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GENERATION OF
SURFACE PLASMON-POLARITONS BY EDGE EFFECTS∗

MATTHIAS MAIER† , DIONISIOS MARGETIS‡ , AND MITCHELL LUSKIN§

Abstract. By using numerical and analytical methods, we describe the generation of fine-scale
lateral electromagnetic waves, called surface plasmon-polaritons (SPPs), on atomically thick, meta-
material conducting sheets in two spatial dimensions (2D). Our computations capture the two-scale
character of the total field and reveal how each edge of the sheet acts as a source of an SPP that may
dominate the diffracted field. We use the finite element method to numerically implement a variational
formulation for a weak discontinuity of the tangential magnetic field across a hypersurface. An adap-
tive, local mesh refinement strategy based on a posteriori error estimators is applied to resolve the
pronounced two-scale character of wave propagation and radiation over the metamaterial sheet. We
demonstrate by numerical examples how a singular geometry, e.g., sheets with sharp edges, and sharp
spatial changes in the associated surface conductivity may significantly influence surface plasmons in
nanophotonics.

Keywords. time-harmonic Maxwell’s equations, finite element method, surface plasmon-polariton,
singular geometry, weak discontinuity on hypersurface.
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1. Introduction
Recently, advances in nanophotonics have been made possible through the design of

atomically thick materials, e.g., graphene, with tunable, novel electronic structure and
macroscopic conductivity [18, 34]. A far-reaching goal is to precisely control coherent
light at the nanoscale, in the terahertz frequency range [40]. This objective can be
pursued by manipulation of the microscopic parameters of conducting sheets. Under
suitable conditions, the sheet may behave as a metamaterial, exhibiting a dielectric
permittivity with a negative real part as a function of frequency. By appropriate current-
carrying sources and geometry, one may generate electromagnetic waves that propagate
with relatively short wavelength along the sheet [4]. A celebrated type of wave, linked
to various technological applications, is the surface plasmon-polariton (SPP) [4,16,27].

The present paper focuses on the computation of time-harmonic SPPs intimately
related to geometric effects, specifically the presence of edges on conducting films, in
the frequency regime in which the metamaterial character of the sheet is evident. Our
goal is to demonstrate numerically how spatial changes in the morphology and surface
conductivity of the sheet may amplify, or spoil, the observation of SPPs. To this end, we
combine computational tools that include: (i) an implementation of the finite element
method allowing for the discontinuity of the tangential magnetic field across the sheet
which is inherent to a class of thin conducting metamaterials; and (ii) an approximate
solution by the method of Wiener and Hopf for an integral equation describing the
electric field tangent to a semi-infinite sheet (“reference case”) [29].

Our main results can be summarized as follows.
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• We formulate a two-dimensional (2D) model for fine-scale SPPs induced by
edge discontinuities. A few prototypical geometries are investigated numeri-
cally. In particular, we describe SPPs generated by: the edge discontinuity of
a semi-infinite sheet; the gap between two co-planar, semi-infinite sheets; and
a resonant, finite conducting strip.

• For the numerics, we adapt a variational framework for the finite element treat-
ment of wave propagation [26] to the 2D setting of SPP generation by edge
effects. The underlying weak formulation embodies a discontinuity of the tan-
gential magnetic-field component across the sheet and point singularities at
material edges or discontinuities of the surface conductivity.

• We validate our numerical treatment by comparison of numerics to an approx-
imate solution for the reference case of the semi-infinite sheet. We verify the
analytically predicted singular behavior of the electric field near the edge.

• Based on our numerical simulations, we predict means of enhancing the ob-
servation of SPPs. Specifically, we demonstrate that the presence of a highly
conducting material in the gap between two co-planar, semi-infinite metamate-
rial sheets may lead to an increase of the SPP amplitude. We also show that in
this setting the dependence of the SPP amplitude on the gap width is distinctly
different from the case with an “empty gap”, i.e., when the material of the gap
is the ambient medium. In addition, we characterize resonances for SPPs on a
finite strip numerically, and demonstrate that the SPP maximal magnitude as
a function of the gap width is described by a Lorentzian function.

It has been well known that, because of phase matching in electromagnetic wave
propagation, SPPs cannot be excited by plane waves incident upon an (idealized) infinite
conducting sheet [4]. The relatively large wavenumber of the desired SPP cannot be
directly matched at the interface. This limitation is usually remedied by introduction
of suitably tuned gratings or localized current-carrying sources such as dipole antennas
near resonance [1, 4].

In this paper, we use a finite element approach to explore an alternate scenario: the
generation of SPPs via diffraction of waves by material defects such as sharp edges of
conducting sheets. We point out that such geometric singularities, edges, can induce
SPPs under radiation by appropriately polarized plane waves. Our numerical simula-
tions involve hypersurfaces embedded in a 2D space for the sake of computational ease.
However, our key conclusions can be generalized to higher dimensions. One of these
conclusions is that the induced SPP may dominate over the diffracted field in a range
of distances away from the edge.

Our work here forms an extension of the approach in [26] to more realistic, singular
geometries. In [26], we introduced a numerical framework for tackling propagation of
SPPs on planar hypersurfaces via the finite element method. Our formulation relies
on a variational statement that incorporates the weak discontinuity of the tangential
component of the magnetic field across the sheet. This approach offers the advantage of
local refinement based on a-posteriori error control. The computational work reported
in [26] is restricted to idealized geometries, aiming to introduce a general platform rather
than address realistic applications.

