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FINITE DIMENSIONAL GLOBAL ATTRACTOR OF THE
CAHN–HILLIARD–NAVIER–STOKES SYSTEM WITH DYNAMIC
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Abstract. In this paper, we mainly consider the long-time behavior of solutions for the Cahn–
Hilliard–Navier–Stokes system with dynamic boundary conditions and two polynomial growth non-
linearities of arbitrary order. We prove the existence of a finite dimensional global attractor for the
Cahn–Hilliard–Navier–Stokes system with dynamic boundary conditions by using the `-trajectories
method.
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1. Introduction
In this paper, we consider the following Cahn–Hilliard–Navier–Stokes system:

∂u
∂t −ν∆u+(u ·∇)u+∇p+λφ∇µ=h(x), (x,t)∈Ω×R+,

∇·u= 0, (x,t)∈Ω×R+,
∂φ
∂t +u ·∇φ−γ∆µ= 0, (x,t)∈Ω×R+,

µ=−∆φ+f(φ), (x,t)∈Ω×R+.

(1.1)

Equation (1.1) is subject to the following dynamic boundary conditions
u(x,t) = 0, (x,t)∈Γ×R+,
∂µ
∂~n = 0, (x,t)∈Γ×R+,
∂φ
∂t =α∆Γφ− ∂φ

∂~n−βφ−g(φ), (x,t)∈Γ×R+

(1.2)

and initial conditions 
u(x,0) =u0(x), x∈Ω,

φ(x,0) =φ0(x), x∈Ω,

φ(x,0) =θ0(x), x∈Γ,

(1.3)

where Ω⊂R2 is a bounded domain with smooth boundary Γ and R+ = [0,+∞),
ν >0 is the viscosity, λ>0 is a surface tension parameter, α>0, β >0 are con-
stants, γ >0 is the elastic relaxation time, h(x) = (h1(x),h2(x)) is the external force,
u(x,t) = (u1(x,t),u2(x,t)) denotes the average velocity and φ is the difference of the two
fluid concentrations, p is the fluid pressure, ~n is the unit external normal vector on Γ,
∆Γ is the Laplace–Beltrami operator on the surface Γ of Ω.
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To study problem (1.1)-(1.3), we assume the following conditions:
(H1) the function f ∈C1(R,R) satisfies that there exists a positive constant C1 such

that

|f ′(u)−f ′(v)|≤C1|u−v|(|u|p−3 + |v|p−3 +1) (1.4)

for any u,v∈R and

c1|u|p−k1≤f(u)u≤ c2|u|p+k1, (1.5)

where ci>0 (i= 1,2), p≥3, k1>0.
(H2) the function g∈C(R,R) satisfies that there exists a positive constant C2 such

that

|g(u)−g(v)|≤C2|u−v|(|u|q−2 + |v|q−2 +1) (1.6)

for any u,v∈R and

c3|u|q−k2≤g(u)u≤ c4|u|q+k2, (1.7)

where ci>0 (i= 3,4), q>2, k2>0.
Dynamic boundary conditions were recently proposed by physicists to describe spin-

odal decomposition of binary mixtures where the effective interaction between the wall
(i.e., the boundary) and two mixture components is short-ranged, and this type of
boundary conditions is very natural in many mathematical models such as heat transfer
in a solid in contact with a moving fluid, thermoelasticity, diffusion phenomena, heat
transfer in two medium, problems in fluid dynamics. The well-posedness and long-
time behavior of solutions for many equations with dynamical boundary conditions
have been studied extensively(see [4–6, 12–15, 17, 18, 26, 35–39, 45]). For example, the
global well-posedness of solutions for the non-isothermal Cahn–Hilliard equation with
dynamic boundary conditions was proved in [19]. In [17], the author proved the exis-
tence and uniqueness of a global solution for a Cahn–Hilliard model in bounded domains
with permeable walls. The global existence and uniqueness of solutions for the Cahn–
Hilliard equation with highest-order boundary conditions were proved in [39]. In [38],
the authors proved the maximal regularity and asymptotic behavior of solutions for the
Cahn–Hilliard equation with dynamic boundary conditions. The fact that any global
weak/strong solution of the Cahn–Hilliard equation with dynamic boundary conditions
converges to a single steady state as time t→+∞ was proved in [12]. In [20], the author
proved the existence of a global attractor and an exponential attractor in H1(Ω) for
a homogeneous two-phase flow model and established any global weak/strong solution
converges to a single steady state as time t→+∞, and provided its convergence rate.
In [18], the author proved the existence of an exponential attractor for a Cahn–Hilliard
model in bounded domains with permeable walls. The existence of a global attractor for
the reaction-diffusion equation with dynamical boundary conditions was proved in [15].
In [35], the authors proved the existence of an exponential attractor for the Cahn–
Hilliard equation with dynamical boundary conditions. In [47], the authors proved the
existence of a global attractor for p-Laplacian equations with dynamical boundary con-
ditions by using asymptotical a priori estimates.The well-posedness of solutions and the
existence of a global attractor of the Cahn–Hilliard–Brinkman system with dynamic
boundary conditions was proved in [46].

Diffuse-interface methods in fluid mechanics are widely used by many researchers
in order to describe the behavior of complex fluids (see [3]). A diffuse interface vari-
ant of Cahn–Hilliard–Navier–Stokes system has been proposed to model the motion
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of an isothermal mixture of two immiscible and incompressible fluids subject to phase
separation (see [27–29]). The coupled system consists of a convective Cahn–Hilliard
equation for the order parameter, i.e., the difference of the relative concentrations of
the two phases, coupled with the Navier-Stokes equations for the average fluid veloc-
ity. The Cahn–Hilliard–Navier–Stokes system has been investigated from the numerical
(see [16, 31, 32]) and analytical (see, e.g., [1, 2, 7–9, 22–25, 42, 43, 48, 49]) viewpoint in
several papers. The long-time behavior and well-posedness of solutions for the two
dimensional Cahn–Hilliard–Navier–Stokes system were proved in [22]. Thanks to the
shortage of the uniqueness of solutions, the authors have proved the existence of tra-
jectory attractors for binary fluid mixtures in 3D in [23]. In [24], the authors have
considered the instability of two-phase flows and provided a lower bound on the dimen-
sion of the global attractor of the Cahn–Hilliard–Navier–Stokes system. The existence
of pullback exponential attractor for a two dimensional Cahn–Hilliard–Navier–Stokes
system in [7]. In [43], the author has proved the existence of pullback attractors for a
two dimensional non-autonomous Cahn–Hilliard–Navier–Stokes system. Recently, the
authors have considered the Cahn–Hilliard–Navier–Stokes system with moving contact
lines and proved any suitable global energy solution will convergent to a single equilib-
rium in [25]. In [11], the authors have proved the well-posedness of solutions for the
viscous Cahn–Hilliard–Navier–Stokes system with dynamic boundary conditions and
considered the regularity of the weak solutions under some additional assumptions that
φt(0)∈H1(Ω̄,dσ) and ut(0)∈H. However, to the best of our knowledge, there are no
results related to the existence of a finite dimensional global attractor for the dissipative
dynamical system with dynamical boundary conditions.

