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APPROXIMATE LINEAR RELATIONS FOR BESSEL FUNCTIONS∗

GANG PANG† AND SHAOQIANG TANG‡

Abstract. In this study, we reveal an approximate linear relation for Bessel functions of the first
kind, based on asymptotic analyses. A set of coefficients are calculated from a linear algebraic system.
For any given error tolerance, a Bessel function of an order big enough is approximated by a linear
combination of those with neighboring orders using these coefficients. This naturally leads to a class
of ALmost EXact (ALEX) boundary conditions in atomic and multiscale simulations.
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1. Introduction

Bessel functions are a class of important special functions that arise in the study
of mathematical physics [1–3]. For instance, the Laplace equation under cylindrical or
spherical coordinates naturally leads to the Bessel functions as the component in the
radial dimension.

In recent developments of atomic simulations for crystalline solids, Bessel func-
tions serve as the kernel functions for one-way wave propagation. This evokes great
interest in exploring the Bessel functions, which are key to the design of effective and
accurate boundary conditions for atomic or multiscale simulations [4–7]. Furthermore,
these functions also appear as the major part of kernel functions in a semi-discretized
Schrödinger equation [8], and a semi-discretized Euler–Bernoulli beam equation [9].
For more discussions on boundary treatments of the Schrödinger equation, please refer
to [10–12].

As is well-known, Bessel functions are linearly independent. No Bessel function
of the first kind can be expressed as a linear combination of other Bessel functions
of the first kind. However, we discover through asymptotic expansions that up to an
arbitrarily small tolerance level, a Bessel function of the first kind with the order big
enough, may be approximated by a linear combination of some other such functions.
This yields accurate boundary conditions for the aforementioned applications, which
are called ALmost EXact (ALEX) boundary conditions [8, 9].

In the rest of this paper, we shall first present the main theorem, and the proof
using some lemmas in Section 2. Then in Sections 3 through 6, we shall prove the
lemmas. In Section 7, we shall illustrate the high accuracy by numerical tests with the
resulting ALEX boundary condition for a harmonic chain.

2. Main results

A Bessel function of the first kind Jn(t) solves the following ordinary differential
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equation.

u
′′

+
1

t
u′+

(
1− n

2

t2

)
u= 0. (2.1)

Its series expansion reads

Jn(t) =

+∞∑
k=0

(−1)k

k!(n+k)!

(
t

2

)2k+n

. (2.2)

The Bessel functions are linearly independent, namely, if a linear combination of
any finitely many Jn(t)’s is zero, then all coefficients must be identically zero. This
excludes the possibility of expressing a Jn(t) by a linear combination of finitely many
other Bessel functions of the first kind. However, if an arbitrarily small error tolerance
is allowed, we may prove that such linear combinations exist.

Consider a set of numbers ãk (1≤k≤L) with L≥4 satisfying the condition

L∑
k=1

ãkk
l= δl,0, 0≤ l≤3. (2.3)

The main theorem for an approximate linear relation among Bessel functions is as
follows.

Theorem 2.1. With ãk (1≤k≤L) satisfying condition (2.3), for any given small
ε>0, there exists an integer N , such that for any n>N and t∈ [0,+∞), it holds that∣∣∣∣∣

L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣< ε

n
1
3

. (2.4)

The proof is based on analysis over several intervals, which comprise the whole
positive semi-axis for the temporal domain of the Bessel functions. To describe the
decomposition of such intervals, we start with the following lemma.

Lemma 2.1. For any small ε>0 and n>

[
1

ε3

]
+1, the equation

ei
π
3

J 1
3

(−it)
J− 1

3
(−it)

= 6
1
3

Γ

(
2

3

)
Γ

(
1

3

) · n 1
3 Jn(n)−ε
n

2
3 J ′n(n)

(2.5)

has a real positive root tn,ε which is bounded from above by tε, the root to

ei
π
3

J 1
3

(−it)
J− 1

3
(−it)

= 1−
√

3π

6
1
3 Γ

(
1

3

)ε. (2.6)

Here [·] denotes the integer part. The function on the left hand side of equation
(2.5) is a real-valued function, and plotted in Figure 2.1. This lemma will be proved in
Section 3.

We introduceG∗(ε) =−1

2
(3tε)

2
3 . For a small ε>0 and given integer n>

[
1

ε3

]
+1, we

refer to [0,n−|G∗(ε)|n 1
3 ] as a precursory zone, [n−|G∗(ε)|n 1

3 ,n+ |G∗(ε)|n 1
3 ] as a major
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Fig. 2.2. Schematic plot for a Bessel function and different zones.

zone, [n+ |G∗(ε)|n 1
3 ,n+n

1
2 ] as a transitional zone, and [n+n

1
2 ,+∞) as an asymptotic

zone. See Figure 2.2.
The asymptotic behaviors for the Bessel functions are stated as follows.

Lemma 2.2. For any ε>0, there exists an integer N such that, for n≥N and

t∈
[
0,n−|G∗(ε)|n 1

3

]
, it holds that 0≤Jn(t)≤ ε

n
1
3

.

Lemma 2.3. Let a set of numbers ãk (1≤k≤L) satisfy condition (2.3). There exists

an integer N such that, for n≥N and t∈ [n−|G∗(ε)|n 1
3 ,n+ |G∗(ε)|n 1

3 ], it holds that∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣≤ ε

n
1
3

. (2.7)

We remark that for t∈ [n−|G∗(ε)|n 1
3 ,n+ |G∗(ε)|n 1

3 ], Jn(t) is on the order ofO
( 1

n
1
3

)
[1]. With a coefficient ε, Lemma 2.3 presents an estimate of

∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn−k(t)

∣∣∣∣∣,
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much better than that for Jn(t).