In the present paper, we take a major step closer to applications by extending our
finite element approach [26] to settings with sharp edges and gaps on metamaterial,
conducting films. Our ultimate purpose is to model and simulate the effect of defects
on the generation and propagation of SPPs. We validate our numerics via comparison to
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an approximate analytical solution for the semi-infinite conducting sheet with recourse
to the Wiener–Hopf method of factorization [29]. This solution analytically reveals that
the algebraically singular field near the edge transitions to a slowly decaying, fine-scale
SPP away from the edge.

1.1. Scope: excitation of SPPs. The excitation of SPPs on interfaces between
metals and dielectrics has been conceived as a means of confining and manipulating co-
herent light in the infrared spectrum [16]. Surface plasmons form the macroscopic
manifestation of the resonant interaction of electromagnetic radiation (photons) with
electrons in the plasma of the metal surface. SPPs, in particular, are loosely defined
macroscopically as waves that have a relatively short wavelength and decay slowly along
the interface. SPPs may offer significant technological advantages; for example, improve-
ment of the emission of light from corrugated metallic surfaces or nanoparticles [19,31].

The macroscopic theory of surface plasmonics usually relies on Maxwell’s equations,
specifically notions of classical electromagnetic wave propagation near boundaries. This
subject has been the focus of systematic investigations in the case with radiowaves
propagating over the earth or sea; see, e.g., [8, 23]. A central concept is the surface
or lateral wave, which is confined closely to the boundary [23]. Typically, at radio
frequencies the surface wave between air and earth has a phase velocity approximately
equal to the phase velocity in air.

In surface plasmonics in the terahertz frequency regime, however, the constitutive
relations and geometry of the associated materials become more intricate. Hence, the
character of the ensuing surface wave is substantially different from that at radio fre-
quencies [27]. Here, we view the SPP as a type of surface wave. Notably, the wavelength
of the SPP with transverse-magnetic polarization can plausibly be made much smaller
than the wavelength of a plane wave in free space at the same frequency [4, 7].

An emerging question is the following. How can the geometry or surface con-
ductivity of a low-dimensional material be controlled to generate a desirable SPP? A
satisfactory answer to this question requires understanding through reliable computa-
tions how geometry affects solutions to a class of boundary value problems for Maxwell’s
equations. In these problems, an atomically thick material, e.g., graphene, may intro-
duce a jump proportional to a local property such as conductivity in components of
the electromagnetic field tangent to the sheet. The coupling of this type of boundary
condition to singular geometries in 2D is the subject of the present paper.

1.2. Past computational approaches. Computational methods for plas-
monics appear to be tailored to specific applications. Next, we provide a brief, non-
exhaustive summary of the main computational tools found in the existing literature.

First, we comment on analytical treatments. In relatively simple settings with
planar boundaries, dispersion relations of SPPs have been sought analytically through
the use of plane-wave excitations; see, e.g., the recent review in [4]. Interestingly, the
corresponding geometries lack singular regions, e.g., sharp edges. A notable exception
concerns a metallic contact modeled as a strip of fixed width on a substrate in 2D [4,36].
For this geometry, an analytical solution has been found via solving an integral equation
in the Fourier domain for the electric field tangent to the strip in the simplified case
with an electrically small strip width [4]. This solution is not applicable to conducting
sheets with edges, since in the latter case the edge may not be treated as a perturbation.
A numerical study of electrically large metal contacts by spectral methods is provided
in [36]; however, the transition of the field from a singular behavior near the edge to an
SPP is not discussed in this work [36].
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Other settings in plasmonics consist of dipole sources over infinite planar boundaries;
then, analytical and semi-analytical solutions are developed via the Fourier transform
of the field [20]. In some exceptional cases, when the dipole and observation point lie
on the sheet, exact evaluation of field components is possible [28]. These approaches
have the merit of yielding features of SPPs inherent to the nature of the point source;
but they convey little or no information about how realistic geometric effects related to
the finite size of the sheet may influence the SPP.

In more complicated geometries, the excitation of plasmons has been studied under
the “quasistatic approximation” in which the typical size of the scatterer is much smaller
than the wavelength of the incident radiation field [27]. However, this approximation is
expected to be questionable as the frequency becomes higher or the size of the scatterer
is comparable to the free-space wavelength [27].

A variety of numerical methods for nanophotonics have been reported in the lit-
erature; for a recent review, see, e.g., [17]. These approaches include: the volume
integral-equation approach [21, 22, 24], which exploits the integral form of Maxwell’s
equations along with the respective Green’s function in closed form in the frequency
domain; and the akin boundary element method [14, 30, 37], which makes use of Dirac
masses as test functions and often employs the scalar and vector potentials. Numer-
ical methods of different nature are the finite-difference time-domain method [25, 32]
and the finite-difference method [15], which invoke space discretization and the respec-
tive approximation of the electromagnetic field by piecewise-constant functions. This
type of approximation may be challenged in plasmonics, where the electromagnetic field
may vary appreciably over short distances. An improvement has been offered by the
finite element method [8, 33, 39] with certain choices of basis functions, for example,
divergence-free functions. An issue of importance is to satisfy the radiation condition
far away from the source. This can be accomplished in the numerical scheme via the
notion of the perfectly matched layer (PML) [5, 9]. In passing, we should also mention
the discrete dipole approximation [11,13] by which the (continuum) scatterer is replaced
by a finite array of polarizable particles or dipoles; this technique can be viewed as the
outcome of discretization of the volume integral equation.

