
COMMUN. MATH. SCI. c© 2017 International Press

Vol. 15, No. 8, pp. 2143–2175

PROPERTIES OF SOME BREATHER SOLUTIONS OF
A NONLOCAL DISCRETE NLS EQUATION∗

ROBERTO I. BEN† , JUAN PABLO BORGNA‡ , AND PANAYOTIS PANAYOTAROS§

Abstract. We present results on breather solutions of a discrete nonlinear Schrödinger equation
with a cubic Hartree-type nonlinearity that models laser light propagation in waveguide arrays that use
a nematic liquid crystal substratum. A recent study of that model by Ben et al [R.I. Ben, L. Cisneros
Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015] showed that nonlocality
leads to some novel properties such as the existence of orbitaly stable breathers with internal modes,
and of shelf-like configurations with maxima at the interface. In this work we present rigorous results
on these phenomena and consider some more general solutions. First, we study energy minimizing
breathers, showing existence as well as symmetry and monotonicity properties. We also prove results
on the spectrum of the linearization around one-peak breathers, solutions that are expected to coincide
with minimizers in the regime of small linear intersite coupling. A second set of results concerns shelf-
type breather solutions that may be thought of as limits of solutions examined in [R.I. Ben, L. Cisneros
Ake, A.A. Minzoni, and P. Panayotaros, Phys. Lett. A, 379:1705C-1714, 2015]. We show the existence
of solutions with a non-monotonic front-like shape and justify computations of the essential spectrum
of the linearization around these solutions in the local and nonlocal cases.

Keywords. discrete nonlinear Schrödinger equations; nonlocal effects; localized solutions; breather
solutions; linear stability.
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1. Introduction

We present results on breather solutions of a nonlocal discrete nonlinear Schrödinger
equation with a cubic Hartree-type nonlinearity introduced by Fratalocchi and Assanto
[7] to study the propagation of laser light in waveguide arrays built from a nematic liquid
crystal substratum. Further experimental work on this system is reported in [8,10,29].
Breather solutions of discrete NLS equations have both theoretical and experimental
importance and have been studied extensively, especially for the discrete NLS equation
with power nonlinearities, see [16] and references. Recently Ben et al [1] reported some
interesting new properties of breather solutions of the nonlocal discrete NLS system
of [7] in a 1-D lattice, specifically the presence of internal modes around orbitaly stable
breathers, and the appearance of front-like solutions that attain their maximum at the
interface. The present work studies some of these properties from a rigorous point
of view, and includes new related results on breathers of both the local and nonlocal
discrete cubic NLS equations.

We will show existence and stability results for two types of solutions of the
Fratalocchi-Assanto [7] system. First, we study breather solutions that minimize the
Hamiltonian (energy) over configurations with fixed l2−norm (power). These are spa-
tially localized solutions that could be in principle studied experimentally, see [8,10,29]
for some related localized solutions. The existence of the energy minimizers follows from
a concentration-compactness argument that is similar to the one used in [20,22,30,32].
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We also show that the minimizer is even and decays monotonically away from its max-
imum. These two properties follow from discrete symmetrization and rearrangement
arguments, see Theorem 2.2 for statements and proofs. The notion of symmetrization
for functions on the lattice uses the Fourier transform, while the monotonicity argument
uses a discrete analogue of Riesz’s rearrangement inequality, see [17].

We note that [1] shows the existence of spatially decaying breathers using different
arguments, assuming that the linear intersite coupling parameter δ is small in absolute
value. The present results assume instead that δγ >0, see (2.1), and thus extend the
existence results of [1] to a larger parameter range. The δγ >0 case is also the one
relevant to experiments.

The numerical results of [1] suggest that the linearization around the minimizing
solutions of section 2 should have internal modes. Showing this in the general case seems
difficult and we here present results for the linearization around one-peak breather
solutions obtained for small linear intersite coupling δ via a continuation argument,
see [1]. These solutions exist in the intersection of the parameter ranges considered in
Section 2 and in [1], and we argue that they coincide with the energy minimizers of
Section 2, see Proposition 4.3 for the precise statement. The presence of stable internal
modes was seen explicitly in the limiting case on vanishing linear coupling δ in [1]. In
Section 4 we use perturbation arguments, especially the Krein signature, to show the
persistence of at least a finite number of stable internal modes for δ>0 sufficiently small,
see Proposition 4.2. These results agree with the numerical observations of [1].

The second type of solutions we study are shelf-type breather solutions. These are
solutions that decay in one direction and asymptote to a nonzero value in the other
direction. These solutions have infinite l2-norm, and their existence is shown by an
implicit function theorem that allows us to continue solutions of the δ=0 equation,
see [1, 18, 24, 27] for related results for solutions that decay at infinity. The argument
applies to both the power and nonlocal nonlinearities, see Section 3. The power case is
here primarily interesting as a limit of the nonlocal case. In the nonlocal case we continue
from a nontrivial configuration that exhibits a maximum at the interface between sites
with vanishing and nonvanishing amplitude. This effect was seen originally in [1] for l2

solutions, and we see here that the linearization can be still inverted explicitly.

We also consider the linearization around the shelf-type breathers of Section 3 and
present results on the essential spectrum of the corresponding operators. In the limit-
ing case of the power nonlinearity, the essential spectrum is obtained by studying the
“spatial” dynamics of the piecewise constant coefficient linear map defined by the linear
operator. This is a common approach for problems on the line, see e.g. [14], and we
show discrete analogues of some of the basic results in Subsection 4.2. In the nonlocal
case we do not seem to have an immediate correspondence of the operator problem to
spatial dynamics, but we can reproduce some of the calculations of the local case using
the fact that the operator problem involves piecewise translation invariant (convolu-
tion) operators to obtain a weaker result for the essential spectrum, see Theorem 4.2
in Subsection 4.3. A possible alternative approach may be provided by a study of the
analytic properties of the resolvent, see [12] for discrete Schrödinger operators, and [28]
for the linearization around NLS breathers.

We note that the motivation for studying the shelf-type solutions is heuristic at
present. First, the shelf-type breathers can be thought of as limits of a class of breathers
that have finite support in the δ=0 limit. see [1]. These “finite shelf-type breather”
solutions can be characterized by an integer m>0, the size of their support in the
δ=0 limit. The essential spectrum computed in Section 4 is the apparent limit of a
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subset of the spectrum of the linearization around the finite shelf-type breathers as
m increases, see details in Section 4. We also point out that there are interesting
connections between shelf-type breathers of discrete NLS equations and static front
solutions of discrete nonlinear diffusion equations. The equations for these solutions are
similar, and the continuation methods of Section 3 can be also used to show existence
and monotonicity properties of static fronts, see [4, 11]. In Section 3 we remark on the
discrete version of a recently proposed diffusion equation with nonlocal nonlinearity,
see [9]. Also, in discrete diffusion equations the static solutions can become “depinned”,
i.e. may start to move after some value of the intersite coupling, and the static problem
is a starting point for analyzing these moving fronts [2]. In the discrete NLS we do
not have a clear analogue of the depinning transition for shelf-type solutions, but a
preliminary numerical study [21] suggests that such a transition may be possible. This
transition can be related to changes in the spectrum and bifurcations of the shelf-type
breathers as we increase the linear coupling.

The Fratalocchi–Assanto model can be generalized to higher dimensions, see e.g. [31,
32] for dimension dependent phenomena in the local system, however the experimental
setup of [7, 8, 10, 29] does not have a higher dimensional analogue. Also, comparisons
of the model to experiments have used δ, γ, κ near unity, see [7], and thus the results
of Section 2 are directly relevant. The small δ results of Sections 3, 4 agree with the
numerical results of [1], where δ was up to 0.5. Their relevance to the experimental
parameter range requires further numerical study.

The paper is organized as follows. In Section 2 we study energy minimizing
breathers and show existence, and symmetry and monotonicity properties. In Section 3
we show the existence of shelf-like solutions for the local and nonlocal nonlinearities, in
Subsections 3.1, 3.2 respectively. In Section 4 we study the spectra of the linearization
around different breathers. In Subsection 4.1 we study the linear stability of one-peak
breather solutions in the small linear coupling regime and relate these solutions to the
minimizers of Section 2. In Subsections 4.2, 4.3 we present results on the essential
spectra of shelf-type solutions in the local and nonlocal cases, respectively.

2. Nonlocal discrete NLS and energy-minimizing breather solutions
We consider the one-dimensional discrete NLS equation

u̇n= δi(un+1+un−1−2un)+2γ tanh
κ

2
i(
∑
m∈Z

e−κ|m−n||um|2)un n∈Z, (2.1)

with δ, γ, κ real constants, κ>0, see [7].
Equation (2.1) can be written formally as the Hamiltonian system

u̇n=−i
∂H

∂u∗
n

, n∈Z, with (2.2)

H= δ
∑
n∈Z

|un+1−un|2−γ tanh
κ

2

∑
n∈Z

∑
m∈Z

|um|2e−κ|m−n||un|2. (2.3)

The quantity P =
∑

n∈Z
|un|2 is formally a conserved quantity.

We consider solutions of equation (2.1) of the “breather” form un= e−iωtAn, with
ω real, and A :Z→C independent of t. Such A satisfies

−ωAn= δ(An+1+An−1−2An)+2γ tanh
κ

2
(
∑
m∈Z

e−κ|m−n||Am|2)An, ∀n∈Z. (2.4)
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Let || · ||p denote the lp-norm for complex-valued functions on Z. Let Y = l2(Z,C)
with the norm || · ||= || · ||2.

Let {ên}n∈Z denote the standard basis in Y .
Let λ>0 and define

Iλ=inf{H(v) : v∈Y ), P (v)=λ}. (2.5)

A configuration A∗∈Y , P (A∗)=λ, satisfying H(A∗)= Iλ is referred to as a minimizer
or ground state (of H at power P =λ). The set of minimizers of H at power λ is
denoted as Mλ. For q∈Z, τqA denotes the translation of A by q, i.e. (τqA)n=An−q.
The operation of multiplying A∈Y by a scalar eiφ, φ∈R, is referred to a global phase
change. Translations and global phase changes leave P and H invariant.

Theorem 2.1. Let δ, γ >0. Then for every λ>0, the set Mλ is nonempty, and
A∈Mλ implies that A satisfies property (2.4).

Proof. We will only present a sketch of the proof. The existence part uses
a discrete version of Lyon’s concentration-compactness principle, following [20, 22, 30,
32]. The functional H is easily seen to be bounded below, and has the form H=
δH2−γV , with H2, V homogeneous quadratic and quartic functionals respectively.
Both H2(u) and V (u) are positive for any u �=0 in X. The discrete version of the
concentration-compactness lemma (see [22], Sections 3, 4) states that there are three
scenarios: splitting, vanishing, and convergence (up to translation), indicated by the
number Γ in [22], (3.13). The goal is to show convergence, for any λ>0. To eliminate
splitting, we use the subadditivity property (Lemma 4.3, [22]), and a discrete analogue
of Lemma 4.4 of [23]. These arguments are valid for all λ>0. To eliminate vanishing
for a given λ>0 it suffices to find a test function f ∈X, with P (f)=λ, and H(f)<0.
We use functions

f =Cg, g∈X, C=
√
λ||g||−1. (2.6)

Then P (f)=λ, and the condition H(f)<0 becomes

δ||Dg||2||g||2
γV (g)

<λ, (2.7)

where (Dg)n=gn+1−gn, n∈Z. We use test functions (g)n= e−α|n|, n∈Z, with α>0
(as in [32]) to see that

||Dg||2||g||2=2+O(α), V (g)≥||g||44=
1

2α
+O(1), as α→0+. (2.8)

Then, given any λ>0, the left hand side of inequality (2.7) can be made smaller by
taking α>0 sufficiently small. It follows that a minimizing sequence will converge up
to translations and global phase rotations, and that Mλ is nonempty for all λ>0.

