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LARGE DEVIATION FOR THE STOCHASTIC 2D PRIMITIVE
EQUATIONS WITH ADDITIVE LÉVY NOISE∗
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Abstract. The two dimensional Primitive Equations with Lévy noise are studied in this paper.
A number of exponential estimates of the solutions as well as the exponential convergence of the
approximating solutions have been established, finally, a large deviation principle has been obtained.
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1. Introduction
As a fundamental and very important model in meteorology, by the buoyancy

forces and stratification effects under the Boussinesq approximation and the vertical
motion with the hydrostatic balance, the Primitive Equations (PEs) were derived from
the Navier–Stokes equations, with rotation, coupled to thermodynamics and salinity
diffusion-transport equations. For further physical background see [4] or [29], for exam-
ple.

The mathematical study of the PEs originated in a series of articles by J. L. Lions,
R. Temam and S. Wang in the early 1990s [26–28]. Existence of solutions and their
uniqueness for the 3D deterministic PEs had been widely studied, such as [2,19,20,23,
24,36]. Especially in [2], Cao and Titi developed a delicate approach to proving that the
L6-norm of the fluctuation ṽ of horizontal velocity is bounded and obtained the global
well-posedness for the 3D viscous PEs. The existence of the attractor was obtained
in [22]. In [25], existence and uniqueness for different physically relevant boundary
conditions had been established with a third method (different from both [2, 23]) that
directly treated the pressure terms in the equations. For general reference on the current
research of the (deterministic) mathematical theory of the PEs, we can refer in [31].

In the context of fluids, complex phenomena related to turbulence may also be
produced by stochastic perturbations. Stochastic solutions of the 2D PEs of the ocean
and atmosphere with an additive noise had been study in [12]. Random attractor was
obtained for 3D stochastic PEs with additive noise in [14] and [18]. The existence
and uniqueness of solutions for 2D stochastic PEs with multiplicative noise had been
obtained in [17]. There were other recent works on the stochastic 2D and 3D PEs with
multiplicative noise [8, 9, 16], in both works a coupling with temperature and salinity
equations as well as physically relevant boundary conditions were considered.

In fact, the climate systems often have variable structures subject to stochastic
abrupt changes, which may result from abrupt phenomena such as changes in the in-
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terconnections and sudden environment changes, etc. As a consequence, these systems
are very complex and their sample paths may not be continuous, which yields that
PEs driven by a Brownian motion fail to cope with them, it is reasonable that we in-
troduce Lévy noise in our system. Stochastic partial differential equations driven by
jump processes gain attention recently due to its important applications in mathemat-
ical physics [30, 33] (and references therein). Meanwhile, small noise large deviations
(i.e., of Freidlin–Wentzell type) for SPDEs have a long history and have been studied
extensively, such as [3,11,13,35,38]. Specially, in account of stochastic equations driven
by Lévy noise, large deviation principles were established in [7,32,37]. Until now, there
is not much work on stochastic Primitive equation driven by Lévy noise. In [34], by a
priori estimates, weak convergence method and monotonicity arguments, we studied 2D
primitive equation with Lévy noise and proved the existence and uniqueness of the solu-
tions in a fixed probability space, meanwhile, large deviation principle for 2D stochastic
primitive equation driven by multiplicative Gaussian noise was obtained in [15].

In this paper, large deviation principle for 2D stochastic PEs driven by Lévy noise is
studied. In [37], by a number of exponential estimates for energy of the solutions as well
as the exponential convergence of the approximating solutions, the authors obtained
the large deviation for 2D stochastic Navier–Stokes equations driven by Lévy noise.
The main difference between Navier–Stokes equations and PEs is the nonlinear term
B(u,u). From Lemma 2.1, we know that the term B(u,u) of PEs is more complicated,
some exponential estimates of Navier–Stokes equations in [37] might not be suitable for
PEs. In this paper, how to deal with the term ∂zu in estimates of B(u,u) is crucial.
By introducing g2(y) and Lemma 3.1, we derive exponential estimates for ∂zu (see
Lemma 3.3). Moreover, we obtain the estimates of linear Equations (3.17) and (3.18)
(see Lemma 3.5). With above two Lemmas, Lemma 3.2 and Lemma 3.4, by contraction
principle in the theory of large deviations(see Theorem 4.2.23 in [10]), we establish the
large deviation principle.

This paper is organized as follows. The mathematical formulation for the stochastic
PEs is in §2. Then a number of exponential estimates, which will play an important
role in the rest of the paper, are obtained in §3. A large deviation principle will be
established in §4

2. Mathematical formulation
Firstly, we introduce some definitions and basic properties of Wiener processes and

Lévy processes. For more details, one can see [5] or [30], for example.
In this paper, W (t) is a Wiener process defined on a filtered probability space

(Ω,F ,Ft,P ), taking value in a Hilbert space H, with linear symmetric positive covariant
operator Q. We assume that Q is trace class (and hence compact [5]), i.e., tr(Q)<∞.
Let (X,B(X)) be a measurable space and ν(dζ) be a σ−finite measure on it. Let
p= (p(t),t∈Dp) be a stationary Ft− Poisson point process on X with characteristic
measure ν(dζ), where Dp is a countable subset of [0,∞) depending on random parameter
ω (see [21]). Denote by N(dt,dζ) the Poisson counting measure associated with p, i.e.,

N(t,A) =
∑
s∈Dp,s≤t IA(p(s)). Let Ñ(dt,dζ) =N(dt,dζ)−dtν(dζ) be the compensated

Poisson random measure. Denoted by Ñn(dt,dζ) the compensated Poisson measure
with the characteristic measure nν. We assume W (t) and N(dt,dζ) are independent.

Definition 2.1. Let I= [a,b] be an interval in R+. A mapping g : I→Rd is said to be
càdlàg if, for all t∈ [a,b], g has a left limit at t and right continuous at t. Let D([0,T ],H)
be the space of all càdlàg paths from [0,T ] into H.

Definition 2.2. Let E and F be separable Banach spaces, let Ft :=B(R+×E)⊗Ft
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be the product σ−algebra generated by the semi-ring B(R+×E)×Ft of the product sets
X×F, X ∈B(R+×E), F ∈Ft (where Ft is the filtration of the process p(t)). Let T >0
and

H(X) =
{
g :R+×X×Ω→F,such that g is FT /B(F )

measurable and g(t,ζ,w) is Ft−adapted for ∀ζ ∈X, ∀t∈ (0,T ]
}
.

