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ERGODICITY AND DYNAMICS FOR THE STOCHASTIC 3D
NAVIER–STOKES EQUATIONS WITH DAMPING∗

HUI LIU† AND HONGJUN GAO‡

Abstract. The stochastic 3D Navier–Stokes equation with damping driven by a multiplicative
noise is considered in this paper. The existence of invariant measures is proved for 3<β≤5 with
any α>0 and α≥ 1

2
as β= 3. Using asymptotic strong Feller property, the uniqueness of invariant

measures is obtained for the degenerate additive noise. The existence of a random attractor for the
random dynamical systems generated by the solution of stochastic 3D Navier–Stokes equations with
damping is proved for β>3 with any α>0 and α≥ 1

2
as β= 3.
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1. Introduction
We concern with a classes of stochastic Navier–Stokes equations with damping.

The damping is from the resistance to the motion of the flow, it describes various
physical situations such as drag or friction effects, and some dissipative mechanisms [21].
Importance of such problems for climate modeling and physical fluid dynamics are well
known [19,38].

In this paper, we consider the following stochastic three-dimensional Navier–Stokes
equations with damping

du−ν∆udt+(u ·∇)udt+∇pdt+α|u|β−1udt=σ(t,u)dW (t),
∇·u= 0,
u(t,x)|∂D = 0,
u(x,0) =u0(x).

(1.1)

Where D⊂R3 is an bounded domain with smooth boundary ∂D, u= (u1,u2,u3) is the
velocity, p is the pressure, ν >0 is the kinematic viscosity, β≥1, α>0 and t∈ [0,T ],
u0 is the initial velocity, and σ(t,u)dW (t), stands for the random forces, where W is a
Wiener process. In the following, for simplicity, we set ν= 1.

The deterministic three-dimensional Navier–Stokes equation with damping has been
extensively investigated. For instance, Cai and Jiu have studied the existence and
regularity of solutions for three-dimensional Navier–Stokes equations with damping [6],
they obtained the global weak solution for β≥1, the global strong solution for β≥ 7

2
and that the strong solution was unique for any 7

2 ≤β≤5. Based on it, Song and Hou
considered the global attractor in [35] and [36]. In [23], the authors considered the
L2 decay of weak solutions with β≥ 10

3 , the optimal upper bounds of the higher-order
derivative of the strong solution for 7

2 ≤β<5 and the asymptotic stability of the large
solution to the system with β≥ 7

2 . In [40], the authors considered the regularity criterion
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of the three-dimensional Navier–Stokes equations with nonlinear damping. In [43], for
α= 1, Zhou proved that the strong solution exists globally for β≥3 and strong-weak
uniqueness for β≥1, and established two regularity criteria as 1≤β≤3. Oliveira has
studied the existence of weak solutions for the generalized Navier–Stokes equations with
damping [29]. By using Fourier splitting method, the L2 decay of weak solutions for 3D
Navier–Stokes equations with damping was proved for β>2 with any α>0 in [25].

The existence of a unique strong solution to a stochastic tamed 3D Navier–Stokes
equations in the whole space was proved in [32]. The existence and uniqueness of the
solution for the 2D stochastic Navier–Stokes equations driven by jump noise were studied
in [5]. A small time large deviation principle for the stochastic non-Newtonian fluids
driven by multiplicative noise was proved in [26]. Using Galerkin’s approximation and
compactness method, Liu and Gao in [24] proved the existence of martingale solutions,
existence and uniqueness of strong solution and small time large deviation principles for
the stochastic 3D Navier–Stokes equations with damping for β>3 with any α>0 and
α≥ 1

2 as β= 3.

The irreducibility and the strong Feller property imply the uniqueness of the invari-
ant measure as explored in [12,14,15,20]. Using a sort of ground state transformation,
exponential ergodicity for stochastic Burgers and 2D Navier–Stokes equations was shown
in [18]. Existence and uniqueness of invariant measure for stochastic 2D Navier–Stokes
equations with Lévy noise were proved in [13]. Romito and Xu proved that any Markov
solution to the 3D stochastic Navier–Stokes equations driven by a mildly degenerate
noise is uniquely ergodic in [33]. The existence and uniqueness of invariant measure
for a class of stochastic Boussinesq equations driven by Lévy processes were obtained
in [42].

It is known that the asymptotic behaviour of a random dynamical system is con-
firmed by a random attractor. The existence of random attractors has been researched
by many authors refer in [1,8,11,39]. The asymptotic dynamics for stochastic reaction-
diffusion equations with multiplicative noise defined on unbounded domains were proved
in [41]. Using the Faedo–Galerkin method, the existence and uniqueness of a weak
solution were proved. Meanwhile, random dynamics of the 3D stochastic Navier–
Stokes–Voight equations were obtained in [17]. The existence of a random attractor
for the random dynamic systems generated by the solution of stochastic 2D fractional
Ginzburg–Landau equation with multiplicative was proved in [27]. The well-posedness
and dynamics of the stochastic 2D incompressible fractional magneto-hydrodynamic
equations driven by Gaussian multiplicative noise were obtained in [22].

To obtain ergodicity and dynamics for the stochastic 3D Navier–Stokes equations
with damping driven by noise, the main difficulty lies in dealing with the nonlinear term
B(u,u) =P ((u ·∇)u) and g(u) =α|u|β−1u. Using the nonlinear structure and delicated

analysis, we get the estimate of
∫ t

0

∫
D
|u|β−1|∇u|2dxds for β≥3 and use this term to

control the estimate of
∫ t

0

∫
D
|u|2|∇u|2dxds. Using the Krylov–Bogoliubov method and

by the delicated estimate for the nonlinear term, we obtain the existence of invariant
measure to the problem (1.1) for 3<β≤5 with any α>0 and α≥ 1

2 as β= 3. For the ex-
istence of random attractor for the random dynamical systems generated by the solution
of stochastic 3D Navier–Stokes equations with damping, we need make detailed estimate
for 2z−1(t)b(B(v,v),∆v); here z(t) comes from the Ornstein–Uhlenbeck process.

This paper is organized as follows. In Section 2, we recall some fundamental con-
cepts and some lemmas which are used in the sequel. In Section 3, we will prove the
existence of invariant measure to the problem (1.1) for 3<β≤5 with any α>0 and
α≥ 1

2 as β= 3. Using the notion of asymptotic strong Feller property, the uniqueness of
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invariant measures is proved for the degenerate additive noise. In Section 4, the exis-
tence of random attractor for the random dynamical systems generated by the solution
of stochastic 3D Navier–Stokes equations with damping is proved for β>3 with any
α>0 and α≥ 1

2 as β= 3.

2. Preliminaries
Let D be a bounded domain in R3 with sufficiently smooth boundary and

C∞0 (D,R3) be the set of all smooth functions from D to R3 with compact support.
Let W (t) be a sequence of independent one-dimensional standard Brownian motions
on some complete filtration probability space (Ω,F ,P ;(Ft)t≥0). We define the usual
function spaces

V={u∈ (C∞0 (D,R3))3 : divu= 0},
H= the closure of V in L2(D),

V = the closure of V in H1
0 (D).