We easily check that H :Y →R is C1, and that H ′(A)−ωP ′(A)=0 implies that A
is a solution of equation (2.4).

Theorem 2.2. Let δ, γ >0, and consider λ>0. Then A∈Mλ implies that there
exist φ∈R, q∈Z such that A= eiφτqA, with A real and positive, reflection symmetric
and non-increasing, i.e. An≥0, ∀n∈Z, A−n=An, ∀n∈Z, and Aa≥Ab, for all positive
integers a<b.

We first define a symmetrization operation that transforms any u∈Y = l2(Z,C) into
a configuration w∈Y that is real, non-negative and symmetric with respect to the origin,
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and that moreover has the same l2-norm and a smaller value of H. The symmetrization,
and the proof of Lemma 2.1 below were suggested to us by Diego Rial.

For f ∈Y , define f̃ :R→C by

f̃(x)=
∑
n∈Z

fne
inx, x∈R. (2.9)

f̃ is clearly 2π−periodic. By the L2 theory for Fourier series, f̃ belongs to L2(S1,C),
with S1 the interval [0,2π] with 0, 2π identified. Moreover equation (2.9) defines an
isomorphism between Y and L2(S1,C). The inverse is given by

fn=
1

2π

∫ 2π

0

f̃(x)e−inx dx, n∈Z, (2.10)

i.e. f̃ is the inverse Fourier transform of f . Moreover, we have Parseval’s identity∑
n∈Z

|fn|2=
1

2π

∫
S1

|f̃(x)|2 dx. (2.11)

Consider u∈Y , with ũ as in equation (2.9), and define v, w as follows:

vn=
1

2π

∫
S1

|ũ(x)| e−inx dx, n∈Z, (2.12)

and

wn= |vn|, n∈Z. (2.13)

It follows from identity (2.11) that v, w belong to Y , and that ||w||= ||v||= ||u||.
Also, by definition (2.12) we have v−n=v∗n, ∀n∈Z. Then definition (2.13) implies

that

w−n=wn≥0, ∀n∈Z. (2.14)

The configuration w is therefore real, positive, and symmetric, with ||w||= ||u||.
Lemma 2.1. Consider u∈Y , and v, w∈Y as in definitions (2.12) and (2.13). Then,
H(w)≤H(v)≤H(u).

Proof. First we examine the quartic part V of H in Fourier space. Letting
gn= e−κ|n|, n∈Z, we compute

g̃(x)=
∑
n∈Z

e−κ|n|einx=
1−e−2κ

1−2e−κ cosx+e−2κ
. (2.15)

We observe that |g̃(x)|= g̃(x), ∀x∈R.
Also,

V (u)=
∑
n∈Z

∑
m∈Z

|un|2gn−m|um|2 (2.16)

=
1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

g̃(x) ũ(y) ũ∗(y+x) ũ(z) ũ∗(z−x)dxdy dz (2.17)
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≤ 1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

g̃(x) |ũ(y)| |ũ∗(y+x)| |ũ(z)| |ũ∗(z−x)|dxdy dz. (2.18)

The definition of v in equation (2.12) and the isomorphism between Y and L2(S1,C)
imply |ũ(x)|= ṽ(x), a.e. x∈S1, so that the R.H.S. of inequality (2.18) is V (v). Therefore

V (u)≤V (v). (2.19)

On the other hand, by the definition of w in equation (2.13) we also have V (v)=V (w),
hence

V (u)≤V (w). (2.20)

For the quadratic part H2 we calculate

H2(u)=
1

π

∫ 2π

0

sin2
x

2
|ũ(x)|2 dx=H2(v), (2.21)

since |ũ(x)|= ṽ(x), a.e. x∈S1. Then

H2(v)=
∑
n∈R

|vn+1−vn|2≥
∑
n∈R

||vn+1|−|vn||2=H2(w), (2.22)

using the definition of w in equation (2.13). Combining inequalities (2.20) and (2.22)
we conclude that H(u)≥H(w), as stated.

We also observe that by equation (2.12)

v0=
1

2π

∫ 2π

0

|ũ(x)|dx≥0; |vn|≤v0, ∀n∈Z\{0}. (2.23)

Then equation (2.13) implies

wn≤w0, ∀n∈Z\{0}, (2.24)

i.e. the maximum of w is attained at the origin.
The second operation that decreases H while keeping the l2−norm fixed is that of

replacing u∈Y by its non-increasing rearrangement. To define this operation, let S
be the set of all f :Z→R that satisfy (i) f−n=fn, ∀n>0, (ii) f0>0, (iii)f0≥fn≥0,
∀n>0, and (iv) fn→0 as |n|→∞.

Note that S is the union of its disjoint subsets S+, S0, and SF , where f ∈S+ implies
fn>0, ∀n∈Z, f ∈S0 implies that there exist n for which fn=0 and that fn �=0 for an
infinite subset of n∈Z, and f ∈SF implies that the set of n for which fn �=0 is finite.

For f ∈S+∪S0 as above, let f j the j-th largest value of f , starting from j=1,
i.e. f1=f0, and j∈Z+={1,2, . . .}, for all f ∈S. For if f ∈SF , then f attains a finite
number T (f) of values; then f j , j≤T (f) is the j-th largest value of f , starting from
j=1, and we set f j =0, for all j >T (f).

Given a subset J of Z, χJ will denote the characteristic function of J . We also use
the abbreviated notation χf≥a to denote the characteristic function of the set of n∈Z
satisfying fn≥a. Note that the support of χf≥fj is finite, for any f ∈S, and j≥1. In
what follows χJ(n) denotes the value of χJ at site n.
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Definition 2.1. Let IS be the set of finite I⊂Z satisfying 0∈ I, and n∈ I implies
−n∈ I. Let m be such that |I|=2m+1. Then I denotes the set of 2m+1 consecutive
integers from −m to m.

Let f ∈S+∪SF , fix F j >0 and let I={n∈Z :fn≥f j}=suppχf≥fj . Then I ∈IS
and we let χf≥fj =χI .

For f ∈S we define its symmetric non-increasing rearrangement as the function
f :Z→R

+∪{0} defined by

f =

∞∑
j=1

(f j−f j+1)χf≥fj . (2.25)

We check that f ∈S+∪SF , and that fm≤fn for all m>n≥0. We recall the following
additional facts.

Proposition 2.1. If f ∈S then

gn=

∞∑
j=1

(f j−f j+1)χf≥fj (n), n∈Z, (2.26)

coincides with f , i.e. gn=fn, ∀n∈Z. If also f ∈S∩ l1, then∑
n∈Z

fn=
∑
n∈Z

fn. (2.27)

Remark 2.1. The second conclusion of Proposition 2.1 also implies that ||h||lp =
||h||lp , for all h∈S∩ lp, p>0. This follows by setting fn=(hn)

p.

Proof. First, suppose that n is such that fn=fm, with f j >0. Then χf≥fj (n)=1,
if j≥m, and vanishes otherwise, and therefore

gn=

∞∑
j=m

(f j−f j+1)= lim
N→∞

(fm−fN )=fm=fn, (2.28)

since f j→0 as j→∞. In the case where fn=0 for some n, then gn=0 by equation
(2.25), since n is not in the support of any χf≥fj with f j >0.

For the second statement, we first consider the case f ∈S+. Let N (f j), j∈Z+ be
the set of n satisfying fn=f j . The N (f j) are finite, mutually disjoint, and their union
is Z. Moreover the set of f j , j∈Z+ is the set of values of f . Then∑

n∈Z

fn=

∞∑
j=1

f j |N (f j)|, (2.29)

moreover N (f j)=suppχf≥fj . Therefore equation (2.29) implies∑
n∈Z

fn=

∞∑
j=1

f j |χf≥fj |=
∞∑
j=1

f j |χf≥fj |, (2.30)

since the support of χf≥fj belongs to IS . We check that f
j
=f j , and that χf≥fj =

χ
f≥f

j , ∀j∈Z+. Thus equation (2.30) implies

∑
n∈Z

fn=

∞∑
j=1

f
j |χ

f≥f
j |=

∞∑
j=1

f
jN (f

j
)=
∑
n∈Z

fn. (2.31)
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The case f ∈S0 is similar. We note there that the set where fn=0 is not included
in the sum in equation (2.29), i.e. we only sum over the positive values of f . The set
of positive values of f is precisely the set of the f j , j∈Z+, and the remaining steps are
identical since the sets N (f j) satisfy the same properties. In the case f ∈SF we only
sum over the values f j , j≤T (f) in equation (2.29). The remaining steps are identical
as the N (f j), 1≤ j≤T (f), satisfy the same properties.

From the properties of the configuration w∈Y obtained from u∈Y via equations
(2.12) and (2.13), as above, it is clear that w∈S∩ l2, and we can apply the operation of
non-increasing rearrangement to obtain a new symmetric configuration w that is non-
increasing, and satisfies ||w||= ||w||. To show that H(w)≤H(w), we use Lemma 2.2
below on rearrangements of quadratic forms. The lemma is a special case of a discrete
analogue of the Riesz rearrangement inequality, see e.g. [17].

Let k be a positive integer and let I, J be finite subsets of Z, and let

Q(I,k,J)=
∑
n∈Z

∑
m∈Z

χI(n)Hk(m−n)χJ(m), (2.32)

where Hk(n)=1 if |n|≤k, and vanishes otherwise.

Lemma 2.2. Let I, J ∈IS, and consider the corresponding I, J , as in Definition 2.1.
Assume also that I⊆J . Then for any positive integer k

Q(I,k,J)≥Q(I,k,J). (2.33)

Given a pair I, J the inequality is strict for at least one positive k, unless I= I, J =J .

Proof. Fix a positive integer k. Consider first the case I=J . Let 1≤ j1<j2, . . . ,<
jm denote the positive sites of J . Then |J |=2m+1. A gap G of J is a symmetric set
of consecutive sites j not in J that satisfy either jλ<j<jλ+1 or −jλ+1<j<−jλ for a
pair of 0<jλ<jλ+1 in J . Note that the definition implies that g= jλ+1−jλ>1, and
that G consists of 2g>0 sites. A gap is specified by the pair of sites jλ, jλ+1 above,
referred to below as its (positive) edges.

If J =J , then J has no gaps. The idea is to show that deleting gaps in I and J
simultaneously increases Q. We then generalize to the case I⊂J .

Given a gap G specified by the sites jλ, jλ+1 of J as above, let JsubG∈IS be
the set whose positive elements are all j∈J that satisfy j≤ jλ, and all j−g, j∈J that
satisfy j≥ jλ+g+1. It is easy to show that Q(JsubG,k,JsubG)≥Q(J,k,J). Iterating
the elimination of gaps we obtain Q(J,k,J)≥Q(J,k,J).

In the case I⊆J , the definition of gaps is the same. We first eliminate all gaps
of J whose positive sites are to the right of the largest site of I. The resulting set is
denoted as J1, and we easily argue that Q(I,k,J1)≥Q(I,k,J). Also I⊆J1, moreover
the remaining gaps of J1 are also gaps of I, otherwise there would be sites of I not in
J1. Eliminating all the gaps of J1 from both I and J1 we obtain new sets I2, and J2
respectively. We have J2=J , and we easily show that Q(I2,k,J)≥Q(I2,k,J1). Also
I2⊆J . If I2 �=J , then I2 still has gaps, and we eliminate them to obtain I. We again
can show that Q(I,k,J)≥Q(I2,k,J). The above hold for any positive integer k.

