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SENSITIVITY ANALYSIS OF
THE LWR MODEL FOR TRAFFIC FORECAST ON LARGE

NETWORKS USING WASSERSTEIN DISTANCE∗
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Abstract. In this paper we investigate the sensitivity of the LWR model on network to its
parameters and to the network itself. The quantification of sensitivity is obtained by measuring the
Wasserstein distance between two LWR solutions corresponding to different inputs. To this end, we
propose a numerical method to approximate the Wasserstein distance between two density distributions
defined on a network. We found a large sensitivity to the traffic distribution at junctions, the network
size, and the network topology.
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1. Introduction
In this paper we deal with the sensitivity analysis of the celebrated LWR model

for traffic forecast on networks. The LWR model was introduced by Lighthill and
Whitham [24] and Richards [27], and it paved the way to the macroscopic description
of traffic flow [1,17,18]. In a macroscopic model, traffic is described in terms of average
density ρ=ρ(x,t) and velocity v=v(x,t) of vehicles, rather tracking each single vehicle.
The natural assumption that the total mass is conserved along the road leads to impose
that ρ and v obey

∂tρ+∂x(ρv) = 0, ρ(x,0) =ρ0(x) (1.1)

for (x,t)∈R× [0,T ], a final time T >0, and initial distribution ρ0. In first-order models
like LWR, the velocity v=v(ρ) is given as function of the density ρ, thus closing the
equation. Without loss of generality, in the rest of the paper we will assume that the
maximal density of vehicles is normalized to 1 and the fundamental diagram f(ρ) :=
ρ v(ρ) has the form

f(ρ) :=

{ fmax

σ ρ, if ρ≤σ
fmax

σ−1 (ρ−1), if ρ>σ
(1.2)

for some σ∈ (0,1) and fmax>0, see Figure 1.1.
In order to describe real situations where the vehicles move on several interconnected

roads, the simple model (1.1) is not sufficient. This has motivated several authors to
consider analogous equations on a network (metric graph), which is a directed graph
whose edges are equipped with a system of coordinates. In this context vertexes are
called junctions and edges are called roads. The natural way to extend model (1.1) to
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Fig. 1.1. Fundamental diagram f(ρ) =ρ v(ρ).

a network is to assume that the conservation law is separately satisfied on each road
for all times t>0. Moreover, additional conditions have to be imposed at junctions,
because in general the conservation of the mass alone is not sufficient to characterize a
unique solution. We refer the reader to the book by Garavello and Piccoli [15] for more
details about the ill-posedness of the problem at junctions. Multiple workarounds for
such ill-posedness have been suggested in the literature: (i) maximization of the flux
across junctions and introduction of priorities among the incoming roads [6,15,22]; (ii)
introduction of a buffer to model the junctions by means of additional ODE coupled
with (1.1) [3, 14, 16, 19]; (iii) reformulation of the problem on all possible paths on the
network rather than on roads and junctions [4, 5, 20]. In general, they all allow to
determine a unique solution for the traffic evolution on the network, but the solutions
might be different.

In the following we will employ the approach (iii) together with a Godunov-based
numerical approximation [4, 5], also used to reproduce Wardrop equilibria [8]. More
recently, it was shown that the solution computed by the path-based model coincides
with the many-particle limit of the first-order microscopic follow-the-leader model [9].

In this paper we aim at quantifying the sensitivity of the LWR model to its inputs.
In particular we will focus on the following inputs:

• initial datum;

• fundamental diagram;

• traffic distribution at junctions;

• network size;

• network connectivity.

The sensitivity will be measured by computing the distance between two LWR
solutions obtained with different inputs or parameters, in order to understand their
impact on the final solution. The question arises which distance is more suitable to
this kind of investigation. It is by now well understood that Lp distances do not catch
the natural concept of distance among densities, see, e.g., the discussion in [7, Sec. 7.1]
and Section 3 in this paper. A notion of distance which instead appears more natural
is that of Wasserstein distance, see, e.g., [2, 7, 10, 13, 26]. The bottleneck for using
this distance on networks comes from the computational side. In fact, the classical
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definition of Wasserstein distance is not suitable for numerical approximation. Recent
characterizations also seem to be unfit for this goal. Let us mention in this regard
the variational approach proposed by Mazón et al. [25], which generalizes to networks
the results by Evans and Gangbo [12]. It can be also shown [25] that the Wasserstein
distance has a nice link with the p-Laplacian operator. This leads naturally to a PDE-
based approach to solve the problem. Unfortunately, preliminary investigations [23] have
shown that both these approaches are highly ill-conditioned and then computationally
infeasible. Let us finally mention the semi-discrete approach proposed by Treleaven and
Frazzoli [30], which is well-conditioned but in practice it is still too expensive from the
computationally point of view, especially on large networks. It is therefore necessary to
find an alternative method to compute the Wasserstein distance.

Following the lines of [29, Chap. 19], we propose and implement a pure discrete,
reasonably fast algorithm to approximate the Wasserstein distance on a network, based
on a linear programming method. To the authors’ knowledge, the study presented
here is the first one employing the Wasserstein distance to quantify the sensitivity of a
macroscopic model for traffic flow on networks.

Paper organization. In Section 2 we present in detail the mathematical model,
which is a local version of the path-based approach [4, 5], suitable to deal with large
networks. In Section 3 we motivate the choice of the Wasserstein distance for the
subsequent sensitivity analysis and we describe the numerical procedure to compute it.
In Section 4, which is the core of the paper, we present several tests designed to show
the sensitivity of the model to various parameters and inputs. Finally, in Section 5 we
sketch some conclusions.

2. A path-based model for large networks
In this section we introduce the network and the model we will use in the following

to describe the traffic flow.

2.1. Basic definitions: graph, network, and computational grid. Let us
consider a directed graph G= (E ,V) consisting of a finite set of vertexes V and a set of
oriented edges E connecting the vertexes.

