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LONG-TIME BEHAVIOR OF SOLUTIONS TO THE
NON-ISENTROPIC EULER-POISSON SYSTEM IN R?*

YUNSHUN WUT, ZHONG TAN#, AND YONG WANGS$

Abstract. We study the global existence and asymptotic behavior of smooth solutions near a non-
flat steady state to the compressible non-isentropic Euler—Poisson system in R3. Using some concise
energy estimates and an interpolation trick, we show that the solution converges to the stationary
solution exponentially fast. Here our results can follow from that the H3 norms of the initial density,
velocity and temperature are small. In this sense, we reduce the regularity of the initial temperature
in [Y.P. Li, J. Differential Equations, 225:134-167, 2006].
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1. Introduction
In the present paper, we consider the Cauchy problem of the compressible non-
isentropic Euler—Poisson system of one carrier type

Orp+div(pu) =0,

8tu+u-Vu+%V(p®) —Vo— Tﬁ
1

8t9+u-V@+§@divu—%div(nV@)

A(Z):p_bv
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The unknown functions p,u,0,¢ represent the electron density, the electron velocity,
the absolutely temperature and the electrostatic potential, respectively. The coeffi-
cients k,7 and 7 denote the thermal conductivity, the velocity relaxation time and the
temperature relaxation time, respectively. The functions T'=T(z) and b=0b(z) are the
ambient device temperature and the doping profile, respectively.

The Euler—Poisson system as a hydrodynamic model is usually used to describe the
transmission of charged fluid particles in semiconductor devices [28,40] or in plasma
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physics [4,50]. Due to its physical importance, the Euler—Poisson system has attracted
considerable attention. About the stationary solution: Degond and Markowich [6]
proved the existence and uniqueness of subsonic solutions in one-dimensional (1-D)
interval under a smallness assumption on the current, and later Gamba [10] removed
the smallness and constructed a transonic weak solution; Degond and Markowich also
extended their 1-D results to the three-dimensional (3-D) irrotational case in [7]; the
readers can also refer to [9,38,51] and the references therein. About the stability of sta-
tionary solutions: Luo, Natalini and Xin [36] showed the stability of stationary solutions
with exponential decay rates for the Cauchy problem of 1-D isentropic system under
zero steady current density; [36]’s work was extended by Hsiao et al. [17,18] to 1-D
initial-boundary value problem, by Hsiao, Ju and Wang [16] and Wang and Tan [55]
to N-D (N =2,3) isentropic cases, by All et al. [1,2] to N-D (N >1) non-isentropic
cases with zero-thermoconductivity and by Huang et al. [25,26] to the 1-D and 3-D
whole space cases with nonzero steady current density. For 1-D initial-boundary value
problem with nonzero steady current density, Li, Markowich and Mei [30] showed the
stability of smooth subsonic steady-state solution with exponential decay rates under
flatness assumption on the doping profile, and Nishibata and Suzuki showed the similar
results by removing the flatness assumption in [45] and extended them to non-isentropic
case in [46]; maybe earlier, Guo and Strauss [13] extended [30]’s work to the 3-D case
without flatness assumption on the doping profile. Regarding other topics, including
entropy weak solutions, shock schemes and relaxation limits, and so on, the readers can
refer to [5,12,20,21,27,29,31,33,39,48,49, 53,54, 56,57] and the references therein.

In this paper, our main purpose is to relax the regularity of the initial temperature
in [32], where Li extended Ali’s work [1] to the case with thermoconductivity. Since
people are more and more interested in the bipolar Euler—Poisson system, we also review
some research results about it in the following.

In the 1-D case, Gasser, Hsiao and Li [11] and Huang and Li [22] studied the
asymptotic behavior of both small smooth and weak solutions, respectively. Natalini
[43] and Hsiao and Zhang [19] constructed the global entropy weak solutions on the
whole real line and some bounded domain by the method of compensated compactness,
respectively. Zhu and Hattori [58] showed the stability of steady-state solutions for a
recombined bipolar Euler—Poisson system. Huang et al. [24] proved the stability of the
stationary solutions with Dirichlet or Neumann boundary conditions. Different from
the previous series of studies for the case with two identical pressure functions and
zero doping profile, Donatelli et al. [8] studied the Cauchy problem with two different
pressure functions and a non-flat doping profile. In multi-dimensional case, Huang, Mei
and Wang [23] showed the stability of planar diffusion waves by ingeniously constructing
some new correct functions to delete the gaps between the original solutions and the
diffusion waves in L? space. In addition, the readers can refer to [3,15,34,35,42,47,52]
and the references therein.