It is easy to show in each of the above steps, that cancellation of any gap would
give strict inequality for all values of k≥1. For instance, the relation I⊆J at all stages
implies that the elimination of the common points in the gap will increase for each i in
the smaller set the number of j in the larger set satisfying |i−j|≤k. The increase will
be strict for the points at the edges of the gap, for all k≥1.
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Lemma 2.3. Consider the configuration w∈S∩Y , and its non-increasing symmetriza-
tion w∈Y , as above. Then H(w)≤H(w). The inequality is strict, unless w=w.

Proof. We first consider the quartic part V , using the functions fn=w2
n, fn=w2

n,
∀n∈Z, i.e. f , f ∈S∩ l1. Also let g(n)=e−κ|n|, ∀n∈Z. We can use Proposition 2.1 and
the definition Hk after equation (2.32) to write g=

∑∞
j=1(g

j−gj+1)Hj . Then,

V (u)=
∑
n∈Z

∑
m∈Z

fng(n−m)fm (2.34)

=
∑
n∈Z

∑
m∈Z

[

∞∑
j1=1

aj1 χf≥fj1 (n)][

∞∑
j=1

bjHj(m−n)][

∞∑
j2=1

aj2χf≥fj2 (m)], (2.35)

with aj =f j−f j+1, bj =gj−gj+1.
The order of summations can be changed using the l2−summability of w, and the

fact that convolution with g defines a bounded operator in Y (we omit therefore the
steps of defining all quantities for finite sums and taking limits).

We then have

V (u)=

∞∑
j1=1

∞∑
j=1

∞∑
j2=1

aj1bjaj2

[∑
n∈Z

∑
m∈Z

χf≥fj
1
(n)Hj(m−n)χf≥fj

2
(m)

]
(2.36)

=

∞∑
j1=1

∞∑
j=1

∞∑
j2=1

aj1bjaj2Q(suppχf≥fj1 ,j,suppχf≥fj2 ). (2.37)

Since suppχf≥fj ⊆ suppχf≥fj′ if f j≥f j′ , we can apply Lemma 2.2 for the supports of
the χf≥fj to obtain from equation (2.37)

V (f)≥
∞∑

j1=1

∞∑
j=1

∞∑
j2=1

aj1bjaj2Q(suppχf≥fj1 ,j,suppχf≥fj2 ) (2.38)

=V (f). (2.39)

The inequality is strict unless

Q(suppχf≥fj1 ,j,suppχf≥fj2 )=Q(suppχf≥fj1 ,j,suppχf≥fj2 ), (2.40)

for all j1, j2. In that case we see that w=w.
The quadratic part H2 can be written as

H2(w)=
∑
n∈Z

(w2
n+1+w2

n−2wnwn+1)=2||w||2−2
∑
n∈Z

wnwn+1, (2.41)

and we define H+
2 by

H+
2 (w)=

∑
n∈Z

(w2
n+1+w2

n+2wnwn+1)=2||w||2+2
∑
n∈Z

wnwn+1. (2.42)

To show that H2(w)≤H2(w) it then suffices to show that H+
2 (w)≥H+

2 (w). We write

H+
2 (w)=

∑
n∈Z

∑
m∈Z

wnM(n−m)wm, (2.43)
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with M(0)=2, M(±1)=1, and M(n)=0 for n∈Z\{−1,0,1}. M is symmetric and
decreasing in Z

+, and we can then follow the argument used for V above to see
that H+

2 (w)≥H+
2 (w), as required. It follows immediately by H(w)=H2(w)−V (w)≤

H2(w)−V (w)=H(w), with strict inequality if w �=w, as stated.

Remark 2.2. In the case δ, γ <0 we have a similar statement for the maximizer of
H, i.e. we apply the theorem to the minimizer of −H.

Remark 2.3. For δ>0, γ <0 and any λ>0 we have Iλ=0. We can see that by
considering the functions gN , N ∈Z+, where gNn =

√
λ/
√
(2N+1) if −N ≤n≤N , and

vanishes elsewhere. It follows that the infimum is not attained and that we can not use
minimization to find critical points. In the case of δ sufficiently small critical points
were obtained by different arguments, see [1].

Remark 2.4. The symmetrization and rearrangement results above also apply to
energy minimizing breathers of the cubic DNLS in Z, where we minimize Hq = δH2−
γH4, H4(u)= ||u||4l4 , over configurations u∈Y with P (u)=λ>0. The existence of a
minimizer for arbitrary λ>0 is shown in [32]. Lemma 2.1 also holds for H4, using the
k→∞ limit g̃(x)=1, ∀x, in equation (2.15). Lemma 2.3 clearly applies to Hq as well.

3. Infinite shelf-type breathers
In this section we show the existence of infinite shelf-type breather solutions of

equation (2.4) with |δ| �=0 and small. We consider two cases depending on the interaction
term in equation (2.1): local case and nonlocal case, corresponding to “κ=∞”, and
κ>0 respectively. In Theorem 3.1 we show the continuation of shelf-type breathers of
equation (2.4) with δ=0 in the local case. Theorem 3.2 concerns the continuation of
shelf-type solutions for arbitrary κ>0.

3.1. Local case. Let ω∈R. For A∈ l∞ (Z,R), δ∈R and n∈Z define Fn :
l∞ (Z,R)×R−→R by

Fn(A,δ)= δ (ΔA)n+2γA3
n+ωAn, (3.1)

where (ΔA)n=An−1−2An+An+1.
Let α>0 and define S0={n0+1,n0+2,n0+3, ...}⊂Z, SA=Z\S0. We consider

a nontrivial solution A= Ã of Fn(A,0)=0, ∀n∈Z, obtained by requiring An �=0 for
n∈SA, and An=0 for n∈S0. As δ=0, the equation Fn=0 becomes

−2γ|An|2=ω, ∀n∈SA. (3.2)

Then γ and ω must have opposite signs and we consider the solution

Ãn=

{
0, if n∈S0,
α, if n∈SA,

(3.3)

with α=
√
− ω

2γ .

Remark 3.1. We can obtain more nontrivial solutions by taking An<0 for all n∈SA.
Moreover, we can choose An �=0 for n∈SA :=S+∪S−, with An>0 for n∈S+ and An<0
for n∈S− provided S+ is finite or S− is finite. The arguments below apply to these
solutions as well.

Let X= l2(Z,R) with the norm ‖·‖=‖·‖X as in Section 2. Let || · ||Z,Y denote the
operator norm of a linear operator from Z to Y , both Banach spaces.



ROBERTO I. BEN, JUAN PABLO BORGNA, AND PANAYOTIS PANAYOTAROS 2153

We define G :X×R→X as

G(B,δ)={Gn(B,δ)}n∈Z
=Fn(B+Ã,δ), (3.4)

with Fn given by equation (3.1) It can be checked that G is well-defined, i.e. if B∈X,
δ∈R, then G(B,δ)∈X.

Theorem 3.1. Let G be as in definition (3.4) and consider the solution (x0,y0)=(0,0)
of G(B,δ)=0. Then there exists ε0>0 and a unique continuous function B : (−ε0,ε0)→
X satisfying B(0)=0 and G(B(δ),δ)=0 for all δ∈ (−ε0,ε0).

The proof uses the implicit function theorem and is similar to that of Theorem 3.2
below (with simpler computations) and is omitted.

3.2. Nonlocal case. We now show existence results for arbitrary κ>0 and |δ|
small enough. Let ω∈R and κ>0. For A∈ l∞ (Z,R) and δ∈R define Fn, n∈Z, by

Fn(A,δ)= δ(ΔAn)+2γ tanh
κ

2

(∑
m∈Z

e−κ|m−n| |Am|2
)
An+ωAn. (3.5)

We consider, as before, a nontrivial solution A= Ã of Fn(A,0)=0, ∀n∈Z, determined
by α>0, and sets S0={n0+1,n0+2,n0+3, ...}⊂Z, SA=Z\S0, for which An>0 if
n∈SA, and An=0 if n∈S0. Evaluating δ=0 in equation (3.5), the equation Fn=0
becomes

−2γ tanh κ

2

∑
m∈SA

e−κ|m−n| |Am|2=ω, ∀n∈SA. (3.6)

We also write equation (3.6) as

MJ =
(
−2γ tanh κ

2

)−1

ωε, (3.7)

where Jm=A2
m, ε=[...,1,1,1]

T ∈R|SA| and M is defined implicitly by the previous equa-
tion. Letting ρ= e−κ we have M and its inverse M−1 explicitly as

M =

⎡⎢⎢⎢⎢⎣
... ...

1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
... ρ3 ρ2 ρ 1

⎤⎥⎥⎥⎥⎦ , M−1= 1
1−ρ2

⎡⎢⎢⎢⎢⎣
... ...

1+ρ2 −ρ 0 0
−ρ 1+ρ2 −ρ 0
0 −ρ 1+ρ2 −ρ

... 0 0 −ρ 1

⎤⎥⎥⎥⎥⎦ . (3.8)

The calculation of M−1 used the fact that M is Toeplitz. It is clear from equation (3.8)
that M−1 is also bounded in X. Hence the vector J is computed explicitly as

J =
(
−2γ tanh κ

2

)−1

ωM−1ε, where M−1ε=
1−ρ

1+ρ

[
...,1,1,1,

1

1−ρ

]T
.

Letting α2=
(
−2γ tanh κ

2

)−1
ω 1−ρ

1+ρ , the solution Ã determined by α>0 is

Ãn=

⎧⎨⎩
α, if n∈SA, n<n0
α√
1−ρ

, if n∈SA, n=n0,

0, if n∈S0.

(3.9)
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In a similar way we can find nontrivial solutions such that An<0 for all n∈SA.
Moreover, as in Remark 3.1, we can find nontrivial solutions such that An �=0 for n∈
SA :=S+∪S−, with An>0 for n∈S+ and An<0 for n∈S− provided S+ is finite or S−
is finite. The arguments below are valid for these solutions as well.

Then we define G :X×R→X as

G(B,δ)={Gn(B,δ)}n∈Z={Fn(B+Ã,δ)}n∈Z. (3.10)

The fact that G is well-defined follows from the arguments in the proof of Lemma 3.1
below.

Theorem 3.2. Let G be as in equation (3.10) and fix ω, κ>0. Let n0 be a positive in-

teger, and consider a nontrivial solution (Ã,0) of G(B,δ)=0 with SA={...,n0−2,n0−
1,n0}. Then there exists ε0>0 and a unique continuous function B : (−ε0,ε0)→X sat-
isfying B(0)=0 and G(B(δ),δ)=0 for all δ∈ (−ε0,ε0).

Proof. As in the previous theorem, we apply the implicit function theorem around
a solution (Ã,0) of G(B,δ)=0. We present here the (Fréchet) derivative D1G and we
show that it is a linear isomorphism of X. The continuity of G and D1G at (0,0) is
proved in Lemmas 3.1 and 3.2 below. We have

D1G(0,0)=

(
M1 0
0 M2

)
, (3.11)

with

M1=2cα2

⎡⎢⎢⎢⎢⎢⎢⎣

... ...

1 ρ ρ2 ρ3

√
1−ρ

ρ 1 ρ ρ2

√
1−ρ

ρ2 ρ 1 ρ√
1−ρ

... ρ3

√
1−ρ

ρ2

√
1−ρ

ρ√
1−ρ

1
1−ρ

⎤⎥⎥⎥⎥⎥⎥⎦ , M2=ω

⎡⎢⎢⎣
1−ρ 0 0 ...
0 1−ρ2 0
0 0 1−ρ3

... ...

⎤⎥⎥⎦ ,

and ρ= e−κ, c=2γ tanh κ
2 .