1.3. Our computational treatment. Recently, we formulated a variational
framework for the finite element treatment of wave propagation along metamaterial
conducting sheets embedded in spaces of arbitrary dimensions [26]. Our formulation
incorporates a weak discontinuity of the tangential component of the magnetic field;
this jump is responsible for the fine scale of the SPP. The corresponding discretization
scheme was implemented with a modern finite element toolkit [2], and accounts both
for the small wavelength of the SPP as well as for the radiation condition at infinity
via a PML. This approach allows for error control and, thus, an efficient numerical
approximation of the underlying boundary value problem. In our past work [26], we
validated this approach by numerical simulations restricted to settings with dipoles over
infinite planar geometries in 2D.

With the present paper, our goal is to adapt the aforementioned approach to more
realistic settings and real-world applications. Hence, we extend our finite element treat-
ment to more complicated geometries, especially conducting sheets with edges and gaps
in 2D. We demonstrate via simulations that our variational framework and numeri-
cal implementation by appropriate curl-conforming Ndlec-elements correctly produces
the edge singularity of the electric field. Our numerics for finite sheets show how the
diffracted electric field transitions from a singular behavior near each edge to the SPP
away from the edge. We validate our numerical approach by use of a semi-infinite sheet:
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in this case, our numerical results are in excellent agreement with the analytical predic-
tion [29]. This study places on a firm foundation our finite element approach for SPPs
generated and sustained by defects and finite-size effects.

1.4. Pending issues. Our work here leaves a few open problems for near-future
study. For example, we do not solve the related boundary value problem for Maxwell’s
equations in three spatial dimensions (3D). This important topic is the subject of work
in progress. Furthermore, in our model we use homogeneous and isotropic material
parameters. The case with spatially varying conductivity of the sheet, where the SPP
may be the result of homogenization [7], lies beyond our present scope. In a similar
vein, we have not made any attempt to study more complicated forms of discontinuities
for the electromagnetic-field components across the sheet, say, in the presence of a
magneto-electric effect [38]. We should also mention the experimentally appealing case
with a receiving antenna lying on graphene [1]. This problem can be described by our
variational approach, and is the subject of future research as well.

Note that surface plasmonics comprise a class of multiscale problems: the electronic
structure of low-dimensional materials should be linked to the phenomenology of SPPs.
Here, we invoke a macroscopic model of SPPs via Maxwell’s equations. The emergence of
the related phenomenology from microscopic principles needs to be further understood.

1.5. Paper organization. The remainder of this paper is organized as follows.
In Section 2, we introduce the relevant boundary value problem and summarize analyt-
ical results for the reference case [29]. Section 3 focuses on our numerical approach; in
particular, the use of a PML and adaptive local refinement for good resolution of the
SPP is discussed. In Section 4, we present and discuss computational results for the
following geometries: a semi-infinite sheet (reference case); two co-planar, semi-infinite
sheets with a gap; and a resonant, finite conducting strip. Section 5 concludes our paper
with a summary of the main findings.

2. Model and analytical results

In this section, we introduce the main ingredients of the model and analytical ap-
proach: a boundary value problem for Maxwell’s equations, which incorporates a dis-
continuity for the magnetic-field component tangent to an arbitrary conducting sheet
in 2D (Section 2.1); and an analytical formula for the SPP on a semi-infinite sheet
(Section 2.2). Our formula manifests the fine scale of the SPP if the sheet conductivity
satisfies a certain condition consistent with the metamaterial nature of the sheet. In
this vein, we describe solutions for the electric field far from and near the edge on a
semi-infinite sheet [29] (Section 2.2).

2.1. Boundary value problem and geometry. Following [26], we formulate
a boundary value problem for Maxwell’s equations by including a conducting sheet in
an unbounded space; see Figure 2.1. The starting point is the strong form of Maxwell’s
equations for the time-harmonic electromagnetic field (E(x,t),B(x,t)), viz.,

(E(x,t),B(x,t)) = Re
{
e−iωt(E(x),B(x))

}
.

By splitting the electric and magnetic fields into the primary (incident) field and the
scattered field, E=Ein +Esc, B=Bin +Bsc, Maxwell’s equations (in a source-free
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k

Σ
ν

Fig. 2.1: Schematic of the geometry. A plane wave with wave vector k is incident upon an (arbitrarily
oriented) interface Σ of unit normal ν in an unbounded domain, in order to excite an SPP.

form) for the scattered field outside the sheet are written as [8]
−iωBsc +∇×Esc = 0,

iωε̃Esc +∇×
(
µ−1Bsc

)
= 0,

∇·Bsc = 0,

∇·
(
ε̃Esc

)
= 0.

(2.1)

Here, Gauss’ law, expressed by the last two equations, is redundant. In system (2.1),
the material parameters are time independent. The second-rank tensors µ(x) and ε̃(x)
denote the effective magnetic permeability and complex permittivity of the unbounded
medium; in particular, ε̃(x) =ε(x)+ iσ(x)/ω, where ε(x) and σ(x) are the usual
permittivity and conductivity of the medium.

Equations (2.1) are enforced in suitable unbounded regions of the Euclidean space
Rn (n= 2, 3), by exclusion of the conducting sheet. Hence, system (2.1) must be comple-
mented with the appropriate boundary condition across the sheet which is represented
by an oriented hypersurface Σ, Σ⊂Rn, with unit normal ν and surface conductivity
σΣ(x) [4]. For a conducting sheet, the electromagnetic field satisfies the conditions [4]{ν×

[(
µ−1B

)+−(µ−1B
)−]}∣∣∣

Σ
= {σΣ(x)[(ν×E)×ν]}

∣∣∣
Σ
,

{ν×
(
E+−E−

)
}
∣∣∣
Σ

= 0,
(2.2)

where E±,B± is the restriction of the field to each side (±) of the sheet and σΣ(x) is
a second-rank tensor with domain on Σ.