Notation. In this paper, we use H¥(R?), k€N to denote the usual Sobolev spaces
with norm ||| ;x and LP(R?), 1<p<+oo to denote the usual LP spaces with norm
IIIl o~ For p=2, we simply denote |-||. Throughout this paper, we let C' denote some
positive universal constants. We will use f<gif f<Cgand f2gif f>Cg. And f~g
means that f<Sg and g < f. For simplicity, we write ||(4,B)| =4l x +|B| x and

Jf=Jfgs fdz.

Without loss of generality, we set k=71 =7 =1 in system (1.1). We assume that
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b(x) satisfies

lim  b(x)=b>0, b(x) >0, b(x) € C*3(R3) and Vb(z) € H*2(R?), k>3, (1.2)

|z|—+o0
and T'(x) satisfies

lim T(z)=T>0, T(x)>0, T(z) e C*3(R?) and VT'(z) € H** *(R?), k>3. (1.3)

|z|—+o00

Now we consider the steady-state system when the velocity =0 (the thermal equi-
librium state), namely, we investigate the stationary solution (ps,Os,¢ds) of the system

V(psgs) :psv¢sv

500, =6,-T, (1.4)
A(bs =Ps— b,
under the assumptions of
ps—be H"(R?), ©,—-T<cH?(R3). (1.5)

We record the following proposition about the existence and uniqueness of the
stationary solution.

PROPOSITION 1.1. Let b and T satisfy conditions (1.2) and (1.3) respectively. More-
over, we assume that ||[(Vb,VT)| ys is sufficiently small. Then the system (1.4)-(1.5)
has a unique classical solution (ps,0,ds) such that

0< inf b(z) <ps(z) < sup b(z), 0< inf T(z)<O;(x)< sup T'(z), (1.6)
z€R3 zER3 z€R3 z€R3
and
[(Vps, VO i S VO, VT) | o (1.7)

Proof. ~ We can refer to [32] for k=4, but the case k>4 can be handled in the
same fashion and so we omit the details. In fact, the smallness of ||(Vb,VT)|| ;s could
be deleted by referring to [16] when we consider the existence of the stationary solution.
However, the smallness of ||(Vb,VT)|| ;5 is necessary for the uniqueness of the stationary
solution from the proof of [32]. O

We define the perturbation
n=p—ps, u=1u, 0:97657 q):gbid)s'
Then the Cauchy problem (1.1) is reformulated equivalently as

atn:qu(ners) - (Tl+PS)d1VU7
0+06, . Ops —nOg

u+u—Ve+Vl=—u-Vu— ————Vps,
5 n+ps 9 ps(n+ps) IAO 1 (1 8)
n
0+0— ——— A= —u- =040 )divu— ——— 4+ ~|uf? :
Ol + Stn+0) 0=—u-V(0+06y) 3( +0,)divu 3ps(n+ps)+3|U| ,
Ad=n,

(n,u,0)(x,t)]1=0 = (no,uo,00)(z), (z,t) €R3x[0,+00).
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Our main result is stated in the following theorem:

THEOREM 1.1.  Let k>3. Assume that ng,ug,0o € H*, Vb, VT € H**2 and Vdy €
L2, If ||(no,uo,00) || g + IV ®o ||+ [[(V0,VT)| s is sufficiently small, then there exists
a unique global solution (n,u,0,V®) to the Cauchy problem (1.8) such that for some
constant >0,

(4,0, V@) () |71 S | (0, w0, 80, Vo) | e~ (1.9)

In the following, we give some remarks.

REMARK 1.1.  In [32], the initial density and velocity belong to H3, however, the
initial temperature has to lie in H*. Here, we manage to relax the initial temperature
to H3 by using some detailed estimates in Section 2. In fact, we need to carefully deal
with the difficulty resulted by the terms involved with V20. We can overcome this
difficulty by using an interpolation trick, like estimate (2.17).

REMARK 1.2. In this paper, we solve the Cauchy problem (1.8) with the hyperbolic-
parabolic-elliptic structure. So, our methods could be applied to the other equations
with the similar structure, for instance, non-isentropic bipolar Euler—Poisson system,
MHD equations with the Coulomb force, etc.

REMARK 1.3. Note that the smallness of ||(Vb,VT)| s in Theorem 1.1 may be too
rigid. It is possible to relax it and this work will be left in the future.

REMARK 1.4. Similar result for isentropic Euler—Poisson system was obtained in [55].
Here, for more complicated non-isentropic Euler—Poisson system, we need to do more
detailed estimates to control the temperature.

The present paper is structured as follows. In Section 2, we will establish the refined
energy estimates for the solution to the Euler—Poisson system (1.8). We will prove the
Theorem 1.1 in Section 3.