As M2 is an infinite diagonal matrix with 1−ρ≤M2(n,n)<1, ∀n∈Z, to prove that
D1G is a linear isomorphism in X it is enough to show that M1 is invertible. We see
that

M−1
1 =

1

(cα2)(1−ρ2)

⎡⎢⎢⎢⎢⎣
... ...

1+ρ2 −ρ 0 0
−ρ 1+ρ2 −ρ 0
0 −ρ 1+ρ2 −ρ√

1−ρ

... 0 0 −ρ√
1−ρ

1−ρ

⎤⎥⎥⎥⎥⎦ ,

with M−1
1 clearly bounded in X.

Remark 3.2. Observe that the nonlocal case approaches the local case as κ→∞,
and ρ= e−κ→0.

Remark 3.3. We note that [9] propose a discrete nonlinear diffusion equation whose
static front solutions satisfy equation (3.6) with the term (1−ω)An+A2

n added to the
right hand side (one may assume An>0 for all n∈SA). The numerical results of [9]
suggest that this variant of equation (3.6) also has a solution with a maximum at the
interface.
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To prove the continuity of G and D1G at (0,0) we will need to use the following
discrete version of Young’s inequality:

Theorem 3.3 (Young’s inequality, [17], ch. 4). Let p, q, r≥1, 1
p +

1
q >1 and 1

p +
1
q =

1+ 1
r . Then u∈ lp, and v∈ lq imply u∗v∈ lr and

‖u∗v‖r≤‖u‖p‖v‖q . (3.12)

The inequality follows from the statement for functions on the line, see e.g. [17], ch.
4.

Lemma 3.1. Let G be as in equation (3.10) and fix ω, and κ>0. Then G is continuous
at (0,0)∈X×R.

Proof. Let (B,δ)∈X×R, then

‖G(B,δ)−G(0,0)‖2X =
∑
n∈Z

|Fn(B+Ã,δ)−Fn(Ã,0)|2

=
∑
n∈Z

∣∣∣∣δΔ(Bn+Ãn)+cγ,κ(Bn+Ãn)
∑
m∈Z

e−κ|m−n||Bm+Ãm|2

+ω(Bn+Ãn)−cγ,κ

(∑
m∈Z

e−κ|m−n|Ã2
m

)
Ãn−ωÃn

∣∣∣∣2, (3.13)

with cγ,κ=2γ tanhκ
2 , and

Cn=
∑
m∈Z

e−κ|m−n|
(
|Bm+Ãm|2(Bn+Ãn)−Ã2

mÃn

)
, ∀n∈Z. (3.14)

Then

‖G(B,δ)−G(0,0)‖2X ≤6

(
|δ|2‖Δ‖2X,X ‖B‖

2
X + |ω|‖B‖2X +2|γ|tanhκ

2
‖C‖2X

)
. (3.15)

The first and second term in the last inequality vanish as δ→0 and B→0∈X. It is
then enough to show that ‖C‖X vanishes as δ→0 and B→0∈X. We have

‖C‖2X =
∑
n∈Z

∣∣∣∣∣∑
m∈Z

ρ|m−n|
(
|Bm+Ãm|2(Bn+Ãn)−Ã2

mÃn

)∣∣∣∣∣
2

(3.16)

=
∑
n∈Z

∣∣∣∣∣∑
m∈Z

ρ|m−n||Bm+Ãm|2Bn+
∑
m∈Z

ρ|m−n|
(
|Bm+Ãm|2−Ã2

m

)
Ãn

∣∣∣∣∣
2

(3.17)

≤
∑
n∈Z

∣∣∣∣∣∑
m∈Z

ρ|m−n||Bm+Ãm|2Bn+
∑
m∈Z

ρ|m−n|Bm(Bm+2Ãm)Ãn

∣∣∣∣∣
2

(3.18)

≤Γ(||B||, ||A||∞)
∑
n∈Z

∣∣∣∣∣∑
m∈Z

ρ|m−n|Bn+
∑
m∈Z

ρ|m−n|Bm

∣∣∣∣∣
2

, (3.19)

with

Γ(||B||, ||A||∞)=4(||B||2+ ||A||2∞)2+ ||A||2∞(2||B||2+4||A||2∞). (3.20)
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Therefore

‖C‖2X ≤2Γ(||B||, ||A||∞)

⎛⎝∑
n∈Z

|Bn|2
∣∣∣∣∣∑
m∈Z

ρ|m−n|
∣∣∣∣∣
2

+
∑
n∈SA

∣∣∣∣∣∑
m∈Z

ρ|m−n|Bm

∣∣∣∣∣
2
⎞⎠ (3.21)

≤2Γ(||B||, ||A||∞)
(
‖B‖X +

∥∥∥ρ|·| ∗B∥∥∥
X

)
(3.22)

≤2Γ(||B||, ||A||∞)
(
‖B‖X +

∥∥∥ρ|·|∥∥∥
1
‖B‖X

)
. (3.23)

The last inequality follows from Young’s inequality (3.12) with u=ρ|·|, v=B, r=2,
p=1 and q=2. By equation (3.20) and inequality (3.23), ‖C‖X tends to zero if ‖B‖X
tends to zero.

Lemma 3.2. Fix ω and κ>0. and consider the function G :X×R→X defined in
(3.10). Then D1G is continuous at (Ã,0).

Proof. It is enough to show that there exists β such that

‖[D1G(B,δ)−D1G(0,0)]v‖≤β‖v‖ , ∀v∈X, (3.24)

and β→0 as (B,δ)→0∈X×R. We have already determined D1G(0,0) in the proof of
3.1. We now calculate D1G(B,δ) with B �=0, and δ �=0, which (we check) is given by
its partial derivatives. For n∈Z we have

∂Gn

∂Bn
(B,δ)=−2δ+2γ tanh

κ

2

(∑
m∈Z

ρ−|m−n||Bm+Ãm|2+2(Bn+Ãn)
2

)
+ω, (3.25)

∂Gn

∂Bm
(B,δ)= δ+4γ tanh

κ

2

(
ρ|m−n||Bm+Ãm|

)
(Bn+Ãn), m∈{(n−1),(n+1)},

(3.26)

∂Gn

∂Bm
(B,δ)=4γ tanh

κ

2

(
ρ|m−n||Bm+Ãm|

)
(Bn+Ãn), m∈Z\{(n−1),n,(n+1)}.

(3.27)
Let v∈X and define M =D1G(B,δ)−D1G(0,0), w=Mv. Then for every n∈Z we

have

wn=
∑
m∈Z

Mn,mvm=
∑
m∈Z

(
∂Gn

∂Bm
(B,δ)− ∂Gn

∂Bm
(0,0)

)
vm (3.28)

= δ (Δv)n+2γtanh
κ

2

∑
m∈Z

ρ|m−n|
(
|Bm+Ãm|2−|Ãm|2

)
vn (3.29)

+4γtanh
κ

2

∑
m∈Z

ρ|m−n|
(
|Bm+Ãm|(Bn+Ãn)−|Ãm|Ãn

)
vm (3.30)

= δ(Δv)n+2|γ|tanh κ

2
(Kn+2Jn), (3.31)

where

Kn=
∑
m∈Z

ρ|m−n|
(
|Bm+Ãm|2−|Ãm

∣∣∣2)vn, ∀n∈Z, (3.32)
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Jn=
∑
m∈Z

ρ|m−n|
(
|Bm+Ãm|(Bn+Ãn)−|Ãm|Ãn

)
vm, ∀n∈Z. (3.33)

Hence

‖w‖X ≤|δ|‖Δ‖X×X ‖v‖X +2|γ|tanh κ

2
‖K‖X +4|γ|tanh κ

2
‖J‖X . (3.34)

Observe that by equation (3.32)

|Kn|≤
∑
m∈Z

ρ|m−n|
(
B2

m+2|Bm||Ãm|
)
|vn|,

so that

||K||2X ≤
∑
n∈Z

∣∣∣∣∣∑
m∈Z

ρ|m−n|
(
B2

m+2 |Bm| |Ãm|
)
|vn|
∣∣∣∣∣
2

(3.35)

≤
∑
n∈Z

‖B‖∞ (||B||∞+ ||Ã||∞)

∣∣∣∣∣∑
m∈Z

ρ|m−n| |vn|
∣∣∣∣∣
2

(3.36)

≤‖B‖∞ (||B||∞+ ||Ã||∞)
∥∥∥ρ|·|∥∥∥2

1
‖v‖2X , (3.37)

using Young’s inequality (3.12) with u=ρ|·|, r=2, p=1 and q=2. On the other hand,
by equation (3.33) observe that

|Jn|≤
∑
m∈Z

ρ|m−n|
(
|Bm||Bn|+ |Bm||Ãn|+ |Bn||Ãm|

)
|vm|, (3.38)

so that

‖J‖2X ≤
∑
n∈Z

∣∣∣∣∣∑
m∈Z

ρ|m−n|
(
|Bm||Bn|+ |Bm||Ãn|+ |Bn||Ãm|

)
|vm|

∣∣∣∣∣
2

(3.39)

≤
∑
n∈Z

‖B‖∞ (||B||∞+2||Ã||∞)

∣∣∣∣∣∑
m∈Z

ρ|m−n||vm|
∣∣∣∣∣
2

(3.40)

≤‖B‖∞ (||B||∞+2||Ã||∞)
∥∥∥ρ|·|∥∥∥2

1
‖v‖2X , (3.41)

using again Young’s inequality.
Using inequalities (3.35) and (3.40) in inequality (3.34) we have that

‖w‖≤
(
|δ|‖Δ‖X×X +6|γ|tanh κ

2
||B||(||B||+2||Ã||∞)||ρ|·|||1

)
‖v‖ . (3.42)

By equation (3.29) and inequality (3.42) we thus have inequality (3.24) with β that
vanishes as (B,δ)→0∈X×R, as required.

4. Spectral analysis of 1-peak and shelf-type breathers
In this section we present results on the spectra of the linearization around some of

the breather solutions considered in the previous sections and in [1]. We will consider
the one-peak breather solutions, related to the minimizers of Section 2, and shelf-type
breather of the local and nonlocal equation, studied in Section 3.
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The linear stability analysis uses the fact that breather solutions are relative equi-
libria of equation (2.1) with respect to the action of global phase change. Using the
variable v defined by u= e−iωtv, Hamilton’s equation (2.2) becomes

v̇n=−i
∂Hω

∂v∗n
, n∈Z, with Hω =H−ωP. (4.1)

A breather solution u= e−iωtA of equation (2.1) is a fixed point v=A of equation (4.1).
Let z=[q,p]T ∈X×X, with zn=[qn,pn]

T , qn=Revn, pn=Imvn, n∈Z. Then equa-
tion (4.1) is also written as

ż=J∇hω, with hω =
1

2
Hω, (4.2)

and (Jz)n=−[pn,qn]T , i.e. J is the standard symplectic operator in X×X.
The linearization at a fixed point A of equation (4.1) is

ż=JHz, with H=∇2hω(A), (4.3)

i.e. H is the Hessian of hω at A.
To simplify the notation we set γ=−1 in this section. This does not affect the

generality of the results.
We calculate JH explicitly as

J =

[
0 I
−I 0

]
, H=

[
L+ 0
0 L−

]
, (4.4)

where

L−=−ωI−δΔ+2A, L+=−ωI−δΔ+2A+4M, (4.5)

and A, M are linear operators in X defined by

A(n,k)=tanh
κ

2
(
∑
m∈Z

e−κ|m−n|A2
m)δn,k, n,κ∈Z, (4.6)

M(n,k)=tanh
κ

2
e−κ|n−k|AkAn, n,k∈Z, (4.7)

with δn,k the Kronecker delta.
The linearization around breathers of the local cubic DNLS is obtained by taking

the limit κ→∞ in equations (4.6) and (4.7).
The above calculations are formal. In the case A∈ l∞(Z,R), the operators A, M,

L−, L+ are bounded operators in X, while J , H, and JH are bounded operators in
X×X. We also see that L−, L+ and H are symmetric. Similar statements apply to
the local case.