Lemma 2.4. Let a set of numbers ãk (1≤k≤L) satisfy condition (2.3). For any

ε>0, there exists an integer N such that, for n≥N and t∈ [n+ |G∗(ε)|n 1
3 ,n+n

1
2 ], it

holds that ∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣≤ C(ε)

n
7
6

, (2.8)

where C(ε) depends on ε only.

On the interval t∈ [n+ |G∗(ε)|n 1
3 ,n+n

1
2 ], it is known that Jn(t) =O

( 1

nα

)
, with

α∈
[

1

3
,
3

8

]
. Thus Lemma 2.4 presents an improved estimate for

∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣.
Lemma 2.5. For any ε>0, there exists an integer N such that, for n≥N and
t∈ [n+n

1
2 ,∞), it holds that

Jn−k(t) =

√
2

π
·
cos

(
n

√
t2

n2
−1−narctan

√
t2

n2
−1+karctan

√
t2

n2
−1− π

4

)
+Rn,k(t)

(
t2−n2

) 1
4

,

(2.9)
with |Rn,k(t)|<ε.

Now we prove Theorem 2.1.

Proof. For any small ε>0, from Lemma 2.2, we know there exists N1 such that,

for n≥N1 and t∈
[
0,n−

∣∣∣∣G∗( ε

1+A

)∣∣∣∣n 1
3

]
, it holds that

∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣≤ ε

(1+A)n
1
3

(1+A)<
ε

n
1
3

. (2.10)

From Lemma 2.3, there exists N2 such that, for n≥N2 and t∈
[
n−∣∣∣∣G∗( ε

1+A

)∣∣∣∣n 1
3 , n+

∣∣∣∣G∗( ε

1+A

)∣∣∣∣n 1
3

]
, it holds that

∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣≤ ε

n
1
3

. (2.11)

From Lemma 2.4, there exists N3>

(
C(ε)

ε

) 6
5

such that, for n≥N3

and t∈
[
n+

∣∣∣∣G∗( ε

1+A

)∣∣∣∣n 1
3 ,n+n

1
2

]
, it holds that

∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣≤C(ε)n−
7
6 ≤ ε

n
1
3

. (2.12)
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From Lemma 2.5, there exists N4 such that, for n≥N4 and t∈
[
n+n

1
2 ,∞

)
, it holds

that ∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣<O( 1

n
3
8

)
≤ ε

n
1
3

. (2.13)

Now choose N = max(N1,N2,N3,N4), and let n≥N . The inequality then holds over
the whole domain t≥0. This completes the proof.

In the above, we only require four linear constraints in condition (2.3). Making
use of the freedom with L>4, we may obtain better approximation by eliminating
the leading term of the Jn(t)’s. For instance, we take L= 30 and introduce additional
conditions as follows.

30∑
k=1

ãkk
l cos

(k+ l)π

2
= δl,0, 0≤ l≤3, (2.14)

30∑
k=1

ãkk
l sin

(k+ l)π

2
= 0, 0≤ l≤3, (2.15)

30∑
k=1

ãk cos
klπ

20
= 1, 1≤ l≤9, (2.16)

30∑
k=1

ãk sin
klπ

20
= 0, 1≤ l≤9. (2.17)

Together with condition (2.3), we may fix the coefficients by solving the linear
system.

In the following, we divide the asymptotic zone [n+n
1
2 ,+∞) into two subdomains,

namely, [n+n
1
2 ,n
√

1+A1] and [n
√

1+A1,+∞). Here we take

A=

L∑
k=1

|ãk|, A1 =

(
tan

(
1

90A
1
9

))−2
. (2.18)

Lemma 2.6. Let a set of numbers ãk (1≤k≤30) satisfy conditions (2.3), (2.14)-
(2.17). For any ε>0, there exists an integer N such that, for n≥N and t∈ [n+

n
1
2 ,n
√

1+A1], it holds that∣∣∣∣∣
30∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣<
√

2

π

0.004+ε

(t2−n2)
1
4

. (2.19)

This gives an improved estimate for

∣∣∣∣∣
30∑
k=1

ãkJn−k(t)−Jn−k(t)

∣∣∣∣∣.
Lemma 2.7. For any ε>0, there exists an integer N such that, for n≥N and
t∈
[
n
√

1+A1,+∞
)
, it holds that

Jn−k(t) =

√
2

π

(√
t2−n2−narctan

√
t2

n2
−1

)− 1
2

·
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cos

[
Φ−karctan

(
t2

n2
−1

)− 1
2

+
kπ

2

]
+O

(
z−

3
2

)
(2.20)

with a phase Φ given later, and

z= (n−k)

(√
t2

(n−k)2
−1−arctan

√
t2

(n−k)2
−1

)
. (2.21)

Moreover, let a set of numbers ãk (1≤k≤30) satisfy conditions (2.14)-(2.15).
There exists N such that, for n≥N and t∈

[
n
√

1+A1,+∞
)
, it holds that∣∣∣∣∣

30∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣≤C
(√

t2−n2−narctan

√
t2

n2
−1

)− 1
2 (

t2

n2
−1

)−4
+O

(
z−

3
2

)
,

(2.22)
where C is a constant.