Stemming from G, we build the network N by assigning to each edge e∈E a positive
length Le∈ (0,+∞). Moreover, a coordinate is assigned to each point of the edge. The
coordinate will be denoted by xe and it increases according to the direction of the edge,
i.e. we have xe = 0 at the initial vertex and xe =Le at the terminal vertex.

For numerical purposes, the network has to be discretized by means of a grid. Let
us denote by ∆x the space step. To avoid technicalities, let us assume that the length of
all the edges is a multiple of ∆x so that we can easily use the same grid size everywhere
in N . In this way, each edge is being divided in Je := Le

∆x cells. The total number of
cells in N is J :=

∑
e∈E Je. The center of each cell on edge e will be denoted by xe,j ,

j= 1,. ..,Je, and the cell itself by Ce,j =
[
xe,j− 1

2
,xe,j+ 1

2

)
.

Finally, let us denote by ∆t the time step. The number of time iterations will be
denoted by NT := T

∆t .

2.2. The model. In [4, 5] a theoretical framework and a Godunov-based nu-
merical algorithm was introduced to solve the LWR equations on small networks. The
problem is reformulated on (possibly overlapping) paths joining all possible sources with
all possible destinations, see Figure 2.1. Let us denote by np the total number of paths
on N . Rather than tracking the total density ρ, one defines sub-densities µp, p= 1.. .,np,
each of which represents the amount of vehicles following the p-path. Clearly the dy-
namics of vehicles following the p-path are influenced by vehicles following other paths
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Fig. 2.1. A generic network. Two possible paths are highlighted. Note that the two paths share
one arc of the network.

whenever the two groups of drivers share the same portion of the network. From the
mathematical point of view, the problem is formulated as a system of np conservation
laws with discontinuous flux and no special treatment of the junction is needed (each
path is seen as an uninterrupted road) [4,5]. The main drawback of this approach is that
the number of paths grows exponentially with the size of the network and the system
becomes rapidly unmanageable. In [4,5] it was also suggested a hybrid approach which
avoids to store all paths, but it was not detailed. In the following we fill the gap giving
the precise algorithm and testing it on real-size networks.

Define as usual the unknown density at grid nodes as

ρne,j :=
1

∆x

∫ x
e,j+ 1

2

x
e,j− 1

2

ρ(y,n∆t)dy, e∈E , j= 1,. ..,Je, n= 1,. ..,NT . (2.1)

Starting from the initial condition ρ0
e,j := 1

∆x

∫ x
e,j+ 1

2
x
e,j− 1

2

ρ0(y)dy, an approximate solution at

any internal cell j= 2,. ..,Je–1 of any edge e∈E is easily found by the standard Godunov
scheme

ρn+1
e,j =ρne,j−

∆t

∆x

(
G(ρne,j ,ρ

n
e,j+1)−G(ρne,j−1,ρ

n
e,j)
)
, n= 0,. ..,NT −1, (2.2)

where the numerical flux G is defined as

G(ρ−,ρ+) :=


min{f(ρ−),f(ρ+)} if ρ−≤ρ+

f(ρ−) if ρ−>ρ+ and ρ−<σ
f(σ) if ρ−>ρ+ and ρ−≥σ≥ρ+

f(ρ+) if ρ−>ρ+ and ρ+>σ

. (2.3)

Around vertexes we proceed as follows: let us focus on a generic vertex v∈V and
denote by nvinc and nvout the number of incoming and outgoing edges at v, respectively.
As in the classical approaches [15], we assume that it is given a traffic distribution matrix
Av = (αv

rr′), r= 1,. ..,nvinc, r
′= 1,. ..,nvout which prescribes how the traffic distributes in

percentage from any incoming edge r to any outgoing edge r′. Clearly 0≤αv
rr′ ≤1 ∀r,r′

and
∑

r′α
v
rr′ = 1 ∀r.

Now, following the path-based approach [4,5], we look at all possible paths across the
vertex v. Having nvinc incoming edges and nvout outgoing edges, we have nvp :=nvinc×nvout

possible paths. We denote by µne,j(p,v) the density of the vehicles in the cell j of edge
e at time tn moving along path p across vertex v.

Let us now focus on a generic path p= (e,e′) which joins edge e with e′, see Figure
2.2. The problem is ready to be solved by the Godunov-based multi-path scheme [4, 5]
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Fig. 2.2. Zoom around vertex v. We show the path p= (e,e′) and cells’ labels on that path.

with minor modifications for all paths of all vertexes. Dropping the indexes p and v for
readability, we have in the last cell of the incoming edge:

µn+1
e,Je

=µne,Je−
∆t

∆x

(
µne,Je
ρne,Je

G
(
ρne,Je ,ρ

n
e′,1

)
−αv

ee′G
(
ρne,Je−1,ρ

n
e,Je

))
, (2.4)

for n= 0,. ..,NT −1. Note the presence of the parameter αv
ee′ in front of the incoming

flux which tells that only a percentage of the total mass is following path p.
In the first cell of the outgoing edge we have instead:

µn+1
e′,1 =µne′,1−

∆t

∆x

(
µne′,1
ρne′,1

G
(
ρne′,1,ρ

n
e′,2

)
−
µne,Je
ρne,Je

G
(
ρne,Je ,ρ

n
e′,1

))
, (2.5)

for n= 0,. ..,NT −1.
The algorithm is completed by summing, at any time step, the sub-densities µ’s

(where defined) to compute the total density ρ, to be used at the next time step in
equations (2.2), (2.4), and (2.5). More precisely, we have

ρn+1
e,Je

=

nv
p∑

q=1

µn+1
e,Je

(q,v) and ρn+1
e′,1 =

nv
p∑

q=1

µn+1
e′,1 (q,v). (2.6)

Note that equations (2.4) and (2.5) are systems of nvp equations, coupled via equation
(2.6), that takes into account vehicles moving along paths other than p= (e,e′). The
other total densities ρ appearing in equations (2.4) and (2.5) are instead given by equa-
tion (2.2). For the sake of clarity and dissipate any doubt, in the appendix we write
explicitly the scheme in the case of a junction with two incoming and two outgoing
roads.