Let p≥1,

Hpν([0,T ]×X;F ) =
{
g∈H(X) :

∫ T

0

∫
X

E‖g(t,ζ,w)‖pF ν(dζ)dt<∞
}
.

The two dimensional PEs can be formally derived from the full three dimensional
system under the assumption of invariance with respect to the second horizontal variable
y as in [17], then we arrive at the following stochastic evolution system:

dun= [ν1∆un−un∂xun−wn∂zun−∂xp+b]dt (2.1)

+
1√
n
dW (t)+

1

n

∫
X

f(x,z,t,ζ,ω)Ñn(dt,dζ),

∂zp= 0, (2.2)

∂xu
n=−∂zwn, (2.3)

with velocity un=un(t,x,z,ω), pressure p, (x,z)∈M= [0,l]× [−h,0] and t>0. Let
b(x,z,t,ω)∈H, in the sequel, to ease the notation, we will suppose that b(x,z,t,ω) =
b(x,z,ω); however, all the results have a straightforward extension to time-dependent
b(x,z,t,ω). W (t) is an H−valued Wiener process and f is a measure mapping form
some measurable space X to H, the definition of space H will be given in the follow.
Here ∆ is the Laplacian operator, without loss of generality in this paper, we take ν1

to be 1, noting equation (2.2), p does not depend on variable z. In above formulation,
we have ignored the coupling with the temperature and salinity equations in order to
focus main attention on the difficulties from nonlinear terms in equation (2.2).

We partition the boundary into the top Γu={z= 0}, the bottom Γb={z=−h}
and the sides Γs={x= 0}∪{x= l}. In this paper, we consider the following boundary
conditions:

on Γu : ∂zu
n= 0, wn= 0,

on Γb : ∂zu
n= 0, wn= 0,

on Γs : un= 0.

Due to equation (2.1), we have that

wn(x,z,t) =−
∫ z

−h
∂xu

n(x,ξ,t)dξ. (2.4)

We define the function spaces H and V as follows (see [17]):

H=
{
v∈L2(M) |

∫ 0

−h
vdz= 0

}
, (2.5)
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V =
{
v∈H1(M) |

∫ 0

−h
vdz= 0, v|Γs = 0

}
. (2.6)

These spaces are endowed with the L2 and H1 norms which we respectively denote
by | · | and ‖·‖. The inner products and norms on H,V are given by(due to boundary
conditions)

(v,v1) =

∫
M
vv1dxdz, ((v,v1)) =

∫
M
∇v∇v1dxdz,

and

|v|= (v,v)
1
2 , ‖v‖= ((v,v))

1
2 ,

where v1,v∈V. Let V ′ be the dual space of V . We have the dense and continuous
embeddings V ↪→H=H ′ ↪→V ′ and denote by 〈u,ψ〉 the duality between u∈V and ψ∈
V ′. For u,v∈V, we have

〈−∆u,v〉=−
∫
M
uxxvdxdz−

∫
M
uzzvdxdz

=

∫
M

(uxvx+uzvz)dxdz−
∮
M
uxvnxds−

∮
M
uzvnzds,

where n= (nx,nz) is an outer unit normal vector, for example, n= (0,1) on the top
Γu={z= 0} and n= (0,−1) on the bottom Γb={z=−h}. By boundary conditions in
this paper, we obtain

∮
Muxunxds=

∮
Muzunzds= 0, thus, 〈−∆u,v〉= ((u,v)). Consider

a Stokes-type unbounded linear operator A :V →V ′ with D(A) =V ∩H2(M) and define

〈Au,v〉= ((u,v)), ∀u,v∈V.

The Laplace operator A is self-adjoint, positive, with compact self-adjoint inverses, and
it maps V to V ′. Next we address the nonlinear term. In accordance with equatlity
(2.4) we take

W(v) :=−
∫ z

−h
∂xv(x,z̃)dz̃, (2.7)

and let

B(u,v) :=u∂xv+W(u)∂zv, (2.8)

where u,v∈V and denoting B(u,u) =B(u).
Define the bilinear operator B(u,v) :V ×V →V ′ according to

〈B(u,v),w〉=b(u,v,w),

where

b(u,v,w) =

∫
M

(u∂xvw+W(u)∂zvw)dM.

In the sequel, when no confusion arises, we denote by C a constant which may change
from one line to the next one.
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Lemma 2.1 (Estimates for b and B (see [15, 17])). The trilinear forms b and B have
the following properties. There exists a constant C>0 such that

|b(u,v,w)|≤C
(
|u| 12 ‖u‖ 1

2 ‖v‖|w| 12 ‖w‖ 1
2 (2.9)

+|∂xu||∂zv||w|
1
2 ‖w‖ 1

2

)
, u,v,w∈V,

b(u,v,v) = 0 u,v,w∈V, (2.10)

〈b(u,u),∂zzu〉= 0 u∈D(A). (2.11)

Throughout this paper, we assume that, for a>0,∫
X

|f(ζ)|2 exp(a|f(ζ)|)ν(dζ)<+∞, (2.12)∫
X

|∂zf(ζ)|2 exp(a|∂zf(ζ)|)ν(dζ)<+∞, (2.13)

where | · | denotes L2 norm.
Note that the above formulation is equivalent to projecting equations (2.2)-(2.1)

from L2(M) into the space H(M) and thus the pressure term p(x,t) is absent. With
these notations, the above PEs can be rewritten as

dun+[Aun+B(un,un)]dt= bdt+
1√
n
dW (t)+

1

n

∫
X

f(ζ)Ñn(dt,dζ), (2.14)

un(0) =u0. (2.15)

In [34], by a priori estimates, weak convergence method and monotonicity argu-
ments, we studied 2D PEs with multiplicative Lévy noise and proved the existence and
uniqueness of the solutions, using approaches similar to that in [34], we can easily show in
this additive case that equation (2.14) has a unique solution in D([0,1];H)∩L2([0,1];V ).