LetX= l2(Z,R) with the inner product (u,v)=
∑

n∈Z
unvn. The norm is denoted by

|| · ||. Let Xc be the complexification of X, with the inner product (u,v)c=
∑

n∈Z
unv

∗
n.

Let Y = l2(Z,C) viewed as a real space with the (real) inner product 〈u,v〉=∑
Z
[(Reun)(Revn)+(Imun)(Imvn)]. Let Yc= l2(Z,C

2) with the inner product 〈u,v〉c=∑
Z
[(Reun)(Revn)

∗+(Imun)(Imvn)
∗]. Yc is the complexification of Y . Note that

Y =X×X, and Yc=Xc×Xc. The notation for X, Y is that of the previous sections,
where we only used the Banach space structure.
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Let M be a bounded operator in Yc, or Xc. We denote the spectrum of M by
σ(M). The essential spectrum σe(M) of M is defined as in [14], p.29, namely λ∈σ(M)
belongs to σe(M) if M−λI either fails to be Fredholm, or is Fredholm with nonzero
index. The definition of [15], p.243, requires a weaker condition, namely M−λI not
semi-Fredholm.

Let X be a real or complex Hilbert space, with norm || · ||X, and let {εj}∞j=1 be
an orthonormal basis of X. A bounded operator T :X→X is Hilbert–Schmidt in X
if
∑∞

j=1 ||Tεj ||2X<∞ (this is independent of the choice of the basis). Recall that a
Hilbert–Schmidt operator is compact.

4.1. Stability of one-peak breathers for small linear coupling. We will
consider the one-peak breather solutions, defined below. These are solutions of equation
(2.4) with A∈X, and start by showing some facts on arbitrary such solutions.

Lemma 4.1. Let A∈X. Then the operators A, M defined in equations (4.6), (4.7)
respectively are Hilbert–Schmidt in X, Xc.

Proof. We use the basis {ên}n∈Z of X and Xc. Both A, M map X⊂Xc to X,
and it is enough to show the statement for X. First, by definition (4.6)

∑
n∈Z

||Aên||2=tanh2
κ

2

∑
n∈Z

∣∣∣∣∣∑
m∈Z

e−κ|m−n|A2
m

∣∣∣∣∣
2

=tanh2
κ

2
||g∗A2||2l2 , (4.8)

where gn= e−κ|n|, and (A2)n=A2
n, ∀n∈Z. By the discrete Young’s inequality (3.12)

we have

||g∗A2||l2 ≤||g||l1 ||A2||l2 . (4.9)

Since ||A||l∞ ≤||A||, both quantities are finite, and equation (4.8) and inequality (4.9)
imply that A is Hilbert–Schmidt in X. Similarly, by definition (4.7) we have∑

λ∈Z

||Mêλ||2=tanh2
κ

2

∑
λ∈Z

A2
λ

∑
n∈Z

|e−κ|λ−n|An|2≤||A||4l2 , (4.10)

therefore M is also Hilbert–Schmidt inX.

Lemma 4.1 is applied to fixed points A∈X of equation (4.1). Define H0 as

H0=

[
−ωI−δΔ 0

0 −ωI−δΔ

]
. (4.11)

Clearly H0 is a bounded operator in Yc, moreover JH is a compact perturbation of
JH0:

Proposition 4.1. Let A∈X, and let JH :Y →Y be as in equations (4.4)-(4.7). Then
(i) σe(JH)=σe(JH0), and (ii) σe(JH0) consists of z∈C with Rez=0, Imz∈ [−ω,−ω+
4δ]∪ [ω−4δ,ω], for δ>0, and Rez=0, Imz∈ [−ω+4δ,−ω]∪ [ω,ω−4δ], if δ<0.

Proof. (Proof of Part (i).) To show that σe(JH)=σe(JH0) it is enough to show
that JH−JH0 is Hilbert–Schmidt in Y . We have

JH−JH0=

[
0 2A

−2A+4M 0

]
. (4.12)
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The Hilbert–Schmidt property in Y =X×X follows easily from Lemma 4.1. We can
use the basis vectors êjn, n∈Z, j=1,2, defined as ê1n(k)= δn,k[1,0]

T , ê2n(k)= δn,k[0,1]
T ,

for all n, k∈Z. Part (ii) is shown in the next subsection.

We now consider the stability of the 1−peak solution studied numerically in [1].
Consider a solution A∈X of equation (2.4) with δ=0 that satisfies An=0, for all
n∈Z\{n0}, and An0

>0. The parameter κ>0 is fixed and arbitrary. Such a solution
is unique, and by Theorem 2.4 of [1] it can be continued uniquely to a C0 family of
solutions A(δ), δ∈ (−δ0,δ0), of equation (2.4). We refer to these solutions as 1-peak
breathers.

Remark 4.1. Note that the continuation result in [1] is for solutions with ||A(δ)||X
fixed. Then ω is also a function of δ, and is not known a priori. The continuation result
for fixed ω has a very similar proof, this is seen in the previous section.

For the δ=0 breather A(0), JH is block diagonal with 2×2 blocks, each block
corresponding to an integer k∈Z. The block corresponding to k=n0 has a double
eigenvalue λn0 =0. The other blocks have eigenvalues

±λk=±iω(1−eκ|k−n0|), ∀k∈Z\{n0}, (4.13)

with corresponding eigenfunctions w±
k ∈Yc, given by

w±
k (n)= δk,n[1,∓i]T , n∈Z. (4.14)

Thus σ(JH) consists of a double zero eigenvalue, an infinite number of pairs of imaginary
eigenvalues ±λk, κ>n0, of multiplicity 2, and their accumulation points ±iω (belonging
to σe(JH)).

Considering now the linearized operator JH corresponding to a 1-peak breather
A(δ), we have by Proposition 4.1 that σe(JH)=σ(JH0). The persistence of the double
zero eigenvalue is a well-known fact, it follows from the fact that L−A(δ)=0, the con-
tinuity of finite rank spectral projections, and the symmetry of spectra of symplectic
operators. We now consider the persistence of the internal mode eigenvalues λk of equa-
tion (4.13). The linearized operator (4.4)-(4.7) corresponding to the 1-peak breather
A(δ), δ∈ (−δ0,δ0), will be denoted by JH(δ).

Proposition 4.2. Let k>n0, and consider the pair of imaginary eigenvalues
±λ=±λk of the JH(0), as in equation (4.13). Then there exists a δ0,k>0 for which
the operators JH(δ) :Y →Y , δ∈ (−δ0,k,δ0,k), have two eigenvalues ±λj(δ)∈ iR, j=1,2.
The families ±λj(δ), j=1,2 are continuous in δ and satisfy ±λj(0)=±λ.

Proof. Fix k>n0. By the continuity of finite dimensional spectral projections and
the corresponding eigenvalues under perturbations by bounded operators, see [15], the
families ±λj(δ), j=1,2 are continuous in δ, with ±λ(0)=±λ=±λk, as stated, assuming
that δ belongs to some interval (−δ0,k,δ0,k). Consider the eigenvalue λ(0) of JH(0). By
the symmetry of spectra of symplectic operators the two continued eigenvalues of JH(δ)
are either on the imaginary axis, or are off the imaginary axis and satisfy λ2(δ)=−λ∗

1(δ).
To eliminate the second scenario we use the Krein dichotomy argument, see [14], p.
181, (7.14). In particular, if the λj(δ) have nonzero real parts then the corresponding
eigenvectors vj(δ) must satisfy

〈H(δ)vj(δ),vj(δ)〉c=0, ∀δ∈ (−δ0,k,δ0,k), j=1,2. (4.15)
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On the other hand, using explicit expressions for the eigenvectors vj(0), j=1,2, i.e.
v1(0)=w+

k , v2(0)=w+
m, with m<n0 satisfying n0−m=k−n0, and w+

k , w
+
m as in equa-

tion (4.14), we compute that

〈H(0)vj(0),vj(0)〉c=−2ω(1−eκ|k−n0|) �=0, j=1,2, (4.16)

contradicting equation (4.15) at δ=0.

We expect that for δ, γ >0, δ sufficiently small, the 1−peak breathers obtained by
continuation should coincide with the global minimizers of Section 2. Nevertheless at
the moment we can prove the following weaker statement.

Proposition 4.3. Let λ>0, and fix n0∈Z. Consider the continuous one-parameter
curve of A(δ)∈X, δ∈ [0,δ0], of solutions of equation (2.4) with A(0) the 1-peak breather
solution supported at n=n0, and ||A(δ)||=λ, ∀δ∈ [0,δ0]. Then there is a sequence of
{δm}m∈Z+ ⊂ [0,δ0], that converges to δ=0, and such that A(δm) minimizes H of (2.3)
over all configurations u∈X with P (u)=λ.

Proof. Fix λ>0. Let Hδ =H= δH2−H4, where H2, V are the quadratic, and
quartic parts of H respectively, see equation (2.3). For each δ∈ [0,δ0], let uδ

∗∈X be a
minimizer of Hδ at power P =λ. For δ′, δ∈ [0,δ0], we have that δ<δ′ implies Hδ(u

δ
∗)≤

Hδ(u
δ′
∗ )≤Hδ′(u

δ′
∗ ). Also, we easily check that δ′↘ δ implies Hδ′(u

δ′
∗ )→Hδ(u

δ
∗). It

follows that any sequence of points uδ
∗, δ∈ [0,δ0], that converges to u0

∗ is a minimizing
sequence for H0=V , and therefore has a convergent subsequence, up to translations,
by the arguments of Theorem 2.1. On the other hand, the critical points of V are
solutions of equation (3.6). The support of minimizers with finite support consists of
sets of consecutive sites by Theorem 2.2. Such solutions were described in [1], where we
saw that all solutions with support consisting of more that three sites must have their
maxima at interfaces. Then the only solution having the properties of Theorem 2.2 is
the one supported on one site. We also observe that by Young’s inequality, the right
hand side of equation (3.6) maps X to X. Thus there are no solutions with infinite
support. The points of the minimizing subsequence are solutions of equation (2.4), and
must therefore come arbitrarily close to the breather A(0), after suitable translations.
By the uniqueness of the continuation, Theorem 2.4, [1], these points must eventually
belong to the branch A(δ) of solutions obtained for some interval [0,δ0].

4.2. Essential spectrum of linearization around shelf-type breather: local
case. We now consider the essential spectrum of the linearization around the shelf
solutions of Section 3. We first consider the shelf solutions of the local (power) nonlin-
earity system. The main result is Theorem 4.1 below. It follows from an analysis of the
piecewise linear discrete dynamical system defined by the linear operator. We give a
fairly complete presentation of the theory. In the nonlocal case we have a weaker result,
Theorem 4.2 below, using similar computations. The theory however is not complete.

In the case of the power nonlinearity system, we consider solutions obtained by
continuation of the δ=0 breather

Ãn=

{
α, if n≤0,
0, if n≥1,

(4.17)

with α=
√

ω
2 . This is a special case of the configuration of solution (3.3). The spectral

results below are the same for the general case.
For ω fixed, let Bn, n∈Z, be a solution of Theorem 3.1 and let

An= Ãn+Bn, n∈Z. (4.18)
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Let L∞,δ =JH, with JH as in equation (4.4), L−, L+ as in equation (4.5), A, M as

in equations (4.6) and (4.7) with An as in equation (4.18), Ãn as in equation (4.17),
∀n∈Z. Operator L∞,δ is therefore the formal linearization around the shelf solution of
Theorem 3.1.

