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TRANSPORT OF POWER IN RANDOM WAVEGUIDES WITH
TURNING POINTS∗

LILIANA BORCEA† , JOSSELIN GARNIER‡ , AND DEREK WOOD§

Abstract. We present a mathematical theory of time-harmonic wave propagation and reflection
in a two-dimensional random acoustic waveguide with sound soft boundary and turning points. The
boundary has small fluctuations on the scale of the wavelength, modeled as random. The waveguide
supports multiple propagating modes. The number of these modes changes due to slow variations of the
waveguide cross-section. The changes occur at turning points, where waves transition from propagating
to evanescent or the other way around. We consider a regime where scattering at the random boundary
has significant effect on the wave traveling from one turning point to another. This effect is described
by the coupling of its components, the modes. We derive the mode coupling theory from first principles,
and quantify the randomization of the wave and the transport and reflection of power in the waveguide.
We show in particular that scattering at the random boundary may increase or decrease the net power
transmitted through the waveguide depending on the source.
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1. Introduction
Guided waves have been studied extensively due to their numerous applications

in electromagnetics [13], optics and communications [27, 29], quantum waveguides [17],
ocean acoustics [32], etc. The classic waveguides, with straight boundaries and filled
with media that are either homogeneous or do not vary along the direction of prop-
agation of the waves, are well understood. The wave equation in such waveguides is
separable and the solution is a superposition of independent modes, which are propa-
gating and evanescent modes and, in the case of penetrable boundary, radiation modes.
When the geometry of the waveguide varies, or the medium filling the waveguide is
heterogeneous, the modes are coupled. Examples of mathematical studies that account
for mode coupling and lead to numerical methods that model such waveguides can be
found in [11,12,14,15,23]. We are interested in mode coupling due to small random per-
turbations of the waveguide, which can be quantified more explicitly using asymptotic
analysis.

Random models are useful for waveguides with rough boundaries and filled with
composite media that vary at small scale, comparable to the wavelength. Such variations
are typically small and unknown, so they introduce uncertainty in the model of wave
propagation. The random models of the boundary and the wave speed are used to
quantify how this uncertainty propagates to the uncertainty of the solution of the wave
equation. This is useful information in applications like imaging [2, 7, 9, 10]. The mode
coupling theory in waveguides filled with random media has been developed in [16,19–
21, 24] for sound waves and in [4, 27] for electromagnetic waves. The theory has also
been extended to waveguides with random perturbations of straight boundaries [5,7,22].

In this paper we develop a mode coupling theory in random waveguides with turning
points. We consider for simplicity a two-dimensional acoustic waveguide with sound soft
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‡Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex, France (jos-

selin.garnier@polytechnique.edu).
§Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, (derekmw@umich.edu).

2327



2328 TRANSPORT OF POWER IN RANDOM WAVEGUIDES WITH TURNING POINTS

boundary, but the theory can be extended to three dimensions and to electromagnetics.
The waveguide has a slowly bending axis, a slowly changing opening and a randomly
perturbed boundary. The slow variations occur on a long scale with respect to the
wavelength, whereas the random perturbations are at a scale similar to the wavelength.

In the absence of the random perturbations, waves in slowly changing waveguides
can be analyzed with a local decomposition in modes that are approximately indepen-
dent [3, 31]. This is known as the adiabatic approximation [29, Section 19-2], and the
result differs from that in waveguides with straight boundaries in one important aspect:
The change in the opening of the waveguide causes the number of propagating modes
to increase or decrease by 1 at locations called turning points. Modes transition there
from propagating to evanescent or the other way around, and due to energy conserva-
tion, the impinging propagating mode is turned back i.e., is reflected. Turning waves
in slowly changing waveguides are studied mathematically in [6]. A recent study of
their interaction with a random boundary is given in [8], for the case of weak random
fluctuations that affect only the turning modes. Here we extend the results in [8] to
stronger fluctuations, that couple all the waveguide modes.

Starting from the wave equation, and using the separation of scales of variation
of the waveguide, we derive an asymptotic model for the wave field that accounts for
coupling of all the modes, propagating and evanescent. This coupling is described by
a stochastic system of differential equations for the random mode amplitudes, endowed
with initial conditions that model the source excitation and radiation conditions. The
excitation is due to a point source, but due to the linearity of the equation, other
source excitations can be handled by superposition. We obtain an extension of the
diffusion approximation theorem proved in [28] to carry out the asymptotic analysis of
the mode amplitudes. The result simplifies when the random fluctuations are smooth,
because the forward and backward going components of the propagating modes become
independent. This is known as the forward scattering approximation, and applies to
propagation between the turning points. At the turning points there is strong coupling
of the components of the turning waves, described by random reflection coefficients.
With the diffusion approximation theorem, and in the forward scattering approximation
regime, we quantify the net effect of the random boundary on the transmitted and
reflected power in the waveguide. This is the main result of the paper, and shows that
the random boundary can be useful for increasing the transmitted power.

The paper is organized as follows: We begin in Section 2 with the formulation of the
problem and the derivation of the asymptotic model for the wave field. Then we give in
Section 3 the mode decomposition and derive a closed system of stochastic differential
equations for the random amplitudes of the propagating modes between turning points.
These equations are complemented by source excitation conditions, radiation conditions,
continuity and reflection conditions at the turning points. The asymptotic limit of the
solution of these equations and the forward scattering approximation are in Section 4.
We use these results to quantify the transmitted and reflected power in the waveguide
in Section 5. The diffusion approximation theorem used to carry the asymptotic limit
is stated and proved in Section 6. We end with a summary in Section 7.

2. Formulation of the problem

In this section we give the mathematical model for time-harmonic waves in a random
waveguide with variable cross-section and bending axis. We begin in Section 2.1 with
the setup, and describe the scaling in Section 2.2 in terms of a small, dimensionless
parameter ε. We use it in Section 2.3 to write the wave problem in a form that can be
analyzed in the asymptotic limit ε→0.
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Fig. 2.1. Illustration of a waveguide with slowly varying width D and bending axis parametrized
by the arc length z. The boundary ∂Ω is the union of the curves ∂Ω− (the bottom boundary) and ∂Ω+

(the top boundary). The top boundary is perturbed by small random fluctuations. The unit tangent to
the axis of the waveguide is denoted by τ and the unit normal n points toward the upper boundary.
The source of waves is at x�.

2.1. Setup. We consider a two-dimensional acoustic waveguide with sound-
soft boundary. The waveguide occupies the semi-infinite domain Ω, bounded above and
below by two curves ∂Ω+ and ∂Ω−, as shown in Figure 2.1. The top boundary ∂Ω+ is
perturbed by small random fluctuations about the curve ∂Ω+

o shown in the figure with
the dotted line. The axis of the waveguide is at half the distance D between ∂Ω+

0 and
∂Ω−. It is a smooth curve parametrized by the arc length z∈R, that bends slowly,
meaning that its tangent τ (z/L) and curvature κ(z/L) vary on a scale L which is large
with respect to the waveguide width D(z/L). The width function D has bounded first
two derivatives, and to avoid complications in the analysis of scattering of the waves at
the random boundary, we also assume that it is monotonically increasing.

Because of the changing geometry, it is convenient to use orthogonal curvilinear
coordinates with axes along τ (z/L) and n(z/L), where n is the unit vector orthogonal to
τ , pointing toward the upper boundary. For any x∈Ω, written henceforth as x=(r,z),
we have

x=x‖(z)+rn
( z
L

)
, (2.1)

where x‖(z) is along the waveguide axis at arc length z, satisfying

∂zx‖(z)=τ
( z
L

)
, (2.2)

and r is the coordinate in the normal direction. The domain Ω is the set

Ω={(r,z) : z∈R, r∈ (r−(z),r+(z))}, (2.3)

where

r−(z)=−D(z/L)

2
, (2.4)

is at the bottom boundary ∂Ω− and

r+(z)=
D(z/L)

2

[
1+1(−ZM ,ZM )(z)σν

(z
�

)]
, (2.5)

is at the randomly perturbed top boundary ∂Ω+. The perturbation is modeled by
the random process ν and it extends over the interval (−ZM ,ZM ), the support of
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the indicator function 1(−ZM ,ZM )(z), where ZM >L is a long scale needed to impose
outgoing boundary conditions on the waves.1 We let the boundaries of the waveguide
be straight and parallel for |z|>ZM .

The random process ν is stationary with zero mean

E
[
ν(ζ)

]
=0, (2.6)

and auto-correlation function

R(ζ)=E
[
ν(0)ν(ζ)

]
. (2.7)

We assume that ν is mixing, with rapidly decaying mixing rate, as defined for example
in [28, Section 2], and it is bounded, with bounded first two derivatives, almost surely.
This implies in particular that R is integrable and has at least four bounded derivatives.
We normalize ν by

R(0)=1,

∫ ∞

−∞
dζR(ζ)=O(1), (2.8)

so that σ in equation (2.5) is the standard deviation of the fluctuations of ∂Ω+, and �
quantifies their correlation length.

The waves are generated by a point source at x�=(r�,z�=0)∈Ω, which emits a
complex signal f(ω) at frequency ω. We take the origin of z at the source, so that
z�=0. The waveguide is filled with a homogeneous medium with wave speed c, and the
wave field p(ω,x) satisfies the Helmholtz equation

Δp(ω,x)+k2p(ω,x)=f(ω)δ(x−x�), x=(r,z)∈Ω, (2.9)

where k=ω/c is the wavenumber. In curvilinear coordinates this takes the form⎡⎢⎣∂2
r −

1
Lκ
(
z
L

)
∂r

1− r
Lκ
(
z
L

)+ ∂2
z[

1− r
Lκ
(
z
L

)]2 + r
L2κ

′( z
L

)
∂z[

1− r
Lκ
(
z
L

)]3 +k2

⎤⎥⎦p(ω,r,z)
=
∣∣∣1− r�

L
κ(0)

∣∣∣−1

f(ω)δ(z)δ(r−r�), (2.10)

as shown in Appendix A, where κ′ is the derivative of the curvature κ. The sound soft
boundary ∂Ω+∪∂Ω− is modeled by the homogeneous Dirichlet boundary conditions

p(ω,r+(z),z)=p(ω,r−(z),z)=0, (2.11)

and at points x=(r,z) with |z|>ZM we have radiation conditions that state that
p(ω,r,z) is outgoing and bounded.

2.2. Scaling. There are four length scales in the problem: The wavelength
λ=2π/k, the width of the waveguide D, the scale L of the slow variations of the
waveguide, and the correlation length � of the random fluctuations of the boundary
∂Ω+. They satisfy

L�D∼λ∼ �, (2.12)

1In practice ZM may be chosen based on the duration of the observation time of the wave, using
the hyperbolicity of the wave equation in the time domain. The single frequency wave analyzed in this
paper is the Fourier transform of the time dependent wave field.
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where ∼ denotes “of the same order as”, and we model the separation of scales using
the dimensionless parameter

ε=
�

L
, 0<ε�1. (2.13)

Our analysis of the wave field p(ω,r,z) is in the limit ε→0.
As shown in Section 3, the ratio of D and λ/2 defines N(z)= �2D(z/L)/λ	, the

number of propagating components of the wave, called modes, where � 	 denotes the
integer part. The assumption D∼λ in the scaling relation (2.12) means that

Nmin≤N(z)≤Nmax, (2.14)

for all z, where Nmin and Nmax are natural numbers, independent of ε.
The scales λ and � are of the same order in the scaling relation (2.12) so that the

waves interact efficiently with the random fluctuations of the boundary. This interac-
tion, called cumulative scattering, randomizes the wave field as it propagates in the
waveguide. The distance from the source at which the randomization occurs depends
on the standard deviation σ of the fluctuations. We scale σ as

σ=
√
εσ̃, σ̃=O(1), (2.15)

so that we observe the randomization at distances z∼L.
The scaled variables are defined as follows: The arc length z is scaled by L,

z̃=
z

L
, (2.16)

and the similar lengths D, r and λ are scaled by �, to obtain

D̃(z̃)=
D(z/L)

�
, r̃=

r

�
, k̃=k�. (2.17)

We also introduce the scaled bound Z̃M =ZM/L of the support of the random fluctua-
tions, which is a large number, independent of ε.

2.3. Asymptotic model. Let us multiply equation (2.10) by L2[1−rκ/L]2 and
use the scaling relations (2.15)-(2.17). Dropping the tilde to simplify notation, because
all variables are scaled henceforth, we obtain[

∂2
z +

(1−εrκ(z))2

ε2
(∂2

r +k2)− κ(z)(1−εrκ(z))

ε
∂r+

εrκ′(z)
(1−εrκ(z))

∂z

]
p(ω,r,z)

=
f(ω)[1−εr�κ(0)]

ε
δ(r−r�)δ(z), (2.18)

with homogeneous Dirichlet boundary conditions (2.11) at

r−(z)=−D(z)

2
, r+(z)=

D(z)

2

[
1+1(−ZM ,ZM )(z)

√
εσν

(z
ε

)]
, (2.19)

and appropriate radiation conditions for |z|>ZM . These equations define the asymp-
totic model for the wave field, and we wish to analyze it in the limit ε→0.

The boundary has ε dependent fluctuations, so to ensure that the boundary condi-
tions are satisfied at all orders of ε, we change variables to

r=ρ+
[2ρ+D(z)]

4

√
εσν

(z
ε

)
, (2.20)
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for |z|<ZM and ρ∈ [−D(z)/2,D(z)/2], and denote the transformed wave field by

pε(ω,ρ,z)=p
(
ω,ρ+

(2ρ+D(z))

4

√
εσν

(z
ε

)
,z
)
. (2.21)

At |z|>ZM there are no fluctuations so the transformation is the identity r=ρ. We
use the same notation pε for the wave field at all z∈R, and analyze it separately in
the regions with the random fluctuations and without. The results are connected by
continuity at z=±ZM .

The change of variables (2.20) makes the boundary conditions independent of ε,

pε
(
ω,±D(z)

2
,z
)
=0, (2.22)

and maps the random fluctuations to the differential operator in the wave equation.
Explicitly, we show in Appendix B that the wave equation becomes

∞∑
j=0

εj/2−1Lε
j p

ε(ω,ρ,z)=f(ω)
[
1+O(

√
ε)
]
δ(ρ−ρ�)δ(z), (2.23)

for |ρ|<D(z)/2 and |z|<ZM , with the leading term in the expansion of the operator

Lε
0=
(
ε∂z
)2

+∂2
ρ+k2. (2.24)

This is the Helmholtz operator in a perfect waveguide, with straight and parallel bound-
aries. The random fluctuations appear in the first perturbation operator,

Lε
1=−σ

{
ν
(z
ε

)
∂2
ρ+

[2ρ+D(z)]

4

[
ν′′
(z
ε

)
∂ρ+2ν′

(z
ε

)
ε∂2

ρz

]}
. (2.25)

The second perturbation operator has a deterministic part, due to the curvature of the
axis of the waveguide, and a random part, quadratic in the random fluctuations,

Lε
2=−κ(z)

[
2ρ
(
∂2
ρ+k2)+∂ρ

]
+

σ2

4

{
3ν2
(z
ε

)
+

[
2ρ+D(z)

]2
4

ν′2
(z
ε

)}
∂2
ρ

+
[2ρ+D(z)]σ2

4

{
ν
(z
ε

)
ν′
(z
ε

)
ε∂2

ρz+
[
ν′2
(z
ε

)
+

1

2
ν′′
(z
ε

)
ν
(z
ε

)]
∂ρ

}
. (2.26)

The remaining operators in the asymptotic series in equation (2.23) depend on higher
powers of the fluctuations ν, but play no role in the limit ε→0.

By assumption, there are no variations of the waveguide at |z|>ZM , so the operator
in the left-hand side of equation (2.23) reduces to Lε

0 in this region.