Theorem 2.1 (Well-posedness and a priori bounds). For i= 1,2, let the
initial datum u0 satisfy E|u0|2i<∞, E|∂zu0|2i<∞, and b,∂zb∈L4(Ω;L2(0,T ;H)),
f(x,z,t,ζ,ω),∂zf(x,z,t,ζ,ω) satisfy H2

ν([0,T ]×X;H), then there exists a unique weak
solution un of the stochastic primitive problem (2.14) with initial condition un(0) =u0.
Furthermore, we have

E
(

sup
0≤t≤T

|un(t)|2i+
(∫ T

0

‖un(t)‖2dt
)i)
≤C

(
1+E|u0|2i

)
, (2.16)

and satisfy the additional regularity

∂zu
n(t)∈L4(Ω,L∞(0,T ;H)∩L2(0,T ;V )). (2.17)

3. Exponential estimates
To establish the large deviation principle, we first prove some exponential estimates.

Let un be the solution of the following stochastic PEs

un(t) =u0−
∫ t

0

Aun(s)ds−
∫ t

0

B(un(s),un(s))ds+bt

+
1√
n
W (t)+

1

n

∫ t

0

∫
X

f(ζ)Ñn(dt,dζ). (3.1)
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Let Xn=nun, then Xn is the solution of the following equation

Xn(t) =nu0−
∫ t

0

AXn(s)ds− 1

n

∫ t

0

B(Xn(s),Xn(s))ds+nbt

+
√
nW (t)+

∫ t

0

∫
X

f(ζ)Ñn(dt,dζ). (3.2)

Denote by {ek}∞k=1 an orthonormal basis of H that consists of eigenvectors of Q in V
with {λk}∞k=1 being the corresponding eigenvalues.
Applying Itô’s formula [1], we get the following lemma as in [32,37].

Lemma 3.1. For g1∈C2
b (H), moreover, g2∈C2

b (D(A)), then Mgi
t =exp(gi(X

n(t))−
gi(nx)−

∫ t
0
hi(X

n(s)ds)), i= 1,2 is a Ft− local martingale and

hi(y) = −<Ay+
1

n
B(y,y),g′i(y)>+n(b,g′i(y))

+
n

2

∞∑
k=1

λk

(
[g′i(y)⊗g′i(y)+g′′i (y)]ek,ek

)
+n

∫
X

{
exp[gi(y+f(ζ))−gi(y)]−1−(g′i(y),f(ζ))

}
ν(dζ), (3.3)

where C2
b (H) (the definition of C2

b (D(A)) is similar) is defined by

C2
b (H) ={g :H→R|g is bounded continuously

and twice Fréchet differentiable with derivatives

g′ : [0,T ]×H→L(H,R)∼=H,

g′′ : [0,T ]×H→L(H)}.

In the rest of this section, for λ>0, we set g1(y) := (1+λ|y|2)
1
2 and g2(y) := (1+

λ|∂zy|2)
1
2 . Then

g′1(y) =λ(1+λ|y|2)−
1
2 y, (3.4)

g′′1 (y) =−λ2(1+λ|y|2)−
3
2 y⊗y+λ(1+λ|y|2)−

1
2 I, (3.5)

g′2(y) =λ(1+λ|∂zy|2)−
1
2 (−∂zzy), (3.6)

g′′2 (y) =−λ2(1+λ|∂zy|2)−
3
2 (−∂zzy)⊗(−∂zzy)+λ(1+λ|∂zy|2)−

1
2 (−∂zzI), (3.7)

where I stands for the identity operator.
Due to equation (2.10), we have <B(y,y),g′1(y)>=λ(1+λ|y|2)−

1
2 <B(y,y),y >= 0,

then the following lemma is the same as Lemma 3.2 and Lemma 3.3 for 2D Navier–Stokes
equations in [37].

Lemma 3.2.

lim
r→∞

limsup
n→∞

1

n
logP ( sup

0≤t≤1
|un|>r) =−∞, (3.8)

lim
r→∞

limsup
n→∞

1

n
logP

(
(

∫ 1

0

‖un‖2dt) 1
2 >r

)
=−∞. (3.9)
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Comparing to Navier–Stokes equation, due to the estimates of B(u,u) in Lemma
2.1, we should give some exponential estimates of ∂zu

n, by introducing g2(y) := (1+

λ|∂zy|2)
1
2 , we have following lemma.

Lemma 3.3.

lim
r→∞

limsup
n→∞

1

n
logP ( sup

0≤t≤1
|∂zun|>r) =−∞. (3.10)

Proof. In equality (3.3),

<−Ay,g′2(y)>=λ(1+λ|∂zy|2)−
1
2 <−Ay,−∂zzy>

=−λ(1+λ|∂zy|2)−
1
2 ‖∂zy‖2

≤0.

Applying equation (2.11), we get

<−B(y,y),g′2(y)>=λ(1+λ|∂zy|2)−
1
2 <−B(y,y),−∂zzy>= 0.

Let G(y) =eg2(y), by Taylor’s expansion, there exist θ between 0 and 1 such that

exp[g2(y+f(ζ))−g2(y)]−1−(g′2(y),f(ζ))

=e−g2(y)[G(y+f(ζ))−G(y)−G(y)(g′2(y),f(ζ))]

=
1

2
e−g2(y)(G′′(y+θf(ζ)),f(ζ)⊗f(ζ)). (3.11)

Note that

G′′(y) =G(y)g′2(y)⊗g′2(y)+G(y)g′′2 (y).

Given w(x)∈V, by equations (3.6) and (3.7), we deduce that,

(g′2(y),w(x)) =λ(1+λ|∂zy|2)−
1
2 (∂zy,∂zw)

≤ λ|∂zy|√
1+λ|∂zy|2

|∂zw|

≤λ 1
2 |∂zw|. (3.12)

(g′2(y)⊗g′2(y)+g′′2 (y),w(x)⊗w(x))

=λ2(1+λ|∂zy|2)−1(∂zy,∂zw)(∂zy,∂zw)

−λ2(1+λ|∂zy|2)−
3
2 (∂zy,∂zw)(∂zy,∂zw)+λ(1+λ|∂zy|2)−

1
2 (∂zw,∂zw)

≤ λ2|∂zy|2

1+λ|∂zy|2
|∂zw|2 +

λ2|∂zy|2√
(1+λ|∂zy|2)3

|∂zw|2 +
λ√

1+λ|∂zy|2
|∂zw|2

≤3λ|∂zw|2. (3.13)

Then by conclusions (3.11)-(3.13), we have

|exp[g2(y+f(ζ))−g2(y)]−1−(g′2(y),f(ζ))|

≤ 3

2
λexp

(
g2(y+θf(ζ))−g2(y)

)
|∂zf(ζ)|2
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≤ 3

2
λexp[(g′2(y+θ1f(ζ)),θf(ζ))]|∂zf(ζ)|2

≤ 3

2
λexp

(
λ

1
2 |∂zf(ζ)|

)
|∂zf(ζ)|2.