2. Nonlinear energy estimates
In this section, we will do the a priori estimates by assuming that for k> 3,

[1(,w,0) ()] g + VRO + (VO VT || s <O <1 (2.1)

Then by Sobolev’s inequality, we have for some by >0 and some T > 0,
b T
5 Sntpa<2o, P <O+O0, <20, (2.2)

2.1. Preliminary. In this subsection, we collect the analytic tools used later
in the paper. We first recall the Sobolev interpolation of the Gagliardo—Nirenberg
inequality.

LEMMA 2.1. Let 2<p<+0 and «,3,7>=0. Then we have
19 9
IV Fllo SIVPF IV AT (2.3)
Here 0<U9< 1 (if p=+o0, then we require that 0< ¥ <1) and « satisfy

1 1

a—|—3<2—p> =B(1—0)+9.
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Proof. We can refer to Theorem (p. 125) in [44] or Lemma A.1 in [14]. d
We recall the following commutator and product estimates:

LEMMA 2.2. Let1>1 be an integer and define the commutator

[V!,g|h=V"(gh)—gV'h. (2.4)
Then we have
1Y) 2 oo SUVGN Lo [V 0] oy + V0] g 1] s - (2.5)
In addition, we have that for 1 >0,
IV 9| o Sl pon [V ] s + 199 s 1Rl s - (2.6)

In the above, pg,p1,p2,p3,P4 € [1,+00] such that
1 1 1 1 1

bPo N 172 B 173 1774'

Proof.  Referring to Lemma 3.4 (p. 129) in [37], we give a complete and simple
proof in the following. We first prove estimate (2.6). Let po,p1,p2,ps,p4 € [1,+00] such
that

1 1 1 1 1

po_pl pz_P3 pa’
Assume (=0,1,...,l. We choose ¢1,q2 by

1 1( E) 17 1 1( E) 17
S T L L T .S
QP l p3l’ @ po l pal

1 1 1

Po - E q@
By Holder’s, Gagliardo—Nirenberg’s and Young’s inequalities, we have for [ >0,

l
> VgV
£=0

Thus, we have

IV (gl o =

Lro

l
SNVl V'R
£=0

_z £ £ —£
SUgliod (199 Ly Wl Lo V2

= (lgl s 1[92 1) T (9"l o 1Al )

£
T

Slgll pon [[V'R]] Loy + V"9l Lo 12 Lo - (2.7)
Note that for [ >1,
l
[Vig]h=> V'gV'~‘h. (2.8)
(=1

We can prove estimate (2.5) in the same way as in (2.7). O
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2.2. Energy estimates. In this subsection, we will derive the basic energy
estimates for the solution to the Euler—Poisson system (1.8). We begin with the zero-
order energy estimates.

LEMMA 2.3. It holds that

d
T 1(,,0.V2)|* +C||(w,0,V0)|* S |Inl|*. (2.9)

Proof.  Multiplying the first three equations in system (1.8) by fﬁn, Psi, %0,
respectively, summing them up and then integrating over R3, we obtain

1d 9 2, 3ps )2 / 24 Ps 2 /
2dt ( ntpslul®+ 5 9) pslul”+35g.0 0. n-i—ps

:/psu-vtﬁ—/(@Sndivu—i—@SVWU—&—pSGdivu—f—pSVG-u)

—/(ndivu—i—an—i—u-Vps)%n

Ps

9 s 9 s s
/(u-VunLVn@nVnern@Vps)ﬁsu
n+ps ps(n+p8) ps(n+p8)

2 2A00,n  [ul* 3ps
— VO+u-VO,+-60d _— 0.
/(u Vo+u-VO —|—3 1vu+3ps(n+ps) 3 ) 20,

(2.10)

By the integration by parts, we obtain

JewEm=] W’W [¥(em)
/ ity VoI - ColE, Ve, (2.11)

By equation (1.8),, we obtain
—div(psu) =0n+div(nu).

Then integrating by parts and using equation (1.8),, we obtain

/pgu'Vq):—/(I)div(psu):/q)atn—i—/@div(nu)
_ _ __Lta 2
_/q>atA<1> /nu Ve 2dt/|V<I)| /nu Vo

<=y [ TP+ Clnlul s |92

2
< 2dt/|w1>| +C6jnl?, (2.12)

where we have used the standard elliptic estimates ||Vl<I>|| < ||Vl’2n|| for [ >2. By the
integration by parts again, we obtain

—/(@sndivu—i—@SVn-u—l—psedivu—i—psVG-u):/(nV®S~u+9VpS-u)
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Sl V04l o lull + 1OV s | o el S 611 (2,0, 0)] (2.13)

For the remaining terms on the right-hand side of equation (2.10), by Hélder’s, Sobolev’s
and Cauchy’s inequalities, we can bound them by

8| (n,u,0)]1%. (2.14)

Plugging the estimates (2.11)—(2.14) into equation (2.10), since J is small, we deduce
the estimate (2.9) from inequalities (1.6). 0

We then derive the energy estimates for the higher derivatives.