3. Mode decomposition and coupling
To analyze the solution of the wave equation (2.23) with boundary conditions (2.22)

in the limit ε→0, we begin in Section 3.1 with the mode decomposition of the wave field.
The modes are special solutions of the wave equation with operator (2.24). They repre-
sent propagating and evanescent waves which are coupled by the perturbation operators
(2.25)-(2.26), as explained in Section 3.2. We are interested in the propagating modes,
which are left and right going waves with random amplitudes satisfying a stochastic
system of equations derived in Section 3.3. It is this system that we analyze in the limit
ε→0 to quantify the cumulative scattering effects in the waveguide.
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3.1. Mode decomposition. The second term in the operator (2.24) is the
Sturm–Liouville operator ∂2

ρ+k2 acting on functions that vanish at ρ=±D(z)/2, for
any given z. Its eigenvalues λj are real and distinct

λj(z)=k2−μ2
j (z), μj(z)=

πj

D(z)
, j=1,2, . . . (3.1)

and the eigenfunctions

yj(ρ,z)=

√
2

D(z)
sin

[
(2ρ+D(z))

2
μj(z)

]
, (3.2)

form an orthonormal L2 basis in [−D(z)/2,D(z)/2]. We use this basis to decompose
the solution of (2.24) in one dimensional waves pεj(ω,z) called modes, for each z,

pε(ω,ρ,z)=

∞∑
j=1

pεj(ω,z)yj(ρ,z). (3.3)

As shown in Appendix C, the modes can be written as

pεj(ω,z)=uε
j(ω,z)[1+O(

√
ε)], (3.4)

with uε
j(ω,z) satisfying a coupled system of one dimensional wave equations that we

now describe:
In the perturbed section |z|<ZM of the waveguide, uε

j satisfies

1

ε

[
(ε∂z)

2+k2−μ2
j (z)

]
uε
j(ω,z)+

σ√
ε
μ2
j (z)ν

(z
ε

)
uε
j(ω,z)+σ2gεj (ω,z)u

ε
j(ω,z)

≈Cε
j (ω,z)+f(ω)yj(ρ�,0)δ(z), (3.5)

where the approximation indicates that we dropped lower order terms that have no
contribution in the limit ε→0. The coefficient gεj in the left hand side is

gεj (ω,z)=−3

4
μ2
j (z)ν

2
(z
ε

)
−
[ (πj)2

12
+

1

16

]
ν′2
(z
ε

)
, (3.6)

and

Cε
j (ω,z)=

∞∑
q=1,q �=j

[σΓjq√
ε
ν′′
(z
ε

)
+σ2γjq

(z
ε

)
+γo

jq(z)
]
uε
q(ω,z)

+

∞∑
q=1,q �=j

[σΘjq√
ε

ν′
(z
ε

)
+σ2θjq

(z
ε

)
+θojq(z)

]
ε∂zu

ε
q(ω,z), (3.7)

models the coupling between the modes. The leading coupling coefficients Γjq and Θjq

are constants, given in equation (C.6) in Appendix C. The second order coefficients
γjq(z/ε) and θjq(z/ε) are quadratic in ν(z/ε), as described in equations (C.7)-(C.8),
and the coefficients γo

jq(z) and θojq(z), given in equations (C.9)-(C.10), are due to the
slow changes in the waveguide.

In the region |z|>ZM , where the waveguide has straight and parallel boundaries,
the wave equation simplifies to

1

ε

[
(ε∂z)

2+k2−μ2
j (z)

]
uε
j(ω,z)=0. (3.8)

Depending on the index j, its solution is either an outgoing propagating wave or a
decaying evanescent wave. This wave is connected to the solution of approximation
(3.5) by the continuity of uε

j and ∂zu
ε
j at z=±ZM .
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3.2. Random mode amplitudes. Equations (3.5) are perturbations of the
wave equation with operator (ε∂z)

2+k2−μ2
j (z), where the perturbation term models

the coupling of the modes. This coupling is similar to that in waveguides with randomly
perturbed parallel boundaries, studied in [5,10], but the slow variation of the waveguide
introduces two differences: The first is the presence of the extra terms γo

jq(z) and θojq(z)
in equation (3.7), given by equations (C.9)-(C.10), which turn out to play no role in the
limit ε→0. The second difference is important, as it gives a z dependent number

N(z)=

⌊
kD(z)

π

⌋
(3.9)

of mode indices j=1, . . . ,N(z) for which k2−μ2
j (z)>0. These modes are oscillatory

functions in z, and represent left and right going waves. For indices j >N(z) the modes
are decaying evanescent waves.

3.2.1. Turning points. The function (3.9) that defines the number of prop-
agating modes is piecewise constant. Starting from the origin, where we denote the
number of propagating mindicesodes by N (0)=N(0), the function (3.9) increases by 1

at arc lengths z
(t)
+ >0, for t=1, . . . ,t+M , and decreases by 1 at z

(t)
− <0, for t=1, . . . ,t−M .

The jump locations z
(t)
± , ordered as

−ZM <...<z
(2)
− <z

(1)
− <0<z

(1)
+ <z

(2)
+ <...<ZM ,

are the zeroes of the eigenvalues (3.1), and are called turning points [6,26]. We assume
henceforth that the monotonically increasing D(z) satisfies

D′(z(t)±
)
>0, ∀t≥1, (3.10)

so that the turning points are simple and isolated. Consistent with our scaling, they
are spaced at order one scaled distances.

Between any two consecutive turning points z
(t−1)
± and z

(t)
± , where we set by con-

vention z
(0)
± =0, the number of propagating modes equals the constant

N
(t−1)
± =N (0)±(t−1). (3.11)

This number is bounded above and below as in inequality (2.14), with Nmin=N(−ZM )
and Nmax=N(ZM ), so the bounds t+M and t−M on the indices t are

t−M =N (0)−Nmin+1 and t+M =Nmax−N (0)+1. (3.12)

Beginning from the source location z=0, which we assume is not a turning point,

z
(t)
− is defined as the unique, negative arc-length satisfying

k=
πN

(t−1)
−

D
(
z
(t)
−
) , t=1, . . . ,t−M , (3.13)

where the uniqueness is due to the monotonicity of D(z). Similarly, the jump location

z
(t)
+ is defined as the unique, positive arc length satisfying

k=
π
(
N

(t−1)
+ +1

)
D
(
z
(t)
+

) , t=1, . . . ,t+M . (3.14)
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The analysis of the modes is similar on the left and right of the source, so we

focus attention in this section on a sector z∈ (z(t)− ,z
(t−1)
−

)
of the waveguide, for some

1≤ t≤ t−M , and simplify the notation for the number (3.11) of propagating modes

N =N
(t−1)
− . (3.15)

These modes are a superposition of right and left going waves, with random amplitudes
that model cumulative scattering in the waveguide, as we explain in the next section.

3.2.2. The left and right going waves. We decompose the propagating
modes in left and right going waves, using a flow of smooth and invertible matrices
Mε

j(ω,z), (
aεj(ω,z)
bεj(ω,z)

)
=Mε,−1

j (ω,z)

(
uε
j(ω,z)

vεj (ω,z)

)
, (3.16)

where Mε,−1
j denotes the inverse of Mε

j and

vεj (ω,z)=−iε∂zu
ε
j(ω,z), j=1, . . . ,N . (3.17)

We obtain from approximation (3.5) that

∂z

(
aεj(ω,z)
bεj(ω,z)

)
=Mε,−1

j (ω,z)

{
i

ε

(
0 1

k2(ω)−μ2
j (z) 0

)
Mε

j(ω,z)−∂zM
ε
j(ω,z)

+

[
iσ√
ε
μ2
j (z)ν

(z
ε

)
+ iσ2gεj (ω,z)

](
0 0
1 0

)
Mε

j(ω,z)

}(
aεj(ω,z)
bεj(ω,z)

)
− iCε

j (ω,z)M
ε,−1
j (ω,z)

(
0
1

)
, (3.18)

and the decomposition is achieved by a flow Mε
j(ω,z) that removes to leading order the

large deterministic term in equation (3.18), the first line in the right hand side.
The matrix Mε

j(ω,z) must have the structure

Mε
j(ω,z)=

(
Mε

j,11(ω,z) −Mε
j,11(ω,z)

Mε
j,21(ω,z) Mε

j,21(ω,z)

)
, (3.19)

where the bar denotes complex conjugate, so that the decomposition (3.16) conserves
energy. The expression of the components in equation (3.19) depends on the mode
index, more precisely on the mode wave number denoted by

βj(ω,z)=
√
k2−μ2

j (z). (3.20)

Note that βj is bounded away from zero for all j=1, . . . ,N −1, and it approaches zero

as z↘z
(t)
− , for j=N . This last mode is a turning wave which transitions from a

propagating wave at z∈ (z
(t)
− ,z

(t−1)
− ) to an evanescent wave at z<z

(t)
− , as described in

Section 3.2.3. Here we give the decomposition of the modes indexed by j≤N −1.
The entries of the matrix (3.19) are defined by

Mε
j,11(ω,z)=

1√
βj(ω,z)

exp
[ i
ε

∫ z

0

dz′βj(ω,z
′)
]
,
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Mε
j,21(ω,z)=βj(ω,z)M

ε
j,11(ω,z), (3.21)

for j=1, . . . ,N −1. This definition looks the same as in perfect waveguides with straight
and parallel boundary, except that the mode wave number βj varies with z. We obtain
from equations (3.19)-(3.21) that the determinant of Mε

j(ω,z) is constant

detMε
j(ω,z)=2, ∀z∈ (z(t)− ,z

(t−1)
−

)
, (3.22)

so the matrix is invertible, and the decomposition (3.16) can be rewritten as

uε
j(ω,z)=

1√
βj(ω,z)

[
aεj(ω,z)e

i
ε

∫ z
0
dz′βj(ω,z′)−bεj(ω,z)e

− i
ε

∫ z
0
dz′βj(ω,z′)

]
, (3.23)

and

ε∂zu
ε
j(ω,z)= i

√
βj(ω,z)

[
aεj(ω,z)e

i
ε

∫ z
0
dz′βj(ω,z′)+bεj(ω,z)e

− i
ε

∫ z
0
dz′βj(ω,z′)

]
. (3.24)

Note that equations (3.23)-(3.24) are just the method of variation of parameters for
the perturbed wave equation satisfied by the j-th mode. They decompose the mode in a
right going wave with amplitude aεj and a left going wave with amplitude bεj . In perfect
waveguides these amplitudes would be constant, meaning physically that the waves are
independent. In our case the amplitudes are random fields, satisfying the system of
stochastic differential equations

∂z

(
aεj(ω,z)
bεj(ω,z)

)
=Hε

j(ω,z)

(
aεj(ω,z)
bεj(ω,z)

)
− i

2
Cε
j (ω,z)

(
Mε

j,11(ω,z)

Mε
j,11(ω,z)

)
, (3.25)

obtained by substituting equations (3.19) and (3.21) in equation (3.18). Here Hε
j(ω,z)

is the matrix valued random process

Hε
j(ω,z)=

(
H

ε(aa)
j (ω,z) H

ε(ab)
j (ω,z)

H
ε(ba)
j (ω,z) H

ε(bb)
j (ω,z)

)
, (3.26)

with entries satisfying the relations

H
ε(ba)
j (ω,z)=H

ε(ab)
j (ω,z), H

ε(bb)
j (ω,z)=H

ε(aa)
j (ω,z), (3.27)

and taking the values

H
ε(aa)
j (ω,z)≈ i

2βj(ω,z)

[ σ√
ε
μ2
j (z)ν

(z
ε

)
+σ2gεj (ω,z)

]
, (3.28)

and

H
ε(ab)
j (ω,z)≈

[
H

ε(aa)
j (ω,z)− ∂zβj(ω,z)

2βj(ω,z)

]
exp

[
− 2i

ε

∫ z

0

dz′βj(ω,z
′)
]
. (3.29)

As before, the approximation means up to negligible terms in the limit ε→0.
Equations (3.25) show that the amplitudes of the j-th mode are coupled to each

other by the process Hε
j , and to the other modes by Cε

j , defined by the series (3.7). The
first terms in this series involve the propagating waves uε

q(ω,z), for q �= j, decomposed
as in (3.23)-(3.24). We describe in the next two sections the turning and the evanescent
waves.
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3.2.3. The turning waves. The mode indexed by j=N transitions at z= z
(t)
−

from propagating to evanescent. This transition is captured by the matrix Mε
N (ω,z),

which has the same structure as matrix (3.19), but its entries are defined in terms of Airy

functions [1, chapter 10]. This is because near the simple turning point z
(t)
− , equation

(3.5) for j=N is a perturbation of Airy’s equation. We refer to [6,29] for classic studies
of turning waves in waveguides, and to [8] for an analysis of their interaction with
the random boundary. The setup in [8] is the same as here, with the exception that
we consider a larger standard deviation of the random fluctuations, to observe mode
coupling in the waveguide.

We use the same Mε
N (ω,z) as in [8], with entries

Mε
N ,11(ω,z)=ε−1/6

√
πQN (ω,z)exp

[
− i

φN
(
ω,0
)

ε
+

iπ

4

]
×
[
Ai

(−ηεN (ω,z)
)− iBi

(−ηεN (ω,z)
)]
, (3.30)

and

Mε
N ,21(ω,z)=−iε∂zM

ε
N ,11(ω,z), (3.31)

for z∈ (z(t)− −δ,z
(t−1)
−

)
, where δ is a small, positive number, independent of ε. We go

slightly beyond the turning point to capture the transition of the wave to an evanescent
one. The phase in definition (3.30) is given by the function

φN (ω,z)=

∫ z

z
(t)
−

dz′
√
|k2−μ2

N (z′)|, (3.32)

evaluated at the source location z=0, and the amplitude factor

QN (ω,z)=

∣∣3φN (ω,z)/2
∣∣1/6∣∣k2−μ2

N (z)
∣∣1/4 , (3.33)

is shown in [8, Section 3.1.1] to be bounded, and at least twice continuously differen-
tiable. The Airy functions Ai and Bi are evaluated at

ηεN (ω,z)=sign
(
z−z

(t)
−
)[3|φN (ω,z)|

2ε

]2/3
, (3.34)

where |ηεN (ω,z)| is of order one in the vicinity
∣∣z−z

(t)
−
∣∣≤O

(
ε2/3

)
of the turning point,

and it is much larger than one in the rest of the domain
(
z
(t)
− −δ,z

(t−1)
−

)
.

We recall from [8, Lemma 3.1] that the matrix Mε
N (ω,z) is invertible, with constant

determinant

detMε
N (ω,z)=2, ∀z∈ (z(t)− −δ,z

(t−1)
−

)
, (3.35)

so the decomposition (3.16) is well defined. Moreover, [8, Lemma 3.2] shows that at

z−z
(t)
− �ε2/3 the expressions (3.30)-(3.31) become like expression (3.21),

Mε
N ,11(ω,z)=

1√
βN (ω,z)

exp
[ i
ε

∫ z

0

dz′βN (ω,z′)
]
+O(ε),
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Mε
N ,21(ω,z)=βN (ω,z)Mε

N ,11(ω,z)+O(ε), (3.36)

so the turning wave behaves just like any other propagating wave until it reaches the
vicinity of the turning point from the right. On the left side of the turning point, at

z
(t)
− −z�ε2/3, the entries of Mε

N (ω,z) grow exponentially, as given in [8, Lemma 3.3].
The wave is evanescent in this region, and must be decaying in order to have energy
conservation. This is ensured by the radiation condition

aεN
(
ω,z

(t)
− −δ

)
= iexp

[2i
ε
φN
(
ω,0
)]
bεN
(
ω,z

(t)
− −δ

)
, (3.37)

which sets to zero the coefficients of the growing Airy function Bi and its derivative B′
i in

the expression of uε
N and ∂zu

ε
N at the end z

(t)
− −δ of the domain. We refer to [8, Section

3.1] for more details, and for the proof that the result does not depend on the particular
choice of δ which is small, but bounded away from 0 in the limit ε→0.