Initial condition. The scheme (2.2)-(2.4)-(2.5) is initialized at the first time step
with the total density ρ0 in the cells far from the junctions, and with the sub-densities
µ0’s in the cells adjacent to the junctions. If initial sub-densities are not available,
we can recover them by means of the total density and the distribution matrix. For
example, at the last cell of the incoming edge we can set

µ0
e,Je(p,v) :=αv

ee′ ρ
0
e,Je . (2.7)
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Instead, at the first cell of the outgoing edge we can split the total density in equal
parts, simply assuming that vehicles come equally from all incoming edges,

µ0
e′,1(p,v) :=

ρ0
e′,1

nvinc

. (2.8)

Note that the initial condition for the sub-densities µ’s is needed just for initiating
the numerical procedure. After that, it becomes rapidly noninfluential since scheme
(2.2) for internal cells is coupled with systems (2.4)-(2.5) by means of total density ρ
only (equation 2.6). Therefore, the initial subdivision is lost.

3. Computation of the Wasserstein distance

It is well known that several problems in traffic modeling require the comparison
of two density functions representing traffic conditions. In the following we list some of
them:

• theoretical study of properties of the solution of scalar conservation laws;

• convergence of the numerical schemes (verifying that the numerical solution is
close to the exact solution);

• calibration (finding the values of the parameters for the predicted outputs to
be as close as possible to the observed ones);

• validation (checking if the outputs are close to the observed ones);

• sensitivity analysis (quantifying how the uncertainty in the outputs can be
apportioned to different sources of uncertainty in the inputs and/or model’s
parameters). This is the problem we consider in this paper.

In this section we introduce the Wasserstein distance1 as the main ingredient for
the quantification of the distance between two outputs of the LWR model (e.g., density,
velocity, flux).

3.1. Motivations and definitions. In many papers the quantification of the
closeness of two outputs is performed by means of the L1, L2 or L∞ distance (in space
at final time or in both space and time). Although this can be satisfactory for nearly
equal outputs or for convergence results, it appears to be inadequate for measuring
the distance of largely different outputs. To see this, let us focus on the density of
vehicles. In Figure 3.1 three density functions ρi, i= 1,2,3, corresponding to the same
total mass, say M , are plotted. It is plain that the L1 distances between ρ1 and ρ2

and between ρ1 and ρ3 are both equal to 2M . Similarly, all Lp distances are blind
with respect to variation of the densities once the supports of them are disjoint. Our
perception of distance suggests instead that ‖ρ3−ρ1‖>‖ρ2−ρ1‖, and this is exactly
what Wasserstein distance guarantees, as we will see in the following.

Let us denote by (X,D) a complete and separable metric space with distance D,
and by B(X) a Borel σ-algebra of (X,D). Let us also denote byM+(X) the set of non-
negative finite Radon measures on (X,B(X)). Let νs (s standing for supply) and νd (d
standing for demand) be two Radon measures in M+(X) such that νs(X) =νd(X).

Definition 3.1 (Wasserstein distance). For any p∈ [1,+∞), the Lp-Wasserstein dis-

1The Wasserstein distance was first introduced by Kantorovich in 1942 and then rediscovered many
times. Nowadays, it is also known as Lip′-norm, earth mover’s distance, d̄-metric, Mallows distance.
An important characterization is also given by the Kantorovich–Rubinstein duality theorem.
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ρ1 ρ2 ρ3

Fig. 3.1. Three density functions with disjoint supports.

tance between νs and νd is

Wp(ν
s,νd) :=

(
inf

γ∈Γ(νs,νd)

∫
X×X

D(x,y)p dγ(x,y)

)1/p

(3.1)

where

Γ(νs,νd) :=
{
γ∈M+(X×X) s.t. γ(A×X) =νs(A), γ(X×B) =νd(B), ∀ A,B⊂X

}
.

Assuming that the measures ν{s,d} are absolutely continuous with respect to the
Lebesgue measure, i.e. there are two density functions ρ{s,d} such that dν{s,d}=ρ{s,d}dx,
and considering the particular case X=Rn, D(x,y) =‖x−y‖Rn , we have

Wp(ν
s,νd) =Wp(ρ

s,ρd) =

(
inf
T∈T

∫
Rn

‖T (x)−x‖pRn ρ
s(x)dx

)1/p

(3.2)

where

T :=

{
T :Rn→Rn s.t.

∫
B

ρd(x)dx=

∫
{x:T (x)∈B}

ρs(x)dx, ∀B⊂Rn bounded

}
.

Equation (3.2) sheds light on the physical interpretation of the Wasserstein distance,
putting it in relation with the well known Monge–Kantorovich mass transfer problem
[31]: a pile of, say, soil, with mass density distribution ρs, has to be moved to an
excavation with mass density distribution ρd and same total volume. Moving a unit
quantity of mass has a cost which equals the distance between the source and the
destination point. We consequently are looking for a way to rearrange the first mass
onto the second which requires minimum cost.

Remark 3.1. In our framework, the mass to be moved corresponds to that of vehicles.
We therefore measure the distance between two LWR solutions by computing the mini-
mal cost to move vehicles from the scenario corresponding to one density distribution to
the scenario corresponding to the other density distribution. Moreover, we assume that
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the mass transfer is constrained to happen along the network N (i.e. X=N ), but the
transfer does not need to respect usual road laws (road direction, traffic distribution at
junctions, etc.). This is reasonable since the measure of the distance between densities
is conceptually different from the physical motion of vehicles.