In this paper, we will consider the well-posedness and the long-time behavior of solu-
tions for the Cahn–Hilliard–Navier–Stokes system with dynamical boundary conditions
and a polynomial growth nonlinearity of arbitrary order. When we consider the long-
time behavior of solutions for the Cahn–Hilliard–Navier–Stokes system with dynamic
boundary conditions, there are two difficulties: first of all, comparing to Cahn–Hilliard
equation with dynamic boundary conditions, since the the coupled term arises and the
additional assumptions that φt(0)∈H1(Ω̄,dσ) and ut(0)∈H specified in Lemma 2.3
of [11] cannot be obtained for the weak solution at sufficiently large time in general
such that we cannot obtain the existence of an absorbing set for problem (1.1)-(1.7) in
a more regular phase space than H×VI . Secondly, comparing to the Cahn–Hilliard–
Navier–Stokes system with Neumann boundary conditions, thanks to∫

Ω

φt∆
2φdx=

∫
Γ

φt
∂∆φ

∂~n
−
∫

Γ

∆φ
∂φt
∂~n

+ ·· · ,

it is very tricky to deal with these two terms on the right hand side such that we
cannot choose ∆2φ as a test function to prove the smooth property of the difference
of two solutions and the differentiability of the corresponding semigroup on the global
attractor for problem (1.1)-(1.7). Therefore, the standard scheme of estimating the
fractal dimension of the global attractor does not work. To overcome this difficulty,
inspired by the idea of the method of `-trajectories for any small `>0 proposed in [33],
in this paper, we first define a semigroup {Lt}t≥0 on some subset X` of L2(0,`;H×VI)
induced by the semigroup {SI(t)}t≥0 generated by problem (1.1)-(1.7), and then, we
prove the existence of a global attractor A` in X` for the semigroup {Lt}t≥0 by the
method of `-trajectories and estimate the fractal dimension of the global attractor by
using the smooth property of the semigroup {Lt}t≥0. Finally, by defining a Lipschitz
continuous operator on the global attractor A`, we obtain the existence of a finite
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dimensional global attractor A in the original phase space H×VI for problem (1.1)-
(1.7).

Throughout this paper, let C be a generic constant that is independent of the initial
datum of (u,φ). Define the average of function φ(x) over Ω as

mφ=
1

|Ω|

∫
Ω

φ(x)dx.

2. Preliminaries
In order to study the problem (1.1)-(1.7), we introduce the space of divergence-free

functions defined by

V={u∈ (C∞c (Ω))2 :∇·u= 0}.

Denote byH and V the closure of V with respect to the norms in (L2(Ω))2 and (H1
0 (Ω))2,

respectively.
We define the Lebesgue spaces as follows

Lp(Γ) =
{
v :‖v‖Lp(Γ)<∞

}
,

where

‖v‖Lp(Γ) =

(∫
Γ

|v|pdS
) 1

p

for p∈ [1,∞). Moreover, we have

Lp(Ω)⊕Lq(Γ) =Lp,q(Ω̄,dσ), p,q∈ [1,∞)

and

‖U‖Lp,q(Ω̄,dσ) = (

∫
Ω

|u|pdx)
1
p +(

∫
Γ

|v|q dS)
1
q

for any U = (u,v)∈Lp,q(Ω̄,dσ), where the measure dσ=dx|Ω⊕dS|Γ on Ω̄ is defined by
σ(A) = |A∩Ω|+S(A∩Γ) for any measurable set A⊂ Ω̄.

We also define the Sobolev space H1(Ω̄,dσ) as the closure of C1(Ω) with respect to
the norm given by

‖φ‖H1(Ω̄,dσ) =

(∫
Ω

|∇φ|2dx+

∫
Γ

α|∇Γφ|2 +β|φ|2dS
) 1

2

for any φ∈C1(Ω), denote by X∗ the dual space of X and let Hs(Ω), Hs(Γ) (s∈R) be
the usual Sobolev spaces. In general, any vector θ∈Lp(Ω̄,dσ) will be of the form (θ1,θ2)
with θ1∈Lp(Ω,dx) and θ2∈Lp(Γ,dS), and there need not be any connection between
θ1 and θ2.

Let the operator A :H1(Ω̄,dσ)→ (H1(Ω̄,dσ))∗ be associated with the bilinear form
defined by

〈Aφ,ψ〉=
∫

Ω

∇φ ·∇ψdx+

∫
Γ

α∇Γφ ·∇Γψ+βφψdS (2.1)

for any φ, ψ∈H1(Ω̄,dσ).
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Remark 2.1 ( [21]). C(Ω̄) is a dense subspace of L2(Ω̄,dσ) and a closed subspace of
L∞(Ω̄,dσ).

Next, we recall briefly some lemmas used to prove the well-posedness of weak solu-
tions and the existence of a finite dimensional global attractor for problem (1.1)-(1.7).

Lemma 2.1 ( [40]). Let O be a bounded domain in Rn and let 1<q<∞. Assume
that {gn}⊂Lq(O) with ‖{gn}‖Lq(O)≤C, where C is independent of n and there exists
g∈Lq(O) such that {gn}→g, as n→∞, almost everywhere in O. Then gn→g, as
n→∞ weakly in Lq(O).

Lemma 2.2 ( [19, 35]). Let Ω⊂R2 be a bounded domain with smooth boundary Γ.
Consider the following linear problem{

−∆φ= j1, x∈Ω,

−α∆Γφ+ ∂φ
∂~n +βφ= j2, x∈Γ.

Assume that (j1,j2)∈Hs(Ω̄,dσ), s≥0, s+ 1
2 6∈N. Then the following estimate holds

‖φ‖Hs+2(Ω̄,dσ)≤C(‖j1‖Hs(Ω) +‖j2‖Hs(Γ))

for some constant C>0.

Lemma 2.3 ( [44]). Let V, H, V ∗ be three Hilbert spaces such that V ⊂H=H∗⊂V ∗,
where H∗ and V ∗ are the dual spaces of H and V, respectively. Suppose u∈L2(0,T ;V )
and ∂u

∂t ∈L
2(0,T ;V ∗). Then u is almost everywhere equal to a function continuous from

[0,T ] into H.

Lemma 2.4 ( [10, 30, 33, 34, 41]). Assume that p1∈ (1,∞], p2∈ [1,∞). Let X be
a Banach space and let X0, X1 be separable and reflexive Banach spaces such that
X0⊂⊂X⊂X1. Then

Y ={u∈Lp1(0,`;X0) :u′∈Lp2(0,`;X1)}⊂⊂Lp1(0,`;X),

where ` is a fixed positive constant.

Definition 2.1 ( [40, 44]). Let {S(t)}t≥0 be a semigroup on a Banach space X. A
set A⊂X is said to be a global attractor if the following conditions hold:

(i) A is compact in X.

(ii) A is strictly invariant, i.e., S(t)A=A for any t≥0.

(iii) For any bounded subset B⊂X and for any neighborhood O=O(A) of A in X,
there exists a time τ0 = τ0(B) such that S(t)B⊂O(A) for any t≥ τ0.

Lemma 2.5 ( [34]). Let X be a (subset of) Banach space and (S(t),X) be a dynamical
system. Assume that there exists a compact set K⊂X which is uniformly absorbing and
positively invariant with respect to S(t). Let moreover S(t) be continuous on K. Then
(S(t),X) has a global attractor.

Definition 2.2 ( [40,44]). Let H be a separable real Hilbert space. For any non-empty
compact subset K⊂H, the fractal dimension of K is the number

dF (K) = limsup
ε→0+

log(Nε(K))

log( 1
ε )

,
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where Nε(K) denotes the minimum number of open balls in H with radii ε>0 that are
necessary to cover K.

Lemma 2.6 ( [34]). Let X, Y be norm spaces such that X⊂⊂Y and A⊂Y be
bounded. Assume that there exists a mapping L such that LA=A and L :Y →X is
Lipschitz continuous on A. Then dF (A) is finite.

Lemma 2.7 ( [34]). Let X and Y be two metric spaces and f :X→Y be α-Hölder
continuous on the subset A⊂X. Then

dF (f(A),Y )≤ 1

α
dF (A,X).

In particular, the fractal dimension does not increase under a Lipschitz continuous map-
ping.

Finally, we give the definition of weak solutions for problem (1.1)-(1.7).