The evolution equation of the turning mode amplitudes is of the same form as in
equation (3.25), with the following entries of the matrix (3.26)-(3.27) indexed by j=N ,

H
ε(aa)
N (ω,z)≈ i

∣∣Mε
N ,11(ω,z)

∣∣2
2

[ σ√
ε
μ2
j (z)ν

(z
ε

)
+σ2gεj (ω,z)

]
, (3.38)

and

H
ε(ab)
N (ω,z)≈− i

[
Mε

N ,11(ω,z)
]2

2

[ σ√
ε
μ2
j (z)ν

(z
ε

)
+σ2gεj (ω,z)

]
. (3.39)

These expressions reduce to those in equations (3.28)-(3.29) at z−z
(t)
− �ε2/3, with the

extra term involving ∂zβN in equation (3.29) coming from an O(ε) correction of the
amplitudes, induced by the residual in equation (3.36).

3.2.4. Coupling with the evanescent waves. The modes indexed by j >N
in Equations (3.5) are evanescent waves, with wavenumber

βj(ω,z)=
√
μ2
j (z)−k2. (3.40)

We analyze these waves in Appendix E, and show that they can be expressed in terms of

the propagating ones. Explicitly, at arc length z∈ (z(t)− ,z
(t−1)
−

)
, satisfying z

(t−1)
− −z�ε,

we obtain that

uε
j(ω,z)≈− σ

√
ε

2βj(ω,z)

N∑
q=1

∫ ∞

−∞
dξ

[
γ
(e)
jq

(
ω,

z

ε
+ξ
) aεq(ω,z)√

βq(ω,z)
e

1
ε

∫ z
0
dz′βq(ω,z′)+iξβq(ω,z)

−γ
(e)
jq

(
ω,

z

ε
+ξ
) bεq(ω,z)√

βq(ω,z)
e−

1
ε

∫ z
0
dz′βq(ω,z′)−iξβq(ω,z)

]
e−|ξ|βj(ω,z), (3.41)

where the approximation means that we neglect the terms that are negligible in the
limit ε→0. Here we introduced the notation

γ
(e)
jq

(
ω,

z

ε
+ξ
)
=Γjqν

′′
(z
ε
+ξ
)
+ iβq(ω,z)Θjqν

′
(z
ε
+ξ
)
, (3.42)
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with coefficients Γjq and Θjq as in definition (C.6), and recall that the bar denotes
complex conjugate. For the derivative we have

ε∂zu
ε
j(ω,z)≈− σ

√
ε

2βj(ω,z)

N∑
q=1

∫ ∞

−∞
dξ

[
θ
(e)
jq

(
ω,

z

ε
+ξ
) aεq(ω,z)√

βq(ω,z)
e

1
ε

∫ z
0
dz′βq(ω,z′)+iξβq(ω,z)

−θ
(e)
jq

(
ω,

z

ε
+ξ
) bεq(ω,z)√

βq(ω,z)
e−

1
ε

∫ z
0
dz′βq(ω,z′)−iξβq(ω,z)

]
e−|ξ|βj(ω,z), (3.43)

with notation

θ
(e)
jq

(
ω,

z

ε
+ξ
)
=Γjqν

′′′
(z
ε
+ξ
)
−β2

q (ω,z)Θjqν
′
(z
ε
+ξ
)

+iβq(ω,z)(Γjq+Θjq)ν
′′
(z
ε
+ξ
)
. (3.44)

3.3. Closed system for the propagating modes. The propagating mode
amplitudes satisfy the system of equations (3.25), with coupling modeled by the series
(3.7). Substituting the expressions (3.41) and (3.43) of the evanescent waves in equation
(3.7), we obtain a closed system of equations for the propagating modes, as we now
explain.

3.3.1. Propagation between turning points. We begin with z∈ (z(t)− ,z
(t−1)
−

)
satisfying z−z

(t)
− �ε2/3 and z

(t−1)
− −z�ε. In this region the turning wave indexed by

j=N behaves like all the other propagating modes, and the evanescent modes have
the expression (3.41) and (3.43). The system of equations for the right and left going
amplitudes is

∂z

(
aε(ω,z)
bε(ω,z)

)
=Υε(ω,z)

(
aε(ω,z)
bε(ω,z)

)
, (3.45)

where aε and bε are the complex column vectors in C
N with entries aεj and bεj , for

1≤ j≤N . The complex matrix Υε(ω,z) depends on the random fluctuations ν and the
slow changes of the waveguide, and has the block structure

Υε(ω,z)=

(
Υε(aa)(ω,z) Υε(ab)(ω,z)
Υε(ba)(ω,z) Υε(bb)(ω,z)

)
, (3.46)

with N ×N blocks satisfying the relations

Υε(ba)(ω,z)=Υε(ab)(ω,z), Υε(bb)(ω,z)=Υε(aa)(ω,z). (3.47)

Their entries are defined as follows: Off the diagonal, we have

Υ
ε(aa)
jq (ω,z)=− ie

i
ε

∫ z
0
dz′
(
βq(ω,z′)−βj(ω,z′)

)
2
√
βj(ω,z)βq(ω,z)

{
σ√
ε

[
Γjqν

′′
(z
ε

)
+ iβq(ω,z)Θjqν

′
(z
ε

)]
+σ2

[
γ̃jq

(
ω,

z

ε

)
+ iβq θ̃jq

(
ω,

z

ε

)]
+γo

jq(z)+ iβq(ω,z)θ
o
jq(z)

}
, j �= q, (3.48)

and

Υ
ε(ab)
jq (ω,z)=Υ

ε(aa)
jq (ω,z)e−

2i
ε

∫ z
0
dz′βj(ω,z′), j �= q, (3.49)
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and on the diagonal we have

Υ
ε(aa)
jj (ω,z)=H

ε(aa)
j (ω,z)+

iσ2

2βj(ω,z)
ηj

(
ω,

z

ε

)
, (3.50)

and

Υ
ε(ab)
jj (ω,z)=

[
Υ

ε(aa)
jj (ω,z)− ∂zβj(ω,z)

2βj(ω,z)

]
e−

2i
ε

∫ z
0
dz′βj(ω,z′). (3.51)

The coefficients in these definitions are given in equation (3.28), and equations (C.6)-

(C.10), except for ηj , γ̃jq and θ̃jq, which include the interaction with the evanescent
modes. These are defined by

γ̃jq

(
ω,

z

ε

)
=γjq

(z
ε

)
−
∑
l>N

Γjl

2βl(ω,z)
ν′′
(z
ε

)∫ ∞

−∞
dξγ

(e)
lq

(
ω,

z

ε
+ξ
)
e−|ξ|βl(ω,z)+iξβq(ω,z),

and

θ̃jq

(
ω,

z

ε

)
=θjq

(z
ε

)
−
∑
l>N

Θjl

2βl(ω,z)
ν′
(z
ε

)∫ ∞

−∞
dξθ

(e)
lq

(
ω,

z

ε
+ξ
)
e−|ξ|βl(ω,z)+iξβq(ω,z),

and

ηj

(
ω,

z

ε

)
=
∑
l>N

1

2βl(ω,z)

∫ ∞

−∞
dξe−|ξ|βl(ω,z)+iξβj(ω,z)

×
[
Γjlν

′′
(z
ε

)
γ
(e)
lj

(
ω,

z

ε
+ξ
)
+Θjlν

′
(z
ε

)
θ
(e)
lj

(
ω,

z

ε
+ξ
)]

,

with γjq and θjq given in equations (C.7)-(C.8) and γ
(e)
lq , θ

(e)
lq given in definitions (3.42)

and (3.44). Note that the coefficients Γjl/βl and Θjl/βl decay as 1/l2 for l�1, and

the integrals in ξ are bounded, so the series defining γ̃jq, θ̃jq and ηj are absolutely
convergent.

3.3.2. Vicinity of turning points. Let us consider a vicinity |z−z
(t)
− |=O(εs)

of the turning point z
(t)
− , for some s>0, and change for a moment variables to z=

z
(t)
− +εsζ, so that ζ=O(1). In the new variable, we observe that the coupling terms in
the evolution equations (3.25) for the turning wave indexed by j=N , modeled by the
series (3.7), are proportional to

εs/2√
ε1−s

ν̃
( ζ

ε1−s

)
+O(εs), ν̃=ν′′ or ν′. (3.52)

In the limit ε→0, described in detail in Section 4, all these terms tend to zero. Thus,
the turning wave does not interact with the other modes near the turning point.

We also obtain that the right hand side of equation (3.25) for 1≤ j≤N −1 tends to
zero as ε→0, so the propagating mode amplitudes remain constant as they traverse the

vicinity of the turning point z
(t)
− . A similar argument shows that the propagating mode

amplitudes remain constant as they traverse the vicinity of the turning point z
(t−1)
− at

the other end of the interval.



L. BORCEA, J. GARNIER, AND D. WOOD 2341

It remains to describe the turning mode that undergoes a transition near z
(t)
− . To

do so, we return to the original coordinate z, but stay in the vicinity of z
(t)
− . We obtain

from equations (3.25) with j=N , after neglecting the coupling terms, that

∂z

(
aεN (ω,z)
bεN (ω,z)

)
≈Hε

N (ω,z)

(
aεN (ω,z)
bεN (ω,z)

)
, (3.53)

where the matrix Hε
N is defined by equations (3.26) and (3.38)-(3.39). These equations

give

∂z

[∣∣aεN (ω,z)
∣∣2− ∣∣bεN (ω,z)

∣∣2]≈0, (3.54)

and using the radiation condition (3.37), we conclude that near the turning point we
have energy conservation2 ∣∣aεN (ω,z)

∣∣2≈ ∣∣bεN (ω,z)
∣∣2. (3.55)

The impinging left going wave with amplitude bε is reflected back at the turning point
to give the right going wave with amplitude aε, determined by the reflection coefficient

Rε
N (ω,z)=

aεN (ω,z)

bεN (ω,z)
≈ iexp

[2i
ε
φN (ω,0)+ iϑε

N (ω,z)
]
. (3.56)

This is a complex number with modulus
∣∣Rε

N (ω,z)
∣∣≈1, because there is no loss of power

in the limit ε→0, and with random phase ϑε
N (ω,z).

The phase ϑε
N is described in detail in [8, Lemmas 4.1 and 4.2], for the purpose of

characterizing the reflection of a broad-band pulse at the turning point. The standard
deviation of the random boundary fluctuations considered in [8] is smaller than what
we have in equation (2.15), by a factor of | lnε|1/2, so that as ε→0 there is no mode
coupling at any z, small or order one. Here we have mode coupling away from the turning
points, due to the stronger random boundary fluctuations, and we are interested in the
transport of energy by single frequency modes in the waveguide. The mode powers are
not affected by the phase, so the details of ϑε

N (ω,z) are not important in the context of
this paper.

3.3.3. Source excitation and matching conditions. The evolution equa-
tions of the left and right going mode amplitudes, described above, are complemented
by matching conditions at the turning points, by radiation conditions at |z|>ZM , and
by initial conditions at z=0, where the source lies.

Starting from the source location z=0, which is not a turning point, we have the
jump conditions,

aεj(ω,0+)−aεj(ω,0−)=
f(ω)yj(ρ�,0)

2i
√
βj(ω,0)

,

bεj(ω,0+)−bεj(ω,0−)=
f(ω)yj(ρ�,0)

2i
√
βj(ω,0)

, 1≤ j≤N (0), (3.57)

where we recall that N (0) is the number of propagating modes at z=0 and we denote
a(0+)= limz↘0a(z) and a(0−)= limz↗0a(z).

2All the energy conservation relations are approximate at a finite ε, due to the interaction with the
evanescent modes. We will see in Section 4 that there is no energy loss in the limit ε→0.
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On the left of the source, at turning points z
(t)
− , for 1≤ t≤ t−M , we have the continuity

relations

aεj(ω,z
(t)
− +)=aεj(ω,z

(t)
− −), bεj(ω,z

(t)
− +)= bεj(ω,z

(t)
− −), (3.58)

for 1≤ j≤N
(t−1)
− −1, where we recall definition (3.11) of N

(t−1)
− . We also have the

reflection of the turning mode, modeled by equation

aε
N

(t−1)
−

(ω,z
(t)
− +)=Rε

N
(t−1)
−

(ω,z
(t)
− )bε

N
(t−1)
−

(ω,z
(t)
− +), (3.59)

where Rε

N
(t−1)
−

is the complex reflection coefficient as in definition (3.56).

At z<−ZM , where the waveguide has straight and parallel boundaries and supports
Nmin propagating modes, the wave is outgoing (propagating to the left), so we have the
conditions

aj(z)=aj(−ZM+)=0, bj(z)= bj(−ZM+), z <−ZM , (3.60)

for j=1, . . . ,Nmin.

Similarly, on the right of the source, at turning points z
(t)
+ , for 1≤ t≤ t+M , we have

the continuity relations

aεj(ω,z
(t)
+ +)=aεj(ω,z

(t)
+ −), bεj(ω,z

(t)
+ +)= bεj(ω,z

(t)
+ −), (3.61)

for 1≤ j≤N
(t−1)
+ , where we recall definition (3.11) of N

(t−1)
+ . The number of propa-

gating modes increases by one at z
(t)
+ , to equal N

(t)
+ , and the amplitude of the turning

wave, indexed by j=N
(t)
+ , starts from zero there

aε
N

(t)
+

(ω,z
(t)
+ )= bε

N
(t)
+

(ω,z
(t)
+ +)=0. (3.62)

At z>ZM , where the waveguide has straight and parallel boundaries and supports
Nmax propagating modes, the wave is outgoing (propagating to the right), so we have
the conditions

aj(z)=aj(ZM−), bj(z)= bj(ZM−)=0, z >ZM , (3.63)

for j=1, . . . ,Nmax.

4. The limit ε→0
To quantify the net effect of the waveguide variations on the propagating waves, we

take the limit ε→0 of the random mode amplitudes. The limit is taken in each sector
of the waveguide, bounded by two consecutive turning points, as explained in Section
4.1. We introduce in Section 4.2 a simplification, known as the forward scattering
approximation, which applies to smooth enough random fluctuations ν. The ε→0 limit
of the mode amplitudes under this approximation is described in Section 4.3.

4.1. The propagator matrix. The discussion below applies to any sector of the

waveguide, so let us consider as in Section 3.2.2 the sector z∈ (z(t)− ,z
(t−1)
−

)
, supporting

N =N
(t−1)
− propagating modes.

The mode amplitudes satisfy the system of equations (3.45), with 2N ×2N random

propagator matrix Pε(ω,z;z
(t−1)
− ). This solves the equation

∂zP
ε(ω,z;z

(t−1)
− )=Υε(ω,z)Pε(ω,z;z

(t−1)
− ), (4.1)
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backward in z, starting from

Pε(ω,z
(t−1)
− ;z

(t−1)
− )= I, (4.2)

where I is the 2N ×2N identity matrix and Υε(ω,z) is defined in equation (3.46)-(3.51).
The propagator defines the solution of equation (3.45),(

aε(ω,z)
bε(ω,z)

)
=Pε(ω,z;z

(t−1)
− )

(
aε(ω,z

(t−1)
− )

bε(ω,z
(t−1)
− )

)
, (4.3)

and due to the symmetry relations (3.47) of the blocks of Υε, we note that(
bε(ω,z)
aε(ω,z)

)
=Pε(ω,z;z

(t−1)
− )

(
bε(ω,z

(t−1)
− )

aε(ω,z
(t−1)
− )

)
(4.4)

is also a solution. Writing explicitly these equations, and using the uniqueness of solution
of equation (3.45), we conclude that the propagator has the block form

Pε(ω,z;z
(t−1)
− )=

(
Pε(bb)(ω,z;z

(t−1)
− ) Pε(ba)(ω,z;z

(t−1)
− )

Pε(ba)(ω,z;z
(t−1)
− ) Pε(bb)(ω,z;z

(t−1)
− )

)
. (4.5)

The blocks are N ×N complex matrices, where Pε(bb) describes the coupling between
the components of bε, the vector of left-going mode amplitudes, and Pε(ba) describes
the coupling between the components of bε and of aε, the vector of right-going mode
amplitudes.