LEMMA 2.4. Let k>3. Forl=1,....k, we have that for any € >0,

&9 0. 99) [P0 (| w0+ |90 )

<S(6+9)||Vin| +C. (||(n,u)uzz + He||§,3) +5]| Ve (2.15)

Proof. Applying V! to the first three equations in system (1.8) and then multiply-
ing the resulting identities by %Vln, (n+ps)Viu, %;‘rgs V!, respectively, summing
them up and then integrating over R3, we obtain

d 0+ 06, 112 112 3 n+ps 192
— \Y \Y% - v'e
di | i p |V ) Vil S V)
3(n+ps)
) s 1,12 192
42 [p)Via + [ 2w

8t9 0+®s 112 112 3 atn n+ps 192
- - 2 - 9) v
/<n+ps (n+ps)28tn>|v n|*+ 0 |V'u| +2 iie. (9+®S)26t V0|

Ops —nO,
ps(n+ps)

—2/%VZ(U-Vn—&—wVpS)Vln—F(n—i—ps)VZ(u-Vu)~Vlu

+2 [(n4p)V'V8- Va2 [ (np)V ( Vps) Yl

_ n+pPs oy ) ) l
3/9+®SV (u-VO+u-VO,)V'0

n+ps ;[ A0 nA®, |u2> .
+2 v - + 1) v
/9+@s <n+ps ps(n+ps) 2

0+ 0, . 0+ 0,
—2/LVZ((n—kps)dlvu)Vln—i-(n—l—ps)Vl (Tl_:-p

Vn) Vi
n+ps

*2/ g_—:(gs VH(0+0,)divu) Vo4 (n+ps) VIVE-Viu

::Il+Ig+[3+[4+[5+[6+l7+18. (216)

First, we estimate the term I;. It follows from equation (1.8), and equation (1.8),
that

on=-—ndivu—psdivu—u-Vn—u-Vps,
Af— 2A0,
3(n+ps) 3ps(n+ps)

3,50:—u-V@—u-V@S—§(9+@S)divu+ n+é\u|2—0.
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In the following, we must carefully deal with the term involved with V26 since || V26|, .
is not small if k=3. By estimates (1.7), (2.1)—(2.2) and Hélder’s, Sobolev’s and Cauchy’s
inequalities, we obtain

0.0 0+0; 112 < L2
/<n+ps (n+ps)28tn>|v n* S (10l + 11001 <) |[Vn]

S p)ll e [Vl o+ lfall o (70, ¥ ) ] ) [ V]|
(full g [(V0.Y0) | e + 16,0 | [Vl o) || V]|
(19201 410l [ 920+l 101 ) [ 9
<8[9l + 920 190l S 6 (90l + 192615~ )
<8 (Il + o1 + [[7*+6] %),
where we have used the interpolation estimates

2k— 7

19726]| . S 116117 ||V*+16]| % for k>3, (2.17)

Similarly, we can also obtain

3/ o n+p
Viul2+2 t _ s vig|2
/(at” u +2<e+es (e+@5)23t9)| 9')

SO [V @)+ (101> + [ V= 6]").

Thus, we have
LS8V nwd)|*+5 (6 + [+ 6]*).
For the term I, by integration by parts and equation (1.8),, we can rewrite I, as
12:2/(n+ps)vlvq>~vlu

:—2/(Vn+Vps)-VluVlCI)—2/(n+ps)Vl<I>Vldivu

1
:—2/(Vn+Vps)-Vluvlcb—f—Q/(n—i—ps)VlfI)Vl <n+ ((’)tn—i—u-Vn—i—u-Vps))

Ps

=11+ Iao.
By Holder’s, Sobolev’s and Cauchy’s inequalities, equation (1.8);, equation (1.8), and
Lemma 2.2, we obtain
121:—2/(Vn+Vps)~VluVl‘I>

VntVps) s |V ul| |V o
1, V) s | V[ [ V'V |
1,V )| s [Vl [ VAT V0|
o (IIV*=nll* + 194 *)

AW 2
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and
Ino :2/(n+p )VICI)VI 1
S n+ 5

1 1
:2/(n+ps)Vl<I>Vl (n+ps 8,511) +2/(n+ps)vl¢>vl <n+ps (u~Vn—|—u~Vps)>

1 1
:2/(n+p5)vl¢( Viom+ [Vl, ] 8tn>
n+ps n+ps

1
V! -

Ps

(atn+u~Vn+u~Vps))