In the presence of compactly supported external sources, e.g., electric or magnetic
dipoles, systems (2.1) and (2.2) must be complemented with a radiation condition at
infinity. For an isotropic medium, this condition takes the form of a Silver-Müller
condition [8]. Specifically, if c is the speed of light at infinity, we require that

lim
|x|→∞

{
Bsc×x−c−1|x|Esc

}
= 0, lim

|x|→∞
{Esc×x+c|x|Bsc}= 0 (x /∈Σ). (2.3)

Although the use of both of these conditions is mathematically redundant, we provide
them here for the sake of full correspondence to system (2.1).

Motivated by the setting with an infinite planar sheet [4], we will pay particular
attention to material properties and external sources that allow for the generation of
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a short-wavelength SPP on the conducting sheet. Specifically, for an isotropic and
homogeneous sheet we expect that a necessary condition for such an SPP is ImσΣ>0.
In addition, the sheet needs to be irradiated by an appropriately (transverse-magnetic)
polarized wave. We conclude this subsection with a practically appealing definition [7]:
Definition 2.1. For scalar σΣ, the nonretarded frequency regime is characterized by

∣∣∣∣ωµσΣ

k

∣∣∣∣�1, (2.4)

i.e., a surface resistivity (1/σΣ) that is much larger in magnitude than the intrinsic
impedance of the ambient medium.

By recourse to an analytical solution for the reference case (Section 2.2), we will see
that condition (2.4) along with the condition ImσΣ>0 imply that an SPP is present
on a semi-infinite sheet and has a wavenumber, km, with |km|�k. The nonretarded
frequency regime thus yields SPPs on a distinct length scale than the incident wave.
The importance of this regime is related to predicted optical behavior of the sheet con-
ductivity, σΣ, as a function of frequency, ω, by use of electronic structure calculations;
see, e. g. [7].

2.2. Reference case: explicit formulas. In the case with a semi-infinite
sheet, Σ ={(x,0)∈R2 : x≥0} [see Figure 2.2(a)], Maxwell’s Equations (2.1) with jump
condition (2.2) admit a closed-form solution for the electric field, Ex(x,0), tangential to
the sheet. This solution is obtained by application of the Wiener–Hopf method to an
integral equation [29]. In the following we briefly motivate and describe our formalism
and results; for a detailed discussion we refer the reader to [29].

The key ingredient of the analytical approach is the formulation of systems (2.1) and
(2.2) in terms of an integral equation for the (non-dimensional) x-component, u(x) =
Ex(k−1x,0)/E0, of the electric field on the sheet, where E0 is a typical amplitude of the
incident electric field. The governing integral equation reads

u(x) =uin(x)+
iωµσΣ

k

(
d2

dx2
+1

)∫ ∞
0

dx′K(x−x′)u(x′) x>0, (2.5)

where uin corresponds to the incident field, x is scaled by 1/k where k is real, and the

kernel K(z) = i/4H
(1)
0 (|z|) is expressed in terms of the first-kind, zeroth-order Hankel

function H
(1)
0 , which corresponds to a Green’s function for the scalar Helmholtz equa-

tion; see [29, Sec. 1]. Note that equation (2.5) can be generalized to geometries that
include a more complicated yet isotropic ambient space of the sheet through use of a
suitable, modified kernel.

By formally extending u and uin to the whole real axis through setting u(x) =
uin(x)≡0 for x<0, and introducing an unknown function, g, for consistency (g(x)≡0
if x>0), we write

u(x)− iωµσ
Σ

k

(
d2

dx2
+1

)∫ ∞
−∞

dx′K(x−x′)u(x′) =uin(x)+g(x) x∈R. (2.6)

Equation (2.6) is solved explicitly in terms of a Fourier integral by use of the Wiener–
Hopf method [29]. To this end, we consider a plane wave as the incident field, Ein

x =
E0e

ix sinα, for some incidence angle, α. In the following, we summarize the main findings
of this approach.
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Fig. 2.2: Schematic of the computational domain, Ω, of radius R for different geometries with meta-
material sheet of conductivity σΣ

r in our numerics. The related perfectly matched layer (PML), shown
in grey, occupies a spherical shell of radii ρ and R (ρ<R). (a) Semi-infinite sheet configuration; (b)
two semi-infinite, co-planar sheets, separated by an empty gap; (c) two semi-infinite, co-planar sheets
separated by gap filled with a highly conducting material of conductivity σΣ

r,2, ReσΣ
r,2�1; (d) finite

strip.

Field far from the edge. In applications of plasmonics, the region consisting
of points of the sheet sufficiently far from the edge deserves some attention. This region
can be characterized by the condition x�1. In this region, the SPP may dominate over
the diffracted field; the latter is defined as the scattered field after removal of the direct
reflection of the incident wave. The solution to equation (2.6) can be written as

u(x) ≈
(

1+
ωµσΣ

2k
cosα

)−1

eixsinα−e−Q̂+(sinα)+Q̂+(km/k)ei(km/k)x. (2.7)

A few remarks on solution (2.7) are in order. The first term describes the sum of
the incident field and its direct reflection from an infinite sheet, while the second term
is the SPP. The effect of the edge is expressed by values of the split function Q̂+(ξ),
which is defined by the contour integral [29]

Q̂+(ξ) =
ξ

πi

∫ ∞
0

dζ

ζ2−ξ2
ln

(
1+

ωµσΣ

2k

√
1−ζ2

)
, Imξ >0, (2.8)
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and can be evaluated approximately, in closed form, in the nonretarded regime (Defini-

tion 2.1) [29]. In principle, this Q̂+(ξ) enters the Fourier integral for the exact solution,

u, for x>0 [29]. In the region under consideration (if x�1), Q̂(ξ) needs to be computed
for particular values of ξ in order to compare formula (2.7) against numerical results of

the finite element method (Section 4). For example, for α= 0, we compute Q̂+(ξ) for
ξ= 0 and ξ=km/k approximately (see [29, Sec. 3]), viz.,

Q̂+(0)≈0.0005+0.05i, Q̂+(km/k)≈0.346574+0.392699i.