The limit of Pε(ω,z;z
(t−1)
− ) as ε→0 can be obtained and identified as a multi-

dimensional diffusion process, meaning that the entries of the limit matrix satisfy a
system of linear stochastic equations. This follows from the application of an extension
of the diffusion approximation theorem proved in [28] and presented in [18, Chapter
6]. This extension is stated in Theorem 6.1 and is proved in Section 6 for a general
system of equations with real valued unknown vector Xε. In our case Xε is obtained
by concatenating the moduli and arguments of the entries in Pε(bb) and Pε(ba).

4.2. The forward scattering approximation. When we use Theorem 6.1,
we obtain that the limit entries of Pε(bb) are coupled to the limit entries of Pε(ba)

through coefficients that are proportional to the power spectral density3 R̂ of the random
fluctuations ν, evaluated at the sum of the mode wavenumbers,

R̂(βj(ω,z)+βl(ω,z)
)
=2

∫ ∞

0

dζR(ζ)cos[(βj(ω,z)+βl(ω,z))ζ], (4.6)

for j,l=1, . . . ,N . This can be traced back to the phase factors

1

ε

∫ z

0

dz′
[
βj(ω,z

′)+βl(ω,z
′)
]

in matrix Υε(ba)(ω,z) defined in equation (3.49). The limit entries of Pε(bb)(z) are

coupled to each other through R̂(βj(ω,z)−βl(ω,z)
)
, because the phase factors in

3The power spectral density is the Fourier transform of the auto-correlation function R defined in
(2.7). It is a non-negative and even function that decays rapidly when R and therefore ν are smooth
in z.
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Υε(bb)(ω,z) defined in equations (3.47)-(3.48) are

1

ε

∫ z

0

dz′
[
βj(ω,z

′)−βl(ω,z
′)
]
,

for j,l=1, . . . ,N .
To simplify the analysis of the cumulative scattering effects in the limit ε→0, we

assume that the power spectral density R̂ peaks at zero and decays rapidly away from
it4, so that

R̂(βj(ω,z)+βl(ω,z)
)≈0, ∀j,l=1, . . . ,N . (4.7)

With this assumption we can neglect the coupling between the blocks Pε(bb)(ω,z) and

Pε(ba)(ω,z) of the propagator. Since Pε(ba) starts from zero at z= z
(t−1)
− , we obtain

Pε(ω,z;z
(t−1)
− )≈

(
Pε(bb)(ω,z;z

(t−1)
− ) 0

0 Pε(bb)(ω,z;z
(t−1)
− )

)
, (4.8)

and equation (4.3) gives

bε(ω,z)≈Pε(bb)(ω,z;z
(t−1)
− )bε(ω,z

(t−1)
− ), z <z

(t−1)
− . (4.9)

This is the forward scattering approximation. It describes the left going amplitudes
bε(ω,z) of the waves, propagating forward from the source, independent of the right-
going amplitudes aε(ω,z) of the waves, propagating backward, toward the source.

Note that since βj decreases monotonically with j, the smallest argument of the
power spectral density in equation (4.7) is at j= l=N . The wave number βN (z) is of

order k/
√N away from the turning point z

(t)
− , but tends to zero as z↘z

(t)
− . The left

and right going amplitudes of the turning mode are coupled near z
(t)
− , as described by

the reflection coefficient (3.56). We assume that this coupling holds only at z−z
(t)
− <δ,

where δ is a small and positive number, independent of ε. Over the small distance δ
there is negligible interaction between the turning mode and the others, as explained in

Section 3.3.2. In the remaining interval z∈ (z
(t)
− +δ,z

(t−1)
− ) we have

R̂(2βN (ω,z)
)
� R̂(2βN (ω,z

(t)
− +δ)

)≈0, (4.10)

so we can use the forward scattering approximation.
Note that there is mode coupling in this approximation, but only between the

forward going mode amplitudes. This is due to the fact that |βj(ω,z)−βl(ω,z)| is small
at least for nearby indices j,l, as illustrated in Figure 4.1. The power spectral density
evaluated at such differences is not negligible, and the net coupling effect is described
in the next section.

4.3. The coupled mode diffusion process. The ε→0 limit of the forward
going mode amplitudes is stated in the next theorem. We derive it using Theorem 6.1
for the vector Xε∈R

2N obtained by concatenating the moduli and arguments of bεj ,
with j=1, . . . ,N . The differential equations for Xε follow from the system

∂zb
ε(ω,z)≈Υε(bb)(ω,z)bε(ω,z), z <z

(t−1)
− , (4.11)

4An example is the Fourier transform of the Gaussian auto-correlation function used in the numer-
ical simulations in Section 5.
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Fig. 4.1. Plot of the matrix with entries βj +βl on the left and |βj −βl| on the right, v.s. j,l=
1, . . . ,N , for the case of N =40 propagating modes. The scaled wavenumber is k=2π and the waveguide
width is D=20.25. Note that the entries in the left plot are larger than 2βN =1.97, whereas the entries
near the diagonal in the right plot are small.

with given bε(ω,z
(t−1)
− ). As explained in the previous section, the approximation in

(4.11) means that there is an error that vanishes in the limit ε→0.

Theorem 4.1. The complex mode amplitudes {bεj(ω,z)}Nj=1 converge in distribution as

ε→0 to an inhomogeneous diffusion Markov process {bj(ω,z)}Nj=1 with generator −LN
z

given below.5

Let us write the limit process as

bj(ω,z)=P
1/2
j (ω,z)eiψj(ω,z), j=1, . . . ,N ,

in terms of the power Pj = |bj |2 and the phase ψj =argbj . Then, we can express the
infinitesimal generator of the limit diffusion as the sum of two operators

LN
z =LN

P,z+LN
ψ,z. (4.12)

The first is a partial differential operator in the powers

LN
P,z =

N∑
j,l=1
j �= l

G
(c)
jl (ω,z)

[
PlPj

(
∂

∂Pj
− ∂

∂Pl

)
∂

∂Pj
+(Pl−Pj)

∂

∂Pj

]
, (4.13)

with symmetric matrix G(c)(ω,z)=
(
G

(c)
jl (ω,z)

)N
j,l=1

of coefficients that are non-negative

off the diagonal

G
(c)
jl (ω,z)=

σ2μ2
j (z)μ

2
l (z)

4βj(ω,z)βl(ω,z)
R̂[βj(ω,z)−βl(ω,z)], j �= l , (4.14)

and sum to zero in the rows

G
(c)
jj (ω,z)=−

N∑
l=1,l �=j

G
(c)
jl (ω,z). (4.15)

5The minus sign in front of the generator is because we solve the Kolmogorov equation for the

moments of the limit process backward in z, starting from z
(t−1)
− .
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The second partial differential operator in equation (4.12) is with respect to the phases

LN
ψ,z =

1

8

N∑
j,l=1
j �= l

G
(c)
jl (ω,z)

[
Pj

Pl

∂2

∂ψ2
l

+
Pl

Pj

∂2

∂ψ2
j

+2
∂2

∂ψj∂ψl

]
+

1

2

N∑
j,l=1

G
(0)
jl (ω,z)

∂2

∂ψj∂ψl

+
1

2

N∑
j,l=1
j �= l

G
(s)
jl (ω,z)

∂

∂ψj
+

N∑
j=1

κN
j (ω,z)

∂

∂ψj
, (4.16)

with coefficients

G
(0)
jl (ω,z)=

σ2μ2
j (z)μ

2
l (z)

4βj(ω,z)βl(ω,z)
R̂(0) , j,l=1, . . . ,N , (4.17)

and

G
(s)
jl (ω,z)=

σ2μ2
j (z)μ

2
l (z)

2βj(ω,z)βl(ω,z)

∫ ∞

0

dζR(ζ)sin[(βj(ω,z)−βl(ω,z))ζ] , (4.18)

for j,l=1, . . . ,N and j �= l. The coefficient κN
j in the last term of equation (4.16) is

κN
j (ω,z)=

σ2

2βj(ω,z)

{(π2j2

12
+

1

16

)
R′′(0)− 3μ2

j (z)

4
R(0)

}
−

N∑
l=1
j �= l

μ2
j (z)μ

2
l (z)

4βj(ω,z)βl(ω,z)[βj(ω,z)−βl(ω,z)]

[
R(0)+

R′′(0)
[βj(ω,z)+βl(ω,z)]2

]

+
∑
l>N

σ2μ2
j (z)μ

2
l (z)

2βjβl[β2
j (ω,z)+β2

l (ω,z)]
2

{
−βl(ω,z)R′′(0)+

∫ ∞

0

dζR′′(ζ)e−βl(ω,z)ζ

×
[
[β2

l (ω,z)−β2
j (ω,z)]cos(βj(ω,z)ζ)−2βj(ω,z)βl(ω,z)sin(βj(ω,z)ζ)

]}
.

(4.19)

Note that the coefficients of the partial derivatives with respect to the mode powers
Pj are independent of the phases ψj . This means that {|bεj(ω,z)|2}Nj=1 converge in distri-

bution in the limit ε→0 to the inhomogeneous diffusion Markov process {Pj(ω,z)}Nj=1

with infinitesimal generator −LN
P,z as in definition (4.13). The total power of the prop-

agating modes satisfies

LN
P,z

[ N∑
j=1

Pj(ω,z)
]
=

N∑
j,l=1
j �= l

G
(c)
jl (ω,z)

[
Pl(ω,z)−Pj(ω,z)

]
=0, (4.20)

where we used equation (4.15) and the symmetry of matrix G(c)(ω,z). This implies
that the total power is conserved

N∑
j=1

Pj(ω,z)=constant, z∈ (z(t)− ,z
(t−1)
−

)
. (4.21)
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The evanescent waves do not contribute to the expression of the infinitesimal gen-
erator LN

P,z, so they do not exchange energy with the propagating modes in the limit

ε→0. However, they appear in the last coefficient (4.19) of the operator LN
ψ,z, so they

affect the phases of the mode amplitudes.
The limit Markov process {bj(ω,z)}Nj=1 is inhomogeneous due to the slow variations

of the waveguide which make the coefficients of the operators (4.13) and (4.16) z depen-
dent. The slow variations also change the number of propagating modes at the turning
points, and this leads to partial reflection of power, as described in the next section.

5. Transport and reflection of power in the waveguide
We now use the infinitesimal generator (4.12) to quantify the cumulative scattering

effects in the waveguide. We begin in Section 5.1 with the modes transmitted through
the left part of the waveguide. The right going modes are discussed in 5.4. They are
defined by the direct excitation from the source and the reflection at the turning points.
We end with some numerical illustrations in Section 5.7.

5.1. The left going waves. The wave propagation from the source at z=0 to
the end z=−ZM of the support of variations of the waveguide can be described in the
limit ε→0 as follows:

The left going mode amplitudes start with the values

bj(ω,0−)= bj,o(ω)=−f(ω)yj(ρ�,0)

2i
√
βj(ω,0)

, j=1, . . . ,N (0), (5.1)

obtained from equation (3.57) and the observation that at z>0, where the opening
D(z) increases, the waves are right going.

In the sector
(
z
(1)
− ,0

)
the amplitudes {bj(ω,z)}N(0)

j=1 evolve according to the diffusion

Markovian dynamics with generator −LN(0)

z , starting from {bj,o(ω)}N(0)

j=1 . The first

N (0)−1 left going modes pass through the turning point

bj(ω,z
(1)
− −)= bj(ω,z

(1)
− +), j=1, . . . ,N (0)−1, (5.2)

but the last mode is reflected back.
In the sector

(
z
(2)
− ,z

(1)
−
)
there are N

(1)
− =N (0)−1 left going modes, with amplitudes

evolving according to the diffusion Markovian dynamics with generator −LN
(1)
−

z , starting

from the values (5.2) at z= z
(1)
− −. At the next turning point z

(2)
− , only the first N

(1)
− −1

modes pass through

bj(ω,z
(2)
− −)= bj(ω,z

(2)
− +), j=1, . . . ,N

(1)
− −1, (5.3)

and the last mode is reflected back.
We continue this way until we reach z=−ZM , with amplitudes {bj(ω,−ZM )}Nmin

j=1

obtained from the diffusion Markovian dynamics with generator −LNmin
z over the inter-

val (−ZM ,z
(t−M )
− ), starting with the values {bj(ω,z(t

−
M )

− −)}Nmin
j=1 determined as explained

above, from the previous waveguide sectors.
The waveguide has no variations at z<Z−M , so the left going mode amplitudes

remain equal to their values at −ZM , as stated in equation (3.60). The emerging wave
is obtained from equations (3.3) and (3.23),

pε(ω,ρ,z)≈−
Nmin∑
j=1

yj(ρ,−ZM )bj(ω,−ZM )√
βj(ω,−ZM )

exp
[
− i

ε

∫ −ZM

0

dz′βj(ω,z
′)
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− i

ε
βj(ω,−ZM )(z+ZM )

]
, for z<−ZM . (5.4)

5.2. The mean transmitted wave field. With the infinitesimal generator
(4.12) and Kolmogorov’s equation, we now calculate the mean mode amplitudes〈

bj(ω,z)
〉
=E

[
bj(ω,z)

]
. (5.5)

In the first sector (z
(1)
− ,0), these satisfy the evolution equations

∂z
〈
bj(ω,z)

〉
=−

[
G

(c)
jj (ω,z)−G

(0)
jj (ω,z)+ iG

(s)
jj (ω,z)+2iκN(0)

j (ω,z)
]〈bj(ω,z)〉

2
, (5.6)

solved backward in z, for z∈ (z(1)− ,0
)
, starting from the values〈

bj(ω,0−)
〉
= bj,o(ω), j=1, . . . ,N (0). (5.7)

The coefficients in equation (5.6) are given by definitions (4.15), (4.17), (4.19) and

G
(s)
jj (ω,z)=−

N(0)∑
l=1,l �=j

G
(s)
lj (ω,z), (5.8)

with G
(s)
lj (ω,z) given in definition (4.18). Because −G

(c)
jj (ω,z)+G

(0)
jj (ω,z)>0 (by

Wiener-Khintchine theorem), we conclude from equation (5.16) that the mean mode
amplitudes decay with |z|, and therefore∣∣∣〈bj(ω,z(1)− )

〉∣∣∣< ∣∣bj,o(ω)∣∣, 1≤ j≤N (0). (5.9)

This decay models the randomization of the left going modes, and occurs on a j depen-
dent length scale, as illustrated in Section 5.7. Similar to the case of waveguides with
random perturbations of straight boundaries [5, Section 5], the modes with larger index
j randomize faster. Intuitively, this is because these modes propagate slowly along z,
at group velocity 1/∂ωβj(ω,z) that is small with respect to the wave speed, and bounce
more often at the random boundary.