Thus, by assumption (2.13), we have

h(y) =−<Ay+
1

n
B(y,y),g′2(y)>+n(b,g′2(y))

+
n

2

∞∑
k=1

λk

(
[g′2(y)⊗g′2(y)+g′′2 (y)]ek,ek

)
+n

∫
X

{
exp[g2(y+f(ζ))−g2(y)]−1−(g′2(y),f(ζ))

}
ν(dζ)

≤n|∂zb|λ
1
2 +cnλTrQ+

3

2
n

∫
X

λexp
(
λ

1
2 |∂zf(ζ)|

)
|∂zf(ζ)|2ν(dζ)

≤n|∂zb|λ
1
2 +cnλTrQ+

3

2
nMλ. (3.14)

Observe that

P ( sup
0≤t≤1

|∂zun|>r) =P ( sup
0≤t≤1

|∂zXn|>nr)

=P
(

sup
0≤t≤1

g2(Xn)> (1+λn2r2)
1
2

)
=P

(
sup

0≤t≤1
[g2(Xn)−g2(nu0)−

∫ 1

0

h(Xn)ds+g2(nu0)+

∫ 1

0

h(Xn)ds]

> (1+λn2r2)
1
2

)
≤P

(
sup

0≤t≤1
[g2(Xn)−g2(nu0)−

∫ 1

0

h(Xn)ds]+g2(nu0)

+ sup
0≤t≤1

∫ 1

0

h(Xn)ds> (1+λn2r2)
1
2

)
≤P

(
sup

0≤t≤1
[g2(Xn)−g2(nu0)−

∫ 1

0

h(Xn)ds]

>−g2(nu0)− sup
0≤t≤1

∫ 1

0

h(Xn)ds+(1+λn2r2)
1
2

)
. (3.15)

By inequality (3.14) and Doob’s inequality,

P
(

sup
0≤t≤1

[g2(Xn)−g2(nu0)−
∫ 1

0

h(Xn)ds]

>−g2(nu0)− sup
0≤t≤1

∫ 1

0

h(Xn)ds+(1+λn2r2)
1
2

)
≤P

(
sup

0≤t≤1
[g2(Xn)−g2(nu0)−

∫ 1

0

h(Xn)ds]

>−g2(nu0)−n|∂zb|λ
1
2 −cnλTrQ− 3

2
nMλ+(1+λn2r2)

1
2

)
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≤
(

sup
0≤t≤1

E[exp(g2(Xn)−g2(nu0)−
∫ 1

0

h(Xn)ds)]
)

×exp[g2(nu0)+n|∂zb|λ
1
2 +cnλTrQ+

3

2
nMλ−(1+λn2r2)

1
2 ]

≤ exp[g2(nu0)+n|∂zb|λ
1
2 +cnλTrQ+

3

2
nMλ−(1+λn2r2)

1
2 ], (3.16)

where in the last step, we used the fact that

sup
0≤t≤1

E[exp(g2(Xn)−g2(nu0)−
∫ 1

0

h(Xn)ds)]≤1,

because exp(g2(Xn)−g2(nu0)−
∫ 1

0
h(Xn)ds) is a non-negative local martingale with the

initial value 1. By inequalities (3.15) and (3.16), we have

1

n
logP ( sup

0≤t≤1
|∂zun|>r)≤

(1+λn2|∂zu0|2)
1
2

n
+ |∂zb|λ

1
2

+cλTrQ+
3

2
Mλ−

(1+λn2r2)
1
2

n
,

then taking n→∞, and r→∞, we obtain the limit (3.10).

By the projection operator Pm

Pmx :=

m∑
i=1

(x,ei)ei,x∈H,

and let Zn,m, Zn be the solution of the following linear equations respectively,

Zn,m=−
∫ t

0

AZn,mds+
1

n

∫ t

0

∫
X

Pmf(ζ)Ñn(ds,dζ), (3.17)

and

Zn=−
∫ t

0

AZnds+
1

n

∫ t

0

∫
X

f(ζ)Ñn(ds,dζ). (3.18)

The existence and uniqueness of Zn,m, Zn can refer to [32].

Put Z̃n,m :=n(Zn,m−Zn), then Z̃n,m is the solution of the equation

Z̃n,m=−
∫ t

0

AZ̃n,mds+

∫ t

0

∫
X

(Pmf(ζ)−f(ζ))Ñn(ds,dζ). (3.19)

Similar to obtain Lemma 3.1, for i= 1,2, one has

exp
(
gi(Z̃

n,m(t))−gi(Z̃n,m(0))−
∫ t

0

h̃(Z̃n,m)ds
)

(3.20)

is a Ft− local martingale, where

h̃(y) =−<Ay,g′i(y)>+n

∫
X

{
exp[gi(y+Pmf(ζ)−f(ζ))−g(y)]
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−1−(g′i(y),Pmf(ζ)−f(ζ))
}
ν(dζ).

Note that expression (3.20) is similar to equality (3.3), even easier, as result, for i= 1,
we have the following lemma.

Lemma 3.4. for any δ>0,

lim
m→∞

limsup
n→∞

1

n
logP ( sup

0≤t≤1
|Zn,m−Zn|>δ) =−∞

lim
m→∞

limsup
n→∞

1

n
logP (

∫ t

0

‖Zn,m−Zn‖2ds>δ) =−∞.

For i= 2, using equations (3.6) and (3.7) and following the same steps of the proof of
the limit (3.10), by λ is arbitrary, taking λ→∞, we easily obtain Lemma 3.5.