This presents a better estimate of

∣∣∣∣∣
30∑
k=1

ãkJn−k(t)−Jn−k(t)

∣∣∣∣∣ on [n
√

1+A1,∞).

We make some remarks. First, the conditions (2.16) and (2.17) come from the

interpolation of sinkt and coskt on
[
0,
π

2

]
, which facilitate the asymptotic results in

Lemma 2.6. Secondly, the conditions (2.14) and (2.15) are used in the analysis for
Lemma 2.7. Please see the proofs for these two lemmas in Section 6. Finally, the
number of terms matched in expressions (2.3)-(2.17) may be changed, and hence L may
be chosen smaller accordingly.

In summary, for n large enough, we obtain estimates for

∣∣∣∣∣
30∑
k=1

ãkJn−k(t)−Jn−k(t)

∣∣∣∣∣
smaller not only than

ε

n
1
3

over the entire time axis, but also than Jn(t)’s leading term

on each zone.

3. Precursory zone
In this section we prove Lemma 2.1 first.

Proof. The following asymptotic expansions hold for n large enough [3],

Jn(n) =
1

3π
sin

π

3
Γ

(
1

3

)(n
6

)− 1
3

+O
(
n−

5
3

)
, (3.1)

and

J ′n(n) =
1

3π
sin

2π

3
Γ

(
2

3

)(n
6

)− 2
3

+O
(
n−

4
3

)
. (3.2)

Straightforward calculations show that for given ε and large n the right-hand side of
condition (2.3) becomes

1−ε 3π

6
1
3 Γ

(
1

3

)
sin

π

3

+O
(
n−

2
3

)
. (3.3)

Noticing n>

[
1

ε3

]
+1, we have O

(
n−

2
3

)
is contained within O(ε2).
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For t>0, both e−i
π
6 J 1

3
(−it) and ei

π
6 J− 1

3
(−it) are pure imaginary [1]. From

e−i
π
6 J 1

3
(−it)∼ et

√
2πΓ

(
5

6

) +∞∑
k=0

Γ

(
k+

5

6

)

12kk!t
k+

1

2

, (3.4)

ei
π
6 J− 1

3
(−it)∼ et

√
2πΓ

(
1

6

) +∞∑
k=0

5kΓ

(
k+

1

6

)
12kk!tk+

1
2

, (3.5)

the left-hand side of equation (2.5) becomes

ei
π
3

J 1
3
(−it)

J− 1
3
(−it)

=

1+
5

72t
+O

(
1

t2

)
1+

5

72t
+O

(
1

t2

) . (3.6)

Therefore the left-hand side of equation (2.5) tends to 1 as t→+∞, and equals to 0
when θ= 0. Because of continuity, equation (2.6) has at least one root denoted as tε,
which depends on ε but not n. Equation (2.5) has the same left-hand side as equation
(2.6), and a smaller right hand side

1−ε 3π

6
1
3 Γ

(
1

3

)
sin

π

3

+O
(
ε2
)
≤1−ε 3π

2 ·6 1
3 Γ

(
1

3

)
sin

π

3

= 1−
√

3π

6
1
3 Γ

(
1

3

)ε, (3.7)

for small ε. Therefore, again because of continuity, equation (2.5) has at least one root
tn,ε smaller than tε.

Next, we prove Lemma 2.2.

Proof. From Equation (2.1), by direct calculations we find that for a given ε>0,
the functions

u1(θ) =Jn(neθ)− ε

n
1
3

, (3.8)

u2(θ) =(2θ)
1
2

[
Γ

(
2

3

)(n
6

) 1
3

(
Jn(n)− ε

n
1
3

)
J− 1

3

(
n(2θ)

3
2

3

)

+Γ

(
1

3

)(n
6

) 2
3

J ′n(n)J 1
3

(
n(2θ)

3
2

3

)]
, (3.9)

solve respectively the equations

d2

dθ2
u1(θ)+n2(e2θ−1)u1(θ)+

ε

n
1
3

n2(e2θ−1) = 0, (3.10)

d2

dθ2
u2(θ)+2n2θu2(θ)+2

ε

n
1
3

n2θ= 0. (3.11)
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Fig. 3.1. Bessel function Jn(t) for different n (circles identify the corresponding points n−
4.16016n

1
3 ): (a) n= 150; (b) n= 200; (c) n= 300; (d) n= 400.

Noticing e2θ>1+2θ, by the comparison principle for ordinary differential equations,
we know that the first negative root of u1(θ) is on the right to that of u2(θ).

We observe that the root of u2(θ) for θ<0 can be found from

ei
π
3

J 1
3

(
n(2θ)

3
2

3

)

J− 1
3

(
n(2θ)

3
2

3

) = 6
1
3

Γ

(
2

3

)
Γ

(
1

3

) · n 1
3 Jn(n)−ε
n

2
3 J ′n(n)

. (3.12)

This is precisely equation (2.5) with t=

(
n(−2θ)

3
2

3

)
>0. Therefore a root of equa-

tion (3.12) is −1

2

(
3tn,ε
n

) 2
3

<n−
2
3G∗(ε) for n>

[
1

ε3

]
+1.