A similar calculation applies to the other sectors
(
z
(t)
− ,z

(t−1)
−

)
of the waveguide,

indexed by t=1, . . . ,t−M . The only difference is that the starting values of the mode
amplitudes are random, so we use conditional expectations〈

bj(ω,z)
〉
=E

[
E

[
bj(ω,z)

∣∣F
z
(t−1)
−

]]
, z <z

(t−1)
− , (5.10)

where F
z
(t−1)
−

denotes the σ-algebra ( information) generated by the Markov limit pro-

cess {bq(ω,z)}N
(t−1)
−

q=1 at z= z
(t−1)
− . We obtain that

〈
bj(ω,z)

〉
satisfies an equation like

equation (5.6), with redefined coefficients for the N
(t−1)
− number of propagating modes,

and starting value
〈
bj(ω,z

(t−1)
− )

〉
calculated in the previous waveguide sector.

Proceeding this way we reach z=−ZM . The mean transmitted wave is the expec-
tation of equation (5.4), with

〈
bj(ω,−ZM )

〉
obtained by solving equations (5.6) for all

the sectors of the waveguide. The scattering effects at the random boundary add up in
each sector, and the mean mode amplitudes decay, as explained above,∣∣〈bj(ω,−ZM )

〉∣∣< ∣∣∣〈bj(ω,−z
(t−M )
−

〉∣∣∣<...<
∣∣bj,o(ω)∣∣, 1≤ j≤Nmin. (5.11)
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5.3. The transmitted power. Using the infinitesimal generator (4.13) of
the Markov process {Pj(ω,z)}, the ε→0 limit of the left going mode powers, we now
calculate the mean and standard deviation of the transmitted power at z<0.

We proceed as in the previous section, one sector of the waveguide at a time, starting

from the source. In the first sector z∈ (z(1)− ,0
)
, the mean powers〈

Pj(ω,z)
〉
=E [Pj(ω,z)] , j=1, . . . ,N (0), (5.12)

evolve from the initial values
〈
Pj(ω,0−)

〉
= |bj,o(ω)|2 according to equation

∂z

⎛⎜⎝
〈
P1(ω,z)

〉
...〈

PN(0)(ω,z)
〉
⎞⎟⎠=−G(c)(ω,z)

⎛⎜⎝
〈
P1(ω,z)

〉
...〈

PN(0)(ω,z)
〉
⎞⎟⎠ , (5.13)

with matrix G(c)(ω,z) defined by equations (4.14)-(4.15), for N =N (0).

In the next sectors (z
(t)
− ,z

(t−1)
− ) we use conditional expectations〈

Pj(ω,z)
〉
=E

[
E

[
Pj(ω,z)

∣∣F
z
(t−1)
−

]]
, z <z

(t−1)
− , (5.14)

and obtain that the mean powers satisfy an equation like (5.13), with N
(t−1)
− unknowns

and N
(t−1)
− ×N

(t−1)
− matrix G(c)(ω,z). These equations are solved backward in z, start-

ing from the values
〈
Pj(ω,z

(t−1)
− )

〉
computed in the previous sectors. Proceeding this

way, we reach z=−ZM , and obtain
〈
Pj(ω,−ZM )

〉
, for j=1, . . . ,Nmin.

Note that unlike the expectations (5.5), the mean powers are coupled by the matrix
G(c)(ω,z). This coupling models the exchange of power between the left going modes,
induced by cumulative scattering at the random boundary of the waveguide. The ex-
change depends on the mode index, as illustrated in Section 5.7. Specifically, the higher
indexed modes transfer power more quickly than the others.

How much power is exchanged depends on the length of the sectors
(
z
(t)
− ,z

(t−1)
−

)
of

the waveguide. In short sectors, the exchange is mostly among the higher indexed modes.
The longer the sectors, the more modes participate in the exchange and the power
may become evenly distributed among the modes, independent of the starting value

at z
(t−1)
− . This equipartition of energy has been explained in waveguides with straight

walls in [18, Section 20.3], for a matrix G(c) with non-zero off diagonal entries. By the
Perron–Frobenius theorem, and due to energy conservation, such a matrix has a simple
eigenvalue equal to zero, and the other eigenvalues are negative. It is straightforward
to see from equation (5.13) that the solution converges at large |z| to a vector in the
null space of G(c). Equation (4.15) gives that this space is spanned by the vector of all
ones, so the power becomes evenly distributed at distances that exceed the equipartition
distance. This length scale is defined by the inverse of the absolute value of the largest,
non-zero eigenvalue of G(c).

By the energy conservation (4.21), the transmitted power in the first sector of the
waveguide is

Ptrans(ω,z)=
N(0)∑
j=1

Pj(ω,z)=
N(0)∑
j=1

|bj,o(ω)|2, z∈ (z
(1)
− ,0), (5.15)

where the right hand side is the deterministic, total left going power emitted by the

source. At the turning point z
(1)
− the N (0)-th mode is reflected back. The transmitted
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power to the next sector of the waveguide, carried by the remaining N
(1)
− =N (0)−1

modes, is random and given by

Ptrans(ω,z)=

N
(1)
−∑

j=1

Pj(ω,z)=

N
(1)
−∑

j=1

Pj(ω,z
(1)
− ), z∈ (z

(2)
− ,z

(1)
− ). (5.16)

This repeats for the other sectors, and beyond z=−ZM we have

Ptrans(ω,z)=

Nmin∑
j=1

Pj(ω,−ZM ), z≤−ZM . (5.17)

In summary, the transmitted power is a piecewise constant function with jumps
at the turning points, and random values determined by the sum of the mode powers
entering each sector of the waveguide. Its mean is obtained by taking expectations in
equations (5.15)-(5.17), and using the mean mode powers calculated as explained above.

The random fluctuations of Ptrans(ω,z) about the mean are quantified by its stan-
dard deviation

StD[Ptrans(ω,z)]=
{N

(t−1)
−∑
j,l=1

[〈Pjl(ω,z)
〉−〈Pj(ω,z)

〉〈
Pl(ω,z)

〉]}1/2

(5.18)

for z∈ (z
(t)
− ,z

(t−1)
− ) and 1≤ t≤ t−M . To calculate it we need the second moments〈Pjl(ω,z)

〉
=E [Pj(ω,z)Pl(ω,z)] . (5.19)

Again, these are obtained in one sector of the waveguide at a time, starting from the
source, where 〈Pjl(ω,0)

〉
= |bj,o(ω)|2|bl,o(ω)|2, j,l=1, . . . ,N (0). (5.20)

The evolution equations of the moments (5.19) at z∈ (z(t)− ,z
(t−1)
−

)
are

∂z
〈Pjj(ω,z)

〉
=2G

(c)
jj (ω,z)

〈Pjj(ω,z)
〉−4

N
(t−1)
−∑
l=1

G
(c)
jl (ω,z)

〈Plj(ω,z)
〉
, (5.21)

and

∂z

〈Pjq(ω,z)
〉
=2G

(c)
jq (ω,z)

〈Pjq(ω,z)
〉−

N
(t−1)
−∑
l=1

[
G

(c)
jl (ω,z)

〈Plq(ω,z)
〉
+G

(c)
lq (ω,z)

〈Pjl(ω,z)
〉]
,

(5.22)

for j,q=1, . . . ,N
(t−1)
− and j �= q. These equations are solved backward in z, with the

starting values
〈Pjq(ω,z

(t−1)
− )

〉
calculated from the previous sector.

5.4. The right going waves. Even though we consider the forward scattering
approximation in each sector of the waveguide, there are both left and right going
modes at z<0, due to reflection at the turning points. At z>0 we also have the right
going waves emitted from the source. The analysis of the reflected mode amplitudes is
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more complicated, because they quantify cumulative scattering in the waveguide sectors
traversed both ways: to the left by the incoming wave and to the right by the reflected
wave.

In each sector
(
z
(t)
− ,z

(t−1)
−

)
we obtain from approximation (4.8) that the right going

mode amplitudes satisfy

aε(ω,z)≈Pε(bb)(ω,z;z
(t−1)
− )aε(ω,z

(t−1)
− ), t=1, . . . ,t−M . (5.23)

This looks similar to equation (4.9) that describes the evolution of the left going waves,
but we have different boundary conditions, as we now explain.

Starting from the leftmost turning point z
(t−M )
− , and denoting N =N

(t−M−1)
− , we ob-

tain from equation (3.59) the initial condition

aεj
(
ω,z

(t−M )
−

)
=Rε

N
(
ω,z

(t−M )
−

)
bεN
(
ω,z

(t−M )
−

)
δjN , j=1, . . . ,N , (5.24)

for the vector aε(ω,z)∈C
N , where δjN is the Kronecker delta symbol and Rε

N is reflec-
tion coefficient of definition (3.56). The amplitudes of the right going modes impinging
on the next turning point are obtained from approximation (5.23)

aε(ω,z
(t−M−1)
− −)≈

[
Pε(bb)(ω,z

(t−M )
− ;z

(t−M−1)
− )

]T
aε(ω,z

(t−M )
− ), (5.25)

using that the propagator Pε(bb) is approximately unitary. This follows from the energy
conservation relation (4.21), which holds in the limit ε→0, independent of the initial
conditions.

On the right of the turning point z
(t−M−1)
− there is an extra right going mode. Re-

naming N =N
(t−M−2)
− , we obtain the following initial condition for the vector aε(ω,z):

Its first N −1 components are given in approximation (5.25), and the last component
is

aεN
(
ω,z

(t−M−1)
−

)
=Rε

N
(
ω,z

(t−M−1)
−

)
bεN
(
ω,z

(t−M−1)
−

)
. (5.26)

These amplitudes and the N ×N propagator Pε(bb)(ω,z;z
(t−M−2)
− ) determine the ampli-

tudes of the right going modes impinging on the turning point z
(t−M−2)
− and so on.

Proceeding this way we obtain the amplitudes {aεj(ω,0−)}N(0)

j=1 on the left of the
source. The amplitudes at z=0+ are given by these and the source conditions (3.57).
The analysis of forward propagation at z>0 is similar to that in Section 5.1, with the

exception that at the turning points z
(t)
+ , for 1≤ t≤ t+M , there is no reflection. We add

instead a new mode with zero initial condition, as stated in equation (3.62).

5.5. The net reflected power. The calculation of the statistical moments of
the right going mode amplitudes in the limit ε→0 requires the infinitesimal generator
of the limit propagator Pε(bb), in each sector of the waveguide. This operator can be
obtained using Theorem 6.1, but the calculation is complex. Here we quantify only the
net reflected power at each turning point, without asking how this power gets distributed
among the modes as they propagate toward the right.

The net reflected power is determined by the transmitted power in the left part
of the waveguide, using energy conservation. Specifically, starting from the leftmost
turning point, the net reflected power is

Prefl(ω,z)=P
N

(t
−
M

−1)

−
(ω,z

(t−M )
− +), z∈ (z(t−M )

− ,z
(t−M−1)
−

)
, (5.27)
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where the right hand side is the power of the left going turning mode, analyzed in
Section 5.1. Here we used the conservation relation

lim
ε→0

N
(t

−
M

−1)

−∑
j=1

|aεj(ω,z)|2=constant, for z∈ (z(t−M )
− ,z

(t−M−1)
−

)
,

derived the same way as the relation (4.21), equation (5.24) and limε→0 |Rε
N |=1.

At the next turning point z
(t−M−1)
− we add a new mode amplitude, and the net

reflected power increases to

Prefl(ω,z)=P
N

(t
−
M

−1)

−
(ω,z

(t−M )
− +)+P

N
(t

−
M

−2)

−
(ω,z

(t−M−1)
− +), (5.28)

for z∈ (z(t−M−1)
− ,z

(t−M−2)
−

)
, and so on. Proceeding this way we obtain that the net re-

flected power is a piecewise constant function at z<0, with jumps at the turning points

z
(t)
− indexed by 1≤ t≤ t−M . At the source location this equals

Prefl(ω,0)=

t−M∑
t=1

P
N

(t−1)
−

(ω,z
(t)
− +), (5.29)

and its mean and standard deviation are determined by those of the turning wave
powers, calculated in Section 5.1. By comparing with equations (5.15-5.17) we obtain
the global conservation of energy relation

Prefl(ω,0)+Ptrans(ω,−ZM )=

N(0)∑
j=1

|bj,o(ω)|2. (5.30)

Therefore the first two moments of the net transmitted and reflected powers are related
through:

〈Prefl(ω,0)〉=
N(0)∑
j=1

|bj,o(ω)|2−〈Ptrans(ω,−ZM )〉 , (5.31)

StD[Prefl(ω,0)]=StD[Ptrans(ω,−ZM )] . (5.32)

5.6. The net power transmitted to the right. There is no mode reflection
at z>0, and the net transmitted power to the right is

Ptrans,right(ω,z)= lim
ε→0

N(0)∑
j=1

|aεj(ω,0+)|2, z >0, (5.33)

where the equality means having the same statistical distribution, and

aεj(ω,0+)=aεj(ω,0−)+aj,o(ω), aj,o(ω)=
f(ω)yj(ρ�,0)

2i
√
βj(ω,0)

. (5.34)

The calculation of the statistical moments of equation (5.33) is as complicated as the
calculation of the moments of the limit right going mode amplitudes. Specifically, it
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requires the infinitesimal generator of the ε→0 limit of the propagator Pε(bb), in par-

ticular, we need to characterize the phases of the reflection coefficients Rε

N
(t−1)
−

(
ω,z

(t)
−
)
,

t=1, . . . ,t−M . By extrapolating the results given in [8] (in which the standard deviation
of the fluctuations of the boundary was smaller), we could anticipate that these phases
are independent and uniformly distributed over [0,2π]. We could then anticipate that
the mean power transmitted to the right is

〈Ptrans,right(ω,z)〉= 〈Prefl(ω,0)〉+
N(0)∑
j=1

|aj,o(ω)|2

=

N(0)∑
j=1

|aj,o(ω)|2+
N(0)∑
j=1

|bj,o(ω)|2−〈Ptrans(ω,−ZM )〉 , (5.35)

for any z>0.

5.7. Numerical illustration. In this section we illustrate with some plots the
exchange of power among the propagating modes in the left part z<0 of the waveguide,
due to a point source at x�=(D(0)/7,0). For comparison, we also consider other initial
conditions, where the excitation at z=0 is for a single mode at a time.

We take a waveguide with a straight axis that has a single turning point, at arc

length z
(1)
− =−L=−1000λ, where λ is the wavelength. The waveguide opening D(z/L)

increases linearly in z in the interval [−L,0], from the value 20λ to 20.49λ, and tran-
sitions as a cubic polynomial to the constant 19.999λ at z<−L−0.2λ and 20.491λ at

z>0.2λ. Thus, there are N (0)=40 propagating modes at z>−L and N
(1)
− =39 modes

at z<−L. The top and bottom boundaries of the waveguide are straight and parallel
at z∈ (−∞,−L−0.2λ)∪(0.2λ,∞).

The auto-correlation function R of the process ν(ζ) is a Gaussian with standard
deviation 1. The correlation length of the fluctuations is �=3λ, so ε= �/L=0.003, and
the standard deviation σ of the fluctuations equals

√
ε.

We can describe approximately what to expect in terms of the randomization of
the mode amplitudes and the exchange of power among the modes by looking at the
following length scales calculated in a waveguide with constant opening equal to D(0):

(1) The mode dependent scattering mean free path

Lj,smf =
2

G
(0)
jj (ω,0)−G

(c)
jj (ω,0)

, j=1, . . . ,40, (5.36)

which is the scale of decay of the mean mode amplitudes, as seen from (5.6).

(2) The mode dependent transport mean free paths,

Lj,tmf =− 2

G
(c)
jj (ω,0)

, j=1, . . . ,40, (5.37)

defined in terms of the diffusion coefficient −G
(c)
jj of the mode power infinitesimal gen-

erator (4.13). The modes exchange power with their neighbors as they propagate at
distances of order (5.37).