Note that if we consider two concentrated measures νs = δx and νd = δy in R, the
Wasserstein distance between the two is Wp(δx,δy) = |x−y| ∀p, as one would expect.
This is also the desired distance quantification in the case of only two vehicles on a road,
located in x and y respectively.

Unfortunately, definitions (3.1) and (3.2), though elegant, are not suitable for nu-
merical approximation. Limiting our attention to the real line, the problem is easily
solved by using nice alternative definitions of Wasserstein distance, like the ones reported
in the following (see [32, Remark 2.19]).

If p= 1, we have

W1(ρs,ρd) =

∫
R
|F s(x)−F d(x)|dx, F {s,d}(x) :=

∫ x

−∞
ρ{s,d}(x)dx. (3.3)

If p≥1, we have

Wp(ρ
s,ρd) =

(∫
R
|T ∗(x)−x|p ρs(x)dx

)1/p

(3.4)

where T ∗ is easily found as the function that satisfies∫
y<T∗(x)

ρd(y)dy=

∫
y<x

ρs(y)dy, ∀x∈R.

The case of a network is more complicated. In the following section we propose
an algorithm to approximate the Wasserstein distance on a network, reformulating the
problem on a discrete graph.

3.2. Discrete formulation on graph. A network can be always approximated
by a discrete graph at the cost of a loss of resolution. Resorting to the discretization
introduced in Section 2.1, we can create a new, undirected graph whose vertexes coincide
with the centers of the cells, and they are connected in agreement with the network, see
Figure 3.2.

Ce
j v

e

∆x

Fig. 3.2. Original directed graph G (left), network N built on G discretized with space step ∆x
(center), and undirected graph G∆

N built on the discretized network N (right).

The graph created by this procedure will be denoted hereafter by G∆
N . The number of

vertices of G∆
N equals the total number of cells in N , therefore will be denoted by J .
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In order to complete the discretization procedure, the mass distributed on each cell is
accumulated in the vertex located at the center of the cell. Doing this, the problem is
reformulated as an optimal mass transportation problem on a graph. The new problem
clearly approximates the original one on the network N and the approximation error is
controlled by ∆x. Focusing on our particular case, after the numerical approximation
of the LWR model, we are left with a single value ρe,j for each cell Ce,j of the network,
which represents the average density in that cell, see equation (2.1). This means that
the numerical procedure returns a constant density ρ(x)≡ρe,j for all x∈Ce,j , which
must be concentrated in the centre xe,j of the cell.

At this point one can resort to classical problems (see Hitchcock’s paper [21]) and
methods (see e.g., [28, Sec. 6.4.1] and [29, Chap. 19]), recasting the problem in the
framework of linear programming (LP).

Let us enumerate the vertexes of G∆
N by j= 1,. ..,J , and denote by ρsj , ρ

d
j , the

supply and demand densities concentrated in vertex j, respectively. Following the mass
transport interpretation, the supply mass at vertex j is sj :=ρsj∆x, and the demand
mass is dj :=ρdj∆x. Let cjk be the cost of shipping a unit quantity of mass from the
origin j∈{1,. ..,J} to the destination k∈{1,. ..,J}. Here we define cjk as the length of
the shortest path joining j and k on G∆

N , which can be easily found by, e.g., the Dijkstra
algorithm [11]. Let xjk be the (unknown) quantity shipped from the origin j to the
destination k. The problem is then formulated as

minimize H :=
J∑
j=1

J∑
k=1

cjkxjk

subject to
∑
k

xjk = sj , ∀j∑
j

xjk =dk, ∀k

xjk≥0.

(3.5)

Note that the solution satisfies xjk≤min{sj ,dk} since one cannot move more than sj
from any source vertex j and it is useless to bring more than dk to any sink vertex k.
From problem (3.5) it is easy to recover a standard LP problem

minimize cᵀx

subject to Ax=b

x≥0,

(3.6)

simply defining

x := (x11,x12,. ..,x1J ,x21,x22,. ..,x2J ,. ..,xJ1,. ..,xJJ)ᵀ

c := (c11,c12,. ..,c1J ,c21,c22,. ..,c2J ,. ..,cJ1,. ..,cJJ)ᵀ

b := (s1,. ..,sJ ,d1,. ..,dJ)ᵀ

and A as the 2J×J2 sparse matrix

A :=



1J 0 0 ·· · 0
0 1J 0 ·· · 0
0 0 1J ·· · 0
...

...
...

. . .
...

0 0 0 ·· · 1J
IJ IJ IJ IJ IJ


(3.7)
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where IJ is the J×J identity matrix and 1J := (1 1 ·· · 1︸ ︷︷ ︸
J times

).

3.3. Error analysis. Before focusing on the sensitivity analysis of the LWR
model, it is useful to quantify the error introduced by the LP-based method presented
above in computing the exact Wasserstein distance. We do that in the general case,
without restricting ourselves to piecewise constant density functions.

Proposition 3.1. Let ρs,ρd :N →R two densities defined on a network N such that

M =

∫
N
ρsdx=

∫
N
ρddx.

Then,

|W (ρs,ρd)−H(ρs,ρd)|≤M∆x (3.8)

where hereafter W denotes the Wasserstein distance W1 and H is the solution of the
problem (3.5).

Proof. To begin with, let us focus on a generic cell Cj of the network. In accordance
with the optimal flow (found a posteriori as the solution of the optimal mass problem),
the mass in Cj is transferred in one or more cells of the network. Let us denote by mjk

the mass which is moved from cell Cj to Ck for some k= 1,. ..,J (including k= j). Let us
also denote by τ sjk(·) the density profile (with supp(τ sjk)⊆Cj) associated to the leaving
mass mjk in Cj and by τdjk(·) the density profile (with supp(τdjk)⊆Ck) associated to the
arriving mass in Ck, see Figure 3.3. By definition we have

bj b̄jCj
bk b̄kCk

mjk

τ sjk

τdjk
�
�
B
BB

��

Fig. 3.3. Proposition 3.1. Mass mjk moving from Cj = [bj , b̄j) to Ck= [bk, b̄k).

mjk =

∫
Cj

τ sjk(x)dx=

∫
Ck

τdjk(x)dx.