Definition 2.3. Assume that h∈L2(Ω) and (H1)-(H2) hold. For any (u0,Φ0) =
(u0,φ0,θ0)∈H×H1(Ω̄,dσ) and any fixed T >0, a function (u,φ) is called a weak solution
of problem (1.1)-(1.7) on (0,T ), if

µ∈L2(0,T ;H1(Ω)) is given by the fourth equation of (1.1)

and

φ∈C([0,T ];H1(Ω̄,dσ))∩L2(0,T ;H2(Ω̄,dσ)),

u∈C([0,T ];H)∩L2(0,T ;V ),

(ut,φt)∈L2(0,T ;V ∗×(H1(Ω̄,dσ))∗)

satisfy ∫
Ω

ut ·v+ν∇u ·∇v+[(u ·∇)u] ·v+λ(vφ) ·∇µdx=

∫
Ω

h ·vdx,∫
Ω

φtψdx+

∫
Ω

(u ·∇φ)ψdx+γ

∫
Ω

∇µ ·∇ψdx= 0,∫
Ω

∇φ ·∇θ+f(φ)θdx+

∫
Γ

φtθ+α∇Γφ ·∇Γθ+βφθ+g(φ)θdS=

∫
Ω

µθdx

for all test functions v∈V and ψ, θ∈W ={w∈H1(Ω̄,dσ) :mw= 0}.

3. The well-posedness of weak solutions
In this section, for the sake of completeness, we give the proof of the well-posedness

of weak solutions for problem (1.1)-(1.7). Now, we state it as follows.

Theorem 3.1. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then for any u0∈H
and Φ0 = (φ0,θ0)∈H1(Ω̄,dσ), there exists a unique weak solution (u(t),φ(t)) for prob-
lem (1.1)-(1.7) such that mφ(t) =mφ0, which depends continuously on the initial data
(u0,φ0,θ0) with respect to the norm in H×H1(Ω̄,dσ).

Proof. We first prove the existence of weak solutions for problem (1.1)-(1.7) by
the Faedo–Galerkin method (see [11,44]).

Let A1 =−P∆ is the Stokes operator and P is the Leray–Helmotz projector from
L2(Ω) onto H. It is well-known that for the eigenvalue problem A1ω=κω, where there
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exists a sequences of non-decreasing numbers {κn}∞n=1 and a sequences of functions
{ωn}∞n=1, which are orthonormal and complete in H such that for every k≥1, we have

A1ωk =κkωk

and

lim
k→+∞

κk = +∞.

We also introduce the operator N which is the inverse of the Laplacian operator −∆,
where −∆ is endowed with Neumann boundary conditions imposing zero average over
the domain Ω. It is well-known that there exists a sequences of non-decreasing numbers
{λn}∞n=1 and a sequences of functions {ψn}∞n=1, which are orthonormal and complete in
L2(Ω) such that λ1 = 0 and ψ1 = 1 as well as for every k≥2, we have

Nψk =
1

λk
ψk

and

lim
k→+∞

λk = +∞.

For any n≥1, we introduce two finite-dimensional spaces Wn=span{ψ1,...,ψn} and
Hn=span{ω1,...,ωn}. Let Pn be the orthogonal projector from L2(Ω) to Wn and let
Πn be the orthogonal projector from H to Hn.

Consider the approximate solution (un(t),φn(t),µn(t)) in the form

un(t) =

n∑
i=1

βi(t)ωi,

φn(t) =

n∑
i=1

αi(t)ψi,

µn(t) =

n∑
i=1

µi(t)ψi,

we obtain (un(t),φn(t)) from solving the following problem

∫
Ω
∂un

∂t ·v+ν∇un ·∇v+[(un ·∇)un] ·v+λ(vφn) ·∇µndx=
∫

Ω
h ·vdx,∫

Ω
∂φn

∂t ψ+(un ·∇φn)ψ+γ∇µn ·∇ψdx= 0,∫
Ω
∇φn ·∇θ+f(φn)θdx+

∫
Γ
∂φn

∂t θ+α∇Γφn ·∇Γθ+βφnθ+g(φn)θdS=
∫

Ω
µnθdx,∫

Ω
un(0) ·ωkdx=

∫
Ω
u0 ·ωkdx, k= 1, ·· · ,n,∫

Ω
φn(0)ψkdx=

∫
Ω
φ0ψkdx, k= 1, ·· · ,n,∫

Γ
φn(0)ψkdS=

∫
Γ
θ0ψkdS, k= 1, ·· · ,n,

(3.1)
for any v∈Hn and ψ, θ∈Wn.

Repeating the similar argument as in [11], we can obtain the local (in time)
existence of (un(t),φn(t),µn(t)). Next, we will establish some a priori estimates for
(un(t),φn(t),µn(t)). Let v=un, ψ=µn and θ=φn in Equation (3.1), we find

d

dt

(
1

2
‖un‖2L2(Ω) +

λ

2
‖φn‖2H1(Ω̄,dσ) +λ

∫
Ω

F (φn)dx+λ

∫
Γ

G(φn)dS

)
+λ‖∂φn(t)

∂t
‖2L2(Γ)
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+λγ‖∇µn‖2L2(Ω) +ν‖∇un‖2L2(Ω) +‖φn‖2H1(Ω̄,dσ) +

∫
Ω

f(φn)φndx+

∫
Γ

g(φn)φndS

=

∫
Ω

µnφndx−
∫

Γ

∂φn
∂t

φndS+

∫
Ω

h(x)undx

≤‖µn−mµn‖L2(Ω)‖φn‖L2(Ω) +mµnmφ0|Ω|+‖
∂φn
∂t
‖L2(Γ)‖φn‖L2(Γ)

+‖h‖L2(Ω)‖un‖L2(Ω)

≤C‖∇µn‖L2(Ω)‖φn‖L2(Ω) + |mµn||mφ0||Ω|+‖
∂φn
∂t
‖L2(Γ)‖φn‖L2(Γ)

+‖h‖L2(Ω)‖un‖L2(Ω), (3.2)

where F (s) =
∫ s

0
f(r)dr and G(s) =

∫ s
0
g(r)dr, respectively, are the primitive function of

f and g.
Let θ= 1 in the third equation of (3.1), we obtain∣∣∣∣∫

Ω

µndx

∣∣∣∣≤‖∂φn(t)

∂t
‖L1(Γ) +β‖φn(t)‖L1(Γ) +‖g(φn)‖L1(Γ) +‖f(φn)‖L1(Ω). (3.3)

Combining inequalities (1.4)-(1.7) and (3.2)-(3.3) with Hölder’s inequality and Young’s
inequality, we find that there exist two positive constants δ and % such that

d

dt
J(un,φn)+λ‖∂φn(t)

∂t
‖2L2(Γ) +λγ‖∇µn‖2L2(Ω) +ν‖∇un‖2L2(Ω) +δJ(un,φn)≤%, (3.4)

where

J(u,φ) =‖u‖2L2(Ω) +λ‖φ‖2H1(Ω̄,dσ) +2λ

∫
Ω

F (φ)dx+2λ

∫
Γ

G(φ)dS.

From the classical Gronwall inequality, we infer

J(un(t),φn(t))≤e−δtJ(un(0),φn(0))+
%

δ

≤e−δtJ(u0,Φ0)+
%

δ
. (3.5)

From inequalities (1.4)-(1.7), we deduce that there exist four positive constants δ1, δ2,
k1 and k2 such that

δ1

(
‖u‖2L2(Ω) +λ‖φ‖2H1(Ω̄,dσ) +‖φ‖pLp(Ω) +‖φ‖qLq(Γ)

)
−k1

≤J(u,φ)

≤δ2
(
‖u‖2L2(Ω) +‖φ‖2H1(Ω̄,dσ) +‖φ‖pLp(Ω) +‖φ‖qLq(Γ)

)
+k2. (3.6)

By virtue of inequalities (3.5)-(3.6), we obtain

‖un(t)‖2L2(Ω) +‖φn(t)‖2H1(Ω̄,dσ) +‖φn(t)‖pLp(Ω) +‖φn(t)‖qLq(Γ)

≤ 1

δ1
e−δtJ(u0,Φ0)+

%

δ1δ
+
k1

δ1
. (3.7)

Integrating inequality (3.4) from 0 to t, we obtain

λ

∫ t

0

‖∂φn(s)

∂t
‖2L2(Γ)ds+λγ

∫ t

0

‖∇µn(s)‖2L2(Ω)ds+ν

∫ t

0

‖∇un(s)‖2L2(Ω)ds
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≤%T +J(u0,Φ0)+k1(1+δT ), (3.8)

for any t∈ (0,T ].
Due to inequalities (3.3) and (3.7)-(3.8), we find

{un}∞n=1 is uniformly bounded inL∞(0,T ;H)∩L2(0,T ;V ),

{φn}∞n=1 is uniformly bounded inL∞(0,T ;H1(Ω̄,dσ))∩L∞(0,T ;Lp(Ω))

∩L∞(0,T ;Lq(Γ)),

{∂φn(t)

∂t
}∞n=1 is uniformly bounded inL2(0,T ;L2(Γ)),

{µn}∞n=1 is uniformly bounded inL2(0,T ;H1(Ω)).