This implies that the first negative root of u2(θ), and hence that for u1(θ), is even

bigger. In other words, the biggest t<n at which Jn(t) attains
ε

n
1
3

is no smaller than

nexp
(
n−

2
3G∗(ε)

)
=n+n

1
3G∗(ε)+o(n−

1
3 ). (3.13)

On the other hand, from the series expression

J̇n(t) =
1

2

+∞∑
k=0

(−1)k(n+2k)

k!(n+k)!

(
t

2

)n+2k−1

, (3.14)
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we see that J̇n(t)≥0 for t small. Furthermore, it is known that the smallest root of
J̇n(t) is located to the right of

√
n(n+2) [3]. Accordingly, J̇n(t)≥0 on [0,

√
n(n+2)],

hence Jn(t) increases on [0,n]. This leads to 0≤Jn(t)≤ ε

n
1
3

for 0≤ t≤n+G∗(ε)n
1
3 .

For instance, we can take ε≈10−6, and corresponding G∗(ε) =−4.16016. Then for

t<n−4.16016n
1
3 +O

(
1

n
1
3

)
, we have Jn(t)≈0 for n large enough. Figure 3.1 shows

Jn(t) and n−4.16016n
1
3 .

4. Main zone

We consider F (s,w) =Jn−k(t) (0≤k≤30) as a function of two variables s=
k

n
and

w=
t2

n2
−1.

For n large enough and t>n−k, it holds that [2]

Jn−k(t) =

√
1−

arctan
√
w1√

w1

(
1

2
J 1

3
(z)−

√
3

2
Y 1

3
(z)

)
+O

(
(n−k)−

4
3

)
=

√
3

3

√
z

(n−k)
√
w1

(J 1
3
(z)+J− 1

3
(z))+O

(
(n−k)−

4
3

)
=

√
3

3
√

(n−k)
√
w1

[
z

5
6 2−

1
3

+∞∑
i=0

(−1)i

i!Γ(4/3+ i)

(
z2

4

)i

+z
1
6 2

1
3

+∞∑
i=0

(−1)i

i!Γ(2/3+ i)

(
z2

4

)i]
+O

(
(n−k)−

4
3

)
, (4.1)

where w1 =
t2

(n−k)2
−1 =

w+1

(1−s)2
−1, and z defined in equation (2.21) as z= (n−

k)(
√
w1−arctan

√
w1).

From n−k=n(1−s) and the Taylor series

arctan
√
w1 =

√
w1

+∞∑
j=0

(−1)jwj1
2j+1

, (4.2)

we find that

F (s,w)

=

√
3

3

[(
n(1−s)

2

) 1
3

x

+∞∑
j=0

(−x)j

2j+3

 5
6 +∞∑
i=0

(−1)i

i!Γ(4/3+ i)

n2(1−s)2x3

4

+∞∑
j=0

(−x)j

2j+3

i

+

(
n(1−s)

2

)− 1
3

+∞∑
j=0

(−x)j

2j+3

 1
6 +∞∑
i=0

(−1)i

i!Γ(2/3+ i)

n2(1−s)2x3

4

+∞∑
j=0

(−x)j

2j+3

i]

+O
(

(n(1−s))−
4
3

)
, (4.3)

with x=
w−2s+s2

(1−s)2
.
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In a similar way, for n large enough and t<n−k, it holds that [2]

Jn−k(t) =
1

π

√
1− tanh−1

√
−w1√

−w1
K 1

3
((n−k)(

√
−w1−tanh−1

√
−w1))+O

(
(n−k)−

4
3

)
.

(4.4)
It is easy to check this also gives the right-hand side of equation (4.3). So Jn−k(t)

is expanded as the right-hand side of equation (4.3) uniformly in t.
For a compound function Ψ(u(x)), its l-th order derivative may be calculated from

dlΨ(u(x))

dxl
=

l∑
s=1

[
1

s!

dsΨ(u)

dus

∑
α1+...+αs=l

1

α1! ·· ·αs!
· d
α1u

dxα1
·· · d

αsu

dxαs

]
. (4.5)

We may prove the following estimates.∣∣∣∣∣∣∣
dl

dxl

+∞∑
j=0

(−x)j

2j+3

 5
6

x=0

∣∣∣∣∣∣∣≤
(

1

3

) 5
6

l!5l. (4.6)

∣∣∣∣∣∣∣
dl

dxl

+∞∑
j=0

(−x)j

2j+3

 1
6

x=0

∣∣∣∣∣∣∣≤
(

1

3

) 1
6

l!5l. (4.7)

∣∣∣∣∣∣∣
dl

dxl

x3i
1

2

+∞∑
j=0

(−x)j

2j+3

2i

x=0

∣∣∣∣∣∣∣≤ l!
(

4

1125

)i
10l. (4.8)

It then follows∣∣∣∣∣∣∣
dl

dxl

+∞∑
i=0

(−1)i

i!Γ(4/3+ i)

n2(1−s)2x3

4

+∞∑
j=0

(−x)j

2j+3

i
∣∣∣∣∣∣∣

≤Cl!10l
[ l3 ]∑
i=0

n2i
(

4e

1125i

)2i
1

i
≤C(ε)l!

(
n

1
3

17
√
|G∗(ε)|

)2l

. (4.9)

Here the constant C(ε) relies on G∗(ε).
We denote the derivatives of the major part of F (s,w) at (s,w) = (0,0)

Ml,m =

√
3

3l!m!