Lemma 3.5. For any given δ>0, we have

lim
r→∞

limsup
n→∞

1

n
logP ( sup

0≤t≤1
|∂zZn,m|>r) =−∞, (3.21)

lim
r→∞

limsup
n→∞

1

n
logP ( sup

0≤t≤1
|∂zZn|>r) =−∞, (3.22)

lim
m→∞

limsup
n→∞

1

n
logP ( sup

0≤t≤1
|∂zZn,m−∂zZn|>δ) =−∞. (3.23)

4. Large deviation principle
For l∈H, define

F (l) :=

∫
X

[exp(f(ζ),l)−1−(f(ζ),l)]ν(dζ)+(Ql,l)+(b,l).

Set, for z∈H,

F ∗(z) = sup
l∈H

[(z,l)−F (l)],

let

Lnt := bt+
1√
n
W (t)+

1

n

∫ t

0

∫
X

f(ζ)Ñn(ds,dζ).

Then by [7], the laws of {Lnt ,n≥1} satisfy a large deviation principle on D([0,1];H)
with rate function I0, which is defined on D([0,1];H) as follows: if g∈D([0,1];H) and

g′∈L1([0,1];H), I0(g) =
∫ 1

0
F ∗(g′(s))ds; otherwise I0(g) =∞.

For g∈D([0,1];V ), define φt(g)∈D([0,1];H)∩L2([0,1];V ) as the solution to the
following equation:

φt(g) =u0−
∫ t

0

Aφs(g)ds−
∫ t

0

B(φs(g),φs(g))ds+g(t). (4.1)

As we obtain Theorem 2.1, by a priori estimates, weak convergence method and mono-
tonicity arguments, for g∈D([0,1];V ), we easily obtain the existence and uniqueness
of solution φt(g)∈D([0,1];H)∩L2([0,1];V ). A priori estimates can also be found in
following Lemma 4.1.
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For h∈D([0,1];H),

I(h) := inf{I0(g) :h=φ(g),g∈D([0,1];H)}

with the convention inf{∅}=∞.
In this section, we establish a large deviation principle of PEs, it is easy to see

that φ(Lnt ) is the solution of the equation (2.14). As we known, by contraction prin-
ciple (Theorem 4.2.1 in [10]), LDP is preserved under continuous mappings, however,
the contraction principle cannot be applied directly because the mapping φ defined in
equation (4.1) is continuous only on D([0,1];V ) (see Lemma 4.1), not necessarily on
D([0,1];H). Instead, by exponential approximations plus continuous contractions, we
obtain the LDP, the corresponding result is Theorem 4.2.23 in [10] which can be applied
thanks to Lemma 4.1, Lemma 4.2 and Lemma 4.3 of the paper. We state the Theorem
as follows.

Theorem 4.1. Let {µε} be a family of probability measures that satisfies the LDP
with a good rate function I on a Hausdorff topological space X , and for m= 1,2,. .., let
fm :X →Y be continuous functions, with (Y,d) a metric space. Assume there exists a
measurable map f :X →Y such that for every α<∞,

limsup
m→∞

sup
x:I(x)≤α

d(fm(x),f(x)) = 0.

Then any family of probability measures {µ̃ε} for which {µε ◦f−1
m } are exponentially good

approximations satisfies the LDP in Y with the good rate function I ′(y) = inf{I(x) :y=
f(x)}.

Thus, equation (2.14) is projected onto subspaces of V , yielding exponential ap-
proximations to the original sequence of solutions and the large deviation principle
(Theorem 4.2) has been obtained from Lemma 4.1, Lemma 4.2 and Lemma 4.3. The
derivation of the large deviation principle in the paper follows closely a work by Tiange
Xu and Tusheng Zhang (reference [37]), where the LDP for a class of two-dimensional
stochastic Navier–Stokes equations with Lévy noise is established. It is well known that
the dynamics of PEs are of the similar form as Navier–Stokes equations , but with a dif-
ferent nonlinear operator B. Compared with Navier–Stokes equations, almost without
exception, main job of all previous papers related to PEs is to deal with the nonlinear
term B. In this paper, to obtain large deviation principle, we need to prove a number
of exponential estimates for the energy of the solutions as well as the exponential con-
vergence of the approximating solutions in D([0,1];H)∩L2([0,1];V ). Since the highly
nonlinear term B, we can’t get there estimates directly as in [37], by introducing g2(y),
we do some more complex estimates with ∂zu, on this basis, we solved this problem and
these estimates about B(un) are our main original contribution of this paper.

Then we state the main result of this paper.

Theorem 4.2. Let µn be the law of the solution un of the equations (2.14) and
(2.15), then {µn,n≥1} satisfies a large deviation principle on D([0,1];H) endowed with
the uniform topology with the rate function I(·), i.e.,

(i) For any closed subset F ⊂D([0,1];H),

limsup
n→∞

1

n
logµn(F )≤− inf

h∈F
I(h).
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(ii) For any open set G⊂D([0,1];H),

liminf
n→∞

1

n
logµn(G)≤− inf

h∈G
I(h).

Lemma 4.1. The mapping φ defined in equation (4.1) is continuous form D([0,1];V )
into D([0,1];H)∩L2([0,1];V ) in the topology of uniform convergence.

Proof. Let vt(g) =φt(g)−g(t), then vt(g) satisfies the following equation

vt(g) =u0−
∫ t

0

Avs(g)ds−
∫ t

0

Ag(s)ds−
∫ t

0

B(vs(g)+g(s),vs(g)+g(s))ds. (4.2)

We have

v(·) :D([0,1];V )→D([0,1];H)∩L2([0,1];V )

is continuous, that is, take {gn}∞n=1, g∈D([0,1];V ) such that limn→∞ sup0≤t≤1‖gn(t)−
g(t)‖= 0, then

lim
n→∞

( sup
0≤t≤1

|vt(g)−vt(gn)|2 +

∫ t

0

‖vs(g)−vs(gn)‖2ds) = 0. (4.3)