Therefore, there exist

u∈L∞(0,T ;H)∩L2(0,T ;V ),

φ∈L∞(0,T ;H1(Ω̄,dσ))∩L∞(0,T ;Lp(Ω))∩L∞(0,T ;Lq(Γ)),

∂φ

∂t
∈L2(0,T ;L2(Γ)),

χ∈L2(0,T ;H1(Ω))

such that we can extract subsequences {unj}∞j=1, {φnj}∞j=1, {
∂φnj

∂t }
∞
j=1, {µnj}∞j=1 of

{un}∞n=1, {φn}∞n=1, {
∂φn

∂t }
∞
n=1, {µn}∞n=1, respectively, satisfy

unj ⇀uweakly star inL∞(0,T ;H),

unj ⇀uweakly inL2(0,T ;V ),

φnj ⇀φweakly star inL∞(0,T ;H1(Ω̄,dσ)),

φnj
⇀φweakly star inL∞(0,T ;Lp(Ω)),

φnj
⇀φweakly star inL∞(0,T ;Lq(Γ)),

∂φnj
(t)

∂t
⇀
∂φ(t)

∂t
weakly inL2(0,T ;L2(Γ)),

µnj
⇀χweakly inL2(0,T ;H1(Ω)).

From inequalities (1.4)-(1.7) and (3.7), we obtain

{f(φn)}∞n=1 is uniformly bounded inL∞(0,T ;L
p

p−1 (Ω)), (3.9)

{g(φn)}∞n=1 is uniformly bounded inL∞(0,T ;L
q

q−1 (Γ)). (3.10)

We infer from inequalities (1.4)-(1.7), (3.7)-(3.8), Sobolev embedding Theorem and
Lemma 2.2 that

{φn}∞n=1 is uniformly bounded inL2(0,T ;H2(Ω̄,dσ)), (3.11)

entails one can extract a subsequence {φnj
}∞j=1 of {φn}∞n=1 such that

φnj
⇀φweakly inL2(0,T ;H2(Ω̄,dσ)).
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For any v∈V, set vn= Πnv, we have

|
∫

Ω

∂un
∂t
·vdx|≤

∫
Ω

|un|2|∇vn|+ν|∇un||∇vn|+ |h||vn|+λ|vn||φn||∇µn|dx

≤‖un‖2L4(Ω)‖∇vn‖L2(Ω) +ν‖∇un‖L2(Ω)‖∇vn‖L2(Ω)

+‖h‖L2(Ω)‖vn‖L2(Ω) +λ‖vn‖
L

2p
p−2 (Ω)

‖φn‖Lp(Ω)‖∇µn‖L2(Ω)

≤C‖un‖L2(Ω)‖∇un‖L2(Ω)‖∇v‖L2(Ω) +ν‖∇un‖L2(Ω)‖∇v‖L2(Ω)

+
1
√
κ1
‖h‖L2(Ω)‖∇v‖L2(Ω) +C‖∇v‖L2(Ω)‖φn‖Lp(Ω)‖∇µn‖L2(Ω),

entails that

{∂un
∂t
}∞n=1 is uniformly bounded in L2(0,T ;V ∗).

For any ψ∈H1(Ω̄,dσ), set ψn=Pnψ, we have

|
∫

Ω

∂φn
∂t

ψdx|≤
∫

Ω

|unφn||∇ψn|dx+γ

∫
Ω

|∇µn||∇ψn|dx

≤‖un‖
L

2p
p−2 (Ω)

‖φn‖Lp(Ω)‖∇ψn‖L2(Ω) +γ‖∇µn‖L2(Ω)‖∇ψn‖L2(Ω)

≤C‖∇un‖L2(Ω)‖φn‖Lp(Ω)‖∇ψ‖L2(Ω) +γ‖∇µn‖L2(Ω)‖∇ψ‖L2(Ω),

which implies that

{∂φn
∂t
}∞n=1 is uniformly bounded in L2(0,T ;(H1(Ω̄,dσ))∗).

Therefore, we can extract subsequences {∂unj

∂t }
∞
j=1, {

∂φnj

∂t }
∞
j=1 of {∂un

∂t }
∞
n=1, {

∂φn

∂t }
∞
n=1,

respectively, such that

∂unj

∂t
⇀
∂u

∂t
weakly inL2(0,T ;V ∗)

∂φnj

∂t
⇀
∂φ

∂t
weakly inL2(0,T ;(H1(Ω̄,dσ))∗).

By virtue of the Aubin–Lions compactness theorem, we can extract a further subse-
quence (still denote by {unj

}∞j=1 and {φnj
}∞j=1) such that additionally

unj
−→u strongly inL2(0,T ;H), (3.12)

φnj −→φ strongly inL2(0,T ;H1(Ω̄,dσ)). (3.13)

From properties (3.9)-(3.10), (3.12)-(3.13) and Lemma 2.1, we obtain

f(φnj )⇀f(φ) weakly inL
p−1
p (0,T ;L

p−1
p (Ω)) (3.14)

g(φnj )⇀g(φ) weakly inL
q−1
q (0,T ;L

q−1
q (Γ)). (3.15)

Hence, we have

χ=−∆φ+f(φ) =µ.
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Thanks to∫
ΩT

v ·([un ·∇]un− [u ·∇]u) dx=

∫
ΩT

v ·([(un−u) ·∇]un)dx+

∫
ΩT

v ·([u ·∇](un−u))dx,∫
ΩT

v ·(φn∇µn−φ∇µ)dx=

∫
ΩT

v ·∇µn(φn−φ)dx+

∫
ΩT

vφ ·(∇µn−∇µ)dx

for any v∈V and∫
ΩT

(un ·∇φn−u ·∇φ)ψdx=−
∫

ΩT

φ(un−u) ·∇ψdx−
∫

ΩT

(φn−φ)un ·∇ψdx

for any ψ∈H1(Ω̄,dσ), we obtain

(un ·∇)un⇀ (u ·∇)uweakly inL2(0,T ;V ∗),

φn∇µn⇀φ∇µweakly inL2(0,T ;V ∗),

un ·∇φn⇀u ·∇φweakly inL2(0,T ;(H1(Ω̄,dσ))∗).

Therefore, a weak solution (u,φ) for problem (1.1)-(1.7) has been proved. Moreover, we
infer from Lemma 2.3 that u(t)∈C(R+;H) and φ(t)∈C(R+;H1(Ω̄,dσ)).

Finally, we prove the uniqueness and the continuous dependence on the initial data
of the solutions. Let (u1,φ1,p1), (u2,φ2,p2) be two solutions for problem (1.1)-(1.7)
with the initial data (u10

,φ10
,θ10

), (u20
,φ20

,θ20
), respectively, and mφ10

=mφ20
. Let

u=u1−u2, φ=φ1−φ2, p=p1−p2, then (u,φ,p) satisfies the following equations
∂u
∂t −ν∆u+u ·∇u2 +u1 ·∇u+∇p=−λφ1∇µ−λφ∇µ2, (x,t)∈Ω×R+,

∇·u= 0, (x,t)∈Ω×R+,
∂φ
∂t +u ·∇φ1 +u2 ·∇φ−γ∆µ= 0, (x,t)∈Ω×R+,

µ=µ1−µ2 =−∆φ+f(φ1)−f(φ2), (x,t)∈Ω×R+.