Vl(u-Vn—l—u-Vps)—&-{Vl, ](u-Vn—&—u-VpQ)

n+ps

:Q/Vl@Vlatn+2/(n+ps)VlfI> {vl,ni ]atn

S

—2/vlvq>vH (u~Vn+u-Vps)+2/(n—|—ps)Vl<I> [vl,

{Vl n+ps ]8tn

+|| VIV |||V (u- VRtu- V)|

1

-V -V
e (LR

<——/|v VoL + | Vi,

L6/5

+[[V'e o

16/5
Notice that

[V om|| = ||V (ndivu+ psdivu+u- Vn+u- V)|
S|V (mw) |+ ||V ul [+ ull 72
and

|0¢n|| s = ||ndivu+ psdivu+u-Vn+u- Vg s
SOllnll gz +llull g2 -

By Lemma 2.2, we can estimate

[Vl, _’]_-:| 8tn

17w (|7 (7], 1o+ |7 ()

SVl (4 19l [ 94 00m + (1 [ 9l Joen )
S5 (170l 4 9 ) e ) 4 97+ 9l

V'@ o

16/5

Hence, we obtain
54 [ 1V98P 3 (|9 ) + |9 ]|+ )

IVl 1V el + 1V nlllul s

Next, we estimate the term I5. By estimates (1.7), (2.1)—(2.2), the product estimates
(2.6), and Hélder’s, Sobolev’s and Cauchy’s inequalities, we obtain

13:—2/(n+ps)vl <0‘DSn@ VPs) vl
n+ps Ps
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. = l
(1% v (2228 i ) 19

SV V|| (10 L + 0] o) [ V']

+[IVInp, [ ([[V! Bps) |+ |V (nO)[]) [ V|
SO g2 + Il 7o) || V|

+8 (1101l |V s |4+ sl e 196+ 1] o (IO | + 1185 o [V 2]) [ V7
<6 (I O + 100, 0) 3 ) + 12,6 72 [ 9] (2.18)

||VlV1npsH+‘

Next, we estimate the term I,. We rewrite I as
0+0s 1 ! 1
I,=-2 Wv (u-Vn4u-Vps)Vn+ (n+ps) V' (u-Vu)-Viu

0+0s
:72/%VZ(U-VH)V%72/(n+ps)Vl(u-Vu)'Vlu

0+0
—Z/QVl(wVps)Vln::Lu —|—I42—|—I43.

n+ps

First, we estimate I4;. By the commutator notation (2.4), we have

0+0, 0+ 6
In=- /L@‘Vl(u-Vn)Vln:—Q/ O (4. TV [Vu] - V) Vin
n+ps n+ps

5'/Msu-V(Vanln)+6H_®s [V u]-VnVin
n+ps n+ps

By integrating by parts and estimate (2.2), we have

‘/“@ V(VinVin) ‘ ’/9+@5 divu|vln|2+/v(9+@8).u
nt ps nt s nt ps

Sdival| oo +[[(V7,90, 995, VO | o [l o) [ V1] |* < 6|90

On the other hand, by estimate (2.2) and the commutator estimates (2.5), we have
‘/9+6 |- Vnvin
n+ps
S IVl [V 1V"HJFHVZ“HIIV”HLW)W"H§5||Vl(nvu)H2~

Then applying the similar arguments to I42, we obtain
Iy +I42§5HVZ(”’U)H2~
For the term I3, by estimate (2.2) and the product estimates (2.6), we have
Ly S ([lull o [V 5 |+ 1V s e [V} 90|
S (lll g2 [V pul |+ Vs | oo [V ) [| V'
SOV 0,0+l g |9

Like I, we can similarly estimate Is. Hence, we obtain

L+ I5 S 6|V (s 0) ||+ ull g || V40| + ull 42 || V46 -
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Now we estimate the term Ig. We rewrite Ig as

n+ps ;[ Ab (AR |u|2> .
\Y — — | V'8
0+0, (n+ps ps(n—l—ps)+ 2

n—i—ps 1 Af ) 1 / Tl+Ps 1 < nA@s > 1
=2 \% v -2 \% v'e
/9+@s (n+ps 0+0, ps(n+ps)

N+ Ps o1 112\ ol
+/79+@SV (Jul*) V'O

i=1Ig1 + T2+ Ig3.