Also let L=JH, with JH as in equation (4.4), with L−, L+ as in equation (4.5),
and

A(n,k)=A0(n,k)= Ã2
nδn,k, M(n,k)=M0(n,k)= Ã2

nδn,k, (4.19)

where Ãn is as in equation (4.17).

Proposition 4.4. The operator L∞,δ is a compact perturbation of L, and therefore
σe(L∞,δ)=σe(L) in Y .

The prove the statement it is enough to show that A−A0, M−M0 are Hilbert–
Schmidt. The proof of this fact is a simplified version of the proof of Lemma 4.5 for the
nonlocal problem below, and is omitted.

To calculate the essential spectrum of L we study the equation (L−λ)z=0, z=
[q,p]T , with zn=[qn,pn]

T as a discrete dynamical system. The (spectral) parameter λ

varies over C. By the definition of L, with A, M of equation (4.19), and Ã of equation
(4.17) we have that Lz=λz is equivalent to

−δ(pn+1+pn−1−2pn)=λqn, −2ωqn+δ(qn+1+qn−1−2qn)=λpn, n≤0; (4.20)

−ωpn−δ(pn+1+pn−1−2pn)=λqn, ωqn+δ(qn+1+qn−1−2qn)=λpn, n≥1. (4.21)

Finite difference equation (4.20), (4.21) is furthermore equivalent to a first order
system yn+1=F(yn) for a sequence of vectors yn=[yn(1), . . . ,yn(4)]

T ∈C4, n∈Z. This
formulation uses the identification

[yn(1),yn(2),yn(3),yn(4)]
T =[qn−1,qn,pn−1,pn]

T . (4.22)

By equation (4.22), n≤0, equation (4.20) is then equivalent to

yn+1=M−(λ)yn, n≤0, with M−(λ)=

⎡⎢⎢⎣
0 1 0 0
−1 2ω

δ +2 0 λ
δ

0 0 0 1
0 −λ

δ −1 2

⎤⎥⎥⎦ . (4.23)

Similarly by equation (4.22), n≥1, equation (4.21) is equivalent to

yn+1=M+(λ)yn, n≥1, with M+(λ)=

⎡⎢⎢⎣
0 1 0 0
−1 −ω

δ +2 0 λ
δ

0 0 0 1
0 −λ

δ −1 −ω
δ +2

⎤⎥⎥⎦ . (4.24)

Equations (4.23) and (4.24) define a piecewise linear discrete-time dynamical system
that may be written as yn+1=M(λ)yn, where M(λ)=M−(λ) if n≤0, and M(λ)=
M+(λ) if n≥1.

Proposition 4.5. Given any m∈Z, a∈C4, there exists a unique yn, n∈Z, satisfying
equations (4.23) and (4.24) and ym=a.
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Proof. We check first that the M±(λ) are invertible, ∀λ∈C. By equations (4.23)
and (4.24)

P−(r;λ)=det(M−(λ)−rI)= [(r−1)2−2r
ω

δ
](r−1)2+r2

λ2

δ2
, (4.25)

P+(r;λ)=det(M+(λ)−rI)= [−r(2− ω

δ
−r)+1]2+r2

λ2

δ2
. (4.26)

We see that P±(r,λ)=0, r=0 leads to a contradiction, ∀λ∈C. Thus the M±(λ) are
invertible, ∀λ∈C. This fact allows us to iterate conditions (4.23) and (4.24) backwards
as well, writing

[M−(λ)]−1yn+1=yn, n≤0, (4.27)

[M+(λ)]
−1yn+1=yn, n≥1. (4.28)

We can thus iterate both forwards and backwards in each segment. We check that
equations (4.23), (4.24), (4.27), and (4.28) allow us to cross the interface separating the
M±(λ) segments in a unique way, in either direction.

We examine the dynamics of each of the systems (4.23) and (4.24), particularly its
dependence on the parameter λ. In both cases we can start with some y1 and consider
the iteration backwards, and forwards respectively. Since each system is linear this
amounts to a spectral analysis of the matrices M±(λ). The results of this analysis
are then interpreted in operator-analytic terms for the resolvent equation (L−λ)z=f ,
f =[g,h]T ∈X×X⊂Yc.

Consider a linear system xn+1=Txn in C
N , where T an invertible N×N matrix,

and n belongs to a set of indices J that is either Z, or the set of all integers above
or below some m∈Z. The system is hyperbolic if there exist subspaces Es, Eu of CN ,
dim(Es)+dim(Eu)=N that are invariant under T , and for which there exist C>0,
�>1 such that

||TnP sv||CN ≤C�−n||P sv||CN , ||T−nPuv||CN ≤C�−n||Puv||CN , ∀n∈J , (4.29)

where P s, Pu are respective projections to Es, Eu (and commute with T ). The sub-
spaces Es, Eu are referred to as stable and unstable subspaces respectively. Hyperbol-
icity can be often verified by calculating the eigenvalues of T . The dimensions of Es,
Eu are determined be the multiplicities of eigenvalues inside and outside the unit circle
respectively.

In the present problem hyperbolicity will be examined for each of the systems (4.23)
and (4.24). The corresponding stable and unstable subspaces will be denoted by Es

±,
Eu

±. Note that the Es
−, E

u
− for system (4.23) refer to the forward iteration of M−(λ).

Lemmas 4.2, 4.3 connect the analysis of the eigenvalues of the M±(λ) to the of
spectrum of L. The proofs are at the end of the subsection.

Lemma 4.2. Let λ∈C be such that the systems (4.23) and (4.24) defined by M−(λ),
M+(λ) respectively are both hyperbolic, with dim(Eu

−)+dim(Es
+)=N , Eu

−∩Es
+={0}.

Then λ belongs to the residual set of L in Y .

Lemma 4.3. Let λ∈C, and suppose that one of M−(λ), M+(λ) has a semisimple
eigenvalue on the unit circle. Then λ belongs to the essential spectrum of L in Y .
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Define the sets

B1=

{
−(ω−4δsin2

k

2
)2 : k∈R)

}
, (4.30)

B2=

{
−4δsin2 k

2
(2ω+4δsin2

k

2
) : k∈R)

}
. (4.31)

We will further assume that B1, B2 are disjoint. By definitions (4.30) and (4.31)
this property is clearly satisfied for |δ| sufficiently small.

Lemma 4.4. Let λ∈C. If λ2 /∈B1∪B2 then λ either belongs to the residual set of
L :Y →Y , or is an eigenvalue of L of finite multiplicity.

Theorem 4.1. The essential spectrum of the operators L and L∞,κ in Y consists of
the set of λ∈C satisfying λ2∈B1∪B2.

The case λ2∈B1 yields two intervals of λ on the imaginary axis, and coincides with
the essential spectrum of the linearization around breathers that decay at infinity, as in
Proposition 4.1 (its proof is completed below).

The case λ2∈B2 yields two intervals that are both on either the imaginary or the

real axis, depending on δ and ω. For instance, for |δ|< |ω|
2 we have stability for δω>0,

and instability for δω<0. In both cases zero is one the endpoints of the intervals, and
is included in σe(L).

Proof. (Proof of Lemma 4.4.) The eigenvalues of M±(λ) are the roots of the
polynomials det(M±(λ)−rI))=P±(r;λ), shown in equations (4.25) and (4.26).

We can rewrite P−(r;λ)=0 as

λ2= δ(r+r−1−2)[2ω−δ(r+r−1−2)]. (4.32)

If a root r is on the unit circle, i.e. r= eik for some real k, then λ2 must belong to B1.
Moreover the roots of P− come in pairs r, r−1. If λ2 /∈B1 we therefore have two roots
inside and two roots outside the unit circle. The system defined by M−(λ) is hyperbolic,
and dim(Es

−)=dim(Eu
−)=2.

Analogously, P+(r;λ)=0 can be written as

λ2=−[δ2(r+r−1)2+(ω−2δ)2+2δ(r+r−1)]. (4.33)

It follows that if r= eik for some real k, then λ2 must belong to B2. Similarly, since
the roots of P+ come in pairs r, r−1, if λ2 /∈B2 then the system defined by M+(λ) is
hyperbolic, and dim(Es

+)=dim(Eu
+)=2.

Therefore λ2 /∈B1∪B2 implies dim(Eu
−)+dim(Es

+)=4. If in addition Eu
−∩Es

+=
{0}, Lemma 4.2 implies that λ is in the residual set of L. If otherwise Eu

−=Es
+ then

(L−λ)z=0 has exponentially decaying solutions and is therefore an eigenvalue of L.
The set of these solutions is clearly two-dimensional.

Proof. (Proof of Theorem 4.1.) By the calculation in the proof of Lemma 4.4, if
λ2 belongs to B1∪B2 then either M−(λ) or M+(λ) has an eigenvalue of the form r= eik

for some real k. By Lemma 4.3 then λ belongs to the essential spectrum of L. If, on
the other hand, λ2 /∈B1∪B2, Lemma 4.4 implies that λ can not belong to σe(L).

Proof. (Proof of Proposition 4.1, Part (ii).) Solving JH0u=λu explicitly i.e.
using un= eikn, σe(JH0) is as in the statement by Lemma 4.3. The result coincides
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with the part of the essential spectrum of L that comes from the set B1 of definition
(4.30).

We now prove Lemmas 4.2, and 4.3.

Proof. (Proof of Lemma 4.2.) The resolvent equation (L−λ)z=f , z=[p,q]T ,
f =[g,h]T in X×X⊂Yc is equivalent to

L−p=λq+g, −L+q=λp+h, (4.34)

and can be also written in the dynamical system form

yn+1=Myn+Fn, with Fn=[0,hn,0,−gn]T , (4.35)

where M =M−(λ) if n≤0, M =M+(λ) if n≥1. The solution of equation (4.35) is
obtained by iterating forwards or backwards in time. We will examine forward iterates,
from n=1 to n>1 arbitrarily large, similar considerations apply to backward iterates
from n=1.

By equation (4.35) the solution for n≥1 is

yn+1=Mny1+

n−1∑
j=1

M jFn−j , with M =M+(λ). (4.36)

Using the assumption of hyperbolicity, we can use projections P s, Pu to the stable and
unstable subspaces respectively to write equation (4.36) as

yn+1=MnP sy1+

n−1∑
j=1

M jP sFn−j+MnPuy1+

n−1∑
j=1

M jPuFn−j , ∀n>1. (4.37)

We first claim that if [g,h]T belongs to Xc×Xc then the first two terms in the right
hand side of equation (4.37) belong to X4

c,+=Xc,+×Xc,+×Xc,+×Xc,+, where Xc,+ is
the space of configurations in Xc that vanish for n≤0.