(3.16)

Equation (3.16) is subject to the following boundary conditions
u(x,t) = 0, (x,t)∈Γ×R+,
∂µ
∂~n = 0, (x,t)∈Γ×R+,
∂φ
∂t −α∆Γφ+ ∂φ

∂~n +βφ+g(φ1)−g(φ2) = 0, (x,t)∈Γ×R+

(3.17)

and initial conditions 
u(x,0) =u10−u20 , x∈Ω,

φ(x,0) =φ10−φ20 , x∈Ω,

φ(x,0) =θ10
−θ10

, x∈Γ.

(3.18)

Multiplying the first equation and the third equation of (3.16) by u, −λ∆φ, respectively,
and integrating by parts, we find

1

2

d

dt
(‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ))+λ‖φt(t)‖2L2(Γ) +ν‖∇u‖2L2(Ω) +λγ‖∇∆φ‖2L2(Ω)

=λγ

∫
Ω

∇(f(φ1)−f(φ2)) ·∇∆φdx−λ
∫

Γ

(g(φ1)−g(φ2))φtdS−λ
∫

Ω

(u2φ) ·∇∆φdx

+λ

∫
Ω

(u ·∇φ1)(f(φ1)−f(φ2))+(uφ) ·∇µ2dx−
∫

Ω

[(u ·∇)u2] ·udx
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≤λγ
∫

Ω

∇(f(φ1)−f(φ2)) ·∇∆φdx+λ‖g(φ1)−g(φ2)‖L2(Γ)‖φt‖L2(Γ)

+λ‖u‖L4(Ω)‖∇φ1‖L2(Ω)‖f(φ1)−f(φ2)‖L4(Ω) +λ‖u2‖L4(Ω)‖φ‖L4(Ω)‖∇∆φ‖L2(Ω)

+λ‖u‖L4(Ω)‖φ‖L4(Ω)‖∇µ2‖L2(Ω) +‖u‖2L4(Ω)‖∇u2‖L2(Ω). (3.19)

Due to ∣∣∣∣∫
Ω

∇(f(φ1)−f(φ2)) ·∇∆φdx

∣∣∣∣
≤
∣∣∣∣∫

Ω

(f ′(φ1)−f ′(φ2))∇φ1 ·∇∆φdx

∣∣∣∣+ ∣∣∣∣∫
Ω

f ′(φ2)∇φ ·∇∆φdx

∣∣∣∣
≤C‖∇φ1‖L6(Ω)(1+‖φ1‖p−3

L6(p−3)(Ω)
+‖φ2‖p−3

L6(p−3)(Ω)
)‖φ‖L6(Ω)‖∇∆φ‖2

+C(1+‖φ2‖p−2
L4(p−2)(Ω)

)‖∇φ‖L4(Ω)‖∇∆φ‖2

≤C‖φ1‖H2(Ω̄,dσ)(1+‖φ1‖p−3

H1(Ω̄,dσ)
+‖φ2‖p−3

H1(Ω̄,dσ)
)‖φ‖H1(Ω̄,dσ)‖∇∆φ‖2

+C(1+‖φ2‖p−2

H1(Ω̄,dσ)
)‖∇φ‖L4(Ω)‖∇∆φ‖2

≤C‖φ1‖H2(Ω̄,dσ)(1+‖φ1‖p−3

H1(Ω̄,dσ)
+‖φ2‖p−3

H1(Ω̄,dσ)
)‖φ‖H1(Ω̄,dσ)‖∇∆φ‖2

+C(1+‖φ2‖p−2

H1(Ω̄,dσ)
)(‖φ‖L2(Ω) +‖φ‖

1
2

L2(Ω)‖∇∆φ‖
1
2
2 )‖∇∆φ‖2

≤C‖φ1‖H2(Ω̄,dσ)(1+‖φ1‖p−3

H1(Ω̄,dσ)
+‖φ2‖p−3

H1(Ω̄,dσ)
)‖φ‖H1(Ω̄,dσ)‖∇∆φ‖2

+C(1+‖φ2‖p−2

H1(Ω̄,dσ)
)(‖φ‖H1(Ω̄,dσ) +‖φ‖

1
2

H1(Ω̄,dσ)
‖∇∆φ‖

1
2
2 )‖∇∆φ‖2, (3.20)

where we use the following Gagliardo–Nirenberg inequality:

‖∇φ‖L4(Ω)≤C‖∇∆φ‖
1
2

L2(Ω)‖φ‖
1
2

L2(Ω) +C2‖φ‖L2(Ω),

‖f(φ1)−f(φ2)‖L4(Ω)≤C(1+‖φ1‖p−2
L8(p−2)(Ω)

+‖φ2‖p−2
L8(p−2)(Ω)

)‖φ‖L8(Ω)

≤C(1+‖φ1‖p−2

H1(Ω̄,dσ)
+‖φ2‖p−2

H1(Ω̄,dσ)
)‖φ‖H1(Ω̄,dσ) (3.21)

and

‖g(φ1)−g(φ2)‖L2(Γ)≤C(1+‖φ1‖q−2
L4(q−2)(Γ)

+‖φ2‖q−2
L4(q−2)(Γ)

)‖φ‖L4(Γ)

≤C(1+‖φ1‖q−2

H1(Ω̄,dσ)
+‖φ2‖q−2

H1(Ω̄,dσ)
)‖φ‖H1(Ω̄,dσ), (3.22)

we infer from inequality (3.19)-(3.22) and Young’s inequality that

d

dt
(‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ))≤L(t)(‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ)), (3.23)

where

L(t) =C(1+‖φ1‖2H2(Ω̄,dσ) +‖φ2‖2H2(Ω̄,dσ) +‖∇u2‖2L2(Ω) +‖∇µ2‖2L2(Ω)). (3.24)

Therefore, we conclude from inequality (3.8), property (3.11) and the definition of L(t)
that ∫ T

0

L(s)ds=M(T )<∞.
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From the classical Gronwall inequality, we obtain

‖φ(t)‖2H1(Ω̄,dσ) +‖u(t)‖2L2(Ω)

≤max{1,α,β}
(
‖u10−u20‖2L2(Ω) +‖∇φ10−∇φ20‖2L2(Ω) +‖θ10−θ20‖2H1(Γ)

)
eM(T ).

Therefore, (u1(x,t),φ1(x,t)) = (u2(x,t),φ2(x,t)) a.e. in ΩT , if u10
(x) =u20

(x), φ10
(x) =

φ20(x) in Ω and θ10(x) =θ20(x) in Γ, and (u(x,t),φ(x,t)) depends continuously on the
initial data (u0,φ0,θ0) with respect to the norm in H×H1(Ω̄,dσ). The proof of Theorem
3.1 is completed.

Corollary 3.1. Assume that h∈L2(Ω), (u0m,φ0m,θ0m)⇀ (u0,φ0,θ0) in H×
H1(Ω̄,dσ) and (H1)-(H2) hold, let (um(t),φm(t)) be a sequence of weak solution
for problem (1.1)-(1.7) such that (um(0),φm(0)) = (u0m,φ0m,θ0m). For any T >0, if
there exists a subsequence converging (∗-) weakly in spaces {(u,φ)∈L∞(0,T ;H×
H1(Ω̄,dσ))∩L2(0,T ;V ×H2(Ω̄,dσ)) : (ut,φt)∈L1(0,T ;(V ×H1(Ω̄,dσ))∗)} to a certain
function (u(t),φ(t)). Then (u(t),φ(t)) is a weak solution on [0,T ] with (u(0),φ(0)) =
(u0,φ0,θ0).

For every fixed I ∈R, let VI ={φ∈H1(Ω̄,dσ) :mφ= I}, by Theorem 3.1, we can
define the operator semigroup {SI(t)}t≥0 in H×VI by

SI(t)(u0,φ0,θ0) = (u(t),φ(t)) = (u(t;(u0,φ0,θ0)),φ(t;(u0,φ0,θ0)))

for all t≥0, which is (H×VI ,H×VI)-continuous, where (u(t),φ(t)) is the solution of
problem (1.1)-(1.7) with (u(x,0),φ(x,0)) = (u0,φ0,θ0)∈H×VI .