It is well known that H, V are separable Hilbert spaces and identify H and its dual
H ′, we have V ↪→H ↪→V ′ with dense and continuous injections, and V ↪→H is compact.
H and V endowed, respectively, with the inner products

(u,v) =

∫
D

u ·vdx, ∀u,v∈H,

((u,v)) =

3∑
i=1

∫
D

∇ui ·∇vidx, ∀u,v∈V,

and norms | · |2 = (·, ·) 1
2 , || · ||2 = ((·, ·)). Let || · ||s be the Hs Sobolev-norm for s∈R. Let

P be the orthogonal projection of L2(D;R3) to H. For u,v∈L2(D;R3), Au=−P∆u is
the Stokes operator defined by 〈Au,v〉= ((u,v)). B :V ×V →V ′ is a bilinear operator
defined by 〈B(u,v),w〉= b(u,v,w), B(u) =B(u,u), where

b(u,v,w) =

3∑
i=1

∫
D

ui
∂vj
∂xi

wjdx,

and 〈·, ·〉 is the duality product between V and V ′. For simplicity, we set g(u) =α|u|β−1u
and F (u) =−(A(u)+B(u)+g(u)). Here, σ(t,u) is a mappings from V into V or H→H.

Assumption 2.1. Assume that there exist nonnegative constants k0,k1,k2,l1,l2 and l
such that for all t∈ [0,T ] and u,v∈V ,

(A1) |σ(t,u)|22≤k0 +k1|u|22.
(A2) |σ(t,u)−σ(t,v)|22≤ l1|u−v|22.
(A3) |∂uσ(t,u)|≤k2 + l|u|.
(A4) ||σ(t,u)−σ(t,v)||2≤ l2||u−v||2.

Remark 2.1. If σ(t,u) =ρu and ρ≤k2, (A3) is satisfied.

Lemma 2.1 (Burkholder–Davis–Gundy Inequality [7]). For every p≥1, there exists a
constant Cp such that for any real-valued square integrable martingale M with M(0)=0,
and for any T >0,

C−1
p E[M ]

p/2
T ≤E( sup

0≤t≤T
|M(t)|p)≤CpE[M ]

p/2
T , (2.1)
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where [M ]T is called the quadratic variation of M.

Now we present some concepts related to a random dynamic system refer in [1–4,
9, 16,34].

Let (X,|| · ||X) be a separable Hilbert space, (Ω,F ,P ) be a probability space and
{θt : Ω 7→Ω, t∈R} be a family of measure preserving transformations such that (t,ω) 7→
θtω is measurable, θ0 = IdΩ, θt+s=θtθs, for all s,t∈R. The space (Ω,F ,P,(θt)t∈R) is
a (measurable) dynamical system. We define the mapping S(t,s;ω) :X→X, −∞<s<
t<∞, dependence on ω∈Ω.

We define the random omega limit set of a bounded set B⊂X at time t as

A(B,t,ω) =
⋂
T≤t

⋃
s≤T

S(t,s;ω)B.

According to [9, 10], we get the following theorem about the existence of random
attractors.

Theorem 2.1. Let S(t,s;ω) be a stochastic dynamical system with the following
properties:

(1) S(t,r;ω)S(r,s;ω)x=S(t,s;ω)x, for all s≤ r≤ t and x∈X;

(2) S(t,s;ω) is continuous in X, for all s≤ t;
(3) the mapping ω 7→S(t,s;ω)x is measurable for all s<t and x∈X;

(4) the mapping s 7→S(t,s;ω)x is right continuous for all t,x∈X and P −a.e. and ω∈Ω.

Suppose that there exists a measure preserving mapping θt,t∈R such that

S(t,s;ω)x=S(t−s,0;θsω)x

holds for P −a.e. ω∈Ω. Then there exists a compact attracting set K(ω) at time 0. For
P −a.e. ω∈Ω, we set A(ω) =

⋃
B⊂X

A(B,ω) where the union is taken over all the bounded

subsets of X, and A(B,ω) is defined by

A(B,ω) =
⋂
T≤0

⋃
s≤T

S(0,s;ω)B.

Hence, A(ω) is the random attractor.

3. Ergodicity
We now rewrite problem (1.1) as follows in the abstract form:

du(t) =−(Au(t)+B(u(t))+g(u(t)))dt+σ(t,u)dW (t), (3.1)

u(x,0) =u0, x∈D.

Theorem 3.1. Suppose that Assumption 2.1 holds and β>3 with any α>0 and α≥ 1
2

as β= 3. Then for any F0−adapted V-valued function u0 satisfying E||u0||2p<∞ for
p≥1, then there exists a unique strong solution u(t) to the problem (3.1) with the ini-
tial condition u(0) =u0, and u(t)∈L2(Ω,L2([0,T ],H2))∩L2(Ω,L∞([0,T ],V )), it satis-
fies the following inequality

E( sup
0≤t≤T

||u(t)||2p+

∫ T

0

||u(s)||2p−2||∇u(s)||2ds+

∫ T

0

||u(s)||2p−2|∇|u|
β+1
2 |22ds
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+

∫ T

0

∫
D

||u(s)||2p−2|u|β−1|∇u|2dxds)≤C(E||u0||2p+1).

Proof. By using monotonicity method, we will prove in Appendix.

Remark 3.1. Using the damping term, we get the estimate of
∫ t

0

∫
D
|u|β−1|∇u|2dxds

for β≥3 and use this term to control the estimate of
∫ t

0

∫
D
|u|2|∇u|2dxds. We overcome

the convective term (u ·∇)u in the space V and prove the existence and uniqueness of
strong solution for the stochastic 3D Navier–Stokes equations with damping. In this
paper [24], using the existence of martingale solutions plus pathwise uniqueness implies
the existence of a unique strong solution. However, we get the existence and uniqueness
of strong solution for the stochastic 3D Navier–Stokes equations with damping by using
monotonicity method.

Let Cb(V ) be the set of all bounded and locally uniformly continuous functions on
V and M(V ) denote the probability measure space on V . Under the norm

||ϕ||∞= sup
u∈V
|ϕ(u)|,

then Cb(V ) is a Banach space. Let Pt be a Markov semigroup in the space Cb(V )
defined as

Ptϕ(u0) =Eϕ(u(t,·;0,u0)), t≥0, u0∈V, ϕ∈Cb(V ).

P∗t define on the probability measure space M(V ) and is defined by∫
V

ϕd(P∗t µ) =

∫
V

Ptϕdµ, ∀ϕ∈Cb(V ), ∀µ∈M(V ).

If P∗t µ=µ for any t≥0, then a measure µ∈M(V ) is called invariant.

3.1. Existence of invariant measures. For fixed initial value u0∈V , we
denote the unique solution in Theorem 3.1 by u(t,u0). Then {u(t,u0) :u0∈V,t≥0}
forms a strong Markov process with state space V . For two initial data u01,u02∈V , we
denote ui=u(t,u0i) the solutions starting from u0i, i= 1,2. Let us define the stopping
time

τN = inf{t≥0 : ||u(t,u01)||∨||u(t,u02)||≥N}.