We should add that the SPP wavenumber, km, obeys the dispersion relation
k⊥ :=

√
k2−k2

m=−2k2/(ωµσΣ), which furnishes the wavenumber, k⊥, of propagation

transverse to the sheet; thus, km/k=
√

1−4k2/(ωµ0σΣ)2, and |km/k|�1 in the non-
retarded regime (Definition 2.1) [29]. By imposing Imk⊥>0 according to the radiation
condition at infinity vertically to the sheet, we obtain ImσΣ>0 which expresses the
metamaterial character of the sheet.

An additional contribution to u(x), not included in formula (2.7), is the radiation
field due to the edge. It corresponds to a residual contribution not captured by the
incident and directly reflected fields and the SPP; see [29, Sec. 3.2.1]. The radiation
field is found to be negligible in the region considered here and, thus, is omitted.

Near-edge field. Another region of significance is the vicinity of the edge,
where |(km/k)x|�1. In this region, the SPP interferes with the incident, reflected and
radiation fields to yield a vanishing x-component of the (total) electric field on the sheet.
Hence, as x↘0, the solution, u, of integral equation (2.6) cannot be separated into the
distinct (physical) contributions that are evident in the field far from the edge. Instead,
we analytically compute the asymptotic behavior [29]

u(x) ≈ 2√
π

√
2k

ωµσΣ
e−iπ/4

√
x as x↘0. (2.9)

This formula manifests the singular behavior of the field at the edge.

3. Numerical approach
In this section, we describe an implementation of the finite element method in

order to solve the boundary value problem of Section 2.1 based on curl-conforming
Ndlec-elements [35]. First, we state boundary-value problem (2.1) in terms of a weak
formulation that embodies discontinuity (2.2) of the tangential magnetic-field implicitly
by means of an interior interface integral. Second, we discuss a number of numerical
aspects to solve the weak formulation; in particular, the use of a specifically tuned PML,
as well as a local refinement strategy to resolve the SPP.

3.1. Variational formulation and discretization. By a standard manip-
ulation in electromagnetic theory, the substitution of the first equation of (2.1) into
the second one yields a second-order partial differential equation for the vector-valued
electric field, E. To rescale the resulting equation to a desired, dimensionless form, we
choose to set k= 1, or, equivalently, scale the vector position x by 1/k, in the spirit of
Section 2.2. Thus, we introduce the following related scalings [26]:

x→ kx, ∇ → 1

k
∇, km,r =

km
k
, (3.1a)

µ→ µr =
1

µ0
µ, ε̃→ ε̃r =

1

ε0
ε̃, σΣ → σΣ

r =

√
µ0

ε0
σΣ. (3.1b)
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Accordingly, the equation for E now reads

∇×
(
µ−1
r ∇×E

)
− ε̃rE = 0. (3.2)

The multiplication of the last equation with a test function ϕ and subsequent integration
by parts yield [26]∫

Ω

(µ−1
r ∇×Esc) ·(∇×ϕ̄)dx−

∫
Ω

(ε̃rE
sc) ·ϕ̄dx

− i
∫

Σ

(σΣ
r E

sc
T ) ·ϕ̄T dox− i

∫
∂Ω

√
µ−1
r ε̃rE

sc
T ·ϕ̄T dox

=i

∫
Σ

(σΣ
r E

in
T ) ·ϕ̄T dox. (3.3)

where Esc is the scattered field and Ein denotes the incident field (Section 2.1). An
appropriate trial and test space for the weak formulation is [26], [33, Theorem 4.1]

X(Ω) =
{
ϕ∈L2(Ω) : ∇×ϕ∈L2(Σ)3,ϕT

∣∣
Σ
∈L2(Σ)3,ϕT

∣∣
∂Ω
∈L2(∂Ω)3

}
,

where L2 denotes the space of measurable and square integrable functions. By choosing
this space, the formerly strong interface condition (2.2) is now naturally embedded in
the variational formulation. In more detail, the statement

{ν×
(
E+−E−

)
}
∣∣∣
Σ

= 0

is a consequence of E∈H(curl;Ω), and the jump condition

{ν×
[(
µ−1B

)+−(µ−1B
)−]}∣∣∣

Σ
= {σΣ(x)[(ν×E)×ν]}

∣∣∣
Σ

is enforced by the term −i
∫

Σ
σΣ
r ET ·ϕ̄T dox in the variational formulation [26].

We implement equation (3.3) by using curl-conforming Ndlec-elements [35] with
the help of the finite element toolkit deal.II [2]. The computational domain Ω was
discretized with a quadrilateral mesh. In order to allow for local refinement, we use the
well-known concept of hanging nodes (see, e. g., [6] for an overview) to relax the usual
mesh regularity assumptions [10]. The resulting system of linear equations is solved
with the direct solver Umfpack [12].

3.2. Perfectly matched layer for SPPs. Next, we discuss a construction of
a PML [5, 9] for the rescaled Maxwell equations with a jump condition in connection
to the boundary problem of Section 2.1 [26]. The concept of a PML was pioneered
by Brenger [5] and can be viewed as a layer with modified material parameters (ε̃r ,
µr ) placed near the boundary of the computational domain; cf. Figure 2.2. The core
idea is to tune the material parameters inside the PML in such a way that all outgoing
electromagnetic waves decay exponentially with no artificial reflection due to truncation
of the domain. The PML is an indispensable tool for truncating unbounded domains
for time-harmonic Maxwell’s equations, and other, akin partial differential equations,
and is often used in the numerical approximation of scattering problems [5, 9, 33].

