<f(ρ1,0), the analysis is similar to case B1 decreasing (see Figure
A.7).

Case C2: The incoming wave is (ρ2,ρ2,0) (on road 2). This case is symmetric
to C1.

Case C3: The incoming wave is (ρ3,0,ρ3) (on road 3).



M.L. DELLE MONACHE, P. GOATIN, AND B. PICCOLI 209

γ1

γ2,0

γmax
2

γ3

γ3,1

γ3,0

γ4

γinc1

γinc2

Q0

Q1

(a) Increasing γ3

γ1,0

γ3,1

γ3

γ2

γ3,0

γinc1

γinc2

Q0

Q1

(b) Decreasing γ3

Fig. A.6: Case B3

γ2

γ3

γ1 γ1,2 γ1,1 γ1,0 γinc1

γinc2 γ4

Q0

Q1

Fig. A.7: Case C1 - decreasing γ1

− If f(ρ3)>f(ρ3,0) (see Figure A.8a), we define

γ3,1 = min



(
a31 +a32

p2
p1

)
γmax
1 ,(

a31
p1
p2

+a32

)
γmax
2 ,

a31p1 +a32p2
a41p1 +a42p2

γmax
4 ,

and we compute:

TV(f)−= |γ3−γ3,0| ,
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γ2
γ3,1

γ1

γ3,0

γ3

γ4

γinc1

γinc2

Q0

Q1

(a) Increasing γ3

γ3

γ3,0

γinc1

γinc2

Q0

Q1

(b) Decreasing γ3

Fig. A.8: Case C3

TV(f)+ =
p1 +p2

a31p1 +a32p2
|γ3,1−γ3,0|+ |γ3−γ3,1|+

a41p1 +a42p2
a31p1 +a32p2

|γ3,1−γ3,0| ,

∆TV(f) =

(
(a41 +1)p1 +(a42 +1)p2

a31p1 +a32p2
−1

)
|γ3,1−γ3,0| ,

∆Γ =
p1 +p2

a31p1 +a32p2
(γ3,1−γ3,0)>0,

∆h̄=
1

a31p1 +a32p2
(γ3,1−γ3,0)>0.

Hence, property (P2) holds and property (P3) does not count since we are
increasing fluxes.

− If f(ρ3)<f(ρ3,0) (see Figure A.8b) we get:

TV(f)−= |γ3−γ3,0|,

TV(f)+ =
p1 +p2

a31p1 +a32p2
|γ3−γ3,0|+

a41p1 +a42p2
a31p1 +a32p2

|γ3−γ3,0|,

∆TV(f) =

(
(a41 +1)p1 +(a42 +1)p2

a31p1 +a32p2
−1

)
|γ3−γ3,0| ,

∆Γ =
p1 +p2

a31p1 +a32p2
(γ3−γ3,0)<0,

∆h̄=
1

a31p1 +a32p2
(γ3−γ3,0)<0.

Hence, properties (P2) and (P3) hold.

Case C4: The incoming wave is (ρ4,0,ρ4) (on road 4).

− If f(ρ4)>f(ρ4,0), nothing happens.

− If f(ρ4)<f(ρ4,0), the situation is similar to case C3 with the roles of γ3 and
γ4 reversed.
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