Lemma 3.1. Suppose that Assumption 2.1 holds and 3<β≤5 with any α>0 and α≥ 1
2

as β= 3, then there exists a constant CN such that

E||u(t∧τN ,u01)−u(t∧τN ,u02)||2≤CN ||u01−u02||2. (3.2)

Proof. Let ω(t) =u(t,u01)−u(t,u02). Applying the Itô formula to ||ω(t∧τN )||2,
we deduce

||ω(t∧τN )||2 =||ω(0)||2−2

∫ t∧τN

0

((Au1−Au2,ω(s)))ds

−2

∫ t∧τN

0

((B(u1(s))−B(u2(s)),ω(s)))ds

−2

∫ t∧τN

0

((g(u1(s))−g(u2(s)),ω(s)))ds
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+

∫ t∧τN

0

||σ(s,u1(s))−σ(s,u2(s))||2ds

+2

∫ t∧τN

0

((ω(s),σ(s,u1(s))−σ(s,u2(s))))dW (s)

=||ω(0)||2 +I1 +I2 +I3 +I4 +I5. (3.3)

By estimating the first term, we get

I1 =−2

∫ t∧τN

0

((Au1−Au2,ω(s)))ds

=−2

∫ t∧τN

0

||∇ω(s)||2ds. (3.4)

For I2, we have the following inequalities

I2 =−2

∫ t∧τN

0

((B(u1,ω)+B(ω,u2),ω(s)))ds

≤
∫ t∧τN

0

(ε||∇ω||2 +C|u1 ·∇ω|22 +C|ω ·∇u2|22)ds

≤
∫ t∧τN

0

(ε||∇ω||2 +C|u1|2∞|∇ω|22 +C|ω|2∞|∇u2|22)ds

≤
∫ t∧τN

0

(ε||∇ω||2 +C||u1||||∇u1||||ω||2 +C||ω||||∇ω||||u2||2)ds

≤
∫ t∧τN

0

(2ε||∇ω||2 +C||u1||||∇u1||||ω||2 +C||ω||2||u2||4)ds. (3.5)

For I3, we deduce

I3 =−2

∫ t∧τN

0

((g(u1(s))−g(u2(s)),ω(s)))ds

≤
∫ t∧τN

0

||∇ω||2ds+C

∫ t∧τN

0

∫
D

[|ω|(|u1|β−1 + |u2|β−1)]2dxds

≤
∫ t∧τN

0

||∇ω||2ds+C

∫ t∧τN

0

|ω|26
∣∣|u1|β−1 + |u2|β−1

∣∣2
3
ds

≤
∫ t∧τN

0

||∇ω||2ds+C

∫ t∧τN

0

||ω||2(|u1|2(β−1)
3(β−1) + |u2|2(β−1)

3(β−1))ds. (3.6)

Taking expectations of equality (3.3) and combining itmes (3.4)-(3.6) and (3.3), we
deduce

E||ω(t∧τN )||2 +2E
∫ t∧τN

0

||∇ω(s)||2ds≤E
∫ t∧τN

0

(C||u1||||∇u1||||ω||2

+C||ω||2||u2||4)ds+(1+2ε)E
∫ t∧τN

0

||∇ω||2ds

+CE
∫ t∧τN

0

||ω||2(|u1|2(β−1)
3(β−1) + |u2|2(β−1)

3(β−1))ds

+CE
∫ t∧τN

0

||ω||2ds+ ||ω(0)||2. (3.7)
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For |∇|ui|
β+1
2 |2, because H1 ↪→L6 and by Theorem 3.1, we have∫ t∧τN

0

|ui|β+1
3(β+1)ds≤ c

∫ t∧τN

0

|∇|ui|
β+1
2 |22ds≤C, i= 1,2. (3.8)

Since

0<
2(β−3)

β−1
≤1, for 3<β≤5,

hence, we deduce∫ t∧τN

0

|u1|2(β−1)
3(β−1)ds≤C

∫ t∧τN

0

|u1|
2(β−3)(β+1)

β−1

3(β+1) ||u1||
8

β−1 ds

≤C sup
0≤s≤t∧τN

||u1||
8

β−1 (

∫ t∧τN

0

|u1|β+1
3(β+1)ds)

2(β−3)
β−1 (t∧τN )

5−β
β−1 . (3.9)

Similarly,∫ t∧τN

0

|u2|2(β−1)
3(β−1)ds≤C

∫ t∧τN

0

|u2|
2(β−3)(β+1)

β−1

3(β+1) ||u2||
8

β−1 ds

≤C sup
0≤s≤t∧τN

||u2||
8

β−1 (

∫ t∧τN

0

|u2|β+1
3(β+1)ds)

2(β−3)
β−1 (t∧τN )

5−β
β−1 . (3.10)

Choosing sufficiently small ε and applying the Gronwall lemma, we get

E||ω(t∧τN )||2≤CN ||u01−u02||2. (3.11)

For α≥ 1
2 as β= 3, we can get the above estimate easily. This completes the proof

of Lemma 3.1.

Theorem 3.2. Suppose that Assumption 2.1 holds and 3<β≤5 with any α>0 and
α≥ 1

2 as β= 3, for any t>0, Pt maps Cb(V ) into Cb(V ). Then Pt is a Feller semigroup
on Cb(V ).

Proof. We will prove that Pt is locally uniformly continuous. Our main task is to
show that for any ε>0, t>0 and m∈N , there exists δ>0 such that

sup
||u01−u02||≤δ

|Ptϕ(u01)−Ptϕ(u02)|<ε, (3.12)

where u01,u02∈Bm and Bm={u∈V : ||u||≤m}. Let us also define the stopping time

τN = inf{t≥0 : ||u(t,u01)||∨||u(t,u02)||≥N}.

First, by the Theorem 3.1, we deduce that

E|ϕ(u(t,u0i))−ϕ(u(t∧τN ,u0i))|≤2|ϕ|∞P{τN <t}
≤2|ϕ|∞ sup

u0i∈Bm
E[ sup
s∈[0,t]

||u(s,u0i)||2]/N2

≤2C|ϕ|∞/N2, i= 1,2.

Choosing N >m sufficiently large such that we have the following inequality

E|ϕ(u(t,u0i))−ϕ(u(t∧τN ,u0i))|≤
ε

4
, i= 1,2. (3.13)
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Next, for any u1,u2∈Bm and fixed N with ||u1−u2||≤ δN , there exists δN >0 such
that

|ϕ(u1)−ϕ(u2)|≤ ε
4
.

Using Lemma 3.1 and Chebyshev inequality and choosing ||u01−u02||2≤ εδ2N
8C|ϕ|∞ , we

deduce

E|ϕ(u(t∧τN ,u01))−ϕ(u(t∧τN ,u02))|

=

∫
Ω1

|ϕ(u(t∧τN ,u01))−ϕ(u(t∧τN ,u02))|P (dω)

+

∫
Ω2

|ϕ(u(t∧τN ,u01))−ϕ(u(t∧τN ,u02))|P (dω)

≤ε
4

+2|ϕ|∞P{||u(t∧τN ,u01)−u(t∧τN ,u02)||>δN}

≤ε
4

+2|ϕ|∞
E||u(t∧τN ,u01)−u(t∧τN ,u02)||2

δ2
N

≤ ε
2
, (3.14)

where Ω1 ={ω : ||u(t∧τN ,u01)−u(t∧τN ,u02)||≥ δN} and Ω2 ={ω : ||u(t∧τN ,u01)−
u(t∧τN ,u02)||<δN}. By inequalities (3.13) and (3.14), inequality (3.12) is proved,
this completes the proof of Theorem 3.2.