Let us denote by bj :=xj− 1
2
, b̄j :=xj+ 1

2
, and similarly by bk, b̄k, the two border points

of the cell j and k, respectively.
By suitably accumulating the masses at the borders of the cells, and recalling that

the discrete approach requires instead to accumulate the masses at the centers of the
cells, we have:
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Case A: j 6=k.

W (τ sjk,τ
d
jk)≤mjk max

bj∈{b̄j ,bj}
bk∈{b̄k,bk}

W (δbj ,δbk) =H(τ sjk,τ
d
jk)+2

mjk∆x

2
, (3.9)

and, equivalently,

W (τ sjk,τ
d
jk)≥mjk min

bj∈{b̄j ,bj}
bk∈{b̄k,bk}

W (δbj ,δbk) =H(τ sjk,τ
d
jk)−2

mjk∆x

2
(3.10)

(where the additional distance ±2
mjk∆x

2 comes from moving the mass from the borders
to the centers of the cells in Cj and Ck).

Case B: j=k.

H(τ sjk,τ
d
jk) = 0 and 0≤W (τ sjk,τ

d
jk)≤mjk∆x, (3.11)

then we still have

W (τ sjk,τ
d
jk)≤H(τ sjk,τ

d
jk)+mjk∆x and W (τ sjk,τ

d
jk)≥H(τ sjk,τ

d
jk)−mjk∆x.

as in inequalities (3.9)-(3.10).
Summing up we obtain, by conditions (3.5),

W (ρs,ρd) =
∑
j

∑
k

W (τ sjk,τ
d
jk)≤

∑
j

∑
k

[H(τ sjk,τ
d
jk)+mjk∆x] =H(ρs,ρd)+M∆x

and

W (ρs,ρd) =
∑
j

∑
k

W (τ sjk,τ
d
jk)≥

∑
j

∑
k

[H(τ sjk,τ
d
jk)−mjk∆x] =H(ρs,ρd)−M∆x.

Finally we have

|W (ρs,ρd)−H(ρs,ρd)|≤M∆x.

It is also easy to prove that this estimate is actually sharp. To see this it is sufficient to
consider the one-dimensional case N =R and choose ρs =Mδb̄j and ρd =Mδbj+1

.

In the following we test the discrete approach described above against a one-
dimensional problem where the Wasserstein distance can be analytically computed.
We define

ρs(x) =

{
x4−2x2 +1, x∈ [−2,2]
0, otherwise

and ρd(x) =

{
23
15 , x∈ [−2,2]

0, otherwise

see Figure 3.4 (left). Note that the total mass is equal, i.e. M =
∫
Rρ

s =
∫
Rρ

d = 92
15 . The

exact Wasserstein distance between the two densities can be easily computed by using
(3.3), obtaining W (ρs,ρd) = 3.2. In Figure 3.4 (right) we report the value of the error
|W −H| as a function of the space step ∆x used to discretize the interval [−2,2], and we
compare it with the theoretical estimate given by Proposition 3.1. We note that in this
special case the measured convergence rate is superlinear and the error is much lower
than the theoretical estimate.
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Fig. 3.4. Exact vs. approximate Wasserstein distance. Functions ρs, ρd (left) and convergence of
|W −H| as ∆x→0 (right).

4. Sensitivity analysis

In this section we employ the discrete approach described in Section 3.2 to perform
a sensitivity analysis of the LWR model. To solve the LP problem we used the GLPK2

free C library.

For numerical tests we consider the “Manhattan”-like two-way road network de-
picted in Figure 4.1. This choice is motivated by the fact that it allows one to easily
compare networks of different size. Given the number ` of junctions per side, we get
4`(`−1) roads and `2 junctions. Roads are numbered starting from those going right-
ward, then leftward, upward, and finally downward. The length of each road is Le = 1
and, if not otherwise stated, ∆x= 0.1 (Je = 10, J = 40`(`−1)).

In order to fairly compare simulations with different number of vehicles, we report
the normalized approximate Wasserstein distance

Ĥ :=

∑
j

∑
k cjkx

∗
jk

M
, (4.1)

where M =
∑
j sj =

∑
jdj , and x∗jk is the solution of the LP problem (3.6).

4.1. Sensitivity to initial data. In this test we measure the sensitivity to
the initial position of vehicles. The goal is to quantify the impact of a possible error
in locating vehicles at initial time (but still catching the correct amount of vehicles).
In addition, this preliminary test aims at investigating some conceptual and numeri-
cal aspects of the proposed procedure. In particular we show the difference between
Wasserstein and L1 distance (see Section 3.1) and we study the convergence Ĥ→W as
∆x→0 (see Section 3.3).

The parameters which remain fixed in this test are

• Fundamental diagram: σ= 0.3 and fmax = 0.25 (see equation (1.2)).

• Distribution matrix :

αv
rr′ =

1

nvout

, ∀v∈V, r= 1,. ..,nvinc, r′= 1,. ..,nvout.

2https://www.gnu.org/software/glpk/



MAYA BRIANI, EMILIANO CRISTIANI, AND ELISA IACOMINI 135

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44 45

46 47 48 49 50

51 52 53 54 55

56 57 58 59 60

61 62 63 64 65

66 67 68 69 70

71 72 73 74 75

76 77 78 79 80

→
←

↑

↓

Fig. 4.1. Manhattan-like road network with `= 5 and Je = 10. We draw the centers of the cells
and report the numbering of roads and junctions. Roads are actually two-way, the small gap between
lanes going in opposite directions is left for visualization purpose only. Road directions are indicated
by the arrows at the bottom-left corner.

Fig. 4.2. Sensitivity to initial data. ρs,0 (left) and ρd,0 (right).