To this end, we need some energy estimates for vt(g). In view of Lemma 2.1 for nonlinear
term B(u,u), we have

|vt(g)|2 +2

∫ t

0

‖vs(g)‖2ds

= |u0|2−2

∫ t

0

<Ag(s),vs(g)>ds−2

∫ t

0

b(vs(g)+g(s),vs(g)+g(s),vs(g))ds

≤|u0|2 +
1

4

∫ t

0

‖vs(g)‖2ds+C

∫ t

0

‖g(s)‖2ds

+2

∫ t

0

|b(vs(g),g(s),vs(g))|ds+2

∫ t

0

|b(g(s),g(s),vs(g))|ds

≤|u0|2 +
1

4

∫ t

0

‖vs(g)‖2ds+C

∫ t

0

‖g(s)‖2ds+C

∫ t

0

|vs(g)|‖vs(g)‖‖g(s)‖ds

+C

∫ t

0

|vs(g)| 12 ‖vs(g)‖ 3
2 ‖g(s)‖ds+C

∫ t

0

‖g(s)‖2‖vs(g)‖ds

≤|u0|2 +
1

4

∫ t

0

‖vs(g)‖2ds+C

∫ t

0

‖g(s)‖2ds

+
1

4

∫ t

0

‖vs(g)‖2ds+C

∫ t

0

|vs(g)|2‖g(s)‖2ds

+
1

4

∫ t

0

‖vs(g)‖2ds+C

∫ t

0

|vs(g)|2‖g(s)‖4ds

+
1

4

∫ t

0

‖vs(g)‖2ds+C

∫ t

0

‖g(s)‖4ds. (4.4)

Applying Gronwall’s inequality, we have

sup
0≤s≤t

|vs(g)|2≤
(
|u0|2+Ct sup

0≤s≤t
(‖g(s)‖2+‖g(s)‖4)

)
exp

(
Ct sup

0≤s≤t
(‖g(s)‖2+‖g(s)‖4)

)
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=Mg(t). (4.5)

Furthermore,∫ t

0

‖vs(g)‖2ds

≤|u0|2 +Ct
(

sup
0≤s≤t

‖g(s)‖2 + sup
0≤s≤t

‖g(s)‖4 + sup
0≤s≤t

(‖g(s)‖2 +‖g(s)‖4)Mg(t)
)

=Cg(t). (4.6)

Since limn→∞ sup0≤t≤1‖gn(t)−g(t)‖= 0, it is easy to see that, inequalities (4.5) and
(4.6) still hold for gn. Then we have

|vt(gn)−vt(g)|2 +2

∫ t

0

‖vs(gn)−vs(g)‖2ds

=−2

∫ t

0

<Agn(s)−Ag(s),vs(gn)−vs(g)>ds

−2

∫ t

0

<B(vs(gn)+gn(s))−B(vs(g)+g(s)),vs(gn)−vs(g)>ds

≤ 1

2

∫ t

0

‖vs(gn)−vs(g)‖2ds+C

∫ t

0

‖gn(s)−g(s)‖2ds

+2

∫ t

0

|<B(vs(gn)+gn(s))−B(vs(g)+g(s)),vs(gn)−v(g(s))> |ds, (4.7)

and

|<B(vs(gn)+gn(s))−B(vs(g)+g(s)),vs(gn)−vs(g)> |

≤
∣∣∣b(vs(gn)−vs(g),vs(gn)+gn(s),vs(gn)−vs(g)

)∣∣∣
+
∣∣∣b(gn(s)−g(s),vs(gn)+gn(s),vs(gn)−vs(g)

)∣∣∣
+
∣∣∣b(vs(gn)+g(s),gn(s)−g(s),vs(gn)−vs(g)

)∣∣∣
= I1 +I2 +I2. (4.8)

By Lemma 2.1,

I1≤C|vs(gn)−vs(g)|‖vs(gn)−vs(g)‖‖vs(gn)+gn(s)‖
+C|vs(gn)−vs(g)| 12 ‖vs(gn)−vs(g)‖ 3

2 |∂zvs(gn)+∂zgn(s)|

≤ 1

8
‖vs(gn)−vs(g)‖2

+C
(
‖vs(gn)‖2 +‖gn(s)‖2 + |∂zvs(gn)|4 + |∂zgn(s)|4

)
|vs(gn)−vs(g)|2;

I2≤C‖gn(s)−g(s)‖‖vs(gn)+gn(s)‖‖vs(gn)−vs(g)‖ (4.9)

≤ 1

16
‖vs(gn)−vs(g)‖2 +C

(
‖vs(gn)‖2 +‖gn(s)‖2

)
‖gn(s)−g(s)‖2;

I3≤C‖vs(g)+g(s)‖‖gn(s)−g(s)‖‖vs(gn)−vs(g)‖ (4.10)

≤ 1

16
‖vs(gn)−vs(g)‖2 +C

(
‖vs(g)‖2 +‖g(s)‖2

)
‖gn(s)−g(s)‖2. (4.11)
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Combining estimates (4.9)-(4.10), one obtains

|vt(gn)−vt(g)|2 +

∫ t

0

‖vs(gn)−vs(g)‖2ds

≤C
∫ t

0

‖gn(s)−g(s)‖2ds+C

∫ t

0

(
‖vs(gn)‖2 +‖gn(s)‖2

)
‖gn(s)−g(s)‖2ds

+C

∫ t

0

(
‖vs(g)‖2 +‖g(s)‖2

)
‖gn(s)−g(s)‖2ds

+C

∫ t

0

(
‖vs(gn)‖2 +‖gn(s)‖2 + |∂zvs(gn)|4 +‖gn(s)‖4

)
|vs(gn)−vs(g)|2ds. (4.12)

Then we estimate |∂zvt(gn)|, taking inner product with −∂zzφt(gn) in equation (4.1)
for g instead of gn, and using equation (2.11), one obtains

|∂zφt(gn)|2 = |∂zu0|2−2

∫ t

0

‖∂zφs(gn)‖2ds+2

∫ t

0

(∂zg
′
n(s),∂zφs(gn))ds

≤|∂zu0|2 +

∫ t

0

|∂zg′n(s)|2ds+

∫ t

0

|∂zφs(gn)|2ds. (4.13)

By Gronwall’s inequality, we obtain, there exist Ng(t), such that, sup0≤s≤t |∂zφs(gn)|2≤
Ng(t). since ∂zvt(gn) =φt(gn)−gn(t) and gn∈D([0,1];V ), we have

sup
0≤s≤t

|∂zvs(gn)|2≤Ng(t)+ sup
0≤s≤t

‖gn(s)‖2. (4.14)

For inequality (4.12), applying Gronwall’s inequality again, and inequalities (4.6)
and (4.14), moreover, letting n→∞, we arrive at the limit (4.3).