Theorem 3.3. Suppose that Assumption 2.1 holds and 3<β≤5 with any α>0 and
α≥ 1

2 as β= 3, then there exists an invariant measure µ∗ associated to the semigroup
Pt such that for any t≥0 and ϕ∈Cb(V ),∫

V

Ptϕ(u)µ∗(du) =

∫
V

ϕ(u)µ∗(du).

Proof. By the classical Krylov–Bogoliubov method [12], we need to show that for
any ε>0, there exists M>0 such that for any T >1,

1

T

∫ T

0

P (||u(s)||2H2 >M)ds<ε. (3.15)

Let u0 = 0. Applying Itô’s formula to the process |u(t)|22, we have for any t≥0

E|u(t)|22 +

∫ t

0

E||u(s)||2ds+2

∫ t

0

E|u(s)|β+1
β+1ds≤Ct.

Applying Itô formula to ||u(t)||2, we have

E(||u(t)||2 +

∫ t

0

∫
D

|u|β−1|∇u|2dxds+

∫ t

0

|∇|u|
β+1
2 |22ds)

≤− 1

4

∫ t

0

E||∇u(s)||2ds+C

∫ t

0

E||u(s)||2ds+Ct

≤− 1

4

∫ t

0

E||∇u(s)||2ds+Ct.

Then we deduce

1

t

∫ t

0

E||u(s)||2H2ds<C.

Hence, inequality (3.15) is proved, this completes the proof of Theorem 3.3.
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3.2. Ergodicity. In this subsection, we prove the uniqueness of invariant mea-
sures for the degenerate additive noise.

For any m∈N, let Ω =C0(R+;Rm) be the space of all continuous functions with
initial values 0. P the standard Wiener measure on F =B(C0(R+;Rm)). The coordinate
process

W (t,ω) =ω(t), ω∈Ω,

is a standard Wiener process on (Ω,F ,P ).
Consider the following stochastic 3D Navier–Stokes equations with damping:

du(t) =−(Au(t)+Bu(t)+g(u(t)))dt+dw(t), (3.16)

here, u(0) =u0∈V and w(t) =QW (t) is the noise, and the linear map Q :Rm→V is
defined by

Qei= qiei, qi>0,i= 1,2, ·· · ,m,

where, ei is the canonical basis of Rm and ei is orthonormal basis of V satisfy

P∆ei=−λiei,

where 0<λ1≤λ2≤···≤λm→∞.
Let

ζ0 =

m∑
i=1

q2
i

λi
, ζ1 =

m∑
i=1

q2
i .

Moreover, the quadratic variation of w(t) in H and V are defined by

[w]H(t) = ζ0t, [w]V (t) = ζ1t.

Theorem 3.4. Let {Pt}t≥0 be the transition semigroup associated with equation
(3.16), then for any large sufficient m∗, there exists a unique invariant probability mea-
sure associated with {Pt}t≥0 for 3<β≤5 with any α>0 and α≥ 1

2 as β= 3.

The proof of Theorem 3.4 is divided into two parts. In the first part, we show the
asymptotic strong Feller property of Pt. In the second part, we prove that the origin 0
belongs to the support of each invariant measure. By [20], these two parts will imply
Theorem 3.4.

3.2.1. Asymptotically strong Feller property. For 0≤s<t, let Js,tv0 be
the solution of the linearized equation

∂tJs,tv0 = ∆Js,tv0 +K(u(t,ω;u0),Js,tv0),Js,sv0 =v0, (3.17)

here, K is linear with respect to the second component and defined by

K(u,v) =−P((v ·∇)u+(u ·∇)v)−P(α|u|β−1v+α(β−1)|u|β−3〈u,v〉R3u).

Inspired by [30,32], we get that for each ω

(J0,tv0)(ω) = lim
ε→0

u(t,ω;u0 +εv0)−u(t,ω;u0)

ε
. (3.18)
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Let H be the Cameron–Martin space and for any v∈H, the Malliavin derivative is given
by

Dvu(t,ω;u0) = lim
ε→0

u(t,ω+εv;u0)−u(t,ω;u0)

ε
, P−a.s. (3.19)

Observe that v can be random and possibly nonadapted to the filtration generated by
W . Let Atv=Dvu(t,ω;u0), then

∂tAtv= ∆Atv+K(u(t,ω;u0),Atv)+Qv̇(t), A0v= 0, (3.20)

where, v̇(t) is the derivative of v(t) with respect to t.
Next, At is defined by

Atv=

∫ t

0

Js,tQv̇(s)ds.

For v0∈V and v∈H, let

v(t) =J0,tv0−Atv.

We have

∂tv(t) = ∆v(t)+K(u(t),v(t))−Qv̇(t), v(0) =v0.

Let H1
l be the following finite-dimensional “low-frequency” subsequence of V ,

H1
l = span{e1,e2,·· · ,em},

and H1
h be the “high-frequency” subspace of V . We get the following direct sum de-

composition:

H=H1
l ⊕Hlh,

such that for any u∈V

u=ul+uh, ul∈H1
l , uh∈H1

h.

For any v∈H, we give

Πlv=

m∑
i=1

〈(−∆)ei,v〉ei∈H1
l ,

and

Πhv=v−Πlv.

Lemma 3.2. For any u,v∈H2, let

N (u) = ||∇u||2 + |u|2(β−1)
3(β−1). (3.21)

We deduce

〈vh,K(u,v)〉V ≤
1

2
||∇vh||2 +CN (u)(||vh||2 + ||vl||2), (3.22)
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and

||ΠlK(u,v)||2≤Cm|v|2(1+ |u|β−1
2(β−1)), (3.23)

here, Cm only depends on m.

Proof. For the first inequality (3.22), we deduce

〈vh,K(u,v)〉V = I1 +I2 +I3, (3.24)

where,

I1 =−〈vh,P((v ·∇)u)〉V ,
I2 =−〈vh,P((u ·∇)v)〉V ,
I3 =−〈vh,P(α|u|β−1v+α(β−1)|u|β−3〈u,v〉R3u)〉V .

For the term I1, applying the Young’s inequality, we deduce

I1≤
1

8
||∇vh||2 +2||v| · |∇u||22

≤1

8
||∇vh||2 +2|v|26 · |∇u|23

≤1

8
||∇vh||2 +C||vh||2 · ||∇u||2 +C||vl||2 · ||∇u||2. (3.25)

For the term I2, we get

I2≤
1

8
||∇vh||2 +2||u| · |∇v||22

≤1

8
||∇vh||2 +2|u|2∞ · |∇v|22

≤1

8
||∇vh||2 +C||vh||2 · ||∇u||2 +C||vl||2 · ||∇u||2. (3.26)

For the term I3, we get

I3≤
1

4
||∇vh||2 +C||u|β−1 · |v||22

≤1

4
||∇vh||2 +C|v|26|u|

2(β−1)
3(β−1)

≤1

4
||∇vh||2 +C||vh||2|u|2(β−1)

3(β−1) +C||vl||2|u|2(β−1)
3(β−1). (3.27)

By the above calculations, this completes the proof of inequality (3.22).
For the second inequality (3.23), we have

||ΠlK(u,v)||2 =

m∑
i=1

〈ei,K(u,v)〉2V =

m∑
i=1

3∑
j=1

Jij , (3.28)

here,

Ji1 =−〈ei,P((v ·∇)u)〉V ,
Ji2 =−〈ei,P((u ·∇)v)〉V ,
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Ji3 =−〈ei,P(α|u|β−1v+α(β−1)|u|β−3〈u,v〉R3u)〉V .