The claim is immediate for the first term, since ||MnP sy1||C4 decays exponentialy
in n by the hyperbolicity assumption, see inequality (4.29). Denote the second term by
Gn, then by equation (4.37)

Gn=

n−1∑
j=1

M jP sFn−j =

n∑
k=1

Mn−kP sFk, (4.38)

therefore by the hyperbolicity assumption, see inequality (4.29),

||Gn||C4 ≤C

n∑
k=1

ρ
−|n−k|
2 ||Fk||C4 ≤C

∞∑
k=1

ρ
|n−k|
2 ||Fk||C4 , (4.39)

for some C>0, and ρ2>1. Note that [g,h]T ∈Xc×Xc implies F ∈X4
c . Let f̃k= ||Fk||C4

for k≥1, f̃k=0 for k≤0, and define

g̃n=C
∑
k∈Z

ρ
−|n−k|
2 f̃k, n∈Z. (4.40)
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Then g̃n≤||Gn||C4 for all n≥1, and by inequality (4.39), and Young’s inequality (3.12),

∞∑
n=1

||Gn||2C4 ≤||g̃||2l2 ≤C2||ρ−|·|
2 ||2l1 ||f̃ ||2l2 =C2||ρ−|·|

2 ||2l1 ||F ||2X4
c
. (4.41)

Thus the second term of the right hand side of equation (4.37) belongs to X4
c,+, as

claimed.
Consider the third and fourth terms in the right hand side of equation (4.37). They

can be written as MnBn with

Bn=Puy1+

n−1∑
j=1

M−(n−j)PuFn−j , (4.42)

where M−p=(M−1)p if p a positive integer. To have the sequence of yn of equation
(4.37) in X4

c,+ we need that Bn→0 as n→∞. By equation (4.42) we therefore need
Puy1= b+, with

b+=− lim
n→∞

n−1∑
j=1

M−(n−j)PuFn−j . (4.43)

We will check below that the limit exists, and that the solution of equation (4.36), n≥1,
obtained for such y1 belongs to X4

c,+.
To show that the limit in equation (4.43) exists we must check that

In=

n−1∑
j=0

M−(n−j)PuFn−j =

n∑
k=1

M−kFk (4.44)

converges. For n>m we have

||In−Im||C4 ≤
n∑

k=m+1

||M−kPuFk||C4 ≤C

n∑
k=m+1

ρk2 ||Fk||C4 (4.45)

for some ρ2<1, C>0, by the hyperbolicity assumption. Then

||In−Im||C4 ≤C(

n∑
k=m+1

ρ2k2 )
1
2 ||F ||X4 ≤Cρm−1

2 Cρ2 ||F ||X4
c
, (4.46)

where Cρ2
is independent of n, m. Thus In converges as n→∞, and b+ in equation

(4.43) is well defined.
To check that the sum Jn of the third and fourth terms in the right hand side of

equation (4.37) obtained by choosing y1 as above belongs to X4
+, we note that for n≥1,

Jn=Mn[ lim
k→∞

k−1∑
j=0

M−(k−j)PuFk−j−
n−1∑
j=0

M−(n−j)PuFk−j ] (4.47)

=Mn[

+∞∑
l=1

M−lPuFl−
n∑

l=1

M−lPuFl] (4.48)
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=

+∞∑
l=n+1

M−(l−n)PuFl (4.49)

=

+∞∑
k=1

M−kPuFk+n. (4.50)

Then

||Jn||C4 ≤
+∞∑
k=1

||M−kPuFk+n||C4 ≤C

+∞∑
k=1

ρ−k
3 ||Fk+n||C4 , (4.51)

with ρ3>1, C>0, using the hyperbolicity assumption. Therefore

||Jn||C4 ≤C

l=−1∑
−∞

ρl3||Fn−l||C4 , ∀n≥1. (4.52)

Letting αl=ρ
−|l|
3 if l≤−1, αl=0 if l≥0, and βm= ||Fm||C4 if m≥1, βm=0 if m≤0,

we then have that ζ̃n, given by

ζ̃n=C
∑
l∈Z

αlβn−l (4.53)

is well defined for all n∈Z, and satisfies ζ̃n= ||Jn||C4 . We then have

+∞∑
n=1

||Jn||2C4 ≤||ζ̃||2l2 ≤C||ρ−|·|
3 ||2l1 ||F ||2X4

c
(4.54)

by Young’s inequality (3.12). The left hand side is then finite, as required.
By equation (4.43), the existence of the limit implies b+∈Eu

+. Then Puy1= b+
implies that y1= b++vs+, where vs+ is an arbitrary element of Es

+.
Similar arguments apply for the backwards solution of equation (4.36), starting

from y1, and iterating backwards for n≤1. We show that the projection to Eu
− leads

to a part of the solution that belongs to X4
c,− (where Xc,− consists of sequences in Xc

that vanish for n>0), while projection to Es
− leads to a term that can only decay if y1

satisfies y1= b−+vu−, with b−∈Es
− unique, and vu− an arbitrary element of Eu

−.
Thus the two restrictions on y1 imply that it belongs to two affine subspaces b++Es

+,
b−+Eu

−. By the hypothesis on Es
+, E

u
−, their intersection exists and is unique.

It is also easy to check that the solution [p,q]T of equation (4.34) obtained by gluing
the forward and backward solution of equation (4.35) belongs to Xc×Xc if and only if
the forward and backward solution of equation (4.35) belong to X4

c,+, X
4
c,− respectively.

Proof. (Proof of Lemma 4.3.) We will assume that M+(λ) has a semisimple
eigenvalue rc on the unit circle, the other case is treated similarly. Fix an integer m>4,
and N =2m+1. Let z̃Nn , n∈Z satisfy z̃Nn =0, for all n≤0, n>N ,and z̃n+1=M+z̃n, for
all 1≤n≤N , with z̃N1 ∈E+(rc), the corresponding invariant subspace of yn+1=M+yn.

By equations (4.20) and (4.21) we have that [(L−λ)z̃N ]n=0 for all n, except n=0,
1, N , and N+1. Also y1∈E+(rc) implies that ||yn+1||C4 = ||yn||C4 , ∀n≥1. Then

|q2|2+ |p2|2= |q2p|2+ |p2p|2, |q1|2+ |p1|2= |q2p+1|2+ |p2p+1|2, ∀p≥1. (4.55)
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Letting |q1|2+ |p1|2=R2
1, |q2|2+ |p2|2=R2

2, we calculate

||z̃N ||2Yc
=(m+1)R2

1+mR2
2, (4.56)

and

|[(L−λ)z̃N ]N |≤3(|ω+2|2+ |λ|2)R2
1+3δ2R2

2, [(L−λ)z̃N ]N+1= δ2R2
1, (4.57)

furthermore

[(L−λ)z̃N ]0=[(L−λ)z̃N ]N+1, [(L−λ)z̃N ]1=[(L−λ)z̃N ]N . (4.58)

Letting ũN = ||z̃N ||−1
Yc

z̃N we therefore have

||(L−λ)ũN ||Yc ≤
C

N
, (4.59)

with C depending on R1, R2, δ, ω, and λ. We therefore have a sequence of ũN , N >9,
that belongs to Ker⊥(L−λ) and satisfies

||ũN ||Yc
=1, ∀N >0, and ||(L−λ)ũN ||Yc

→0 as N→∞. (4.60)

Then L−λ, restricted to Ker⊥(L−λ), can not have a closed range, this would imply
the existence of a bounded inverse, contradicting property (4.60). Thus L−λ can not
be Fredholm.

4.3. Essential spectrum of linearization around shelf-type breather: non-
local case. We now examine the linearization around the solutions of Theorem 3.2
for the nonlocal case. We only analyze the essential spectrum. As in the local case we
will compute the essential spectrum of a simpler operator that is a compact perturba-
tion of the operator we are interested in. This simpler operator is also nonlocal, and
we do not have a ready analogy with dynamical systems. This difference also yields a
weaker result for the essential spectra of nonlocal cases, see Theorem 4.2.

To simplify the notation we will consider solutions obtained by continuation of the
δ=0 (finite κ) breather

Ãn=

⎧⎨⎩
α, if n<0
α√
1−ρ

, if n=0

0, if n>0,

(4.61)

with α=
√
− ω

2γ , ρ= e−κ. This is a special case of the configuration of solution (3.9).

For ω, κ fixed, let Bn, n∈Z, be a solution of Theorem 3.2 and let

An= Ãn+Bn, n∈Z, (4.62)

with Ã as in equation (4.61).
Let Lκ,δ =JH, with JH as in equation (4.4), L−, L+ as in equation (4.5), A, M

as in equations (4.6) and (4.7), with An as in definition (4.62). Operator Lκ,δ =JH is
the linearization around the shelf-type solution of Theorem 3.2.

To calculate the essential spectrum of Lκ,δ we will use its perturbation L2, defined
by L2=JH, where JH is as in equation (4.4) with L−, L+ as in equation (4.5), and A,
M given by

A(n,k)=A2(n,k)=tanh
κ

2
A2

nδn,k, M(n,k)=M2(n,k)=tanh
κ

2
AnAme−κ|m−n|δn,k,

(4.63)
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for all k, n∈Z, where An, n∈Z, is as in equation (4.17), i.e. An is the shelf solution of
the local problem with δ=0. We also define the operators A1, M1 by

A1(n,k)=tanh
κ

2
Ã2

nδn,k, M1(n,k)=tanh
κ

2
ÃnÃme−κ|m−n|δn,k, (4.64)

for all k, n∈Z, where Ãn is as in equation (4.61). We easily see that A1−A2,M1−M2

are compact. For instance,

(M1−M2)(0,n)=(M1−M)(n,0)=tanh
κ

2
α2((1−ρ)−1−1)e−κ|n−1|, ∀n≤0, (4.65)

while all other entries of M1−M2 vanish. It easily follows that M1−M2 is Hilbert–
Schmidt.

Lemma 4.5. The operator Lκ,δ :Y →Y is a compact perturbation of the operator
L2 :Y →Y .

Proof. To show that Lκ,δ−L̃ is compact it is enough to show that A−A2, and
M−M2 are compact.

The (squared) Hilbert–Schmidt norm of T =A−A2 is

∑
n∈Z

|T ên|2=
∑
n∈Z

∣∣∣∣∣tanh κ

2

∑
m∈Z

eκ|m−n||Ãm+Bm|2−A
2

n

∣∣∣∣∣
2

, (4.66)

where An=
α
2 , if n≤0, An=0, if n>0. Using the equation (3.6) satisfied by Ã, equation

(4.66) becomes

∑
n∈Z

|T ên|2=
∑
n∈Z

2

∣∣∣∣∣tanh2 κ2 2∑
m∈Z

eκ|m−n||ÃmBm|+
∑
m∈Z

eκ|m−n||Bm|2
∣∣∣∣∣
2

(4.67)

≤2|tanh2 κ
2

[
2

(
α

1−ρ

)2

||e−κ|·| ∗|B|||2l2 + ||e−κ|·| ∗|B|2||2l2
]
, (4.68)

where |B|n= |Bn|, (|B|2)n= |Bn|2, ∀n∈Z. We have also used |Ãn|≤ α
1−ρ , ∀n∈Z. The

two terms of equation (4.68) are finite by Young’s inequality, and the fact that B∈ l2.
Thus T is Hilbert–Schmidt. Since M1−M2 is a Hilbert–Schmidt, it is sufficient to
show that M−M1 is compact. The (squared) Hilbert–Schmidt norm of S=M−M1

is ∑
n∈Z

|Sên|2=
∑
n∈Z

∑
m∈Z

|tanh κ

2
e−κ|m−n|(Ãm+Bm)(Ãn+Bn)−tanh

κ

2
ÃmÃn|2 (4.69)

≤3tanh2
κ

2

∑
n∈Z

∑
m∈Z

(
2|e−κ|m−n|ÃnBm|2+ |e−κ|m−n|BnBm|2

)
(4.70)

≤3|tanh2 κ
2

[
2

(
α

1−ρ

)2

||e−κ|·| ∗|B|||2l2 + ||e−κ|·|||2l2 ||B||2l2
]
, (4.71)

using also |Ãn|≤ α
1−ρ , ∀n∈Z. The first term in the right-hand side of inequality (4.71)

is finite by Young’s inequality, and the fact that B∈ l2. Thus S is also Hilbert–Schmidt.
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Let B1 be as in (4.30). Also for κ>0, ρ= e−κ, define the set B2,κ by

B2,κ=

{
−4δsin2 k

2

(
2ω

1−ρ2

1−2ρcosk+ρ2
+4δsin2

k

2

)
: k∈R)

}
. (4.72)

Theorem 4.2. The essential spectrum of the operators L2 and Lδ,κ in Y includes the
set of λ∈C satisfying λ2∈B1∪B2,κ.