Now, let un,m be the solution of the equation

un,m(t) =u0−
∫ t

0

Auu,mds−
∫ t

0

B(un,m)ds+bmt

+
1√
n
Wm(t)+

1

n

∫ t

0

∫
X

fm(ζ)Ñn(dx,dζ), (4.15)

where bm=Pmb, W
m(t) =PmW (t), fm=Pmf(ζ), let un,m=un,m−Zn,m, un=un−Zn,

then un,m and un satisfy

un,m(t) =u0−
∫ t

0

Aun,mds−
∫ t

0

B(un,m+Zn,m)ds+bmt+
1√
n
Wm(t),

and

un(t) =u0−
∫ t

0

Aunds−
∫ t

0

B(un+Zn)ds+bt+
1√
n
W (t).

Lemma 4.2. For any δ>0,

lim
m→∞

limsup
n→∞

1

n
logP ( sup

0≤t≤1
|un,m(t)−un(t)|>δ) =−∞. (4.16)
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Proof. Our primary work on the estimate of B(u,u). By Lemma 3.2, Lemma 3.3,
Lemma 3.4 and Lemma 3.5, for δ0>0, we can define a series of stopping times, such as

τn,mδ0
= inf{t≥0,|Zn,m−Zn|>δ0,|∂zZn,m−∂zZn|>δ0,

∫ t

0

‖Zn,m−Zn‖2ds>δ0}.

and

τn,mM = inf
{
t≥0,|un|>M, |un,m|>M, |∂zun|>M, |∂zun,m|>M,

|Zn|>M, |Zn,m|>M, |∂zZn|>M, |∂zZn,m|>M,∫ t

0

‖un‖2ds>M,

∫ t

0

‖un,m‖2ds>M,∫ t

0

‖Zn‖2ds>M,

∫ t

0

‖Zn,m‖2ds>M
}
.

Applying Itô’s formula to |un,m
t∧τn,mM ∧τn,mδ0

|2−|unt∧τn,mM ∧τn,mδ0

|2, we have

sup
0≤s≤t∧τn,mM ∧τn,mδ0

|un,m−un|2 +2

∫ t∧τn,mM ∧τn,mδ0

0

‖un,m−un‖2ds

≤2

∫ t∧τn,mM ∧τn,mδ0

0

∣∣∣<B(un,m+Zn,m)−B(un+Zn),un,m−un>
∣∣∣ds

+2

∫ t∧τn,mM ∧τn,mδ0

0

∣∣∣(un,m−un,bm−b)∣∣∣ds+
2

n

∫ t∧τn,mM ∧τn,mδ0

0

∞∑
i=m+1

λids

+
2√
n

sup
0≤s≤t∧τn,mM ∧τn,mδ0

∣∣∣∫ s

0

(un,m−un,dWm−dW )
∣∣∣. (4.17)

Then we mainly estimate the following nonlinear term,∫ t

0

∣∣∣<B(un,m+Zn,m)−B(un+Zn),un,m−un>
∣∣∣ds

=

∫ t

0

b(un,m,un,m,un,m−un)−b(un,un,un,m−un)ds

+

∫ t

0

b(un,m,Zn,m,un,m−un)−b(un,Zn,un,m−un)ds

+

∫ t

0

b(Zn,m,un,m,un,m−un)−b(Zn,un,un,m−un)ds

+

∫ t

0

b(Zn,m,Zn,m,un,m−un)−b(Zn,Zn,un,m−un)ds

=J1 +J2 +J3 +J4. (4.18)

By Lemma 2.1, we have

|J1|≤
∫ t

0

|b(un,m−un,un,un,m−un)|ds

≤C
∫ t

0

|un,m−un|‖un‖‖un,m−un‖ds
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+C

∫ t

0

|un,m−un| 12 ‖un,m−un‖ 3
2 |∂zun|ds

≤ 1

4

∫ t

0

‖un,m−un‖2ds+C

∫ t

0

|un,m−un|2(‖un‖2 + |∂zun|4)ds, (4.19)

|J2|≤
∫ t

0

|b(un,m−un,Zn,m,un,m−un)|ds+

∫ t

0

|b(un,Zn,m−Zn,un,m−un)|ds

≤C
∫ t

0

|un,m−un|‖un,m−un‖‖Zn,m‖ds

+C

∫ t

0

|un,m−un| 12 ‖un,m−un‖ 3
2 |∂zZn,m|ds

+C

∫ t

0

|un| 12 ‖un‖ 1
2 |Zn,m−Zn| 12 ‖Zn,m−Zn‖ 1

2 ‖un,m−un‖ds

+C

∫ t

0

‖un‖|∂zun,m−∂zun|‖Zn,m−Zn‖ds

≤ 1

4

∫ t

0

‖un,m−un‖2ds+C

∫ t

0

|un,m−un|2(‖Zn,m‖2 + |∂zZn,m|4)ds

+C sup
0≤s≤t

(
|Zn,m(s−)−Zn(s−)||un(s−)|

)
·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖un‖2ds) 1
2

+C sup
0≤s≤t

(|∂zun,m(s−)|+ |∂zun(s−)|) ·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖un‖2ds) 1
2 ,

(4.20)

|J3|≤
∫ t

0

|b(Zn,m−Zn,un,un,m−un)|ds

≤C
∫ t

0

|Zn,m−Zn| 12 ‖Zn,m−Zn‖ 1
2 |un| 12 ‖un‖ 1

2 ‖un,m−un‖ds

+C

∫ t

0

‖Zn,m−Zn‖|∂zun,m−∂zun|‖un‖ds

≤ 1

4

∫ t

0

‖un,m−un‖2ds

+C sup
0≤s≤t

(
|Zn,m(s−)−Zn(s−)||un(s−)|

)
·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖un‖2ds) 1
2

+C sup
0≤s≤t

(|∂zun,m(s−)|+ |∂zun(s−)|) ·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖un‖2ds) 1
2 ,