Is=2

By estimates (1.7), (2.1)—(2.2), integration by parts and the commutator estimates (2.5),
we obtain

Tgy =2 ”+p5vl( A )vle

0+ 0 n+ps
2 1 ! /n-i-/)s ;1 1
= AOV' 042 AOV'0
/9+@sv Vio+2 | 5. [v’n+ps v

_ 2 I+1 2_/ 1 ool n+ps (i1 ] !
_ /9+@s|v o) 2 v<0+65> vievi2 [ ke {V,HPS A0V
S— V6] + (VO] e + VO ) [ V10| V26|

V6]l o

+H [vl,l Ab
n+ps L6/5

=V + (V0| e + VO ) [ V10 | V6

1

|9 (ot )| IS0+ (170 1880+ 90 r010) 7] .
Ps/ |3

SV 01 +6 (I ()" + (1761 ) + 1011 [ 9"

By estimates (1.7), (2.1)—(2.2) and the product estimates (2.6), we obtain

162:—2/”+’05 vl< n20. )vleglvl (”AGS>HHVZQH

950" \im(nts)
(] oo s
< (Il 19200+ |77 (55 ) 1261, ) 19

<l o HVZQ”*HMHW

1
+Hvl (pmp)) Il (VO] [[779]

SHnll g [[V'0) + IV O s || V]| | V70

1
=)
+H Ps(n+ps)
Slinllgza [ VO + IV sl [V [ V10

(5 GG
n+ps Ps

IVl 105l V6]

7 2 VO 2 | V10

1
n+ps

Ps

) Il 2 195l s [ 10

Lo Lee
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Slnll gz [V O + VOl o [V [ [[V10]] + |V (0, p) [ 172l g2 1 VOl 5 | V0
<6V m.0) || + 1l = |6

and

Ios = %{;’,‘zvl(luIQW%HVl(IuIQ)IIHvl@HsnulleHVZuH||V19||55Hvl<uﬁ>}|2~

Hence, we obtain
IS —||V'*Te) 46 (Hvl(n,u,e)}|2+ ||vl+1a||2) 11611 g5 [|V726] Il 2 | V6]

We now estimate the term I7. By the commutator notation (2.4), we can rewrite
I7 as

040,

I; = —Q/Z—FT@p:Vl((ners)divu)Vanr(ners)Vl (n-i-ps Vn) Vi

= —2/(9+ 0,)(V!divuV'in+V'Vn-Viu)

72/0+65 [Vl,n+ps] divuvln+(n+ps) {Vl,ojL@S] Vn-Viu.
n+ps n—+ps

By integration by parts, estimates (1.7), (2.1)—(2.2) and Holder’s, Sobolev’s and
Cauchy’s inequalities, we obtain

— 2/(9+ 0,)(V!divuV'n+V'Vn-Viu) = —2/(9+®S)div(vlnvlu)

:2/(ve+ves)-vluvlng(uveum+\|ves||m)|\vluu 190 <69 (n )|

By estimates (1.7), (2.1)—(2.2) and Lemma 2.2, we obtain
v 040,
‘n

S

_Q/i_:_ep): [V n+ps] divuVin+ (n+ps) [

S UV, p)l poe |V dive| + ([divul o | V0] + I dival| s | Vis|| o) | V0|
+(IV(1,0, 05,0 L |V ]| + V0] oo [V (2,0) [} |V
+ 1Vl [V (05, 0) | o |V
SV oo [V ul |+ V2] o [V} |92
+(1V(,0,05,05) | oo |V ]| + 1Vl e [V (m,0) ) | 9"
il [V s [ V]| + 1l 72 [ V1 (05, ©0) || ||V
§§Hvl(n7u,9)H2+ l[ul| g2 || V|| + 7] g2 | V|- (2.19)

}Vn-vlu

Hence, we obtain
I7§5Hvl(n,u,0)H2+ [ul| g2 || V|| + 7] g2 || V') -

For the last term Ig, by estimates (1.7), (2.1)—(2.2), integration by parts and the
commutator estimates (2.5), we obtain

18:—2/;1:6’;8 VH((0+0,)divu) V0 + (n+p,) V'VO- Viu
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:—2/(n+ps)div(vluvlﬁ)—2/giigz [V!,0+0,]divuv'e

:2/(Vn+Vps)~VluV19—2/gigi

SNV Vo) o |V [ [[V'0]] | [V, 6+ O] divu[ [ V'

SV, Vo) | ||V ]| V10] + [(VO, VO | ||V~ divad]| || V10
+[|V'0| [[divul o || V0] +]| V' O]| o Idivul| s || V6]

SOV O+ 1l V0] -

[VL,0+0,]divuv'e

Plugging the estimates for I1 — I into equation (2.16), it follows from estimate (2.2)
that

%Hvl(n,u,e,vq>)|\2+c(|\vl(u,9)H2+Hvl“e\f)
SE([IV 0]+ 96"+ [V w0 |+ [V 0 (10,0 2 )
Ol s V0] + Il 2 [[V0] | + Nl 2 |V (. 0)
IV 1V |+ [Vl lall gz + 102 0) g2 [V
By the interpolation inequality (2.3) and Young’s inequality, since ¢ is small, we deduce
estimate (2.15). 0

Note that in Lemmas 2.3-2.4 we only derive the dissipation estimates of u and 6.
We now recover the dissipation estimates of n and V& by constructing some interactive
energy functionals in the following lemmas. First, we will establish the dissipation
estimates for lower-order n and V®.