The two scenarios are suggested by the numerical results of [1], Figures 3, 4. These
show calculations with finite shelf-type breathers with support of about m=40 sites
(in the limit δ=0), but we start to see the accumulation of eigenvalues in the regions
indicated by λ2∈B1∪B2,κ.

Proof. By Lemma 4.5 it is enough to examine the essential spectrum of L2.
We compute approximate eigenfunctions of L2, using the constant coefficient operators
Ll, Lr in X×X defined in the following way. Consider operators A0, M , h in X
with entries in the standard basis M(n,m)= e−κ|n−m|, A0(n,m)= ω

2 δn,m, n, m∈Z. Let
h(n,m)= δn,m if n, m≥0, h(n,m)=0 otherwise. Then let

Ll=

[
0 −ωI−δΔ+2A0

ωI+δΔ−2A0−2ωM 0

]
, Lr=

[
0 −ωI−δΔ

ωI+δΔ 0

]
. (4.73)

In comparison, the definition of L2 implies

L2=

[
0 −ωI−δΔ+2hA0

ωI+δΔ−2hA0−2ωhM 0

]
. (4.74)

Let k∈R, and consider zk ∈ l∞(Z,C) of the form

zkn=[ane
ikn+a∗ne

−ikn,bne
ikn+b∗ne

−ikn]T . (4.75)

Then

Lrz
k=λzk, ∀k∈Z, (4.76)

implies

λ2=−(ω−4δsin2
k

2
)2. (4.77)

Also,

Llz
k=λzk, ∀k∈Z, (4.78)

implies

λ2=−4δsin2 k
2

(
2ω

1−ρ2

1−2ρcosk+ρ2
+4δsin2

k

2

)
. (4.79)

Let k∈R, and λ2=λ2(k) as in equation (4.77). For μ≥5 integer, define vμ∈Xc×Xc

by

vμ(n)=

{ 1√
2μ

eikn[1,1]T , if n∈{1, . . . ,μ}
0, if n∈Z\{1, . . . ,μ}. (4.80)
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Then ||vμ||Yc =1, ∀μ≥5. Note also that A0vμ=0, and Mvμ=0, ∀μ≥5. Letting
[qμ,pμ]

T =vμ, and using equation (4.74) we then have that

||(L2−λ)vm||2Yc
=
∑
n∈Z

(
|[(−ωI−δΔ)pμ−λqμ]n|2+ |[(ωI+δΔ)qμ−λpμ]n|2

)
. (4.81)

By equations (4.76) and (4.77) the only nonvanishing terms in the sum (4.81) are the
ones corresponding to the four indices n=0, 1, μ, μ+1. This holds for any μ≥5. Each
term is proportional to μ−1, and we easily see that

||L2vμ−λvm||2Yc
≤ 4

μ
(2|ω|+7|δ|)2→0, as μ→∞. (4.82)

Thus λ(k), with λ2 as in equation (4.77), belongs to the essential spectrum of L2.
Varying k over R we have that all λ2∈B1 belong to σess(L2).

Let k∈R, and λ2=λ2(k) as in equation (4.79). For μ≥5 integer, define wμ∈
Xc×Xc by

wμ(n)=

{
1√

2(μ+1)
eikn[1,1]T , if n∈{−μ,...,0}
0, if n∈Z\{−μ,...,0}

(4.83)

We have ||wμ||Yc
=1, ∀μ≥5.

We examine first the components (L2wμ−λwμ)n, with n>0. We have (A0wμ)n=0,
and (Mwμ)n=0, ∀n>0. Letting [qμ,pμ]

T =wμ, (Δqμ)n, (Δpμ)n vanish for all n>1.
We then compute

∞∑
n=1

(
|[(−ωI−δΔ+2hA0)pμ−λqμ]n|2+

+|[(ωI+δΔ−2hA0−2ωhM)qμ−λpμ]n|2
)
=

1

μ+1
, (4.84)

for any μ≥5.
Examining the components (L̃wμ−λwμ)n with n≤0, we have that by equations

(4.78) and (4.79)

[(−ωI−δΔ+2hA0)pμ−λqμ]n=0, ∀n∈{−μ+1, . . . ,−1}, and ∀n≤−μ−2. (4.85)

For n=0, −μ, −μ−1 these terms are proportional to (μ+1)−1/2, and we compute

0∑
n=−∞

∣∣[(−ωI−δΔ+2hA0)pμ−λqμ]n
∣∣2≤ 1

μ+1
[(3|δ|+ |λ|)2+1] (4.86)

≤ 1

μ+1

[
2|δ|2+4|δ|

(
2|ω|
1−ρ

+4|δ|
)
+1

]
, (4.87)

where |λ|2 was bounded using equation (4.79). The above holds for any μ≥5.
By n≤0 and the definition of hA0 we also have

[(ωI+δΔ−2hA0−2ωhM)qμ−λpμ]n=[(δΔ−2ωhM)qμ−λpμ]n. (4.88)

Consider n=−μ−r, r≥2. Then [Δqμ]n=λpμ=0. Also

[hMqμ]n=
1√

2(μ+1)

∑
m∈{−μ,...,0}

ρ|−μ−r−m|eikm (4.89)
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=
1√

2(μ+1)
ρrρμ

∑
m∈{−μ,...,0}

ρmeikm

=
1√

2(μ+1)
ρr−1 ρ

μ+1−e−i(μ+1)k

1−ρ
. (4.90)

By equations (4.88) and (4.90) we have

−μ−2∑
n=−∞

|[(ωI+δΔ−2hA0−2ωhM)qμ−λpμ]n|2=
−μ−2∑
n=−∞

|2ωhMqμ]n|2 (4.91)

=

∞∑
r=2

2ω2ρ2(r−1)

(μ+1)

(ρμ+1−e−i(μ+1)k)2

(1−ρ)2

=
2ω2(ρμ+1−e−i(μ+1)k)2ρ2

(μ+1)(1−ρ)2(1−ρ2)
, (4.92)

for any μ≥5.
For n=−μ−1, we can use equation (4.90) with r=1. We have

[−2ωhM)qμ]−μ−1=−2ω
1√

2(μ+1)

ρμ+1−e−i(μ+1)k

1−ρ
, (4.93)

and therefore

|[(ωI+δΔ−2hA0−2ωhM)qμ−λpμ]−μ−1|2=
1

2(μ+1)

(
2|ω|

∣∣∣∣ρμ+1−e−i(μ+1)k

1−ρ

∣∣∣∣+ |δ|) ,
(4.94)

for any μ≥5.
We now consider n∈{−μ+1, . . . ,1}. To estimate

Tn=[(ωI+δΔ−2hA0−2ωhM)qμ−λpμ]n=[(δΔ−2ωhM)qμ−λpμ]n, (4.95)

we use the fact that wμ satisfies equation (4.78), that is

[(δΔ−2ωM)qμ−λpμ]n=0, ∀n∈{−μ+1, . . . ,1}, (4.96)

and equation (4.95) to write

Tn=[−2ω(hM−M)qμ]n, ∀n∈{−μ+1, . . . ,1}. (4.97)

By the definitions of h, and M we have

[hMqμ]n=(2μ+2)−1/2
∑

m∈{−μ,...,0}
ρ|m−n|eikn (4.98)

=(2μ+2)−1/2

⎛⎝ ∑
m∈{n,...,0}

ρm−neikn+
∑

m∈{−μ,...,n−1}
ρn−meikn

⎞⎠ (4.99)

=(2μ+2)−1/2

(
0∑

m=n

ρm−neik(m−n)+
n−1∑

m=−μ

ρn−me−ik(n−m)

)
eikn(4.100)

=(2μ+2)−1/2

⎛⎝ |n|∑
λ=0

ρλeikλ+

μ−|n|∑
λ=1

ρλe−ikλ

⎞⎠eikn, (4.101)
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and

[Mqμ]n=(2μ+2)−1/2

( ∞∑
λ=0

ρλeikλ+
∞∑
λ=1

ρλe−ikλ

)
eikn. (4.102)

By equations (4.97), (4.101), and (4.102) we then have

Tn=
2ω√

2(μ+1)

⎛⎝ ∞∑
λ=|n|+1

ρλeikλ+

∞∑
λ=|μ|−|n|+1

ρλe−ikλ

⎞⎠eikn (4.103)

=
2ω√

2(μ+1)

(
ρ|n|+1eik(|n|+1)

1−ρeik
+

ρμ−|n|+1e−ik(μ−|n|+1)

1−ρe−ik

)
eikn. (4.104)

Then

1∑
n=−μ+1

|Tn|2=
2ω

μ+1

1∑
n=−μ+1

(
ρ2(|n|+1)

|1−ρeik|2 +
ρ2(μ−|n|+1)

|1−ρe−ik|2 +2Re
ρμ+2eik(μ+2)

(1−ρeik)(1−ρe−ik)

)
.

(4.105)
The squared modulus terms are bounded by geometric series, e.g.

|1−ρeik|−2
∑

n∈{−μ+1,...,1}
ρ2(|n|+1)≤ 1

(1−ρ)2
1

1−ρ2
, (4.106)

similarly for the second term. The sum of cross terms is bounded as∑
n∈{−μ+1,...,1}

2Re(ρμ+2)eik(μ+2)(1−ρeik)−1(1−ρe−ik)−1≤ 2(μ−1)ρμ+2

(1−ρ)2
. (4.107)

Then equation (4.105) yields∑
n∈{−μ+1,...,1}

|Tn|2≤
2ω

μ+1

[
2

1−ρ2
+2(μ−1)ρμ+2 1

(1−ρ)2

]
. (4.108)

This holds for all μ≥5.
We finally consider the two sites n=−μ, and n=0. At n=−μ we have

[hMqμ]−μ=
1√

2(μ+1)

∑
m∈{−μ,...,0}

ρ|−μ−m|eikm (4.109)

=
1√

2(μ+1)
e−ikμ 1−(ρeik)μ+1

1−ρeik
, (4.110)

therefore

|[(δΔ−2ωhM)qμ−λpμ]−μ|2≤
1

2(μ+1)

(
3|δ|+ |λ|+2|ω| 1

1−ρ

)
, (4.111)

with |λ| bounded in terms of |δ|, |ω| as in inequality (4.86). At n=0, [hMqμ]0 is similarly

[hMqμ]0=
1√

2(μ+1)

∑
m∈{−μ,...,0}

ρ|−m|eikm=
1√

2(μ+1)

1−(ρe−ik)μ+1

1−ρe−ik
, (4.112)
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and

|[(δΔ−2ωhM)qμ−λpμ]0|2≤
1

2(μ+1)

(
3|δ|+ |λ|+2|ω| 1

1−ρ

)
, (4.113)

with |λ| bounded in terms of |δ|, |ω| as in inequality (4.86). As before, inequalities
(4.111) and (4.113) are valid for any μ≥5.

Collecting the results (4.84), (4.86), (4.94), (4.108), (4.111), and (4.113) we see that
there exists a C that depends on |ω|, |δ|,and κ for which

||L2μ−λwm||2Yc
≤ C

μ+1
→0, as μ→∞, (4.114)

thus λ(k), λ2 as in (4.79), belongs to the essential spectrum of L2. Varying over k∈R
we have that all λ2∈B2,κ belong to σess(L2).
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