136 SENSITIVITY ANALYSIS OF THE LWR MODEL

We consider the following two initial conditions, see Figure 4.2: for all e∈E and j=
1,. ..,Je/2,

ρs,0e,j =

{
0.5, on rightward roads
0, elsewhere, ρd,0e,j =

{
0.5, on leftward roads
0, elsewhere. (4.2)

Remark 4.1. Due to the uniform traffic distribution at junctions, the density tends
to become constant on the whole network as t→+∞, regardless of the initial datum.
As a consequence, we expect that the distance between ρs(t) and ρd(t) (no matter how
defined) tends to 0 as t→+∞.

4.1.1. Comparison with L1 distance. In this test we compare the approximate
Wasserstein distance with the discrete L1 distance (normalized with respect to the mass
as well), here denoted by L̂1 and defined by

L̂1(ρs(·,t),ρd(·,t)) :=
∆x

M

∑
e∈E

Je∑
j=1

|ρse,j(t)−ρde,j(t)|. (4.3)

Functions t→L̂1(ρs(·,t),ρd(·,t)) and t→Ĥ(ρs(·,t),ρd(·,t)) are shown in Figure 4.3 for
two different network size.

Initially, the L̂1 distance shows a plateau, which lasts until the supports of the
densities ρs and ρd are disjoint. This is not the case of the Wasserstein distance which
instead immediately decreases. After that, the supports of the two densities start to
overlap but the regions with maximal density move away from each other, see Figure
4.4. When this process ends, we get the maximal value of the Wasserstein distance and
the change of slope of the L̂1 distance. Later on, the two densities uniformly distribute
along the network and the two distances go smoothly to 0.
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Fig. 4.3. Sensitivity to initial data (L̂1 vs. Ĥ). Comparison between functions

t→L̂1(ρs(·,t),ρd(·,t)) and t→Ĥ(ρs(·,t),ρd(·,t)) for `= 3 (left) and `= 5 (right).

4.1.2. Numerical convergence as ∆x→0. In this test we consider a small
network (`= 3) and we compute the Wasserstein distance Ĥ(ρs,ρd) for different values
of Je. Figure 4.5 shows the functions t→Ĥ(ρs(·,t),ρd(·,t)) for Je = 10,20,40,80 and
Je→Ĥ(ρs(·,T ),ρd(·,T )) at fixed time T = 1.4. Figure 4.5 (left) suggests a relatively
small sensitivity to the space step. We can safely assume that the difference between
the values of Ĥ obtained with Je = 10 and Je = 160 is lower than 10% with respect to the
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Fig. 4.4. Sensitivity to initial data (L̂1 vs. Ĥ). ρs (left) and ρd (right) at time T = 1.8.
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Fig. 4.5. Sensitivity to initial data (convergence). Function t→Ĥ(ρs(·,t),ρd(·,t)) for different

values of Je (left) and function Je→Ĥ(ρs(·,T ),ρd(·,T )) with T = 1.4 (right).

largest of the two values. We get similar results also for larger networks. The numerical
convergence of Ĥ= Ĥ(Je) as Je→+∞ is also clearly visible in Figure 4.5 (right).

In the next sections, the sensitivity analysis will be obtained with Je = 10 which
seems to be a good compromise between accuracy of the results and computational
costs.

4.2. Sensitivity to fundamental diagram. In this test we measure the sensi-
tivity to the two parameters of the fundamental diagram, namely σ and fmax. The goal
is to quantify the impact of a possible error in measuring the capacity of the roads or in
describing the drivers behavior. Note that the linear structure of the fundamental dia-
gram used here (see Fig. (1.1)) does not play any special role and any other fundamental
diagram could be considered, as long as it is duly parametrized.

The parameters which remain fixed in this test are

• Initial density :

ρ0
e,j =

{
0.5 on rightward roads,
0 elsewhere, e∈E , j= 1.. .,Je.
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• Distribution matrix :

αv
rr′ =

1

nvout

, ∀v∈V, r= 1,. ..,nvinc, r′= 1,. ..,nvout.

In Figure 4.6 (left) we report the distance between the solutions ρs and ρd at time
T = 20 obtained with f smax = 0.25, σs = 0.3 and fdmax = 0.25, σd∈ [0.15,0.5], respectively.
In Figure 4.6 (right) we report the distance between the two solutions at time T = 20
obtained with σs = 0.3, f smax = 0.25, and σd = 0.3, fdmax∈ [0.15,0.4], respectively.

Errors in the calibration of σ or fmax lead to similar discrepancies, which are again
amplified by the network size. Discrepancies grow approximately linearly with respect
to both |σd−σs| and |fdmax−f smax|.

In Figure 4.7 we report the distance between the solutions ρs and ρd obtained with
f smax =fdmax = 0.25, σs = 0.3, σd = 0.2 (left), and σs =σd = 0.3, f smax = 0.25, fdmax = 0.3
(right), as a function of time. Again, we see that the distances tend to 0 as t→∞ because
vehicles spread across the networks toward a constant stationary density distribution
(see Remark 4.1), and the size of the network affects the time scale only.
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Fig. 4.6. Sensitivity to fundamental diagram. Function σd→Ĥ(ρs(·,T ),ρd(·,T )) (left) and,

fdmax→Ĥ(ρs(·,T ),ρd(·,T )) (right), for `= 5,6,7.
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4.3. Sensitivity to the distribution matrix. In this test we measure the
sensitivity to the distribution coefficients at junctions, see Section 2.2. The goal is to
quantify the impact of a possible error in the knowledge of the path choice at junctions.

The parameters which remain fixed in this test are

• Initial density : ρ0
e,j = 0.5, e∈E , j= 1,. ..,Je.

• Fundamental diagram: σ= 0.3 and fmax = 0.25.

Supply distribution ρs is obtained by means of equidistributed coefficients

αs,v
rr′ =

1

nvout

, ∀v∈V, r= 1,. ..,nvinc, r′= 1,. ..,nvout.