∂l+m

∂sm∂wl

[(
n(1−s)

2

) 1
3

x

+∞∑
j=0

(−x)j

2j+3

 5
6 +∞∑

i=0

(−1)i

i!Γ(4/3+ i)

n2(1−s)2x3

4

+∞∑
j=0

(−x)j

2j+3

i

+

(
n(1−s)

2

)− 1
3

+∞∑
j=0

(−x)j

2j+3

 1
6 +∞∑

i=0

(−1)i

i!Γ(2/3+ i)

n2(1−s)2x3

4

+∞∑
j=0

(−x)j

2j+3

i]
. (4.10)

It may be shown that

Ml,m≤C(ε)

(
n

1
3√

|G∗(ε)|

)2l+2m+1

. (4.11)
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Now we are ready to prove Lemma 2.3. For k= 0, ·· · ,L, there exists an integer N ,
such that if n≥N , t∈ [n−|G∗|n 1

3 ,n+ |G∗|n 1
3 ], it holds that

Jn−k(t) =

+∞∑
l=0

+∞∑
m=0

Ml,m

(
k

n

)m(
t2

n2
−1

)l
+O((n−k)−

4
3 ). (4.12)

Now let ãk (1≤k≤L) satisfy condition (2.3). For n big enough, it holds in the

above range of t that

∣∣∣∣ t2n2 −1

∣∣∣∣≤ 25|G∗(ε)|
4n

2
3

. It then follows

∣∣∣∣∣
L∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣
=

∣∣∣∣∣
+∞∑
l=0

(
ã1

+∞∑
m=0

Ml,m

(
1

n

)m
+ ·· ·+ ãL

+∞∑
m=0

Ml,m

(
L

n

)m
−Ml,0

)(
t2

n2
−1

)l∣∣∣∣∣+O
(
n−

4
3

)
=

∣∣∣∣∣
+∞∑
l=0

+∞∑
m=4

Ml,m

(
ã1

(
1

n

)m
+ ·· ·+ ãL

(
L

n

)m)(
t2

n2
−1

)l∣∣∣∣∣+O
(
n−

4
3

)

≤

∣∣∣∣∣∣
+∞∑
l=0

+∞∑
m=4

(
ã1

(
1

n

)m
+ ·· ·+ ãL

(
L

n

)m)
C

(
n

1
3√

|G∗(ε)|

)2m+2l+1(
t2

n2
−1

)l∣∣∣∣∣∣+O
(
n−

4
3

)

≤Cn 1
3

L∑
m=1

|ãk|

(
mn−

1
3

|G∗(ε)|

)4

+O
(
n−

4
3

)
≤ C(ε)

n
. (4.13)

Here C(ε) depends on ε due to its dependency on G∗(ε).

5. Transitional zone

In the previous section, we have defined for 0<s=
k

n
�1,

z(s,w) =n

(√
w+2s−s2−(1−s)arctan

√
w+2s−s2

1−s

)
. (5.1)

We claim that

Lemma 5.1. For t≥n+ |G∗(ε)|n 1
3 ,

Jn−k(t) =

√
3

3

√
1− arctan

√
w√

w

[
J 1

3
(n
√
w−(n−k)arctan

√
w)

+J− 1
3
(n
√
w−(n−k)arctan

√
w)

]
+O(n−

2
3 ). (5.2)

Proof. For t≥n+ |G∗(ε)|n 1
3 , we may readily show with the Taylor expansion of

arctangent function that

w≥2|G∗(ε)|n− 2
3 ,

and

n(
√
w−arctan

√
w)≥n

(
w

3
2

3
− w

5
2

5

)
≥ 1

3
|G∗(ε)| 32 .
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As a matter of fact, from the formula

φ(s) =φ(0)+s

∫ 1

0

dφ(sη)

dη
dη=φ(0)+s

dφ(0)

dη
+s2

∫ 1

0

(1−η)
d2φ(sη)

dη2
dη, (5.3)

we have

z(s,w) =n
√
w−(n−k)arctan

√
w+s2

∫ 1

0

(1−η)
n√

w+2sη−(sη)2
dη

=n
√
w−(n−k)arctan

√
w+O

(
w−

1
2n−1

)
. (5.4)

In the same way, we have

√
1−

arctan
√
w1√

w1
=

√√√√√
1−

(1−s)arctan

√
w+2s−s2

1−s√
w+2s−s2

=

√
1− arctan

√
w√

w
+O(w−

1
2n−1).

(5.5)

From the expression [1]

J 1
3
(z) =

(z
2

) 1
3

Γ

(
1

2

)
Γ

(
5

6

) ∫ π

0

cos(zcosθ)sin
2
3 θdθ, (5.6)

it is easy to get

J̇ 1
3
(z) =−

(z
2

) 1
3

Γ

(
1

2

)
Γ

(
5

6

) ∫ π

0

sin(zcosθ)cosθsin
2
3 θdθ

+

1

6

(z
2

)− 2
3

Γ

(
1

2

)
Γ

(
5

6

) ∫ π

0

cos(zcosθ)sin
2
3 θdθ. (5.7)

Together with equations (5.3) and (5.4), one has

J 1
3
(z(s,w)) =J 1

3
(n
√
w−(n−k)arctan

√
w)

+

∫ 1

0

J̇ 1
3
(n
√
w−(n−k)arctan

√
w+O(

1√
wn

)η)(O(
1√
wn

))dη

=J 1
3
(n
√
w−(n−k)arctan

√
w)+O

(
(
√
w−arctan

√
w)

1
3

n
2
3
√
w

)
. (5.8)

In the same way, we have

J− 1
3
(z(s,w)) =J− 1

3
(n
√
w−(n−k)arctan

√
w)+O

(
(
√
w−arctan

√
w)

1
3

n
2
3
√
w

)
. (5.9)
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Now from equations (4.1), (5.5), (5.8) and (5.9), we complete the proof of equation
(5.2) with

Jn−k(t) =

√
3

3

(
J 1

3
(n
√
w−(n−k)arctan

√
w)+J− 1

3
(n
√
w−(n−k)arctan

√
w)
)
·(√

1− arctan
√
w√

w
+O

(
1√
wn

))
+O

(
(
√
w−arctan

√
w)

1
3

n
2
3
√
w

)
. (5.10)

Then let us return to prove Lemma 2.4.