For the term Ji1, we deduce

Ji1 =−〈ei,P((v ·∇)u)〉V
≤|∇∆ei|∞||v|u|L1

≤Cei |v|2|u|2. (3.29)

Similarly, we get

Ji2≤Cei |v|2|u|2, (3.30)

Ji3≤Cei |v|2|u|
β−1
2(β−1). (3.31)

We get by adding them together

||ΠlK(u,v)||2≤Cm|v|2(1+ |u|β−1
2(β−1)),

where, Cm only depends on m. This completes the proof of inequality (3.23).

Lemma 3.3. For any η>0, then there exist positive constants C1, C2>0 such that
for any t>0 and u0∈V ,

Eexp{η
∫ t

0

N (u(s;u0))ds}≤ exp{C1||u0||2 +C2t}, (3.32)

here, N (u) is given by definition (3.21).

Proof. Applying Itô’s formula to |u(t)|22, we get

|u(t)|22 = |u0|22−2

∫ t

0

||u(s)||2ds−2

∫ t

0

|u(s)|β+1
β+1ds+2

∫ t

0

〈u(s),dw(s)〉+ζ0t. (3.33)

Applying Hölder’s inequality, then there exists a constant C>0 such that

|u(t)|22−C≤|u(t)|β+1
β+1.

We have

|u(t)|22≤|u0|22 +2

∫ t

0

(C−||u(s)||2−|u(s)|22)ds+2

∫ t

0

〈u(s),dw(s)〉+ζ0t. (3.34)

Applying ( [32], Lemma 6.2), we have that for any t,η>0,

Eexp{η
∫ t

0

||u(s)||2ds}≤ exp{η|u0|22 +Cηt}. (3.35)

Next, applying the Itô’s formula to ||u(t)||2, we get

||u(t)||2≤||u0||2−
∫ t

0

||∇u(s)||2ds−
∫ t

0

∣∣∣|∇u||u| β−1
2

∣∣∣2
2
ds− 4(β−1)

(β+1)2

∫ t

0

‖|u|
β+1
2 ‖2ds

+C

∫ t

0

||u(s)||2ds+2

∫ t

0

〈u(s),dw(s)〉V +

∫ t

0

ζ1ds. (3.36)
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Applying Poincare’s inequality, then there exists a constant c>0 such that

|u(s)|2(β−1)
3(β−1)−c≤

4(β−1)

(β+1)2
‖|u|

β+1
2 ‖2.

Then, we have

||u(t)||2≤||u0||2 +C

∫ t

0

(−||∇u(s)||2−|u(s)|2(β−1)
3(β−1) + ||u(s)||2)ds

+2

∫ t

0

〈u(s),dw(s)〉V +

∫ t

0

(c+ζ1)ds. (3.37)

Applying inequality (3.37) and exponential martingales, then we obtain inequality
(3.32).

Inspired by ( [20], Proposition 3.12), we show the following proposition which imply
the asymptotically strong Feller property of (Pt)t≥0.

Proposition 3.1. Let (Pt)t≥0 be the semigroup associate with the 3D SNS with
damping (3.16). Then there exist constant m∗∈N and some constants C0,C1,γ >0
such that for any t>0, u0∈V , and any Fréchet differentiable function ϕ on V with
|ϕ|∞, ‖ϕ‖∞<∞,

||∇Ptϕ(u0)||≤C0exp{C1||u0||2}·(|ϕ|∞+e−γt‖ϕ‖∞).

Proof. For any v0∈V with ||v0||= 1, denote

vl(t) =

{
v0l(1− t

2||v0l|| ), t∈ [0,2||v0l||],
0, t∈ (2‖v0l‖,∞).

(3.38)

Suppose that vh(t) satisfies the following linear evolution equation:

∂tvh(t) = ∆Πhvh(t)+ΠhK(u(t),vh(t)+vl(t)), vh(0) =v0h.

Let

v(t) =vh(t)+vl(t),

and

v̇(t) =Q−1(
vl ·1{t<2||vl||}

2||vl||
+∆vl(t)+ΠlK(u(t),v(t))).

Applying the chain rule and integration by parts formula in the Malliavin calculus [28],
we deduce

〈∇Ptϕ(u0),v0〉V =E〈(∇ϕ)(u(t;u0)),J0,tv0〉V
=E〈(∇ϕ)(u(t;u0)),Atv(t)〉V +E〈(∇ϕ)(u(t;u0)),v(t)〉V
=E(Dν(ϕ(u(t;u0))))+E〈(∇ϕ)(u(t;u0)),v(t)〉V

=E(ϕ(u(t;u0)) ·
∫ t

0

v̇(s)dW (s))+E〈(∇ϕ)(u(t;u0)),v(t)〉V

≤|ϕ|∞
∫ t

0

E|v̇(s)|2ds+ ||ϕ||∞E||v(t)||. (3.39)
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Applying the chain rule and Lemmas 3.2 and 3.3, we get

d

dt
||vh(t)||2 =−2||∇hvh(t)||2 +2〈vh(t),ΠhK(u(t),v(t))〉V

≤−||∇hvh(t)||2 +C ·N (u(t)) ·(||vh(t)||2 + ||vl(t)||2)

≤(−λm+C ·N (u(t))) · ||vh(t)||2 +C ·N (u(t)) · ||vl(t)||2.

Notice that

vl(t) = 0 for t≥2,

applying Gronwall’s inequality, we have

||vh(t)||2≤||vh(0)||2exp{−λmt+C

∫ t

0

N (u(s))ds}

+exp{−λm(t−2)+C

∫ t

0

N (u(s))ds}
∫ 2

0

||vl(s)||2ds.

By virtue of Lemma 3.3, since λm→∞ as m→∞ and ||vl(t)||≤1 for 0≤ t≤2, then
there exist positive constants γ and m∗ such that

E||vh(t)||2≤Cλ1 ·eC||u0||2−γt.

Therefore, for all t≥2

E||v(t)||≤Cλ1 ·eC||u0||2−γt. (3.40)

By Lemma 3.2, we get

E|v̇(t)|2≤Cm(1+E(|v(t)|2(1+ |u(t)|β−1
2(β−1))))

≤Cm(1+(E|v(t)|22)
1
2 (1+E|u(t)|2(β−1)

2(β−1))
1
2 )

≤Cm(1+(E|v(t)|22)
1
2 (1+E|u(t)|2(β−1)

2(β−1))).

Since
∫ t

0
E|u(s)|2(β−1)

2(β−1)ds<C and applying inequality (3.40), we get∫ ∞
0

E|v̇(t)|2dt≤Cm,λ1,γ ·eC||u0||2 ·(1+

∫ ∞
0

e−γtE|u(t)|2(β−1)
2(β−1)dt)

≤Cm,λ1,γ ·eC||u0||2 .

This completes the proof of Proposition 3.1.

3.2.2. A support property of invariant measures. Inspired by [12,20,30,32],
we prove the following proposition.

Proposition 3.2. 0 belongs to the support of any invariant measure of {Pt}t≥0.

We need the following lemma result.