LEMMA 2.5. It holds that for some small positive constant n,

d
- (/U'Vnn/u-vq)) O (Inl + IV SOl (@2:20)

Proof. We divide the proof into three steps.

Step 1: Dissipation estimate of n.

Multiplying equation (1.8), by Vn and thus integrating over R®, by integration
by parts, equation (1.8),, estimates (1.7) and (2.1)—(2.2) and Hdlder’s, Sobolev’s and
Cauchy’s inequalities, we obtain for any € >0,

0+ 0,
/8tu-Vn+/ + |Vn|?
n+

Ps
0ps —nOg
< [ Vo Vat ull [Vnl| + VO]V nl + [[u- Vull [Vn]| +|| =2 ==, ||V
ps(n+ps)
<= [Inlf*+lVnl* +Ce (Jlull® + V0] ) +Call(n,u, )] (2.21)

We now estimate the first term on the left-hand side of inequality (2.21). Making use
of equation (1.8),, by integrating by parts for both ¢- and z-variables, we obtain

d d .
/atu-Vn—%/u-Vn—/u-V&gn—%/u-Vn—&—/dlvuatn
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d
=7 u-Vn—/divu(u-Vn+ndivu+psdivu+u~Vps)

d . .

>4 [V vl (o [ 9] s+ el diva)
~ vl (lpsl o vl + V54 112)
d

> u-Vn—C|Vul?. (2.22)

Substituting inequality (2.22) into inequality (2.21) and taking e sufficiently small, by
estimate (2.2), we obtain

d
- [ wr Vet Inlg < lullz + 901 +6](n,u,0)]. (2.23)

Step 2: Dissipation estimate of VO.

Multiplying equation (1.8), by —V® and thus integrating over R3, by estimate (2.2)
and Holder’s, Sobolev’s and Cauchy’s inequalities, we obtain

*/@%V‘I’Jr IV S (lull+[[u- V| +[|Vn+0p,V ps +1O,V p + V|| | VO
SIVal®+ V017 + [lul® +6 (n,w,0)|I". (2.24)

Next, we need to estimate the first term on the left-hand side of estimate (2.24). By
equation (1.8); and equation (1.8),, we obtain

—/8tu~V<I>:—%/u-V@—&—/u-VA‘lnt

d
:—ﬁ/u-vq)—/u-VA_ldiV((n—i—ps)u)
d
>E/u~v<b—cnun|\<n+ps>u||
d
2—%/U-V¢>—C||u||2. (2.25)
Plugging inequality (2.25) into estimate (2.24), we obtain

—% w- VO + (V| S [[Vnl* + VO[> +[|ul* +6 | (n,u,0)]*. (2.26)

Step 3: Conclusion.

Multiplying estimate (2.26) by a small enough but fixed constant 7 and then adding
it to estimate (2.23) so that the first term on the right-hand side of estimate (2.26) can
be absorbed, since ¢ is small, we immediately obtain estimate (2.20). 0

Next we will establish the dissipation estimates for higher-order n.

LEMMA 2.6. Let k>3. Forl=1,....k—1, we have

&[99m0 (|9l + [ 9n]?) < [950) + [0l + [, 0,0)]
(2.27)
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Proof. Applying V! to equation (1.8), and then taking the L? inner product with
VV'n, by the commutator notation (2.4), we obtain

/vlatu-vvln+/9+@ VVin|?
n-+
§/V1V<I>'W’n+HV‘ull [V [+ [0 [ |+ ||V (w- V) [ [V

Al el o s )
+ ps(n+ps)

Vil (2.28)

We first estimate the first term on the left-hand side of estimate (2.28). Like inequality
(2.22), we obtain

/v Ou-VVin=— /vl ~Vvln—/Vlu'VVlatn
/ Viu-VVin4 / VidivuVviom
:E/vlu-vvln—/vldivuvl (u-Vn+ndivu+ psdivu+u-Vpg)
>%/vlu-vvln—||vl+1u|| |V (u- Vn+ndivu+ psdivu+u-Vp,)||.
Using the product estimates (2.6), we have
V! (- I S llull pee [V 0|+ 1Vl o [Vl S8 ([ V[ + [V 0])) - (2:29)
and