Proof. Taking zk =n
√
w−narctan

√
w+karctan

√
w, for n large enough and t∈

[n+ |G∗(ε)|n 1
3 ,n+n

1
2 ], one has

2|G∗(ε)|
n

2
3

≤w≤ 2

n
1
2

, (5.11)

and

δ≡ |G
∗(ε)| 32
3

≤zk≤n
1
4 . (5.12)

On the other hand, it holds that

J 1
3
(zk)

=

3∑
l=0

J
(l)
1
3

(n
√
w−narctan

√
w)

l!
(karctan

√
w)l

+
(karctan

√
w)4

3!

∫ 1

0

(1− t)3J (4)
1
3

(n
√
w−narctan

√
w+ tkarctan

√
w)dt

≡
3∑
l=0

J
(l)
1
3

(n
√
w−narctan

√
w)

l!
(karctan

√
w)l+Rk(t). (5.13)

Further differentiation of equation (5.7) gives

J
(l)
1
3

(x) =
2−

1
3

Γ

(
−1

3

)
Γ

(
1

2

)
Γ

(
5

6

) l∑
m=0

[
Cml

(−1)mΓ(m− 1

3
)

xm−
1
3

·

∫ π

0

cos

(
xcosθ+

(l−m)π

2

)
(cosθ)l−m sin

2
3 θdθ

]
. (5.14)

Accordingly, it holds that

|J (l)
1
3

(x)|≤Cl!x 1
3

l∑
m=0

Cml
1

xm
=Cl!x

1
3

(
1+x

x

)l
. (5.15)

From inequalities (5.12) and (5.15), we find the remainder in equation (5.13)

|Rk(t)|≤Cn 1
12

(
karctan

√
w

(
1+

1

δ

))4

. (5.16)
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It further holds that∣∣∣∣∣
L∑
k=1

ãkJ 1
3
(zk)−J 1

3
(z0)

∣∣∣∣∣
=

∣∣∣∣∣∣
L∑
k=1

ãk

 3∑
l=0

J
(l)
1
3

(z0)

l!
(karctan

√
w)l+Rk(t)

−J 1
3
(z0)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
3∑
l=0

J
(l)
1
3

(z0)

l!
(arctan

√
w)l

(
L∑
k=1

ãkk
l−δl,0

)∣∣∣∣∣∣+
L∑
k=1

|ãkRk|

≤Cn 1
12


(

1+
1

δ

)
n

1
4


4

L∑
k=1

|ãk|≤
C(ε)

n
11
12

. (5.17)

Together with equation (5.2), for t∈ [n+ |G∗(ε)|n 1
3 ,n+n

1
2 ] one has,∣∣∣∣∣

L∑
k=1

ãkJn−k(t)−Jn−k(t)

∣∣∣∣∣≤ C(ε)

n
7
6

. (5.18)

This completes the proof.

6. Asymptotic zone
Now we prove Lemma 2.5.

Proof. In fact, direct calculation shows

z
1
3

∫ π

0

cos(zcosθ)sin
2
3 θdθ

=2z
1
3

∫ 1

0

cos(−z+zt6)6t4
(

1
6
√

2
+ t

∫ 1

0

r5t5

(2−r6t6)
7
6

dr

)
dt

=
2z

1
3

6
√

2

∫ 1

0

cos(−z+zt)

t
1
6

dt+O
(
z−

2
3

)
=

πcosz

2
1
6 Γ

(
1

6

)
cos
( π

12

)
z

1
2

+
π sinz

2
1
6 Γ

(
1

6

)
sin
( π

12

)
z

1
2

+o
(
z−

1
2

)
. (6.1)

This gives

J 1
3
(z) =

√
πcosz

2
1
2 Γ

(
5

6

)
Γ

(
1

6

)
cos
( π

12

)
z

1
2

+

√
π sinz

2
1
2 Γ

(
5

6

)
Γ

(
1

6

)
sin
( π

12

)
z

1
2

+o
(
z−

1
2

)
. (6.2)

In the same way, we have

J− 1
3
(z) =

√
πcosz

2
1
2 Γ

(
5

6

)
Γ

(
1

6

)
cos

(
5π

12

)
z

1
2

+

√
π sinz

2
1
2 Γ

(
5

6

)
Γ

(
1

6

)
sin

(
5π

12

)
z

1
2

+o
(
z−

1
2

)
.