Lemma 3.4. For any r1, r2>0, then there exists T >0 such that

inf
||u0||≤r1

P{ω : ||u(T,ω;u0)||≤ r2}>0.
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Proof. Let

v(t) =u(t)−w(t),

then

v′(t) =−A(v(t)+w(t))−((v(t)+w(t)) ·∇)(v(t)+w(t))

−α|v(t)+w(t)|β−1(v(t)+w(t)). (3.41)

Let T >0 and ε∈ (0,1), to be determined below. Suppose that

sup
t∈[0,T ]

||w(t)||H6 <ε. (3.42)

Taking the inner product of equation (3.41) with v(t) in L2, we get

d

dt
|v(t)|22 =J1 +J2 +J3 +J4, (3.43)

where,

J1 =−2||v(t)||2 +2〈∆w(t),v(t)〉,
J2 =−2〈v(t),((v(t)+w(t)) ·∇)(v(t)+w(t))〉,
J3 =−2〈v(t)+w(t),α|v(t)+w(t)|β−1(v(t)+w(t))〉,
J4 = 2〈w(t),α|v(t)+w(t)|β−1(v(t)+w(t))〉.

For the term J1, by the above inequality (3.42), we get

J1≤−2||v(t)||2 +Cε|v(t)|2. (3.44)

For the term J2, applying the Sobolev inequality, we get

J2 =−2〈v(t),((v(t)+w(t)) ·∇)(v(t)+w(t))〉,
≤C||w(t)||∞|v(t)+w(t)|22
≤Cε|v(t)|22 +Cε. (3.45)

For the term J3, we get

J3≤−|v(t)|β+1
β+1 +Cε. (3.46)

For the term J4, we have

J4≤2|w(t)|∞|v(t)+w(t)|ββ
≤Cε|v(t)|ββ+Cε

≤Cε|v(t)|β+1
β+1 +Cε|v(t)|22 +Cε. (3.47)

We have by adding them together

d

dt
|v(t)|22≤−2λ1|v(t)|22 +Cε|v(t)|22 +(Cε−1)|v(t)|β+1

β+1 +Cε. (3.48)
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Hence, by Lemma 6.1 in [32], we deduce that for any δ,h>0 , then there exist T0>0
large enough and ε sufficiently small such that

sup
t∈[0,T0]

|v(t)|2≤2r1, (3.49)

and

sup
t∈[T0,T0+h]

|v(t)|2≤ δ. (3.50)

Taking the inner product of equation (3.41) with −∆v(t) in L2, we get

d

dt
||v(t)||2≤ I1 +I2 +I3 +I4, (3.51)

where

I1 = 2〈F (v(t)+w(t)),v(t)+w(t)〉V ,
I2 = 2|〈∆2w(t),v(t)+w(t)〉|,
I3 = 2|〈∆w(t),((v(t)+w(t)) ·∇)(v(t)+w(t))〉|,
I4 = 2|〈∆w(t),α|v(t)+w(t)|β−1(v(t)+w(t))〉|.

For the term I1, we get

I1≤−||∇(v(t)+w(t))||2−
∣∣∣|v(t)+w(t)|

β−1
2 ∇(v(t)+w(t))

∣∣∣2
2

+C||v(t)+w(t)||2

− 4(β−1)

(β+1)2

∣∣∣∇|v(t)+w(t)|
β+1
2

∣∣∣2
2

≤− 1

2
||∇v(t)||2 +C||v(t)||2−c|v(t)|β+1

β+1 +Cε

≤− 1

4
||∇v(t)||2 +C|v(t)|22−c|v(t)|β+1

β+1 +Cε. (3.52)

For the term I2, by inequality (3.42) we get

I2≤Cε|v(t)|22 +Cε. (3.53)

For the term I3, by inequality (3.42) we get

I3≤2|∇∆w|∞|v(t)+w(t)|22
≤Cε|v(t)|22 +Cε. (3.54)

For the term I4, we get

I4≤Cε|v(t)|ββ+Cε

≤Cε|v(t)|β+1
β+1 +Cε|v(t)|22 +Cε. (3.55)

We have by adding them together

d

dt
||v(t)||2≤−C0||v(t)||2 +C|v(t)|22 +Cε|v(t)|22 +(Cε−c)|v(t)|β+1

β+1 +Cε. (3.56)
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Applying Gronwall’s inequality, for any 0<t1<t2, we get

||v(t2)||2≤e−C0(t2−t1)||v(t1)||2 +
1

C0
(C sup

t∈[t1,t2]

|v(t)|22

+Cε sup
t∈[t1,t2]

|v(t)|22 +(Cε−c) sup
t∈[t1,t2]

|v(t)|β+1
β+1 +Cε). (3.57)

Let t1 = 0 and t1 =T0, and by inequality (3.49), we have

||v(T0)||2≤r2
1 +

1

C0
(C sup

t∈[0,T0]

|v(t)|22

+Cε sup
t∈[0,T0]

|v(t)|22 +(Cε−c) sup
t∈[0,T0]

|v(t)|β+1
β+1 +Cε)

≤C(r2
1 +1). (3.58)

Next, let t1 =T0 and t2 =T0 +h, we have

||v(T0 +h)||2≤e−C0hC(r2
1 +1)+

1

C0
(C sup

t∈[T0,T0+h]

|v(t)|22

+Cε sup
t∈[T0,T0+h]

|v(t)|22 +(Cε−c) sup
t∈[T0,T0+h]

|v(t)|β+1
β+1 +Cε), (3.59)

which together with inequality (3.50) implies that there exist a T sufficiently large and
ε sufficiently small such that

||v(T )||≤ r2

2
. (3.60)

Hence, then there exist T large enough and ε∈ (0,1) small enough such that for any
||u0||≤ r1

||u(T,ω;u0)||≤ r2. (3.61)

Let

Ωε={ω : sup
t∈[0,T ]

||w(t,ω)||H6 <ε}, (3.62)

then

Ωε⊂∩||u0||≤r1{ω : ||u(T,ω;u0)||≤ r2}. (3.63)

Since Ωε is an open set and P (Ωε)>0, this completes the proof of Lemma 3.4.

Proof. (Proof of Proposition 3.2.) Suppose that Br ={u0∈V : ||u0||≤ r} denotes
the ball in V for r>0. For any invariant measure µ, then there exists a constant r1>0
such that

µ(Br1)≥ 1

2
.

By the above lemma, we get for any r2>0,

µ(Br2) =P∗t µ(Br2) =

∫
V

Pt(x,Br2)µ(dx)
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=

∫
V

Pt1Br2 (x)µ(dx)≥
∫
Br1

Pt1Br2 (x)µ(dx)

≥µ(Br1) inf
x∈Br1

Pt1Br2 (x)>0,

which implies that 0 belongs to the support of µ. This completes the proof of Proposition
3.2.

4. Random attractor
In this section, let σ(t,u) =ρu, we consider the following stochastic 3D Navier–

Stokes equations with damping driven by a multiplicative white noise.
du−ν∆udt+(u ·∇)udt+∇pdt+α|u|β−1udt=ρudW (t),
∇·u= 0,
u(t,x)|∂D = 0,
u(x,0) =u0(x).

(4.1)

Where W (t) is two-sided real-valued Wiener process on a probability space (Ω,F ,P ).
We consider the probability space (Ω,F ,P ), where

Ω ={ω∈C(R,R) :ω(0) = 0}.