(3) The equipartition distance Leq, which is defined as the inverse of the absolute
value of the largest, non-zero eigenvalue of matrix G(c)(ω,0). At distances of order Leq,
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Fig. 5.1. The three length scales that quantify net scattering in a waveguide with constant opening
D(0). The solid blue line is for the scattering mean free path (5.36). The dashed red line is for the
transport mean free path (5.37). The yellow dashed line is for the equipartition distance. The abscissa
is the mode index j=1, . . . ,40 and the ordinate is in units of λ.

Fig. 5.2. Display of the absolute value of the mean mode amplitudes |〈bj(ω,z)
〉| (left) and the

mean mode powers
〈
Pj(ω,z)

〉
v.s. the mode index j at three different distances from the source: The

blue dashed line corresponds to the initial values at z=0, due to a point source at location (D(0)/7,0).
The full red line is for |z|=100λ and the yellow line is for |z|=L=1000λ. The abscissa is the mode
index j=1, . . . ,40.

we expect that the power gets evenly distributed among the modes, independent of the
excitation at z=0.

We display these scales in Figure 5.1 and observe that at the distance L=1000λ
between the source and the turning point, we have

L≥Lj,smf ,Lj,tmf , j=5, . . . ,40.

Thus, these modes should be randomized and moreover, they should share their power
with the other modes. Because L<Leq, we expect that at least the first five modes
have not shared all their power with the other modes.

These expectations are confirmed by the results displayed in Figure 5.2, where we
show the absolute values |〈bj(ω,z)〉| of the mean mode amplitudes (left plot) and the

mean mode powers
〈
Pj(ω,z)

〉
(right plot) at three distances from the point source. The

dashed blue line is for z=0, so it corresponds to the initial values (5.1) of the mode
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Fig. 5.3. Display of the mean net power of the transmitted modes in dashed blue line, of the
standard deviation of this power in dashed red line, and the mean power of the turning mode, indexed
by j=40. The abscissa is the arc length in units of λ (in logarithmic scale).

amplitudes, which oscillate in j due to the factor

yj(ρ�,0)=

√
2

D(0)
sin
[( ρ�

D(0)
+

1

2

)
πj
]
, j=1, . . . ,N (0), ρ�=

D(0)

7
.

As we increase the distance |z| from the source, the left plot in Figure 5.2 illustrates
the decay of the mean mode amplitudes. We note that at |z|=100λ, the modes indexed
by j >15 have negligible mean, and at the turning point |z|=L=1000λ, the modes
indexed by j >5 have negligible mean. This is as expected from Figure 5.1, because
because Lj,smf <100λ for j >15 and Lj,smf <1000λ for j >5. The right plot in Figure
5.2 illustrates the effect of exchange of power among the modes. The scattering mean
free path and the transport mean free path are almost the same in this simulation, as
shown in Figure 5.1, and we note that at the turning point |z|=L=1000λ the modes
indexed by j >5 have almost the same power.

In Figure 5.3 we display the mean and standard deviation of the net power∑39
j=1Pj(ω,z) of the modes that are transmitted through the turning point, and the

mean power of the turning mode, as functions of z. At |z|=L=1000λ, these determine
the transmitter power (5.16) beyond the turning point, and the reflected power (5.29).
Note that in this case cumulative scattering at the random boundary is beneficial for
power transmission through the waveguide. In the absence of the random fluctuations
there would be no power exchange between the modes, and the transmitted power would
equal

∑39
j=1Pj(ω,0). As seen in Figure 5.2, the turning mode has the largest mode am-

plitude initially, and all its power would be reflected back. The cumulative scattering
at the random boundary leads to rapid exchange of the power of the turning mode, as
shown in the right plot of Figure 5.2, and much less power is reflected. The standard
deviation of the net power of the first 39 modes, shown with the red dashed line in
Figure 5.3, is smaller than its mean. Thus,

∑39
j=1Pj(ω,z)≈

∑39
j=1

〈
Pj(ω,z)

〉
, with less

than 10% relative error (i.e., random fluctuations).
The last illustration, in Figure 5.4, shows the mean and standard deviation of∑39

j=1Pj(ω,z), and the mean power
〈
P40(ω,z)

〉
of the turning mode, as functions of z,

for initial excitations of a single mode. In the left plot the 39-th mode is excited, and
in the right plot the 40-th mode is excited. In the absence of the random fluctuations,
these initial conditions would determine the transmitted power at the turning point.
Specifically, in the first case the power would stay in the 39-th mode and would propagate
through, whereas in the second case the power of the 40-th mode would be totally
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Fig. 5.4. Display of the mean net power of the transmitted modes in dashed blue line, of the
standard deviation of this power in dashed red line, and the mean power of the turning mode, indexed
by j=40. The abscissa is the arc length in units of λ (in logarithmic scale). Only one mode was
excited initially, the 39-th one in the left plot and the 40-th one in the right plot.

reflected. The cumulative scattering in the random waveguide distributes the power
among the modes, and we note in the left plot of Figure 5.4 that slightly less power is
transmitted, due to the power transfer to the turning mode, whereas in the right plot,
most of the power is transmitted, due to the transfer of power from the turning mode
to the other modes.

5.8. Universal transmission properties for strong scattering. In case
of strong scattering, the mean transmitted power through the left part of the waveg-

uide becomes universal and equal to P0Nmin/N
(0), where P0=

∑N(0)

j=1 |bj,o(ω)|2 is the
power transmitted to the left by the source. More exactly, if scattering is so strong that
equipartition is reached in each section between two turning points, in the sense that

z
(t−1)
− −z

(t)
− >Lt

eq for all t=1, . . . ,t−M (where Lt
eq is the equipartition distance in the sec-

tion (z
(t)
− ,z

(t−1)
− )), then the fraction of mean power transmitted through the t-th turning

point z
(t)
− is 1−1/N

(t−1)
− , because the N

(t−1)
− -th mode carrying a fraction 1/N

(t−1)
− of

the mean power is reflected. By denoting
〈
P(t−1)
trans

〉
the net transmitted power in the

t-th section (z
(t)
− ,z

(t−1)
− ), we get the recursive relation〈
P(t)
trans

〉
=
〈
P(t−1)
trans

〉
(N

(t−1)
− −1)/N

(t−1)
− , t=1, . . . ,t−M , (5.38)

which gives that the mean transmitted power at −ZM is P0Nmin/N
(0).

6. Diffusion approximation theorem
In this section we state and prove the diffusion approximation theorem used to

obtain the limit of the mode amplitudes in Section 4. We state the theorem for a
general system of random differential equations

dXε(z)

dz
=

1√
ε
F
(
Xε(z),qε(z),θε(z),z

)
, z >0, (6.1)

with unknown vectorXε∈R
d satisfying the initial conditionXε(0)=xo, and right-hand

side defined by a function of the form

F
(
X,q,θ,z

)
=

p∑
j=1

F (j)
(
X,q,θj ,z

)
, for θ=

(
θj
)p
j=1

∈R
p. (6.2)
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The second argument of F is defined by qε(z)= q(z/ε), where q(z) is a stationary
and ergodic Markov process taking values in a space E, with generator Q and stationary
distribution πq. We assume that Q satisfies the Fredholm alternative, which holds
true for many different classes of Markov processes [18, Section 6.3.3]. Note that the
Markovian assumption on the driving process q is convenient for the proof, but the
statement of the diffusion approximation Theorem 6.1 generalizes to a process q that is
not Markovian, but φ-mixing with φ∈L1/2 [25, Sec. 4.6.2].

The third argument of F is the vector valued function θε(z) taking values in R
p,

with components satisfying the equation

dθεj
dz

=
1

ε
βj(z), j=1, . . . ,p,

where βj(z) is a R-valued smooth function, bounded as C≤βj(z)≤1/C for some con-
stant C>0.

We assume that the components F (j) in equation (6.2) satisfy the following condi-
tions, for all j=1, . . . ,p:

(1) The mappings (x,z)∈R
d×R→F (j)(x,q,θj ,z)∈R

d are smooth for all q∈E and
θj ∈R.

(2) The mappings q∈E→F (j)(x,q,θj ,z) are centered with respect to the stationary
distribution πq,

E[F (j)(x,q(0),θ,z)]=

∫
E

F (j)(x,q,θj ,z)πq(dq)=0,

for any x∈R
d, θj ∈R and z∈R.

(3) The mappings θj ∈R→F (j)(x,q,θj ,z) are periodic with period 1 for all x∈R
d and

q∈E.

Theorem 6.1. Let Xε(z) be the solution of system (6.1), with right-hand side F
defined in terms of the functions F (j) as in equation (6.2), and F (j) satisfying the three
properties above. In the limit ε→0, the continuous processes (Xε(z))z≥0 converge in
distribution to the Markov diffusion process (X(z))z≥0 with the inhomogeneous gener-
ator

Lzf(x)=

d∑
m=1

hm(x,z)∂xmf(x)+

d∑
m,n=1

am,n(x,z)∂
2
xmxn

f(x), (6.3)

hm(x,z)=

d∑
n=1

〈∫ ∞

0

E [Fn(x,q(0), ·,z)∂xnFm(x,q(ζ), ·+β(z)ζ,z)]dζ
〉
β(z)

, (6.4)

am,n(x,z)=
〈∫ ∞

0

E [Fn(x,q(0), ·,z)Fm(x,q(ζ), ·+β(z)ζ,z)]dζ
〉
β(z)

, (6.5)

where
〈
.
〉
β
is the mean value for almost periodic functions,

〈
H(·)〉

β
= lim

S→∞
1

S

∫ S

0

H(θ+βs)ds.

Note that the mean values for the terms involved in equations (6.4-6.5) exist and
are independent of θ, since the functions

Gn,m(s)=

∫ ∞

0

E [Fn(x,q(0),θ+βs,z)Fm(x,q(ζ),θ+βs+βζ,z)]dζ,
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G̃n,m(s)=

∫ ∞

0

E [Fn(x,q(0),θ+βs,z)∂xn
Fm(x,q(ζ),θ+βs+βζ,z)]dζ,

are periodic or almost periodic in s, for any fixed x and q.

Proof. Let us define the projection on the torus S�R/Z:

θ∈R→ θ̇=θ mod 1∈S,

and observe that if a function f(θ) is periodic with period 1, then f(θ)=f(θ̇). We also

define θ̇
ε
(z)=θε(z) mod 1, and Z(z)= z. The process (Xε(z),qε(z),θ̇

ε
(z),Z(z))z≥0 is

a Markov process with values in R
d×E×S

p×R and infinitesimal generator

Lε=
1

ε

(
Q+β(Z) ·∇θ̇

)
+

1√
ε
F (X,q, θ̇,Z) ·∇X +∂Z . (6.6)

One can show by the perturbed test function method [18, Section 6.3.2] and Lemma
6.2 that the continuous processes (Xε(z),Z(z))z≥0 converge in distribution to the
Markov diffusion process (X(z),Z(z))z≥0 with the homogeneous generator:

Lf(x,Z)=∂Zf(x,Z)

+
〈∫ ∞

0

E [F (x,q(0), ·,Z) ·∇x (F (x,q(ζ), ·+β(Z)ζ,Z) ·∇xf(x,Z))]dζ
〉
β(Z)

.

(6.7)

Since (Z(z))z≥0 is deterministic, we conclude that (X(z))z≥0 is a Markov process and
its inhomogeneous generator is

Lzf(x)=
〈∫ ∞

0

E [F (x,q(0), ·,z) ·∇x (F (x,q(ζ), ·+β(z)ζ,z) ·∇xf(x))]dζ
〉
β(z)

(6.8)

or equivalently (6.3).

Lemma 6.1. We have the following two statements:

(1) Let β∈R\{0}. Let g(q,θ) be a bounded function, periodic in θ∈R with period
1, such that

E[g(q(0),θ)]=0 for all θ∈R.

The Poisson equation (
Q+β∂θ̇

)
f =g

has a unique solution f , periodic in θ, up to an additive constant. The solution with
mean zero is

f(q,θ̇)=−
∫ ∞

0

E[g(q(ζ), θ̇+βζ)|q(0)= q]dζ. (6.9)

(2) Let β∈R
2 with non-zero entries. Let g(q,θ) be a bounded function, periodic in

θ∈R
2 with period 1, such that

E[g(q(0),θ)]=0 for all θ∈R
2.
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The Poisson equation (
Q+β ·∇θ̇

)
f =g

has a unique solution f , periodic in θ, up to an additive constant. The solution with
mean zero is

f(q,θ̇)=−
∫ ∞

0

E[g(q(ζ),θ̇+βζ)|q(0)= q]dζ. (6.10)

Note that in the second item of Lemma 6.1 it is important to assume that
E[g(q(0),θ)]=0 for all θ∈R

2, and not only that
∫
S2
E[g(q(0),θ̇)]dθ̇=0. The latter

weaker hypothesis ensures the desired result only when β1/β2 is irrational.

Proof. To prove statement (1) let β∈R be fixed. We denote by θβ(ζ) the solution

to
dθβ
dζ =β and by θ̇β(ζ)=θβ(ζ) mod 1. The process (q(ζ), θ̇β(ζ))ζ≥0 is a Markov process

with values in E×S and with generator Q+β∂θ̇. It is a stationary process with the
stationary distribution πq⊗νS where νS is the uniform distribution over the torus S. It
is also an ergodic process with respect to the stationary distribution πq⊗νS. Since g

satisfies
∫
g(q,θ̇)πq(dq)=0 for all θ̇, it a fortiori satisfies

∫∫
g(q,θ̇)πq(dq)νS(dθ̇)=0, and

the result then follows from standard arguments [18, Section 6.5.2]:

f(q0, θ̇0)=−
∫ ∞

0

E
[
g(q(ζ), θ̇β(ζ))|q(0)= q0, θ̇β(0)= θ̇0

]
dζ,

which gives equation (6.9).
To prove statement (2) let β∈R

2 be fixed. We denote by θβ(ζ) the solution to
dθβ

dζ =β and by θ̇β(ζ)=θβ(ζ) mod 1. The process (q(ζ),θ̇β(ζ))ζ≥0 is a Markov process

with values in E×S
2 and with generator Q+β ·∇θ̇.

If the ratio β1/β2 of the entries of β2 of β is irrational, the process (q(ζ),θ̇β(ζ))ζ≥0

is stationary and ergodic, with the stationary distribution πq⊗νS2 , where νS2 is the

uniform distribution over the torus S
2. Since g satisfies

∫
g(q,θ̇)πq(dq)=0 for all θ̇, it

a fortiori satisfies
∫∫

g(q,θ̇)πq(dq)νS2(dθ̇)=0, and the result then follows from standard
arguments [18, Section 6.5.2]:

f(q0,θ̇0)=−
∫ ∞

0

E[g(q(ζ),θ̇β(ζ))|q(0)= q0,θ̇β(0)= θ̇0]dζ,

which gives equation (6.10).
If the ratio β1/β2 of the entries of β is rational, that is to say, if there exist nonzero

integers n1,n2 such that n1β1=n2β2, then (θ̇β(ζ))ζ≥0 is not ergodic over the torus

S
2. However, for a given starting point θ̇0, it satisfies the ergodic theorem over the

compact manifold S
1
θ̇0

:={θ̇0+βs mod 1, s∈R}, with the uniform distribution over

the manifold S
1
θ̇0
. Since g satisfies

∫
g(q,θ̇)πq(dq)=0 for all θ̇, it a fortiori satisfies∫∫

g(q,θ̇)πq(dq)νS1
θ̇0

(dθ̇)=0. We can then define

f(q0,θ̇0)=−
∫ ∞

0

E[g(q(ζ),θ̇β(ζ))|q(0)= q0,θ̇β(0)= θ̇0]dζ,

which gives equation (6.10).
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We can now state the lemma used in the proof of Theorem 4.1:

Lemma 6.2. For all f ∈C∞
b (Rd×R,R), and all compact sets K of Rd×R, there exists

a family fε such that:

sup
(x,Z)∈K,q∈E,θ̇∈Sp

|fε(x,q, θ̇,Z)−f(x,Z)| ε→0−→0, (6.11)

sup
(x,Z)∈K,q∈E,θ̇∈Sp

|Lεfε(x,q, θ̇,Z)−Lf(x,Z)| ε→0−→0, (6.12)

where Lε is the generator (6.6) and L is the generator (6.7).