(6.3)
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If t∈
[
n+n

1
2 ,n
√

1+A1

]
, then

1

n
1
2

≤ t2

n2
−1≤A1. On the other hand, recall that

z(s,w) =n

√
t2

n2
−1−narctan

√
t2

n2
−1+k

√
t2

n2
−1+O

(
n−

5
6

)
. (6.4)

From equations (6.2), (6.3) and (4.1), one has

Jn−k(t)

=

√
1− arctan

√
w√

w

√
π
(

sin
π

12
+cos

π

12

)
√

3Γ

(
5

6

)
Γ

(
1

6

)
sin
( π

12

)
cos
( π

12

) ·
(

cos(z− π
4 )

z
1
2

+o

(
1

z
1
2

))
+O

(
n−

4
3

)
≡

√
2

π

(
1− 2arctan

√
w√

w

)[
cos(n

√
w−(n−k)arctan

√
w− π

4 )

(n
√
w−narctan

√
w)

1
2

+
Rn,k(t)

(n
√
w−narctan

√
w)

1
2

]
. (6.5)

With n big enough, we may set

|Rn,k|(t)<ε. (6.6)

Now we are ready to prove a more accurate estimate in Lemma 2.6.

Proof. With ãk satisfying conditions (2.3), (2.14)-(2.17), we define

E(θ) =

30∑
k=1

ãk coskθ−1. (6.7)

Direct calculation shows that at θ= 1.30732057, |E(θ)| attains its maximum of
0.00149822. Namely, we have on [0,π/2],∣∣∣∣∣

30∑
k=1

ãk coskθ−1

∣∣∣∣∣≤0.00149822. (6.8)

In the same way, we have on [0,π/2],∣∣∣∣∣
30∑
k=1

ãk sinkθ

∣∣∣∣∣≤0.00244607. (6.9)

We denote a phase

Φ =n
√
w−narctan

√
w− π

4
. (6.10)

From equation (2.9) and inequalities (6.8) and (6.9), for N large enough and n≥N ,

t∈ [n+n
1
2 ,n
√

1+A1], one has∣∣∣∣∣
30∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣
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=

√
2

π

1

(t2−n2)
1
4

∣∣∣∣∣
30∑
k=1

ãk
(
cos
(
Φ+karctan

√
w
)

+Rn,k(t)
)
−cosΦ−Rn,0(t)

∣∣∣∣∣
≤
√

2

π

1

(t2−n2)
1
4

{∣∣∣∣∣
30∑
k=1

ãk cos
(
karctan

√
w
)
−1

∣∣∣∣∣
+

∣∣∣∣∣
30∑
k=1

ãk sin
(
karctan

√
w
)∣∣∣∣∣+

30∑
k=1

|ãkRn,k(t)|+ |Rn,0(t)|
}

≤
√

2

π

1

(t2−n2)
1
4

(0.00394429+ε). (6.11)

Finally we prove Lemma 2.7.

Proof. For n large enough and fixed k, when t≥n
√

1+A1 with A1 defined in
equation (2.18), we know that [1]

Jn−k(t) =

√
2

πn(
√
w−arctan

√
w)

cos
(
n
√
w−(n−k)arctan

√
w− π

4

)
+O

(
1

z
3
2

)
.

(6.12)

For t≥n
√

1+A1, noticing arctan

√
t2

n2
−1 =

π

2
−arctan

(√
t2

n2
−1

)−1
, and taking

Φ =n
√
w−narctan

√
w− π

4
, we have

Jn−k(t) =

√
2

π
(
n
√
w−narctan

√
w
) cos

(
Φ−karctan

1√
w

+
kπ

2

)
+O

(
z−

3
2

)
. (6.13)

This gives

Jn−k(t)

=

√
2

π
(
n
√
w−narctan

√
w
) cos

(
Φ−karctan

1√
w

+
kπ

2

)
+O

(
z−

3
2

)
.

=

√
2

π
(
n
√
w−narctan

√
w
){cosΦ

3∑
l=0

cos

(
kπ

2
+
lπ

2

) (−karctan 1√
w

)l
l!

−sinΦ

3∑
l=0

sin

(
kπ

2
+
lπ

2

)(−karctan
1√
w

)l
l!

+cosΦcos

(
kπ

2
+
lπ

2
+ξ1(t)

)(−karctan
1√
w

)4

4!

+sinΦsin

(
kπ

2
+
lπ

2
+ξ2(t)

)(−karctan
1√
w

)4

4!

}
+O

(
z−

3
2

)
. (6.14)
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Therefore, there exists an integer N such that, for n>N , it holds that∣∣∣∣∣
30∑
k=1

ãkJn−k(t)−Jn(t)

∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
√

2

π
(
n
√
w−narctan

√
w
) cosΦ

30∑
k=1

ãk cos

(
kπ

2
+
lπ

2
+ξ1(t)

) (−karctan
1√
w

)4

4!

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
√

2

π
(
n
√
w−narctan

√
w
) sinΦ

30∑
k=1

ãk sin

(
kπ

2
+
lπ

2
+ξ2(t)

) (−karctan
1√
w

)4

4!

∣∣∣∣∣∣∣∣
+O

(
z−

3
2

)
≤2A

√
2

π
(
n
√
w−narctan

√
w
) (15arctan

1√
w

)4

+O
(
z−

3
2

)
. (6.15)

This completes the proof.

7. ALmost EXact boundary condition for harmonic chain
We consider a rescaled semi-infinite harmonic chain with displacement un(t) for

n∈N, governed by Newton’s law

ün(t) =un−1(t)−2un(t)+un+1(t),
un(0) = 0, u̇n(0) = 0.