Note that, due to the symmetry of the network and the initial datum, ρs≡0.5 for all x
and t.

4.3.1. Single junction. Here demand distribution ρd is obtained by varying the
distribution coefficients at the junction v̄ located at the very center of the network (see,
e.g., vertex 13 in Figure 4.1). Variation is performed by means of a scalar parameter
ε>0. We have, for all incoming roads r= 1,2,3,4,

αd,v̄
r1 =

1

nvout

+ε, αd,v̄
r2 =

1

nvout

−ε, αd,v̄
r3 =

1

nvout

+ε, αd,v̄
r4 =

1

nvout

−ε.

In Figure 4.8 we report the distribution ρd at time t= 5 and t= 45 obtained with
ε= 0.1, to be compared with the constant distribution ρs≡0.5. Remarkably, a minor
local modification of the traffic distribution in a single junction breaks the symmetry
and has a great impact on the solution. This time the density does not tend to distribute
uniformly across the network and then we expect the distance W (ρs,ρd) to increase in
time, although the growth cannot continue indefinitely since the distance between two
distributions on a finite network is finite as well.

In Figure 4.9 we show the distance between the two densities as a function of time
for ε= 0.1, 0.2. The distance is indeed increasing and bounded as expected. Moreover
a larger ε accelerates the growth of the distance. Further comments will be given in the
following Section 4.3.3.

4.3.2. All junctions. Let us now modify all the distribution coefficients, and
not only those at one junction. In the following test we set, for any v and r= 1,2,3,4,

αd,v
r1 =

1

nvout

+ε, αd,v
r2 =

1

nvout

−ε, αd,v
r3 =

1

nvout

+ε, αd,v
r4 =

1

nvout

−ε,

if v is labeled by an odd number and

αd,v
r1 =

1

nvout

−ε, αd,v
r2 =

1

nvout

+ε, αd,v
r3 =

1

nvout

−ε, αd,v
r4 =

1

nvout

+ε,

otherwise (at border junctions only the first two incoming roads r= 1,2 are considered).
Results with ε= 0.1 are shown in Figure 4.10.

4.3.3. Comparison. We observe a great difference between the density distribu-
tions ρd’s reported in Sections 4.3.1 and 4.3.2. In Figure 4.8 (right) we see that free and
congested roads segregate but remain close to each other. On the contrary, in Figure
4.10 (left) free and congested roads segregate and separate spatially from each other.
The Wasserstein distance is able to catch this difference. Indeed, in the former test the
Wasserstein distance is almost independent of the network size (Figure 4.9 (left)), while
in the latter test (Figure 4.10 (right)) it is proportional to the network size (at large
times).



140 SENSITIVITY ANALYSIS OF THE LWR MODEL

→
1

→
1

←2←2

↑3↓4

↑3↓4

Fig. 4.8. Sensitivity to distribution matrix (single junction). Density ρd at time t= 5 (left) and
t= 45 (right).
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Fig. 4.9. Sensitivity to traffic distribution at junctions (single junction). Function

t→Ĥ(ρs(·,t),ρd(·,t)) for `= 3,5,7. ε= 0.1 (left), ε= 0.2 (right).

4.4. Sensitivity to road network. In this test we measure the sensitivity to the
road network. The goal is to quantify the impact of a possible change in the network,
specifically a road closure.

The parameters which remain fixed in this test are

• Initial density : ρ0
e,j = 0.3, e∈E , j= 1,. ..,Je.

• Fundamental diagram: σ= 0.3 and fmax = 0.25.

• Distribution matrix: equidistributed along outgoing roads.

Supply distribution ρs is obtained solving the equations on the complete network,
while demand distribution ρd is obtained by closing the central rightward road ē (see,
e.g., edge 11 in Figure 4.1) just after the initial time, i.e. vehicles can come out of the
road but none of them can enter. Note that, due to the symmetry of the network and
the initial datum, ρs≡0.3 for all x and t.

In Figure 4.11 (left) we report the distribution ρd at time t= 55, to be compared
with the constant distribution.
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Fig. 4.10. Sensitivity to traffic distribution at junctions (all junctions). Density ρd at time t= 55

(left) and function t→Ĥ(ρs(·,t),ρd(·,t)) for `= 3,5,7 (right).
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Fig. 4.11. Sensitivity to road network. Density ρd at time t= 55 (left) and function

t→Ĥ(ρs(·,t),ρd(·,t)) for `= 5,7 (right).

We see that the closure of a single road has a great impact on the solution. In Figure
4.11 (right) we show the distance between the two densities as a function of time. The
long-time behavior of the sensitivity is proportional to the network size. Even if the
road closure is a local modification of the network dynamics, the behavior with respect
to the network size is more similar to that shown in Figure 4.10 (right) (all junctions
perturbation) than that shown in Figure 4.9 (left) (single junction perturbation). Again
the reason can be found by observing the densities: Figure 4.11 (left) shows that the
free and congested roads segregate and separate spatially from each other, as in Figure
4.10 (left).

5. Conclusions

In this paper we have studied the impact of various sources of error on the final
output of the LWR model on large networks. The difference between two solutions
was evaluated by means of the Wasserstein distance between the two. The Wasserstein



142 SENSITIVITY ANALYSIS OF THE LWR MODEL

distance is indeed confirmed to be the right notion of distance to be used in this con-
text, being able to catch the differences among distributions as natural intuition would
suggest. In particular, it is the only distance which is able to quantify the difference
between segregated distributions.

Unfortunately, the numerical approximation of the Wasserstein distance on spaces
other than the real line is not trivial. The LP-based method here proposed seems
to be appropriate although the computational cost and memory requirements increase
nonlinearly with the number of grid nodes.