(4.21)

|J4|≤
∫ t

0

|b(Zn,m−Zn,Zn,m,un,m−un)|ds+

∫ t

0

|b(Zn,Zn,m−Zn,un,m−un)|ds

≤C
∫ t

0

|Zn,m−Zn| 12 ‖Zn,m−Zn‖ 1
2 |Zn,m| 12 ‖Zn,m‖ 1

2 ‖un,m−un‖ds
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+C

∫ t

0

‖Zn,m−Zn‖|∂zun,m−∂zun|‖Zn,m‖ds

+C

∫ t

0

|Zn,m−Zn| 12 ‖Zn,m−Zn‖ 1
2 |Zn| 12 ‖Zn‖ 1

2 ‖un,m−un‖ds

+C

∫ t

0

‖Zn‖|∂zun,m−∂zun|‖Zn,m−Zn‖ds

≤ 1

4

∫ t

0

‖un,m−un‖2ds+C sup
0≤s≤t

(
|Zn,m(s−)−Zn(s−)||Zn,m(s−)|

)
·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖Zn,m‖2ds) 1
2

+C sup
0≤s≤t

(
|Zn,m(s−)−Zn(s−)||Zn(s−)|

)
·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖Zn‖2ds) 1
2

+C sup
0≤s≤t

(|∂zun,m(s−)|+ |∂zun(s−)|) ·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖Zn,m‖2ds) 1
2

+C sup
0≤s≤t

(|∂zun,m(s−)|+ |∂zun(s−)|) ·(
∫ t

0

‖Zn,m−Zn‖2ds) 1
2 (

∫ t

0

‖Zn‖2ds) 1
2

(4.22)

Putting estimates (4.17), (4.19)-(4.22) together, applying Gronwall’s inequality and the

martingale inequality in [6] to 2√
n

sup0≤s≤t∧τn,mM ∧τn,mδ0

∣∣∣∫ s0 (un,m−un,dWm−dW )
∣∣∣, we

can prove the limit (4.16).

Define φmt (g) be the solution of the following equation

φmt (g) =u0−
∫ t

0

Aφms (g)ds−
∫ t

0

B(φms (g))ds+Pmg(t). (4.23)

The well-posedness of φmt (g)∈D([0,1];H)∩L2([0,1];V ) is the same as equation (4.1).

Lemma 4.3. For any r>0,

lim
m→∞

sup
{g:I0(g)≤r}

sup
0≤t≤1

|φmt (g)−φt(g)|= 0. (4.24)

Proof. Taking inner product with φmt (g) in equation (4.23), with
(B(φmt (g)),φmt (g)) = 0, and

sup
{g:I0(g)≤r}

∫ 1

0

|g′(s)|ds≤C,

by Gronwall’s inequality, we can obtain

sup
{g:I0(g)≤r}

sup
0≤t≤1

|φmt (g)|2≤C, (4.25)

sup
{g:I0(g)≤r}

∫ 1

0

‖φms (g)‖2ds≤C. (4.26)

Note that the bounds (4.25), (4.26) also hold for φt(g). Moreover, taking inner product
with ∂zzφ

m
t (g) in equation (4.23), with (B(φmt (g)),∂zzφ

m
t (g)) = 0, we can also obtain

sup
{g:I0(g)≤r}

sup
0≤t≤1

|∂zφmt (g)|2≤C. (4.27)
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Then we have

φmt (g)−φt(g) =−
∫ t

0

A(φms (g)−φs(g)ds

−
∫ t

0

(B(φms (g))−B(φs(g))ds+Pmg(t)−g(t). (4.28)

Taking inner product, we deduce

sup
0≤t≤1

|φmt (g)−φt(g)|2 +2

∫ 1

0

‖φms (g)−φs(g)‖2ds

≤
∫ 1

0

∣∣∣(B(φms (g))−B(φs(g),φms (g)−φs(g))
∣∣∣ds

+
1

2
sup

0≤t≤1
|φmt (g)−φt(g)|2 +C(

∫ 1

0

|Pmg′−g′|ds)2.

By Lemma 2.1, ∫ 1

0

∣∣∣(B(φms (g))−B(φs(g),φms (g)−φs(g))
∣∣∣ds

≤
∫ 1

0

|b(φms (g)−φs(g),φs(g),φms (g)−φs(g)|ds

≤
∫ 1

0

|φms (g)−φs(g)|‖φms (g)−φs(g)‖‖φs(g)‖ds

+

∫ 1

0

|φms (g)−φs(g)| 12 ‖φms (g)−φs(g)‖ 3
2 |∂zφs(g)|ds

≤
∫ 1

0

‖φms (g)−φs(g)‖2ds

+C

∫ 1

0

|φms (g)−φs(g)|2
(
‖φs(g)‖2 + |∂zφs(g)|4

)
ds. (4.29)

Then, we obtain

sup
0≤t≤1

|φmt (g)−φt(g)|2 +2

∫ 1

0

‖φms (g)−φs(g)‖2ds

≤C(

∫ 1

0

|Pmg′(s)−g′(s)|ds)2 +C

∫ 1

0

|φms (g)−φs(g)|2
(
‖φs(g)‖2 + |∂zφs(g)|4

)
ds.

By Gronwall’s inequality, the bounds (4.25), (4.26), (4.27) and letting m→∞, we obtain
the limit (4.24).
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solutions of the primitive equations, Diff. Integral Eqs., 14:1381–1408, 2001.

[20] C. Hu, R. Temam, and M. Ziane, The primitive equations on the large scale ocean under the small
depth hypothesis, Discrete Contin. Dyn. Syst., 9:97–131, 2003.

[21] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-
Holland/Kodansha Amsterdam, Oxford, New York, 1982.

[22] N. Ju, The global attractor for the solutions to the 3d viscous primitive equations, Discrete Contin.
Dyn. Syst., 17:159–179, 2007.

[23] G. Kobelkov, Existence of a solution in “whole” for the large-scale ocean dynamics equations,
C.R. Math. Acad. Sci. Paris, 343:283–286, 2006.

[24] G.M. Kobelkov and V.B. Zalesny, Existence and uniqueness of a solution to primitive equations
with stratification ‘in the large’, Russian J. Numer. Anal. Math. Modelling, 23(1):39–61, 2008.

[25] I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity,
20:2739–2753, 2007.

[26] J.L. Lions, R. Temam, and S. Wang, Models for the coupled atmosphere and ocean, Comput.
Mech. Adv., 1:1–120, 1993.

[27] J.L. Lions, R. Temam, and S. Wang, New formulations of the primitive equations of atmosphere
and applications, Nonlinearity, 5:237–288, 1992.

[28] J.L. Lions, R. Temam, and S. Wang, On the equations of the large-scale ocean, Nonlinearity,
5:1007–1053, 1992 .

[29] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
[30] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise, Encyclopedia
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