(7.1)

The displacement u0(t) is a given function. It may be readily shown [7] that

un(t) =u0(t)∗ 2nJ2n(2t)

t
, (7.2)

where “∗” stands for convolution. We denote the kernel function as

gn(t) =
2nJ2n(2t)

t
. (7.3)

From the main theorem, we make use of the recursive relation for the derivatives of
Bessel functions to obtain the following result.

Lemma 7.1. There exists a set of numbers ak, bk for k= 1,·· · ,15 such that for any
given small ε>0, there exists an integer N such that, for n>N and t∈ [0,+∞), it holds
that ∣∣∣∣∣

15∑
k=1

akgn−k(t)+

15∑
k=1

bkġn−k(t)−gn(t)

∣∣∣∣∣< ε

n
1
3

. (7.4)

The coefficients may be obtained as follows.

k ak bk
1 −109.6025083485 −14.7037545028
2 −2097.7449276669 −565.8956925015
3 −16397.2434307511 −6987.0154168434
4 −67599.3626830461 −42745.1519585622
5 −162239.5589866582 −154522.0935326181
6 −226809.2228360120 −360718.1501167417
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7 −148864.1935697496 −570137.5721903182
8 54082.5525551020 −624080.7335295006
9 209470.0946578346 −475111.0133192166

10 206148.6740564536 −248307.6661901102
11 111712.8002405539 −86134.1925588502
12 35725.8382042134 −18584.6750406846
13 6413.0325582591 −2205.0724859373
14 550.2656303204 −110.3881561666
15 14.6710381195 −0.9974265280

For instance, with n= 100 we compare the kernel function gn(t) with the linear

combination
15∑
k=1

(akgn−k(t)+bkġn−k(t)) in Figure 7.1. They coincide very well. The

difference is on the order of 10−4.

0  100 200 300
−0.2 

0    

0.2  

Fig. 7.1. Comparison of g100(t) (solid line) and

15∑
k=1

(akg100−k(t)+bk ġ100−k(t)) (circles).

Other results about the approximation are the same as Lemma 2.6 and Lemma 2.7.

For n large enough

∣∣∣∣∣
15∑
k=1

ãkgn−k(t)+

15∑
k=1

b̃kġn−k(t)−gn(t)

∣∣∣∣∣ is not only smaller than
ε

n
1
3

over the entire time axis, but also is much smaller than that for gn(t)’s leading term on
every zone.

This result naturally leads to a boundary condition, which turns out to be very
accurate. Suppose we perform numerical simulation of the semi-infinite chain over a
finite segment with 1≤n≤J only. We formulate an ALEX (ALmost EXact) boundary
condition as follows.

uJ(t) =

15∑
k=1

akuJ−k(t)+

15∑
k=1

bku̇J−k(t). (7.5)

With this boundary condition, we calculate the reflection coefficient by plugging
the Fourier mode eiωt−iξp+R(ξ)eiωt+iξp into the boundary condition. Here ξ∈ [0,π] is
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the wave number, and ω= 2sin ξ
2 is the frequency. We find that

|R(ξ)|=

∣∣∣∣∣∣∣∣∣∣
1−

15∑
k=1

(ake
ikξ+ iωbke

ikξ)

1−
15∑
k=1

(ake
−ikξ+ iωbke

−ikξ)

∣∣∣∣∣∣∣∣∣∣
. (7.6)

As shown in Figure 7.2, the reflection coefficient is on the order of 10−9 for wave
numbers up to π/2, indicating the extraordinary ability of the ALEX boundary con-
dition in suppressing spurious reflections. We remark that the time history kernel
convolution is an exact boundary condition, for which the reflection should be zero the-
oretically. However, the temporal discretization and round-off error may induce some
minor reflections.
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Fig. 7.2. Reflection coefficient |R(k)| as a function of the wave number k.
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Fig. 7.3. Simulation of the harmonic lattice with ALEX boundary condition: uex
99(t) (solid line)

and u99(t) (circles) on time intervals [0,150], [300,450], [600,700], and [900,1000], respectively.
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To resolve the harmonic chain (7.1), we use the central difference scheme

ul+1
n −2uln+ul−1n

4t2
=

1

4
(ul+1
n+1−2ul+1

n +ul+1
n−1)+

1

2
(uln+1−2uln+uln−1)

+
1

4
(ul−1n+1−2ul−1n +ul−1n−1), (7.7)

for 1≤n≤J−2 and l≥1. For n=J−1, we take

ul+1
J−1−2ulJ−1 +ul−1J−1

4t2
=

1

4
(ulJ−2ul+1

J−1 +ul+1
J−2)+

1

2
(ulJ−2ulJ−1 +ulJ−2)

+
1

4
(ulJ−2ul−1J−1 +ul−1J−2). (7.8)

Moreover, as the scheme requires initial data at both the t0 and t1 level, the data
at the t1 level is prepared with a much smaller time step size to maintain the accuracy.

The boundary condition reads

ulJ =

15∑
k=1

ak

(
1

4
ul+1
J−k+

1

2
ulJ−k+

1

4
ul−1J−k

)
+

15∑
k=1

bk
ul+1
J−k−u

l−1
J−k

24t
. (7.9)

With u0(t) = sin3t,4t= 0.005 and J = 100, the exact solution uex99(t) calculated with
a much extended computational domain, and our numerical result u99(t) are displayed
in Figure 7.3 for comparison. There appears no observable difference, demonstrating
the high accuracy of the ALEX boundary condition.
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