Wrong estimation of the position of vehicles at initial time does not seem to have a
major impact on the final solution, at least for large times and small networks. Similar
conclusions apply to wrong estimation of the fundamental diagram: errors on σ or fmax

have approximately the same impact on the final solution, and the discrepancy grows
approximately linearly with respect to both |σd−σs| and |fdmax−f smax|.

Conversely, wrong estimation of traffic distribution at junctions and road closures
seem to have a far greater impact. Vehicles are redirected in the wrong direction at
every passage across the junction, therefore the error grows in time.

Numerical investigation also shows that, in general, the sensitivity grows with the
network size. Therefore we expect that LWR previsions based on real data become
rapidly unusable on large networks.

Acknowledgments. Authors want to thank Sheila Scialanga for the help in writ-
ing the numerical code and testing other than Wasserstein distances. Authors also thank
Fabio Camilli and Simone Cacace for the useful discussions and wrong suggestions.

Appendix A. The numerical scheme for a 2×2 junction. We consider the
case of a single vertex v with two incoming edges e1,e2 and two outgoing edges e′1,e

′
2.

The total densities on ei and e′i, i= 1,2, are defined by

ρe1,Je1
:=µe1,Je1

((e1,e
′
1)),v)+µe1,Je1

((e1,e
′
2),v),

ρe2,Je2
:=µe2,Je2

((e2,e
′
1)),v)+µe2,Je2

((e2,e
′
2)),v),

ρe′1,1 :=µe′1,1
((e1,e

′
1)),v)+µe′1,1

((e2,e
′
1)),v),

ρe′2,1 :=µe′2,1
((e1,e

′
2)),v)+µe′2,1

((e2,e
′
2)),v).

(A.1)

Slightly simplifying the notation, system (2.4) is explicitly written as

µn+1
e1,Je1

(e1,e′1) =µne1,Je1
(e1,e′1)− ∆t

∆x

(
µn
e1,Je1

(e1,e
′
1)

ρn
e1,Je1

G
(
ρne1,Je1

,ρn
e′1,1

)
−αv

e1e
′
1
G
(
ρne1,Je1−1,ρ

n
e1,Je1

))
,

µn+1
e1,Je1

(e1,e′2) =µne1,Je1
(e1,e′2)− ∆t

∆x

(
µn
e1,Je1

(e1,e
′
2)

ρn
e1,Je1

G
(
ρne1,Je1

,ρn
e′2,1

)
−αv

e1e
′
2
G
(
ρne1,Je1−1,ρ

n
e1,Je1

))
,

µn+1
e2,Je2

(e2,e′1) =µne2,Je2
(e2,e′1)− ∆t

∆x

(
µn
e2,Je2

(e2,e
′
1)

ρn
e2,Je2

G
(
ρne2,Je2

,ρn
e′1,1

)
−αv

e2e
′
1
G
(
ρne2,Je2−1,ρ

n
e2,Je2

))
,

µn+1
e2,Je2

(e2,e′2) =µne2,Je2
(e2,e′2)− ∆t

∆x

(
µn
e2,Je2

(e2,e
′
2)

ρn
e2,Je2

G
(
ρne2,Je2

,ρn
e′2,1

)
−αv

e2e
′
2
G
(
ρne2,Je2−1,ρ

n
e2,Je2

))
;

while system (2.5) is explicitly written as

µn+1
e′1,1

(e1,e
′
1) =µne′1,1

(e1,e
′
1)−

∆t

∆x

(
µn
e′1,1

(e1,e′1)

ρn
e′1,1

G
(
ρne′1,1

,ρne′1,2
)
−
µne1,Je1

(e1,e′1)

ρne1,Je1

G
(
ρne1,Je1

,ρne′1,1
))
,

µn+1
e′1,1

(e2,e
′
1) =µne′1,1

(e2,e
′
1)−

∆t

∆x

(
µn
e′1,1

(e2,e′1)

ρn
e′1,1

G
(
ρne′1,1

,ρne′1,2
)
−
µne2,Je2

(e2,e′1)

ρne2,Je2

G
(
ρne2,Je2

,ρne′1,1
))
,
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µn+1
e′2,1

(e1,e
′
2) =µne′2,1

(e1,e
′
2)−

∆t

∆x

(
µn
e′2,1

(e1,e′2)

ρn
e′2,1

G
(
ρne′2,1

,ρne′2,2
)
−
µne1,Je1

(e1,e′2)

ρne1,Je1

G
(
ρne1,Je1

,ρne′2,1
))
,

µn+1
e′2,1

(e2,e
′
2) =µne′2,1

(e2,e
′
2)−

∆t

∆x

(
µn
e′2,1

(e2,e′2)

ρn
e′2,1

G
(
ρne′2,1

,ρne′2,2
)
−
µne2,Je2

(e2,e′2)

ρne2,Je2

G
(
ρne2,Je2

,ρne′2,1
))
.

To complete the computation, we sum the sub-densities following (A.1). Recalling that
we have αe1e′1

+αe1e′2
= 1 and αe2e′1

+αe2e′2
= 1, we get

ρn+1
e1,Je1

=ρne1,Je1
− ∆t

∆x

(
µne1,Je1

(e1,e
′
1)G

(
ρne1,Je1

,ρne′1,1
)

+µne1,Je1
(e1,e

′
2)G

(
ρne1,Je1

,ρne′2,1
)

ρne1,Je1

−G
(
ρne1,Je1−1,ρ

n
e1,Je1

))
,

ρn+1
e′1,1

=ρne′1,1−
∆t

∆x

(
G
(
ρne′1,1,ρ

n
e′1,2

)
−
µne1,Je1

(e1,e
′
1)G

(
ρne1,Je1

,ρne′1,1
)

ρne1,Je1

−
µne2,Je2

(e2,e
′
1)G

(
ρne2,Je2

,ρne′1,1
)

ρne2,Je2

)
,

and analogous expressions for ρn+1
e2,Je2

and ρn+1
e′2,1

.
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