We follow the approach to a PML for time-harmonic Maxwell’s equations discussed
in [9]. The idea is to use a formal change of coordinates from the computational domain
Ω⊂R3 with real-valued coordinates to a domain Ώ⊂{z∈C : Imz≥0}3 with complex-
valued coordinates (and non-negative imaginary part) [33]; and then transform back to
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the real-valued domain. For simplicity, we assume that the interface Σ is parallel to
the unit vector er within the PML (i.e., the normal ν is orthogonal to er). For details,
we refer the reader to [26]. This procedure results in the following modified material
parameters ε̃r , µr and σΣ

r within the PML:
µ−1
r −→ µ̆−1

r =Bµ−1
r A,

ε̃r −→ ε̆r = A−1ε̃rB
−1,

σΣ
r −→ σ̆Σ

r =C−1σΣ
r B
−1.

(3.4)

In the above, we introduced the 3×3 matrices

A=T−1
exer

diag
( 1

d̄2
,

1

dd̄
,

1

dd̄

)
Texer

, B=T−1
exer

diag
(
d,d̄,d̄

)
Texer

, (3.5)

C=T−1
exer

diag
(1

d̄
,
1

d̄
,
1

d

)
Texer ,

where

d= 1+ is(r), d̄= 1+ i/r

∫ r

ρ

s(τ)dτ, (3.6)

for an appropriately chosen scaling factor s(τ) that will be defined later. Note that
Texer

is the matrix that rotates er onto ex, and τ is the distance from the origin. The
PML is assumed to be a spherical shell starting at distance ρ from the origin, as shown
in Figure 2.2. For a detailed parameter study of the performance of the PML we refer
the reader to [26].

3.3. Adaptive local refinement. By the assumption that ImσΣ
r >0 in the

nonretarded frequency regime (Definition 2.1), the SPP has a wavelength much smaller
than the one in the ambient medium (at the same frequency, ω). Thus, wave propa-
gation along the metamaterial sheet, Σ, has a pronounced two-scale character, being
characterized by length scales of the order of 1/(Rekm) and 1/k; here, Rekm�k.

In our numerical simulation, we use typical values of σΣ
r in the nonretarded regime

for which the SPP wavelength is one to two orders of magnitude smaller than the
wavelength in the surrounding medium. This poses a challenge because, on the one
hand, the minimal computational domain (that still has a well-controlled error in slow
oscillating modes) is limited by the free-space wavelength, 2π/k; on the other hand, the
minimal resolution necessary to resolve SPPs scales with 1/|km|. Accordingly, in order
to minimize computational cost while ensuring that the SPP is sufficiently resolved, we
use an adaptive, local refinement strategy based on the dual weighted residual method [3].

Next, we outline the basics of our strategy. Starting from a relatively coarse mesh,
the resolution is successively improved by a number of iterative refinement steps where
a subset of cells is chosen for refinement. The selection of cells for refinement is made
with the help of local (per cell K) error indicators, ηk, that are given by

η2
K = ρ2

Kω
2
K +ρ2

∂K ω
2
∂K .

The cell-wise residuals, viz., the integrals [3, 26]

ρ2
K =

∫
K

∥∥∇×(µ−1
r ∇×Eh)+ ε̃rEh

∥∥2
dx,

ρ2
∂K =

1

2

∫
K

∥∥[ν×(µ−1
r ∇×Eh)− iσΣ

r EhχΣ− i
√
µ−1
r ε̃r (Eh)TχΩ

]∥∥2
dox,
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are multiplied by the weights

ω2
K =

∫
K

∥∥z−Ihz∥∥2
dx, ω2

∂K =

∫
K

∥∥z−Ihz∥∥2
dox.

In the above, Eh denotes the finite element approximation on E. The weights, ωK and
ω∂K , are in turn computed with the help of: the solutions, zK , of a “dual” problem
and their respective interpolants, Ihz, in the finite element space. The rationale of
using a dual problem for computing the requisite weights is that these can be tuned
to a quantity of interest in the form of a (possibly non-linear) functional [3]. In our
particular application, we choose to use

J (E) :=
1

2

∫
Σ

∥∥∇×E∥∥2
dox (3.7)

as the quantity of interest. Hence, the dual problem reads∫
Ω

(µ−1
r ∇×ϕ) ·(∇× z̄)dx −

∫
Ω

(ε̃rϕ) · z̄dx− i
∫

Σ

(σΣ
r ϕT ) · z̄T dox

− i
∫
∂Ω

√
µ−1
r ε̃rϕT · z̄T dox =

∫
Σ

(∇×Eh) ·(∇×ϕ̄)dx, (3.8)

where the dual solution z and the test function ϕ are again in X(Ω).

4. Validation of numerical method and further numerics
In this section, we focus on numerical computations by our finite element method.

These computations have a two-fold purpose: validation of our numerical method and
extraction of further predictions. First, we address the prototypical geometry of the
semi-infinite metamaterial sheet in order to validate and verify our numerical approach
by comparison of simulations against the analytical description of Section 2.2. Second,
we numerically simulate wave propagation under an incident plane wave in a number of
realistic geometries which are relevant to nanophotonics applications; to our knowledge,
no analytical results are available for these geometries in the existing literature. For
the numerical experiments, we use (an arbitrarily chosen) Ein

x = i (i.e., E0 = i and α= 0)
throughout. Further, motivated by a previous parameter study [26], we choose a fixed
scaling function

s(τ) = 2
(τ−0.8R)2

(0.2R)2

for the PML. Figure 2.2 depicts the geometries used in our numerical tests. We examine
the following configurations.