Proof. Let f ∈C∞
b (Rd×R,R), and define

fε(x,q, θ̇,Z)=f(x,Z)+
√
εf1(x,q, θ̇,Z)+εf2(x,q, θ̇,Z)+εfε

3 (x,θ̇,Z), (6.13)

where f1, f2, and fε
3 will be specified later on. Applying Lε to fε, we get

Lεfε(x,q, θ̇,Z)=
1√
ε

((
Q+β(Z) ·∇θ̇

)
f1+F (x,q, θ̇,Z) ·∇xf(x,Z)

)
+
((

Q+β(Z) ·∇θ̇

)
f2+F (x,q, θ̇,Z) ·∇xf1(x,q, θ̇,Z)

)
+β(Z) ·∇θ̇f

ε
3 (x,θ̇,Z)+∂Zf(x,Z)+O(

√
ε). (6.14)

Now let us define the correction f1 as

f1(x,q, θ̇,Z)=

p∑
j=1

f
(j)
1 (x,q, θ̇j ,Z), (6.15)

where

f
(j)
1 (x,q, θ̇j ,Z)=−(Q+βj(Z)∂θ̇j

)−1
(
F (j)(x,q, θ̇j ,Z) ·∇xf(x,Z)

)
.

These functions are well-defined and admit the representation

f
(j)
1 (x,q, θ̇j ,Z)=

∫ ∞

0

E
[
F (j)(x,q(ζ), θ̇j+βj(Z)ζ,Z) ·∇xf(x,Z)|q(0)= q

]
dζ,

by Lemma 6.1.
The second correction f2 is defined by

f2(x,q, θ̇,Z)=

p∑
j,l=1

f
(jl)
2 (x,q, θ̇j , θ̇l,Z), (6.16)

where

f
(jl)
2 (x,q, θ̇j , θ̇l,Z)=−(Q+βj(Z)∂θ̇j +βl(Z)∂θ̇l

)−1

×
(
F (j)(x,q, θ̇j ,Z) ·∇xf

(l)
1 (x,q, θ̇l,Z)−E

[
F (j)(x,q(0), θ̇j ,Z) ·∇xf

(l)
1 (x,q(0), θ̇l,Z)

])
.

These functions are well defined by Lemma 6.1 since the argument of the operator(
Q+βj(Z)∂θ̇j +βl(Z)∂θ̇l

)−1
has mean zero for all θ.
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Substituting definitions (6.15) and (6.16) in equation (6.14) we obtain

Lεfε(x,q, θ̇,Z)=

p∑
j,l=1

g
(jl)
3 (x, θ̇j , θ̇l,Z)+β(Z) ·∇θ̇f

ε
3 (x,θ̇,Z)+∂Zf(x,Z)+O(

√
ε), (6.17)

with

g
(jl)
3 (x, θ̇j , θ̇l,Z)=E

[
F (j)(x,q(0), θ̇j ,Z) ·∇xf

(l)
1 (x,q(0), θ̇l,Z)

]
. (6.18)

We now define the third correction function

fε
3 (x,θ̇,Z)=

p∑
j,l=1

f
(jl),ε
3 (x, θ̇j , θ̇l,Z), (6.19)

with terms

f
(jl),ε
3 (x, θ̇j , θ̇l,Z)=

∫ ∞

0

e−
√
εs g̃

(jl)
3 (x, θ̇j+βj(Z)s,θ̇l+βl(Z)s,Z)ds,

defined by

g̃
(jl)
3 (x, θ̇j , θ̇l,Z)=g

(jl)
3 (x, θ̇j , θ̇l,Z)−G(jl)

3 (x,Z),

where

G(jl)
3 (x,Z)= lim

S→∞
1

S

∫ S

0

g
(jl)
3 (x, θ̇j+βj(Z)s,θ̇l+βl(Z)s,Z)ds. (6.20)

These are well defined because s �→g
(jl)
3 (x, θ̇j+βj(Z)s,θ̇l+βl(Z)s,Z) are almost peri-

odic mappings.

Note that
√
εf

(jl),ε
3 is uniformly bounded because g̃

(jl)
3 is bounded. This and def-

initions (6.15), (6.16) of the corrections f1 and f2 used in equation (6.13) imply that

fε satisfies property (6.11). Note also that
√
εf

(jl),ε
3 goes to zero as ε→0, because the

mapping s �→ g̃
(jl)
3 (x, θ̇j+βj(Z)s,θ̇l+βl(Z)s,Z) is almost periodic and with mean zero.

Moreover, using the chain rule and integration by parts, we obtain(
βj(Z)∂θ̇j +βl(Z)∂θ̇l

)
f
(jl),ε
3 (x, θ̇j , θ̇l,Z)

=

∫ ∞

0

e−
√
εs∂s

[
g̃
(jl)
3 (x, θ̇j+βj(Z)s,θ̇l+βl(Z)s,Z)

]
ds

=− g̃
(jl)
3 (x, θ̇j , θ̇l,Z)+

√
εf

(jl),ε
3 (x, θ̇j , θ̇l,Z).

Gathering the results, equation (6.17) becomes

Lεfε=

p∑
j,l=1

G(jl)
3 (x,Z)+∂Zf(x,Z)+

√
εfε

3 (x,θ̇,Z)+O(
√
ε).

The result (6.12) follows from this equation and definitions (6.18), (6.20) and (6.15),
because

√
εfε

3 goes to zero as ε→0.
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7. Summary
We studied the transmission and reflection of time-harmonic sound waves emitted

by a point source in a two-dimensional random waveguide with turning points. The
waveguide has sound soft boundaries, a slowly bending axis and variable cross-section.
The variation consists of a slow and monotone change of the openingD of the waveguide,
and small amplitude random fluctuations of the boundary. The slow variations are on
a long scale with respect to the wavelength λ, whereas the random fluctuations are on
a scale comparable to λ. The wavelength λ is chosen smaller than D, so that the wave
field is a superposition of multiple propagating modes, and infinitely many evanescent
modes. The turning points are the locations along the axis of the waveguide where
the number of propagating modes decreases by 1 in the direction of decrease of D, or
increases by 1 in the direction of increase ofD. The change in the number of propagating
modes means that there are modes that transition from propagating to evanescent. Due
to energy conservation, the incoming such waves are turned back, i.e., they are reflected
at the turning points.

We analyzed the transmitted and reflected propagating modes in the waveguide
and quantified their interaction with the random boundary. This interaction is called
cumulative scattering and it manifests as mode coupling which causes randomization of
the wave field and exchange of power between the modes. We analyzed these effects from
first principles, starting from the wave equation, using stochastic asymptotic analysis.
We focused attention on the transport of power in the waveguide and showed that
cumulative scattering may increase or decrease the transmitted power, depending on
the source excitation.

Acknowledgements. The research of LB and DW was supported in part by NSF
grant DMS1510429. LB also acknowledges support from AFOSR grant FA9550-15-1-
0118.

Appendix A. Transformation to curvilinear coordinates. The Frenet-Serret
formulas give

∂zx‖(z)=τ
( z
L

)
, ∂zτ

( z
L

)
=

1

L
κ
( z
L

)
n
( z
L

)
, ∂zn

( z
L

)
=− 1

L
κ
( z
L

)
τ
( z
L

)
,

and from equation (2.1) we obtain that the vectors ∂rx=n
(

z
L

)
and ∂zx=[

1− r
Lκ
(

z
L

)]
τ
(

z
L

)
are orthogonal. Their norm defines the Lamé coefficients

hr= |∂rx|=1 and hz = |∂zx|=
∣∣∣1− r

L
κ
( z
L

)∣∣∣,
which in turn define the Laplacian operator in curvilinear coordinates [30]

Δ=
1

hrhz

[
∂r

(hz

hr
∂r

)
+∂z

(hr

hz
∂z

)]
.

This is written explicitly in the left hand-side of equation (2.10). For the right hand-side
we used the formula δ(x−x�)=

1
hrhz

δ(z)δ(r−r�).

Appendix B. Derivation of the asymptotic model. We begin with the region
|z|<ZM . The change of variables (2.20) and the chain rule give

∂rp=
∂ρp

ε(ω,ρ,z)

1+
√
ε
2 σν

(
z
ε

) , ∂2
rp=

∂2
ρp

ε(ω,ρ,z)[
1+

√
ε
2 σν

(
z
ε

)]2 ,
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and

∂zp=
{
∂z−

[
[2ρ+D(z)] σ√

ε
ν′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]
2
[
2+

√
εσν

(
z
ε

)] ∂ρ

}
pε(ω,ρ,z),

∂2
zp=

{
∂z−

[
[2ρ+D(z)] σ√

ε
ν′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]
2
[
2+

√
εσν

(
z
ε

)] ∂ρ

}2

pε(ω,ρ,z).

Substituting in equation (2.18) we get

∂2
zp

ε(ω,ρ,z)+

[
[2ρ+D(z)] σ√

ε
ν′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]2
4
[
2+

√
εσν

(
z
ε

)]2 ∂2
ρp

ε(ω,z)

−
[
[2ρ+D(z)] σ√

ε
ν′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)][
2+

√
εσν

(
z
ε

)] ∂2
ρzp

ε(ω,z)

+

{
[2ρ+D(z)]σ

2

ε ν′2
(
z
ε

)
+D′(z)σ2ν′

(
z
ε

)
ν
(
z
ε

)}
[
2+

√
εσν

(
z
ε

)]2 ∂ρp
ε(ω,ρ,z)

−
[2ρ+D(z)] σ

ε3/2
ν′′
(
z
ε

)
+2D′(z) σ√

ε
ν′
(
z
ε

)
+D′′(z)

√
εσν

(
z
ε

)
2
[
2+

√
εσν

(
z
ε

)] ∂ρp
ε(ω,ρ,z)

+

{
1−εκ(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]}2

ε2

{ ∂2
ρp

ε(ω,ρ,z)[
1+

√
ε
2 σν

(
z
ε

)]2 +k2pε(ω,ρ,z)
}

−
κ(z)

{
1−εκ(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]}
ε[1+

√
ε
2 σν

(
z
ε

)
]

∂ρp
ε(ω,ρ,z)

+
εκ′(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]{
1−εκ(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]}{∂zpε(ω,ρ,z)
−
[
[2ρ+D(z)] σ√

ε
ν′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]
2
[
2+

√
εσν

(
z
ε

)] ∂ρp
ε(ω,ρ,z)

}

=
f(ω)

{
1−ε

[
ρ�+

[2ρ+D(0)]
4

√
εσν(0)

]}
ε
[
1+

√
ε
2 σν(0)

] δ(ρ−ρ�)δ(z).

By assumption ν, ν′ and ν′′ are bounded almost surely. Moreover, κ′ and D′, D′′

are bounded uniformly in R. Thus, we can expand the coefficients of the differential
operator in powers of ε and obtain after multiplying through by ε,

1

ε

[
(ε∂z)

2+∂2
ρ+k2

]
pε(ω,ρ,z)−2ρκ(z)

[
1+O(

√
ε)
](
∂2
ρ+k2)

−κ(z)
[
1+O(

√
ε)
]
∂ρp

ε(ω,ρ,z)−εκ′(z)
[
1+O(

√
ε)
]
(ε∂z)p

ε(ω,ρ,z)

− [2ρ+D(z)]

2

[ σ√
ε
ν′
(z
ε

)
− σ2

2
ν′
(z
ε

)
ν
(z
ε

)
+O(

√
ε)
]
ε∂2

ρzp
ε(ω,ρ,z)

−
{ σ√

ε
ν
(z
ε

)
− 3σ2

4
ν2
(z
ε

)
− [2ρ+D(z)]2σ2

16
ν′2
(z
ε

)
+O(

√
ε)
}
∂2
ρp

ε(ω,ρ,z)

−
[
2ρ+D(z)

]
4

{ σ√
ε
ν′′
(z
ε

)
− σ2

2
ν′′
(z
ε

)
ν
(z
ε

)
−σ2ν′2

(z
ε

)
+O(

√
ε)
}
∂ρp

ε(ω,ρ,z)
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=f(ω)
[
1+O(

√
ε)
]
δ(ρ−ρ�)δ(z), (B.1)

for |z|<ZM . This is the asymptotic series in equation (2.23).
The result simplifies at |z|>ZM , where the waveguide has no variations, as stated

at the end of Section 2.3.

Appendix C. Derivation of the mode coupling equations. Substituting
equation (3.3) in equation (2.23), taking the inner product with yj(ρ,z) and using the
identities (D.1)-(D.6) we obtain the following system of equations for the modes

1

ε

[(
ε∂z)

2+k2−μ2
j (z)

]
pεj(ω,z)+

σ√
ε

[
μ2
j (z)ν

(z
ε

)
+

1

4
ν′′
(z
ε

)
+

1

2
ν′
(z
ε

)
ε∂z

]
pεj(ω,z)

− σ2

4

{
3μ2

j (z)ν
2
(z
ε

)
+
[ (πj)2

3
+

1

2

]
ν′2
(z
ε

)
+

1

2
ν
(z
ε

)
ν′′
(z
ε

)]
pεj(ω,z)

− σ2

4
ν
(z
ε

)
ν′
(z
ε

)
ε∂zp

ε
j(ω,z)≈Cε

j (ω,z)+f(ω)yj(ρ�,0)δ(z), (C.1)

at |z|<ZM , where the approximation is because we neglect the O(
√
ε) terms that vanish

in the limit ε→0. The coupling term is

Cε
j (ω,z)=

∞∑
q=1,q �=j

{2jq(−1)j+q

(q2−j2)

[ σ√
ε
ν′
(z
ε

)
− σ2

2
ν
(z
ε

)
ν′
(z
ε

)]
ε∂zp

ε
q(ω,z)

+
D′(z)
D(z)

2jq[1+(−1)j+q]

(q2−j2)
ε∂zp

ε
q(ω,z)

+
jq(−1)j+q

(q2−j2)

[ σ√
ε
ν′′
(z
ε

)
− σ2

2
ν
(z
ε

)
ν′′
(z
ε

)]
pεq(ω,z)

+
jq(j2+q2)(−1)j+q

(q2−j2)2
σ2ν′2

(z
ε

)
pεq(ω,z)

+
κ(z)

D(z)

2jq[1−(−1)j+q]
[
j2+3q2−4

(kD(z)
π

)2]
(q2−j2)2

pεq(ω,z)
}
, (C.2)

where we obtained from equations (D.7)-(D.11) that〈(
2ρ+D

)
yj ,∂ρyq

〉
=

4jq(−1)j+q

q2−j2
,

〈yj ,∂zyq〉= D′(z)
D(z)

jq[1+(−1)j+q]

j2−q2
,

μ2
q(z)

〈
(2ρ+D)2yj ,yq

〉
16

−
〈(
2ρ+D

)
yj ,∂ρyq

〉
4

=
jq(j2+q2)(−1)j+q

(q2−j2)2
,

(
k2−μ2

q(z)
)〈(2ρ+D)yj ,yq〉+〈yj ,∂ρyq〉=

2jq[1−(−1)j+q]
[
j2+3q2−4

(kD(z)
π

)2]
D(z)(q2−j2)2

.