F is the Borel σ−algebra induced by the compact-open topology of Ω, and P the
corresponding Wiener measure on (Ω,F).

Taking W (t,ω) =ω(t), the time shift is defined by

θtω(s) =ω(t+s)−ω(t), for s,t∈R.

The process

z(t) =e−ρW (t)

satisfies the following stochastic differential equation:

dz(t) =
1

2
ρ2zdt−ρzdW (t).

Let v(t) =u(t)z(t), we get the following random differential equation

dv(t)

dt
=−Av(t)−z−1(t)B(v,v)+

1

2
ρ2v−z−(β−1)α|v|β−1v. (4.2)

For each ω∈Ω, if s∈R, there exists a unique solution to equation (4.2) defined on [s,∞)
such that

v(s,ω) =vs(ω), P−a.s.

Lemma 4.1. Suppose that β>3 with any α>0 and α≥ 1
2 as β= 3, and us∈L2 with

|u(s)|2≤R, then there exists a random radius r0(ω) such that, for any given R>0, there
exists s1(ω)≤−1 such that for all s≤s1(ω), for P−a.s. ω∈Ω, we have the following
inequality

|v(t)|22 +e−t
∫ t

s

eτ |v(τ)|22dτ ≤ r2
0(ω), ∀t∈ [−1,0], (4.3)
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here, r0 is to be determined.

Proof. Multiplying the equation (4.2) in L2 by v, we deduce that

1

2

d

dt
|v|22 + ||v||2 +αz−(β−1)|v|β+1

β+1 =−z−1(t)b(B(v,v),v)+
1

2
ρ2|v|22. (4.4)

Using Young’s inequality, then there exists a constant C such that

(ρ2 +2)|v|22≤αz−(β−1)|v|β+1
β+1 +Cz2.

Hence, we have

d

dt
|v|22 +2||v||2 +az−(β−1)|v|β+1

β+1 +2|v|22≤Cz2. (4.5)

For any t>s, we have

|v(t)|22 +e−t
∫ t

s

eτ |v(τ)|22dτ ≤e−t(es|v(s)|22 +C

∫ t

s

eτz2(τ)dτ)

=e−t(esz2|u(s)|22 +C

∫ t

s

eτz2(τ)dτ). (4.6)

Since

lim
s→−∞

W (s)

s
= 0, P−a.s,

let ε= 1
4ρ , then exists a function s′1(ω)≤−1 such that∣∣∣∣W (s)

s

∣∣∣∣<ε, as s<s′1(ω).

Hence, we have

esz2(s) =es(1−2ρW (s)/s)

<e
1
2 s.

As s→−∞, it is easy to get that

esz2(s)→0, P−a.s.

For the last term on the right of inequality (4.6), we have

C

∫ t

s

eτz2(τ)dτ ≤C
∫ 0

−∞
eτe−2ρW (τ)dτ

≤C(

∫ 0

s′1(ω)

eτ−2ρW (τ)dτ+

∫ s′1(ω)

−∞
e
τ
2 dτ).

For us∈L2 with |u(s)|2≤R, then there exists a time s1(ω)≤s′1(ω) such that

esz2|u(s)|22≤esz2R2≤1, P−a.s., for ∀s≤s1(ω). (4.7)
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For t∈ [−1,0], we get

|v(t)|22 +e−t
∫ t

s

eτ |v(τ)|22dτ ≤e2(1+C(

∫ 0

s′1(ω)

eτ−2ρW (τ)dτ+

∫ s′1(ω)

−∞
e
τ
2 dτ))

,r2
0(ω). (4.8)

This completes the proof of Lemma 4.1.

Lemma 4.2. Suppose that β>3 with any α>0 and α≥ 1
2 as β= 3, and us∈V with

||u(s)||≤R, then there exists a random radius r1(ω) such that, for any given R>0, there
exists s2(ω)≤−1 such that for all s≤s2(ω), for P−a.s. ω∈Ω, we have the following
inequality

||v(t)||2 +e−t
∫ t

s

eτ ||∇v(τ)||2dτ ≤ r2
1(ω), ∀t∈ [−1,0], (4.9)

here, r2
1 =e2 +Cr2

0(ω).

Proof. Multiplying equation (4.2) in L2 by −∆v, we deduce that

d

dt
||v||2 +2||∇v||2−2αz−(β−1)(|v|β−1v,∆v) = 2z−1(t)b(B(v,v),∆v)+ρ2||v||2. (4.10)

Moreover,

d

dt
||v||2 +2||∇v||2 +2αz−(β−1)

∫
D

|v|β−1|∇v|2ds+
α(β−1)

2
z−(β−1)

∫
D

|v|β−3|∇|v|2|2ds

=2z−1(t)b(B(v,v),∆v)+ρ2||v||2. (4.11)

For the first term on the right-hand side, since

0<
2

β−1
<1, for β>3, (4.12)

using Young’s inequality, we deduce

2z−1(t)b(B(v,v),∆v)≤1

2
|∆v|22 +Cz−2(t)|v ·∇v|22

≤1

2
||∇v||2 +C

∫
D

z−2(t)|v|2|∇v|
4

β−1 |∇v|2−
4

β−1 ds

≤1

2
||∇v||2

+C[

∫
D

(z−2|v|2|∇v|
4

β−1 )
β−1
2 ds]

2
β−1 [

∫
D

(|∇v|2−
4

β−1 )
β−1
β−3 ds]

β−3
β−1

≤1

2
||∇v||2 +ε

∫
D

z−(β−1)|∇v|2|v|β−1ds+C(ε)||v||2. (4.13)

Using the Gagliardo–Nirenberg inequality, we have

(C(ε)+ρ2 +1)||v||2≤ 1

2
||∇v||2 +C|v|22. (4.14)

Hence

d

dt
||v||2 + ||∇v||2 +(2α−ε)z−(β−1)

∫
D

|v|β−1|∇v|2ds
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+
α(β−1)

2
z−(β−1)

∫
D

|v|β−3|∇|v|2|2ds+ ||v||2≤C|v|22. (4.15)

Choosing sufficiently small ε and multiplying equation (4.15) by et and integrating over
(s,t), we get

||v(t)||2 +e−t
∫ t

s

eτ ||∇v||2dτ ≤e−t(es||v(s)||2 +C

∫ t

s

eτ |v|22dτ)

=e−t(esz2(s)||u(s)||2 +C

∫ t

s

eτ |v|22dτ)

≤e−tesz2(s)||u(s)||2 +Cr2
0(ω).

For us∈V with ||u(s)||≤R, then there exists a time s2(ω)≤s′2(ω) such that

esz2||u(s)||2≤esz2R2≤1, P−a.s., for ∀s≤s2(ω). (4.16)

For t∈ [−1,0], we get

||v(t)||2 +e−t
∫ t

s

eτ ||∇v||2dτ ≤e2 +Cr2
0(ω)

,r2
1(ω).

For α≥ 1
2 as β= 3, we can get the above estimate easily. This completes the proof

of Lemma 4.2.

Let K(ω) be the ball in V with radius r0(ω)+r1(ω). Lemmas 4.1-4.2 prove that
for any B in V , then there exists an s2(ω) such that for any s≤s2,

S(0,s;ω)B⊂K(ω) P−a.e. ω∈Ω.

This implies that K(ω) is an attracting set at time 0. Hence, by Theorem 2.1, we get
the following result refer in [9].