4. The existence of global attractors

4.1. The existence of a global attractor in X`. In this subsection, we will con-
sider the existence of global attractors for problem (1.1)-(1.7) by using the `-trajectory
method. From Theorem 3.1, we know that the solution (u(t),φ(t)) of problem (1.1)-
(1.7) with initial data (u0,φ0,θ0) in H×VI is unique. Therefore, for any `>0 and any
(u0,φ0,θ0)∈H×VI , there is only one solution defined on the time interval [0,`] starting
from the initial data (u0,φ0,θ0)∈H×VI , for the sake of simplicity, which is denoted by
χ(τ,(u0,φ0,θ0)). Denote by X` the set of all the solution trajectories defined on the time
interval [0,`] equipped with the topology of L2(0,`;H×VI). Since X`⊂C([0,`];H×VI),
it makes sense to talk about the point values of trajectories. On the other hand, it is not
clear whether X` is closed in L2(0,`;H×VI) and hence X` in general is not a complete
metric space. In what follows, we first give the definition of some operators.

For any t∈ [0,1], we define the mapping et :X`→H×VI by

et(χ) =χ(t`)

for any χ∈X`.
The mapping b :H×VI→X` is given by

b((u0,φ0,θ0)) = (u,φ)(τ ;(u0,φ0,θ0)) =SI(τ)(u0,φ0,θ0), τ ∈ [0,`]

for any (u0,φ0,θ0)∈H×VI and we define the operators Lt :X`→X` by the relation

Ltb((u0,φ0,θ0)) = (u,φ)(t+τ ;(u0,φ0,θ0)) =SI(t+τ)(u0,φ0,θ0), τ ∈ [0,`]
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for any (u0,φ0,θ0)∈H×VI , where (u,φ) is the unique solution of problem (1.1)-(1.7)
with initial data (u0,φ0,θ0), we can easily prove the operators {Lt}t≥0 is a semigroup
on X`.

Next, we will carry out some a priori estimates to obtain the existence of absorbing
sets for problem (1.1)-(1.7).

Theorem 4.1. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then there exists a
positive constant ρ1 satisfying for any bounded subset B⊂H×VI , there exists a time
τ1 = τ1(B)>0 such that for any weak solutions of problem (1.1)-(1.7) with initial data
(u0,φ0,θ0)∈B, we have

‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ)≤ρ1

and ∫ `

0

‖u(t+s)‖2L2(Ω) +λ‖φ(t+s)‖2H1(Ω̄,dσ)ds≤ρ1

for any t≥ τ1.

Proof. From inequality (3.5), we infer that for any bounded subset B⊂H×VI ,
there exists a time τ0 = τ0(B)>0 such that

J(u(t),φ(t))≤ δ1 +
%

δ

for any t≥ τ0, which implies that

‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ)≤1+
%

δ1δ
+
k1

δ1

for any t≥ τ0.
From inequality (3.4), we deduce

d

dt
J(u,φ)+λ‖φt(t)‖2L2(Γ) +λγ‖∇µ‖2L2(Ω) +ν‖∇u‖2L2(Ω) +δJ(u,φ)≤%. (4.1)

Integrating inequality (4.1) from 0 to ` and combining (3.6), we obtain

λ

∫ `

0

‖φt(r)‖2L2(Γ)dr+δ

∫ `

0

J(u(r),φ(r))dr≤%`+J(u(0),φ(0))+k1. (4.2)

Integrating inequality (4.1) from r to t+r and integrating the resulting inequality with
respect to r over (0,`), we obtain∫ `

0

J(u(t+r),φ(t+r))dr≤e−δt
∫ `

0

J(u(r),φ(r))dr+`
%

δ
(1−e−δt)

≤e−δt 1
δ

(%`+J(u(0),φ(0))+k1)+`
%

δ
,

which implies that ∫ `

0

‖u(t+r)‖2L2(Ω) +λ‖φ(t+r)‖2H1(Ω̄,dσ)dr
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≤e−δt 1

δδ1
(%`+J(u(0),φ(0))+k1)+`

%

δδ1
+
k1

δ1
.

Therefore, for any bounded subset B⊂H×VI , there exists a time τ1 = τ1(B)>τ0 such
that ∫ `

0

‖u(t+r)‖2L2(Ω) +λ‖φ(t+r)‖2H1(Ω̄,dσ)dr≤1+`
%

δδ1
+
k1

δ1
(4.3)

for any t≥ τ1.

Let

B0 =
{

(u,φ)∈H×VI :‖u‖2L2(Ω) +λ‖φ‖2H1(Ω̄,dσ)≤ρ1

}
,

we infer from Theorem 4.1 that there exists a time t0 = t0(B0)≥0 such that for any
t≥ t0, we have

SI(t)B0⊂B0.

Define

B1 =
⋃

t∈[0,t0]

SI(t)B0

H×VI

and

B`0 ={χ∈X` :e0(χ)∈B1},

from the continuity of SI(t), inequality (3.5) and Theorem 4.1, we deduce

SI(t)B1⊂B1

and

LtB
`
0⊂B`0

for any t≥0 as well as B1 is a bounded subset of H×VI .
From Theorem 4.1, we immediately obtain the following result.

Corollary 4.1. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then for any bounded
subset B`⊂X`, there exists a time t1 = t1(B`)>0 such that for any weak solutions of
problem (1.1)-(1.7) with short trajectory χ∈B`, we have

‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ)≤ρ1

and ∫ `

0

‖u(t+s)‖2L2(Ω) +λ‖φ(t+s)‖2H1(Ω̄,dσ)ds≤ρ1

for any t≥ t1.

In what follows, we prove the existence of a compact absorbing set in X` of the
semigroup {Lt}t≥0.
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Theorem 4.2. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then there exists a
positive constant ρ2 satisfying for the subset B`0, there exists a time τ2 = τ2(B`0)>0 such
that for any weak solutions of problem (1.1)-(1.7) with short trajectory χ∈B`0, we have∫ `

0

‖∇u(t+r)‖2L2(Ω)+λ‖φ(t+r)‖
2
H2(Ω̄,dσ)dr+

(∫ `

0

‖ut(t+r)‖V ∗ +‖φt(t+r)‖V ∗
I
dr

)2

≤ρ2

for any t≥ τ2.

Proof. From the proof of Theorem 4.1 and Corollary 4.2, we know that there
exists a t0 = t0(B`0) such that

‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ) +

∫ `

0

J(u(t+r),φ(t+r))dr≤2+`
%

δ
+

%

δ1δ
+
k1

δ1
(4.4)

for any t≥ t0.
Integrating inequality (4.1) between t−s and t+` with t≥ t0 + `

2 , s∈ (0, `2 ), we
obtain

λ

∫ `

0

‖φt(t+r)‖2L2(Γ)dr+λγ

∫ `

0

‖∇µ(t+r)‖2L2(Ω)dr+ν

∫ `

0

‖∇u(t+r)‖2L2(Ω)

≤J(u(t−s),φ(t−s))+%(l+s)+k1 +δk1`. (4.5)

After integrating inequality (4.5) with respect to s over (0, `2 ) and combining inequality
(4.4), we have

λ

∫ `

0

‖φt(t+r)‖2L2(Γ)dr+λγ

∫ `

0

‖∇µ(t+r)‖2L2(Ω)dr+ν

∫ `

0

‖∇u(t+r)‖2L2(Ω)≤%1 (4.6)

for any t≥ t0 + `
2 .

It follows from Lemma 2.2 and inequalities (4.4) and (4.6) that∫ `

0

‖∇u(t+s)‖2L2(Ω) +λ‖φ(t+s)‖2H2(Ω̄,dσ)ds≤ρ2 (4.7)

for any t≥ t0 + `
2 .