• The reference case, i.e., the semi-infinite metamaterial sheet [Figure 2.2(a)].
Our numerical simulations for this setting are compared against an analytical
solution. In particular, we verify the quality of approximation (2.7) for the
x-component of the electric field.

• Two co-planar, symmetrically placed, semi-infinite metamaterial sheets with a
gap [Figure 2.2(b, c)]. In this configuration, the incident plane wave excites an
SPP on each sheet. If the edges of the sheets are sufficiently close to each other,
the induced SPPs may interfere destructively. We numerically examine the
relative amplitude of the resulting SPP (compared to the reference case) on one
sheet as a function of the gap width, d. We consider two different cases for the
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material of the gap. First, the gap is empty (Figure 2.2b); and, second, the gap
is filled with a highly conducting material (Figure 2.2c). Accordingly, we show
numerically that the dependence of the SPP amplitude on d is dramatically
different in these cases.

• A finite strip of metamaterial [Figure 2.2(d)]. For our numerics, the width,
d, of the strip is chosen to have small to intermediate values compared to
1/k. Because of a standing wave formed on the strip, we expect that a strong
resonance effect can occur for suitable values of d. We numerically verify this
resonance and quantify the (maximal) SPP magnitude as a function of d.

4.1. Semi-infinite strip. First, we consider the geometry of the semi-infinite
strip, Σ ={(x,0)∈R2 : x≥0}, depicted in Figure 2.2(a). The primary purpose of our
numerical simulation in this setting is to validate the analytical results discussed in
Section 2.2. In particular, by subtraction of the incident field, approximate formula (2.7)
yields a corresponding expression for the x-component of the scattered electric field, Esc

x .
In terms of the rescaled quantities (Section 3.1), the scattered field reads

Esc
x,r(x) ' E0

[
1

1+
σΣ
r

2

−1

]
−E0e

−Q̂+(sinα)+Q̂+(km,r)eikm,rx, (4.1)

where the first term (with brackets) represents the directly reflected field and the second

term is the SPP. Here, for α= 0, the requisite values of Q̂+(ξ) in the exponent are

Q̂+(0)≈0.0005+0.05i, and Q̂+(km/k)≈0.346574+0.392699i. Note that in the case
with the surface conductivity σΣ

r = 2.0 ·10−3 +0.2i (σΣ
r = 8.89 ·10−4 +0.133i), the SPP

wavenumber is km,r = 10.0489+0.0994937i (km,r = 15.0701+0.100288i).
In Figure 4.1, we compare graphically the outcome of formula (4.1) to results of

our numerical method for the corresponding scattered field. Specifically, the real and
imaginary parts of the scattered electric field in the x-direction, Esc

x , are plotted as a
function of the spatial coordinate, x, along the sheet, Σ. Evidently, the numerical and
analytical results are in excellent agreement outside the PML and for (roughly) 2-3 SPP
wavelengths away from the origin (2≤x≤20 in our numerics).

Furthermore, we test the finite element numerical simulations against analytical
prediction (2.9) for the asymptotic behavior of Ex along the sheet near the edge, as
x becomes sufficiently small. The predicted behavior is confirmed numerically in Fig-
ure 4.2, in which the real part of this field component is plotted versus x closely enough
to the edge of the sheet.

4.2. Co-planar, semi-infinite sheets with a gap. Next, we examine the
(symmetric) configuration that consists of two co-planar, semi-infinite sheets with a gap
of width d, Σ ={(x,0)∈R2 : x<−d/2 or x>d/2}; see Figure 2.2(b,c). This setting is of
fundamental interest in applications because experimental setups often involve arrays of
strips of metamaterials such as graphene [4]. By using the present geometry, we are able
to isolate the influence of the gap width on the surface plasmon of the metamaterial,
since each sheet is infinitely long. In particular, resonances associated with standing
waves on the sheet are absent from this setting (see Section 4.3 for the resonant, finite
strip).

We consider two cases for the material of the gap. In one case, the gap is empty,
or, in other words, the material of the gap is identified with the medium of the ambient
space [Figure 2.2(b)]; and in another case the gap is filled with a highly conducting
material [Figure 2.2(c)]. Because of the proximity of the two edges, the SPPs induced
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Fig. 4.1: [Color online] Real and imaginary parts of the x-component of scattered electric field, Esc
x ,

versus spatial coordinate, x, on semi-infinite sheet, Σ ={(x,0)∈R2 : x>0}. The plots depict results
based on: our numerical method; and analytical formula (2.7), or (4.1). The values of the (rescaled)
surface conductivity are: σΣ

r = 2.0 ·10−3 +0.2i (a, b) and σΣ
r = 8.89 ·10−4 +0.133i (c, d).
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Fig. 4.2: [Color online] Real part of the x-component of (total) electric field, Ex, near the edge of
the sheet versus spatial coordinate, x. The value of (rescaled) surface conductivity is σΣ

r = 2.0 ·10−3 +
0.2i. Our numerical computation (solid line) is compared against near-edge asymptotic formula (2.9)
(dashes). In the limit as x→0, the numerical and analytical results are in good agreement.
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Fig. 4.3: [Color online] Real part of the x-component of the scattered electric field, Esc
x , as a

function of the spatial coordinate, x, in the case with two co-planar, semi-infinite sheets having an
empty gap in the interval [−d/2,d/2]. The plots show numerical results for three different values of
the gap width: d= 2−1, 2−4, and 2−8.

on each sheet are in principle expected to interfere. Our numerics show that the closer
the sheets are to each other, i.e., as the gap width, d, decreases, the stronger the effect
of destructive interference of the SPPs is. For example, this trend is demonstrated in
Figure 4.3, which depicts the SPP versus x near the empty gap for three values of d.