Theorem 4.1. Assume the conditions of Lemmas 4.1-4.2 hold. Then the random dy-
namical system generated by the solutions of the stochastic 3D Navier–Stokes equations
with damping has a compact random attractors in V .

Appendix A.
Definition A.1. A Ft−adapted V-valued process u(t) is said to be a strong solution
of problem (3.1) if the following conditions are satisfied

(1) u(t)∈L2(Ω,L2([0,T ],H2))∩L2(Ω,L∞([0,T ],V ));

(2) For every t∈ [0,T ] and F0−adapted V-valued function u0, the following equality
holds P -a.s.

u(t) =u0−
∫ t

0

Au(s)ds−
∫ t

0

B(u(s))ds−
∫ t

0

g(u(s))ds+

∫ t

0

σ(s,u(s))dW (s).

Proof. (Proof of Theorem 3.1.) We first consider the Galerkin approximation
of (3.1). The following lemma provides the existence and uniqueness of approximate
solutions and uniform estimate. This is the main preliminary step in the proof of
Theorem 3.1.
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Lemma A.1. Under the same assumptions as in Theorem 3.1, if p≥1, there exists a
positive constant C such that

sup
n≥1

E( sup
0≤t≤T

||un(t)||2p+

∫ T

0

||un(s)||2p−2||∇un(s)||2ds+

∫ T

0

||un(s)||2p−2|∇|un|
β+1
2 |22ds

+

∫ T

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds)≤C(E||u0||2p+1).

Proof. Applying Itô formula to ||un(t)||2p, we get

||un(t)||2p≤||u0||2p−2p

∫ t

0

||un(s)||2p−2||∇un(s)||2ds

−2pα

∫ t

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds

− 8pα(β−1)

(β+1)2

∫ t

0

||un(s)||2p−2|∇|un|
β+1
2 |22ds

+2p

∫ t

0

||un(s)||2p−2|〈∆un,B(un)〉|ds

+2p

∫ t

0

||un(s)||2p−2(∇un(s),∇σn(s,un(s))dW (s))

+p(2p−1)

∫ t

0

||un(s)||2p−2||σn(s,un(s))||2ds. (A.1)

Taking the supremum over the interval [0,t] on the inequality (A.1), we get

sup
s∈[0,t]

||un(t)||2p+ sup
s∈[0,t]

2p

∫ t

0

||un(s)||2p−2||∇un(s)||2ds

+ sup
s∈[0,t]

2pα

∫ t

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds

+ sup
s∈[0,t]

8pα(β−1)

(β+1)2

∫ t

0

||un(s)||2p−2|∇|un|
β+1
2 |22ds

≤||u0||2p+2p sup
s∈[0,t]

∫ t

0

||un(s)||2p−2(∇un(s),∇σn(s,un(s))dW (s))

+p(2p−1) sup
s∈[0,t]

∫ t

0

||un(s)||2p−2||σn(s,un(s))||2ds

+2p sup
s∈[0,t]

∫ t

0

||un(s)||2p−2|〈∆un,B(un)〉|ds

=||u0||2p+I1 +I2 +I3. (A.2)

Applying the Burkholder–Davis–Gundy inequality and Young’s inequality, we have

EI1(t)≤CE(

∫ t

0

||un(s)||4(p−1)||un(s)||2||σn(s,un(s))||2ds) 1
2

≤CE(

∫ t

0

∫
D

||un(s)||2p||un(s)||2p−2(1+ |un|2)|∇un|2dxds)
1
2
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≤1

2
E sup

0≤s≤t
||un(s)||2p+CE

∫ t

0

∫
D

||un(s)||2p−2(1+ |un|2)|∇un|2dxds

≤1

2
E sup

0≤s≤t
||un(s)||2p+CE

∫ t

0

||un(s)||2pds

+E
∫ t

0

||un(s)||2p−2(ε

∫
D

|un|β−1|∇un|2dx+Cε||un(s)||2)ds

≤1

2
E sup

0≤s≤t
||un(s)||2p+εE

∫ t

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds

+CεE
∫ t

0

||un(s)||2pds. (A.3)

By the Assumption 2.1, we have

EI2≤CE
∫ t

0

∫
D

||un(s)||2p−2(1+ |un|2)|∇un|2dxds

≤εE
∫ t

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds

+CεE
∫ t

0

||un(s)||2pds. (A.4)

Since

0<
2

β−1
<1, for β>3, (A.5)

using Young’s inequality and (A.5) to estimate I3(t), we deduce

EI3(t)≤2pE
∫ t

0

||un(s)||2p−2(
1

2
|∆un|22 +

1

2
|un ·∇un|22)ds

≤pE
∫ t

0

||un(s)||2p−2||∇un||2ds

+pE
∫ t

0

||un(s)||2p−2

∫
D

|un|2|∇un|
4

β−1 |∇un|2−
4

β−1 dxds

≤pE
∫ t

0

||un(s)||2p−2||∇un||2ds

+pE
∫ t

0

||un(s)||2p−2[

∫
D

(|un|2|∇un|
4

β−1 )
β−1
2 dx]

2
β−1 [

∫
D

(|∇un|2−
4

β−1 )
β−1
β−3 dx]

β−3
β−1 ds

≤pE
∫ t

0

||un(s)||2p−2||∇un||2ds+CεE
∫ t

0

||un(s)||2pds

+εE
∫ t

0

||un(s)||2p−2

∫
D

|∇un|2|un|β−1dxds. (A.6)

Putting (A.3)-(A.6) into (A.2), we have

E sup
s∈[0,t]

||un(s)||2p+2pE
∫ t

0

||un(s)||2p−2||∇un(s)||2ds
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+2pαE
∫ t

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds

+
8pα(β−1)

(β+1)2
E
∫ t

0

||un(s)||2p−2|∇|un|
β+1
2 |22ds

≤E||u0||2p+
1

2
E sup

0≤s≤t
||un(s)||2p

+3εE
∫ t

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds

+CεE
∫ t

0

||un(s)||2pds+p

∫ t

0

||un(s)||2p−2||∇un||2ds. (A.7)

Choosing sufficiently small ε and applying Gronwall lemma, we have

E( sup
0≤t≤T

||un(t)||2p+

∫ T

0

||un(s)||2p−2||∇un(s)||2ds+

∫ T

0

||un(s)||2p−2|∇|un|
β+1
2 |22ds

+

∫ T

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds)≤C(E||u0||2p+1).

Since the constant C is independent of n, we have

sup
n≥1

E( sup
0≤t≤T

||un(t)||2p+

∫ T

0

||un(s)||2p−2||∇un(s)||2ds+

∫ T

0

||un(s)||2p−2|∇|un|
β+1
2 |22ds

+

∫ T

0

∫
D

||un(s)||2p−2|un|β−1|∇un|2dxds)≤C(E||u0||2p+1).

(A.8)

For α≥ 1
2 as β= 3, we can get the above estimate easily. This completes the proof

of Lemma A.1.

By using monotonicity method, we get the existence of the strong solution for
problem (3.1) for β>3 with any α>0 and α≥ 1

2 as β= 3. The uniqueness of the strong
solution for problem (3.1) also is obtained by using ordinary method. The remain section
of Theorem 3.1 is proved by using similar method in [31,37]. This completes the proof
of Theorem 3.1.
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