V! (pacliva)|| < ol |97 |+ 190l 1o [V al| o S (19 2]+ ]

e <1

Similarly, we have
[V (ndivu)|| <8 ([[V'n]|+ ||V ul)
and
[V (- V) | S 0|V ul[+ [l =

Hence, by Cauchy’s inequality, we obtain
/vlatu-vvlw %/Vlu-Van—CHVZHuHQ—C(?HVl(n,u)Hip —Clul%=. (2:30)
Next, integrating by parts and using equation (1.8),, we have
/vlvq>-vvln=—/vlm>vln=— V4. (2.31)

Like estimate (2.29), we have

V! (u- V)| S 6]V (2.32)

uHHl'
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From estimates (2.18)—(2.19), we easily obtain

040, Ops —nOs
v "oV 2. 2.
| w52 vl G satw oo o

Plugging the estimates (2.30)—(2.33) into estimate (2.28), by Cauchy’s inequality,
we obtain

/Vlu V'Vn +/9+9 VR[4 ||V
<)V (u,0) H —|—HVluH +6 ||V (n,u,0) |‘H1+||(n7u,0)||§12.

By the interpolation inequality (2.3) and Young’s inequality, since § is small, we then
deduce estimate (2.27) from estimate (2.2). d

3. Proof of Theorem 1.1

In this section, we will make good use of Lemmas 2.3—2.6 obtained in Section 2 to
prove Theorem 1.1.

Let [=k—1 in estimate (2.27) of Lemma 2.6. Then, we obtain

%/kalu.vkmq(||vkn||2+|yvk*1n||2) <O || VF(w,0) || + Cs]l(n,u,0) 1. (3.1)

Let =k in estimate (2.15) of Lemma 2.4. Then, by the interpolation inequality (2.3)
and Young’s inequality, since ¢ is small, we obtain for any >0,

d 2 2 2
- V% (12,u,0,V®)||” + Cu || VF(w,0) | < C5(5+¢) || VEn ||+ Cc || (n,u,0)]. (3.2)
Multiplying inequalities (3.1)—(3.2) by two small enough but fixed constants €€z, re-

spectively, and then adding them to estimate (2.20) of Lemma 2.5, by the interpolation
inequality (2.3) and Young’s inequality, taking e properly small and since ¢ is small, we

obtain
Z(/u Vn— n/u V<I>+61/Vk Ly an—i—EQHV (n,u,0,VP) H)

+Cs (IIV* w0+ 1 + V@) < Cr [ (,0)] . (3.3)

Multiplying inequality (3.3) by a small enough but fixed constant ez and then adding
it to estimate (2.9) of Lemma 2.3, since 0 is small, we obtain

d
g (1o veo( [u-Tny [u-vo

+61/Vk_1u~vkn+62HVk(n,u,H,V@)HQ))
k 2 2 2
+Cs (|| V* (. 0)|[ + 11 (m, . 0)I + [ V@) <O0. (3.4)
If we take €1, €2, €3 and 7 properly small, then the expression under the time differen-

tiation in inequality (3.4) is equivalent to Hvk(n,u,e,V(I))HQ—&— |(n,u,0,V®)||*. Hence,
we deduce for some constant 8’ >0,

@5 0,0,0,99) 411 0,20,6,98) |2) 8 ([ (.20, + 11 ,,6,99) |2 <0,
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which implies for some constant >0,

d
a ||(n,u,9,V¢>)H§{k +ﬂ||(n7uﬂ97v¢)”§{k’ <0.

By Gronwall’s inequality, we immediately obtain estimate (1.9). By a standard conti-
nuity argument, we then close the a priori estimates (2.1) if we assume at initial time
that ||(no,u0,00)| gr + | Vo] +[[(Vb,VT)|| s is sufficiently small. The global solution
in Theorem 1.1 then follows by a standard continuity argument under the help of the
local existence of solutions and the a priori estimates. For completeness, we record the
local existence of the solution and omit the details of proof since one can refer to [41].

PROPOSITION 3.1. Assume that the steady state (ps(x),0s(x),0s(x)) is shown by
Proposition 1.1. If (no,uo,00) € H* with k>3 and inf eps {n(z,0)+ps(x)} >0, then
there exists a positive T such that the Cauchy problem (1.8) has a unique solution

(n,u)(t) €C°(0,T; H*)NCH (0, T; H 1),
6(t)cC(0,T; H*)nC (0,7, H*?),

which satisfies for any t € [0,T],

n(z,t)+ps(z) > inf {n(2,0)+ps()}/2>0,

[[(nyw,0) () || g1 < C| (0, 10,00)|| g -
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