We perform a parameter study in order to examine the strength of the SPP as a
function of the gap width. We examine the cases with an empty gap and a gap filled
with a material of (scaled) surface conductivity σΣ

r,2 such that ReσΣ
r,2�1, ImσΣ

r,2 = 0.
In this study, we carry out the fitting of the finite element-based numerical solution
for the x-component of the scattered electric field to an analytical formula constructed
from formula (4.1). Specifically, this formula reads

Esc
x,r(x)≈E0

[
1

1+
σΣ
r

2

−1

]
−AE0e

−Q̂+(sinα)+Q̂+(km,r)ei(km,rx+ϕ), x>0, (4.2)

which is supplemented with two parameters, namely, the extra factor, or relative am-
plitude, A for the SPP and a corresponding phase shift, ϕ. These parameters, A and ϕ,
are determined via fitting of the last expression for Esc

x,r to our numerics.
Interestingly, in the two distinct cases of the gap material mentioned above, we
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Fig. 4.4: [Color online] Relative amplitude, A (compared to the reference case) of the SPP versus
gap width, d, according to formula (4.2) in the geometry with two co-planar, semi-infinite sheets. The
amplitude A has been computed via fitting of formula (4.2) to numerical solution for scattered field.

observe two fundamentally different scaling laws for A, which hold for a range of values
of d. These behaviors are shown in a semi-logarithmic plot of the relative amplitude,
A, versus the gap width, d; see Figure 4.4. In the case with an empty gap, we observe
that the relative amplitude, A, exhibits a logarithmic behavior with d, viz., A∼−log d.
In contrast, in the case with a highly conducting material, the corresponding scaling
is approximately linear, viz., A∼d. Both scaling laws hold at least for 2−8≤d≤2−4

(Figure 4.4). Outside this region for d, our numerical fitting yields results consistent
with the limits limd→∞A=A∞ and limd→0A= 0, where A∞ is the (constant) relative
amplitude of the SPP for an infinitely large gap, when the two sheets tend to be isolated
from each other.
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Fig. 4.5: [Color online] Maximal magnitude of SPP as a function of strip width, d/λm, relative to
SPP wavelength, λm = 2π/(Rekm). Two distinct maxima are shown, corresponding to the first [(a)]
and tenth [(b)] resonance observed in the chosen range of d. The numerical results (dashes) are fitted
to a Lorentzian function (solid line).
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4.3. Finite strip. Next, we consider the geometry of a finite metamaterial
strip, Σ ={(x,0)∈R2 :−d/2≤x≤d/2} [Figure 2.2(d)]. In this case, if the length d of
the strip is sufficiently large, the two edges are expected to cause resonances to the
observed SPP. In other words, the maximal magnitude of the SPP generated in this
structure should exhibit peaks as a function of the strip width, d (for fixed k).

In our numerical simulations, we compute the resulting, maximal magnitude of the
SPP as a function of d; see Figure 4.5. For these numerics, we choose the surface
conductivity to be equal to σΣ

r = 2.0 ·10−3 +0.2i. We select two peaks among those
observed in the chosen range of values of d. These resonances are depicted in separate
plots here [Figure 4.5(a,b)]. In order to quantify the two selected resonances, we carry
out the fitting of the numerical results in each case to the Lorentzian function

ϕ(d) =
Aπ

γ

[
1+(d−d0)2/γ2

]−1
.

The parameters d0, γ and A of this formula are determined via the fitting procedure.
Specifically, we obtain the following values: d0 = 1.372λm, γ= 0.015λm, A= 1.34 for
the first resonance [Figure 4.5(a)]; and d0 = 10.375λm, γ= 0.11λm, A= 1.49 for an-
other (tenth) resonance [Figure 4.5(b)] in the chosen range of values of d. Here,
λm= 2π/(Rekm) is the SPP wavelength on the semi-infinite sheet of the same con-
ductivity (see Section 2.2).

5. Conclusion
In this paper, we numerically studied the generation of SPPs on atomically thick

metamaterial sheets by edge effects in different geometries. Our chosen configurations
included: a semi-infinite sheet; two co-planar, semi-infinite sheets with a gap of variable
width; and a finite strip of variable width. In our computations, we used an adaptive
finite element method with curl-conforming Ndlec-elements in order to resolve the fine
scale of the SPP propagating along the sheet in the presence of edges. Our numerical
approach here forms an extension of the method introduced in [26] to more realistic
geometries.

We validated our numerical treatment by comparison of the finite element-based
numerics to an analytical solution for the semi-infinite sheet [29]. By further numerical
simulations, we demonstrated that the presence of a highly conducting material in the
gap between two co-planar, semi-infinite metamaterial sheets can increase the SPP
magnitude, and leads to a distinctly different dependence of the SPP on the gap width
in comparison to the case with an empty gap. In addition, we numerically characterized
SPP resonances on a finite strip, and demonstrated that the SPP maximal magnitude
(as a function of gap width) is well described by a Lorentzian function.

Our results point to a few open problems. For instance, our computations have
focused on 2D, although our approach is applicable to arbitrary spatial dimensions. An
emerging question concerns the use of truly three-dimensional (3D) geometries, which
may contain metamaterial sheets with corners, conical singularities or arbitrarily curved
hypersurfaces. The generation and propagation of SPPs in 3D settings is the subject of
ongoing work.
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