From the proof of Theorem 3.1, we conclude

‖ut‖V ∗ ≤C‖u‖L2(Ω)‖∇u‖L2(Ω) +ν‖∇u‖L2(Ω) +
1
√
κ1
‖h‖L2(Ω) +C‖φ‖VI

‖∇µ‖L2(Ω)

(4.8)

and

‖φt‖V ∗
I
≤C‖∇u‖L2(Ω)‖φ‖VI

+γ‖∇µ‖L2(Ω). (4.9)

Integrating inequalities (4.8)-(4.9) over (t,t+`) and combining inequalities (4.6)-(4.7)
with Hölder’s inequality, we obtain∫ `

0

‖ut(t+r)‖V ∗ +‖φt(t+r)‖V ∗
I
dr≤%3 (4.10)

for any t≥ t0 + `
2 .
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Let

Y =
{
χ∈X` :χ∈L2(0,`;V ×H2(Ω̄,dσ),χt∈L1(0,`;V ∗×(H1(Ω̄,dσ))∗

}
equipped with the following norm

‖χ‖Y =


∫ `

0

‖χ(r)‖2V×H2(Ω̄,dσ)dr+

(∫ `

0

‖χt(r)‖V ∗×(H1(Ω̄,dσ))∗ dr

)2


1
2

.

Define

B`1 =
{
χ∈X` :‖χ‖2Y ≤ρ2

}
.

From Theorem 4.1 and Theorem 4.2, we know that LtB
`
0⊂B`0 for any t≥0 as well as

LtB
`
0⊂B`1 for any t≥ τ2.

Lemma 4.1. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then

LtB`0
L2(0,`;H×VI)

⊂B`0

for any t≥0.

Proof. Thanks to LtB
`
0⊂B`0 for any t≥0, it is enough to prove that

B`0
L2(0,`;H×VI)

⊂B`0.

For any χ0∈B`0
L2(0,`;H×VI)

, there exists a sequence of trajectories χn∈B`0 such that
χn→χ0 in L2(0,`;H×VI), which implies that et(χn)→et(χ0) in H×VI for almost
all t∈ [0,1]. Since e0(χn)∈B1 for any n∈N, there exists a subsequence {e0(χnj

)}∞j=1 of
{e0(χn)}∞n=1 and (u0,φ0,θ0)∈H×VI such that e0(χnj

)⇀ (u0,φ0,θ0) inH×VI . From the
proof of the existence of weak solutions for problem (1.1)-(1.7), we deduce that for any
T >0, there exists a subsequence converging (∗-) weakly in spaces {(u,φ)∈L∞(0,T ;H×
H1(Ω̄,dσ))∩L2(0,T ;V ×H2(Ω̄,dσ)) : (ut,φt)∈L1(0,T ;((V ×H1(Ω̄,dσ))∗)} to a certain
function (u(t),φ(t)) with (u(0),φ(0)) = (u0,φ0,θ0). Therefore, we obtain χ0∈X` from
Corollary 3.1. It remains to show that e0(χ)∈B1. Since B1 is closed, et(χ0)∈B1 for
almost all t∈ [0,1]. In particular, etn(χ0)∈B1 for any sequence tn with tn→0. From the
continuity of χ0 : [0,`]→H×VI and the closedness of B1, we deduce that e0(χ0)∈B1.
Therefore, we obtain χ0∈B`0.

Lemma 4.2. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then the mapping Lt :X`→
X` is locally Lipschitz continuous on B`1 for all t≥0.

Proof. For any fixed t>0 and any χ1, χ2∈B`1, let (u1(t+τ),φ1(t+τ)) =Ltχ
1,

(u2(t+τ),φ2(t+τ)) =Ltχ
2 and let u=u1−u2, φ=φ1−φ2. Since e0(χ1) and e0(χ2) is

uniformly bounded in H×VI for any χ1, χ2∈B`1, from the proof of Theorem 3.1, we
conclude

d

dt
(‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ))≤L(t)(‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ)), (4.11)

where

L(t) =C(1+‖φ1‖2H2(Ω̄,dσ) +‖φ2‖2H2(Ω̄,dσ) +‖∇u2‖2L2(Ω) +‖∇µ2‖2L2(Ω)).
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Let s∈ (0,`) and integrating inequality (4.11) from s to t+s, we obtain

‖u(t+s)‖2L2(Ω) +λ‖φ(t+s)‖2H1(Ω̄,dσ)

≤
∫ t+s

s

L(r)(‖u(r)‖2L2(Ω) +λ‖φ(r)‖2H1(Ω̄,dσ))dr+‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ). (4.12)

From the classical Gronwall inequality, we deduce

‖u(t+s)‖2L2(Ω) +λ‖φ(t+s)‖2H1(Ω̄,dσ)

≤(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ))exp(

∫ t+s

s

L(r)dr)

≤M`(t)(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)), (4.13)

where

M`(t) = exp(

∫ t+`

0

L(r)dr) (4.14)

is a finite number depending on (u10 ,φ10 ,θ10) and (u20 ,φ20 ,θ20) by using Theorem 3.1.
Integrating (4.13) with respect to s for 0 to `, we obtain∫ `

0

‖u(t+s)‖2L2(Ω) +λ‖φ(t+s)‖2H1(Ω̄,dσ)ds

≤M`(t)

∫ `

0

‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)ds, (4.15)

which implies the mapping Lt :X`→X` is locally Lipschitz continuous on B`1 for all
t≥0.

Thanks to the invariance of B1, Theorem 4.1 and Theorem 4.2, we easily deduce

that K=Lτ2B
`
0

L2(0,`;H×VI)
is positive invariant, uniformly absorbing compact subset of

X`. Therefore, we can immediately obtain the existence of a global attractor in X` from
Lemma 2.5 stated as follows.

Theorem 4.3. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then the semigroup
{Lt}t≥0 generated by problem (1.1)-(1.7) possesses a global attractor A` in X` and
et(A`) is uniformly bounded in H×VI with respect to t∈ [0,1], where

et(A`) ={et(χ) :χ∈A`}

for any t∈ [0,1].

In what follows, we prove the smooth property of the semigroup {Lt}t≥0 to estimate
the fractal dimension of the global attractor A`.

Theorem 4.4. Assume that h∈L2(Ω) and (H1)-(H2) hold, let χ1 and χ2 be two
short trajectories belonging to A`. Then there exists a positive constant κ independent
of t such that for arbitrary t≥ `, we have

‖Ltχ1−Ltχ2‖2Y ≤κM`(t)

∫ `

0

‖χ1(r)−χ2(r)‖2H×VI
dr,
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where M`(t) is given in (4.14).

Proof. For any χ1, χ2∈A`, let (u1(t+τ),φ1(t+τ)) =Ltχ
1, (u2(t+τ),φ2(t+τ)) =

Ltχ
2 and let u=u1−u2, φ=φ1−φ2. Since et(χ

1) and et(χ
2) is uniformly bounded in

H×VI with respect to t∈ [0,1] for any χ1, χ2∈A`, from the proof of Theorem 3.1, we
obtain

d

dt
(‖u(t)‖2L2(Ω) +λ‖φt(t)‖2L2(Γ) +ν‖∇u‖2L2(Ω) +λγ‖∇∆φ‖2L2(Ω)

≤L(t)(‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ)), (4.16)

where

L(t) =C(1+‖φ1‖2H2(Ω̄,dσ) +‖φ2‖2H2(Ω̄,dσ) +‖∇u2‖2L2(Ω) +‖∇µ2‖2L2(Ω)).

For any t≥ `, integrating inequality (4.16) from t−s to t+` with s∈ [0, `2 ], we conclude

‖u(t+`)‖2L2(Ω) +λ‖φ(t+`)‖2H1(Ω̄,dσ) +ν‖∇u(ζ)‖2L2(Ω) +λγ‖∇∆φ(ζ)‖2L2(Ω)dζ

≤
∫ t+`

t−s
L(ζ)(‖u(ζ)‖2L2(Ω) +λ‖φ(ζ)‖2H1(Ω̄,dσ))dζ+‖u(t−s)‖2L2(Ω) +λ‖φ(t−s)‖2H1(Ω̄,dσ).