We now use integrating factors to simplify equations (C.1). Specifically, we define

uε
j(ω,z)=pεj(ω,z)exp

[σ√ε

4
ν
(z
ε

)
− σ2ε

16
ν2
(z
ε

)]
=pεj(ω,z)[1+O(

√
ε)], (C.3)

and obtain after substituting in equations (C.1) that

1

ε

[
(ε∂z)

2+k2−μ2
j (z)

]
uε
j(ω,z)+

σ√
ε
μ2
j (z)ν

(z
ε

)
uε
j(ω,z)
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+σ2
{
− 3

4
μ2
j (z)ν

2
(z
ε

)
−
[ (πj)2

12
+

1

16

]
ν′2
(z
ε

)}
uε
j(ω,z)

≈Cε
j (ω,z)+f(ω)yj(ρ�,0)δ(z), (C.4)

with coupling term

Cε
j (ω,z)=

∞∑
q=1,q �=j

{2jq(−1)j+q

(q2−j2)

[ σ√
ε
ν′
(z
ε

)
− σ2

2
ν
(z
ε

)
ν′
(z
ε

)]
ε∂zu

ε
q(ω,z)

+
D′(z)
D(z)

2jq[1+(−1)j+q]

(q2−j2)
ε∂zu

ε
q(ω,z)

+
jq(−1)j+q

(q2−j2)

[ σ√
ε
ν′′
(z
ε

)
− σ2

2
ν
(z
ε

)
ν′′
(z
ε

)]
uε
q(ω,z)

+
jq(3j2+q2)(−1)j+q

2(q2−j2)2
σ2ν′2

(z
ε

)
uε
q(ω,z)

+
κ(z)

D(z)

2jq[1−(−1)j+q]
[
j2+3q2−4

(kD(z)
π

)2]
(q2−j2)2

uε
q(ω,z)

}
. (C.5)

This is the expression (3.7) and the leading coupling coefficients are

Γjq =
jq(−1)j+q

(q2−j2)
, Θjq =

2jq(−1)j+q

(q2−j2)
. (C.6)

The second order coefficients, due to the random fluctuations, are

γjq

(z
ε

)
=

jq(−1)j+q

2(q2−j2)

[ (3j2+q2)

(q2−j2)
ν′2
(z
ε

)
−ν
(z
ε

)
ν′′
(z
ε

)]
, (C.7)

θjq

(z
ε

)
=−jq(−1)j+q

(q2−j2)
ν
(z
ε

)
ν′
(z
ε

)
, (C.8)

and those due to the slow changes in the waveguide are

γo
jq(z)=

κ(z)

D(z)

2jq[1−(−1)j+q]
[
j2+3q2−4

(kD(z)
π

)2]
(q2−j2)2

, (C.9)

θojq(z)=
D′(z)
D(z)

2jq[1+(−1)j+q]

(q2−j2)
. (C.10)

Appendix D. Useful identities. Here we give a few identities satisfied by the
eigenfunctions (3.2), for all z∈R. The first identity is just the statement that the
eigenfunctions are orthonormal∫ D(z)/2

−D(z)/2

dρyj(ρ,z)yq(ρ,z)= δjq, (D.1)

where δjq is the Kronecker delta symbol. The second identity∫ D(z)/2

−D(z)/2

dρρy2j (ρ,z)=0, (D.2)
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is because the integrand is odd. The third identity follows from the fundamental theorem
of calculus, ∫ D(z)/2

−D(z)/2

dρyj(ρ,z)∂ρyj(ρ,z)=
1

2

∫ D(z)/2

−D(z)/2

dρ∂ρy
2
j (ρ,z)=0, (D.3)

because the eigenfunctions vanish at ρ=±D(z)/2. The fourth identity is∫ D(z)/2

−D(z)/2

dρ [2ρ+D(z)]yj(ρ,z)∂ρyj(ρ,z)=

∫ D(z)/2

−D(z)/2

dρρ∂ρy
2
j (ρ,z)

=

∫ D(z)/2

−D(z)/2

dρ
{
∂ρ
[
ρy2j (ρ,z)

]−y2j (ρ,z)
}
=−1, (D.4)

where we used integration by parts. The fifth identity is∫ D(z)/2

−D(z)/2

dρyj(ρ,z)∂zyj(ρ,z)=0. (D.5)

To derive it, we take the z derivative in identity (D.1), for q= j, and obtain that

0=∂z

∫ D(z)/2

−D(z)/2

dρy2j (ρ,z)=2

∫ D(z)/2

−D(z)/2

dρyj(ρ,z)∂zyj(ρ,z)

+
D′(z)
2

[
y2j (D(z)/2,z)−y2j (−D(z)/2,z)

]
=2

∫ D(z)/2

−D(z)/2

dρyj(ρ,z)∂zyj(ρ,z).

We also have from identities (D.1), (D.2), and definition (3.2) that∫ D(z)/2

−D(z)/2

dρ[2ρ+D(z)]2y2j (ρ,z)=D2(z)+
8

D(z)

∫ D(z)/2

−D(z)/2

dρρ2 sin2
[(

ρ

D(z)
+

1

2

)
πj

]
=D2(z)

[
4

3
− 2

(πj)2

]
. (D.6)

For j �= q we have from definition (3.2) of the eigenfunctions that∫ D(z)/2

−D(z)/2

dρ [2ρ+D(z)]yj(ρ,z)∂ρyq(ρ,z)=2πq

∫ D(z)/2

−D(z)/2

dρ

D(z)

[ 2ρ

D(z)
+1
]

×sin

[(
ρ

D(z)
+

1

2

)
πj

]
cos

[(
ρ

D(z)
+

1

2

)
πq

]
=−4jq(−1)j+q

j2−q2
. (D.7)

Similarly, we obtain after taking the derivative with respect to z of yq(ρ,z) and substi-
tuting in the integral below that

∫ D(z)/2

−D(z)/2

dρyj(ρ,z)∂zyq(ρ,z)=
D′(z)
D(z)

jq
[
(−1)j+q+1

]
j2−q2

. (D.8)

We also calculate using the expression (3.2) that∫ D(z)/2

−D(z)/2

dρ [2ρ+D(z)]2yj(ρ,z)yq(ρ,z)=
32D2(z)

π2

jq(−1)j+q

(j2−q2)
, (D.9)
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and ∫ D(z)/2

−D(z)/2

dρyj(ρ,z)∂ρyq(ρ,z)=
2jq[1−(−1)j+q]

D(z)(j2−q2)
, (D.10)

and ∫ D(z)/2

−D(z)/2

dρ(2ρ+D(z))yj(ρ,z)yq(ρ,z)=−8D(z)jq[1−(−1)j+q]

π2(j2−q2)2
. (D.11)

Appendix E. The evanescent waves. Let us begin by rewriting equation (3.5)
in first order system form, for the unknown vector with components uε

j(ω,z) and

vεj (ω,z)=
ε

βj(ω,z)
∂zu

ε
j(ω,z), (E.1)

where j >N and z∈ (z(t)− ,z
(t−1)
−

)
. The mode wave number βj is defined in equation

(3.40), and the system is

{
∂z− βj(ω,z)

ε

(
0 1
1 0

)
+
[ σμ2

j (z)√
εβj(ω,z)

ν
(z
ε

)
+

σ2gεj (ω,z)

βj(ω,z)

](0 0
1 0

)}(
uε
j(ω,z)

vεj (ω,z)

)
=

Cεj (ω,z)
βj(ω,z)

(
0
1

)
.

(E.2)

The matrix

(
0 1
1 0

)
in the leading term has the eigenvalues ±1, and the orthonormal

eigenfunctions 1√
2

(
1
±1

)
. Expanding the solution in the basis of these eigenfunctions

(
uε
j(ω,z)

vεj (ω,z)

)
=

α+
j (ω,z)√

2

(
1
1

)
+

α−
j (ω,z)√

2

(
1
−1

)
, (E.3)

and substituting in system (E.2) gives the following equations for the coefficients[
∂z∓ βj(ω,z)

ε

]
α±
j (ω,z)=± Cε

j (ω,z)√
2βj(ω,z)

∓
[
α+
j (ω,z)+α−

j (ω,z)
]

2βj(ω,z)

×
[ σ√

ε
μ2
j (z)ν

(z
ε

)
+σ2gεj (ω,z)

]
. (E.4)

These are complemented with the boundary conditions

α+
j

(
ω,z

(t−1)
−

)
=
√
2c

(t)+
j , α−

j

(
ω,z

(t)
−
)
=0, (E.5)

with constant c
(t)
j to be determined later, indexed by t to remind us that we work in

the sector z∈ (z(t)− ,z
(t−1)
−

)
. In conditions (E.5) we set to zero the component α−

j at the

farther end z
(t)
− from the source, to suppress the growing part of the solution.

We obtain after integration of equation (E.4) that

α+
j (ω,z)=

√
2c

(t)
j exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω,ζ)
]
−
∫ z

(t−1)
−

z

dζ
exp

[
− 1

ε

∫ ζ

z
dsβj(ω,s)

]
√
2βj(ω,ζ)
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×
{
Cε
j (ω,ζ)−

[
α+
j (ω,ζ)+α−

j (ω,ζ)
]

√
2

[ σ√
ε
μ2
j (ζ)ν

(ζ
ε

)
+σ2gεj (ω,ζ)

]}
, (E.6)

and

α−
j (ω,z)=−

∫ z

z
(t)
−

dζ
exp

[
− 1

ε

∫ z

ζ
dsβj(ω,s)

]
√
2βj(ω,ζ)

{
Cε
j (ω,ζ)−

[
α+
j (ω,ζ)+α−

j (ω,ζ)
]

√
2

×
[ σ√

ε
μ2
j (ζ)ν

(ζ
ε

)
+σ2gεj (ω,ζ)

]}
. (E.7)

All the exponential terms in these equations are decaying in z, so we can change the
variable of integration as ζ= z+εξ, and note that only ξ=O(1) contributes to the result.
Equation (E.6) becomes

α+
j (ω,z)≈

√
2c

(t)
j exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω,ζ)
]
− ε√

2βj(ω,z)

∫ ∞

0

dξe−ξβj(ω,z)

×
{
Cε
j (ω,z+εξ)−uε

j(ω,z+εξ)
[ σ√

ε
μ2
j (z)ν

(z
ε
+ξ
)
+σ2gεj (ω,z+εξ)

]}
,

(E.8)

where we used equation (E.3) in the integrand, and the approximation means that we
neglect terms that vanish in the limit ε→0. Similarly, equation (E.7) becomes

α−
j (ω,z)≈− ε√

2βj(ω,z)

∫ 0

−∞
dξeξβj(ω,z)

{Cε
j (ω,z+εξ)−uε

j(ω,z+εξ)

×
[ σ√

ε
μ2
j (z)ν

(z
ε
+ξ
)
+σ2gεj (ω,z+εξ)

]}
. (E.9)

The expression of uε
j follows from these equations and equation (E.3),

uε
j(ω,z)≈ c

(t)
j (ω)exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω,ζ)
]
− ε

2βj(ω,z)

∫ ∞

−∞
dξe−|ξ|βj(ω,z)

×
{
Cε
j (ω,z+εξ)−uε

j(ω,z+εξ)
[ σ√

ε
μ2
j (z)ν

(z
ε
+ξ
)
+σ2gεj (ω,z+εξ)

]}
. (E.10)

The derivative ε∂zu
ε
j is obtained from equations (E.1), (E.3), (E.8)-(E.9) and integration

by parts

ε∂zu
ε
j(ω,z)≈βj(ω,z)c

(t)
j (ω)exp

[1
ε

∫ z

z
(t−1)
−

dζ βj(ω,ζ)
]
− ε

2βj(ω,z)

∫ ∞

−∞
dξe−|ξ|βj(ω,z)

×ε∂z

{
Cε
j (ω,z+εξ)−uε

j(ω,z+εξ)
[ σ√

ε
μ2
j (z)ν

(z
ε
+ξ
)
+σ2gεj (ω,z+εξ)

]}
. (E.11)

Now let us recall the expression (3.7) of Cε
j (ω,z), which models the coupling with

the other modes, and write it as the sum of two terms:

Cε
j (ω,z)=Cε(p)

j (ω,z)+Cε(e)
j (ω,z). (E.12)
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The first term is the coupling with the propagating modes, and is given by restricting
the sum in equation (3.7) to q≤N . The second term is the remaining series, with terms
indexed by q>N , and q �= j. Each term in this series involves uε

q(ω,z) and ε∂zu
ε
q(ω,z)

that have expressions like (E.10)-(E.11). Stringing all the unknowns in the infinite-
dimensional vector U =

(
UN+1,UN+2, . . . ,

)
where Uj =(uε

j ,ε∂zu
ε
j), for j >N , we can

write equations (E.10)-(E.11) in compact form as(
I−√

εK
)
U(ω,z)=F (ω,z), (E.13)

with right hand side given by the concatenation of

Fj(ω,z)=

(
1

βj(ω,z)

)
c
(t)
j (ω)exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω,ζ)
]

− ε

2βj(ω,z)

∫ ∞

−∞
dξe−|ξ|βj(ω,z)

(
1
ε∂z

)
Cε(p)
j (ω,z+εξ), (E.14)

for j≥N . In the left-hand side of equation (E.13) we have the perturbation of the
identity I by the integral operator K, whose kernel follows easily from the (uε

q)q>N
dependent terms in the integrand in equations (E.10)-(E.11), including those in Cε(e)

j .
This integral operator is basically the same as that analyzed in [5, Lemma 3.1], and it is
bounded with respect to an appropriate norm. This means that we can solve equation
(E.13) using Neumann series and obtain

U(ω,z)=F (ω,z)+O(
√
ε). (E.15)

The first term in equation (E.14) matters only in the O(ε) vicinity of z
(t−1)
− , over

which the mode coupling is negligible. The constant c
(t)
j is determined by continuity

conditions at z
(t−1)
− as follows: If t=1, so that z

(t−1)
− =0, c

(1)
j is determined by the

source excitation, and it equals the coefficient of the j-th evanescent mode in the perfect

waveguide with width D(0). If t>1, then c
(t)
j is determined by continuity of the wave

field at the turning point z
(t−1)
− .

Assuming that z
(t−1)
− −z�ε, so we can neglect the first term in equation (E.14),

we have(
uε
j(ω,z)

ε∂zu
ε
j(ω,z)

)
≈− ε

2βj(ω,z)

∫ ∞

−∞
dξe−|ξ|βj(ω,z)

(
1
ε∂z

)
Cε(p)
j (ω,z+εξ), (E.16)

with

εCε(p)
j (ω,z+εξ)≈σ

√
ε

N∑
q=1

[
Γjqν

′′
(z
ε
+ξ
)
+Θjqν

′
(z
ε
+ξ
)
ε∂z

]
uε
q(ω,z+εξ), (E.17)

obtained from equation (3.7). Here the modes uε
q and their derivative ε∂zu

ε
q(ω,z) are

given in equations (3.23)-(3.24), and the constant coefficients Γjq and Θjq are defined in
equation (C.6). Substituting in equation (E.17) and then equation (E.16), and using that
the derivatives of the mode amplitudes given in equation (3.25) are at most O(ε−1/2),
we obtain equation (3.41). The derivative in the integrand in equation (E.16) is

ε∂z

[
εCε(p)

j (ω,z+εξ)
]
=σ

√
ε

N∑
q=1

[
Γjqν

′′′
(z
ε
+ξ
)
+
(
Γjq+Θjq

)
ν′′
(z
ε
+ξ
)
ε∂z
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−β2
q (ω,z)Θjqν

′
(z
ε
+ξ
)]

uε
q(ω,z+εξ), (E.18)

where we used equation (3.5) for (ε∂z)
2uε

q. Substituting equations (3.23)-(3.24) in equa-
tion (E.18) and then in equation (E.16), we obtain equation (3.43).
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