It follows from the classical Gronwall inequality that

‖u(t+`)‖2L2(Ω) +λ‖φ(t+`)‖2H1(Ω̄,dσ) +ν‖∇u(ζ)‖2L2(Ω) +λγ‖∇∆φ(ζ)‖2L2(Ω)dζ

≤exp(

∫ t+`

t−s
L(ζ)dζ)(‖u(t−s)‖2L2(Ω) +λ‖φ(t−s)‖2H1(Ω̄,dσ)). (4.17)

For any t≥ ` and any s∈ [0, `2 ], integrating inequality (4.16) from s to t−s, we obtain

‖u(t−s)‖2L2(Ω) +λ‖φ(t−s)‖2H1(Ω̄,dσ)

≤
∫ t−s

s

L(r)(‖u(r)‖2L2(Ω) +λ‖φ(r)‖2H1(Ω̄,dσ))dr+(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)).

We deduce from the classical Gronwall inequality that

‖u(t−s)‖2L2(Ω) +λ‖φ(t−s)‖2H1(Ω̄,dσ)

≤(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ))exp(

∫ t−s

s

L(r)dr)

≤(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ))exp(

∫ t−s

0

L(r)dr). (4.18)

Combining inequalities (4.17) and (4.18), we obtain∫ `

0

ν‖∇u(t+ζ)‖2L2(Ω) +λγ‖∇∆φ(t+ζ)‖2L2(Ω)dζ

≤exp(

∫ t+`

0

L(ζ)dζ)(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ))

=M`(t)(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)).
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Integrating the above inequality over (0, `2 ) with respect to s, we obtain∫ `

0

ν‖∇u(t+ζ)‖2L2(Ω) +λγ‖∇∆φ(t+ζ)‖2L2(Ω)dζ

≤2M`(t)

`

∫ `
2

0

‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)ds.

Thanks to M`(t) is bounded for any fixed t∈ [`,S], we obtain∫ `

0

ν‖∇u(t+ζ)‖2L2(Ω) +λγ‖∇∆φ(t+ζ)‖2L2(Ω)dζ

≤2M`(t)

`

∫ `

0

‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)ds.

It follows from the Sobolev trace Theorem and Lemma 2.2 that∫ `

0

ν‖∇u(t+ζ)‖2L2(Ω) +λγ‖φ(t+ζ)‖2H2(Ω̄,dσ)dζ

≤κ1M`(t)

∫ `

0

‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)ds. (4.19)

Thanks to

‖ut‖V ∗ ≤ν‖∇u‖L2(Ω) +C‖∇u‖L2(Ω)‖∇u2‖L2(Ω) +C‖∇u1‖L2(Ω)‖∇u‖L2(Ω)

+C‖φ1‖H1(Ω̄,dσ)‖∇µ‖L2(Ω) +C‖φ‖H1(Ω̄,dσ)‖∇µ2‖L2(Ω) (4.20)

and

‖φt‖(H1(Ω̄,dσ))∗ ≤C‖∇u‖L2(Ω)‖φ1‖H1(Ω̄,dσ) +C‖∇u2‖L2(Ω)‖φ‖H1(Ω̄,dσ)

+γ‖∇µ‖L2(Ω), (4.21)

we infer from Theorem 4.2 and inequalities (4.19)-(4.21) that(∫ `

0

‖ut(t+r)‖V ∗ +‖φt(t+r)‖(H1(Ω̄,dσ))∗ dr

)2

≤κ2M`(t)

∫ `

0

‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ)ds. (4.22)

The proof of Theorem 4.4 is completed.

From Lemma 2.6, Theorem 4.3 and Theorem 4.4, we immediately obtain the fol-
lowing result.

Theorem 4.5. Assume that h∈L2(Ω), (H1)-(H2) hold. Then the fractal dimension of
the global attractor A` in X` of the semigroup {Lt}t≥0 generated by problem (1.1)-(1.7)
established in Theorem 4.3 is finite.

4.2. The existence of a global attractor in H×VI . In this subsection, we
prove the existence of a finite dimensional global attractor in H×VI of the semigroup
generated by problem (1.1)-(1.7).
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Theorem 4.6. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then the mapping
e1 :A`→A=e1(A`) is Lipschitz continuous. That is, for any two short trajectories χ1,
χ2∈A`, there exists a positive constant θ dependent on ` such that

‖e1(χ1)−e1(χ2)‖2H×VI
≤θ
∫ `

0

‖χ1(r)−χ2(r)‖2H×VI
dr.

Proof. For any χ1, χ2∈A`, let (u1(t+τ),φ1(t+τ)) =Ltχ
1, (u2(t+τ),φ2(t+τ)) =

Ltχ
2 and let u=u1−u2, φ=φ1−φ2. Thanks to e0(χ1) and e0(χ2) is uniformly bounded

in H×VI for any χ1, χ2∈A`, from the proof of Theorem 3.1, we obtain

d

dt
(‖u(t)‖2L2(Ω) +λ‖φt(t)‖2L2(Γ) +ν‖∇u‖2L2(Ω) +λγ‖∇∆φ‖2L2(Ω)

≤L(t)(‖u(t)‖2L2(Ω) +λ‖φ(t)‖2H1(Ω̄,dσ)), (4.23)

where

L(t) =C(1+‖φ1‖2H2(Ω̄,dσ) +‖φ2‖2H2(Ω̄,dσ) +‖∇u2‖2L2(Ω) +‖∇µ2‖2L2(Ω)).

For s∈ (0,`), we infer from the classical Gronwall inequality and inequality (4.23) that

‖u(`)‖2L2(Ω) +λ‖φ(`)‖2H1(Ω̄,dσ)

≤(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ))exp(

∫ `

s

L(r)dr)

≤(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ))exp(

∫ `

0

L(r)dr). (4.24)

Integrating inequality (4.24) over (0,`), we obtain

‖u(`)‖2L2(Ω) +λ‖φ(`)‖2H1(Ω̄,dσ)

≤1

`
exp(

∫ `

0

L(r)dr)

∫ `

0

(‖u(s)‖2L2(Ω) +λ‖φ(s)‖2H1(Ω̄,dσ))ds.

Thanks to definition (4.14), we know that

M`(0) = exp(

∫ `

0

L(r)dr)<+∞,

which implies that the mapping e1 :A`→A is Lipschitz continuous.

Theorem 4.7. Assume that h∈L2(Ω) and (H1)-(H2) hold. Then the semigroup
{SI(t)}t≥0 generated by problem (1.1)-(1.7) possesses a global attractor A=e1(A`) in
H×VI . Furthermore, the fractal dimension of the global attractor A is finite.

Proof. From Lemma 2.7, Theorem 4.5 and Theorem 4.6, we know that A is
compact and the fractal dimension of A is finite. As a result of LtA`=A`, we have

SI(t)A=SI(t)e1(A`) =e1(LtA`) =e1(A`) =A

for any t≥0. From the definition of B1, we deduce that for any bounded subset of
H×VI , there exists some time t̄= t̄(B) such that for any t≥ t̄, we have

SI(t)B⊂B1.
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Therefore, we only need to prove that

lim
t→+∞

distH×VI
(SI(t)B1,A) = 0.

Otherwise, there exist some positive constant ε0, some sequence {(un,φn)}∞n=1⊂B1 and
some {tn}∞n=1 with tn→+∞ as n→+∞ such that

distH×VI
(SI(tn)(un,φn),A)≥ ε0. (4.25)

From the definition of B1, we deduce that there exists χn∈B`0 such that

(un,φn) =e0(χn).

Since {χn}∞n=1 is bounded in X` and A` is a global attractor in X` of the semi-
group {Lt}t≥0 generated by problem (1.1)-(1.7), there exist a subsequence {χnj

}∞n=1

of {χn}∞n=1 and a subsequence {tnj}∞n=1 of {tn}∞n=1 such that

Ltnj
−`χnj

→χ∈A` in X` for as j→+∞.

Thanks to the continuity of e1, we have

SI(tnj
)(unj

,φnj
) =e1(Ltnj

−`χnj
)→e1(χ)∈A in H×VI as j→+∞,

which contradicts inequality (4.25).
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