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INFINITE-DIMENSIONAL HILBERT TENSORS ON
SPACES OF ANALYTIC FUNCTIONS∗

YISHENG SONG† AND LIQUN QI‡

Abstract. In this paper, the mth order infinite dimensional Hilbert tensor (hypermatrix) is
introduced to define an (m−1)-homogeneous operator on the spaces of analytic functions, which is
called the Hilbert tensor operator. The boundedness of the Hilbert tensor operator is presented on
Bergman spaces Ap (p>2(m−1)). On the base of the boundedness, two positively homogeneous
operators are introduced to the spaces of analytic functions, and hence the upper bounds of norm of
the two operators are found on Bergman spaces Ap (p>2(m−1)). In particular, the norms of such

two operators on Bergman spaces A4(m−1) are smaller than or equal to π and π
1

m−1 , respectively.
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1. Introduction
The Hilbert matrix H is a matrix with entries Hij being the unit fractions for

nonnegative integers i,j, i.e.,

Hij =
1

i+j+1
, i,j= 0,1,2,·· ·

which was introduced by Hilbert [1]. Let i,j= 0,1,2, ·· · ,n. Then such an (n+1)-
dimensional Hilbert matrix is a compact linear operator on finite-dimensional space Rn.
The properties of the n-dimensional Hilbert matrix have been studied by Frazer [2] and
Taussky [3]. An infinite-dimensional Hilbert matrix H may be regarded as a bounded
linear operator from the sequence space l2 into itself, but not compact operator (Choi [4]
and Ingham [5]). Magnus [6] and Kato [7] showed the spectral properties of such a class
of matrices. The infinite-dimensional Hilbert matrix H induces an operator defined on
the sequence space lp (1≤p), for x= (xk)∞k=0∈ lp,

H(x) =

+∞∑
j=0

xj
i+j+1

∞
i=0

. (1.1)

If 1<p<+∞, the well-known Hilbert inequality ( [37]) implies that H is an operator
on lp and its operator norm ‖H‖= sup

‖x‖lp=1

‖H(x)‖lp is the following:

‖H‖=
π

sin(πp )
, 1<p<+∞. (1.2)
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On the other hand, the infinite-dimensional Hilbert matrix H also induces a bounded
operator on the spaces of analytic functions defined by

H(f)(z) =

+∞∑
i=0

+∞∑
j=0

aj
i+j+1

zi, (1.3)

for all analytic functions f(z) =
+∞∑
k=0

akz
k with the convergent coefficients

+∞∑
j=0

aj
i+j+1 for

each i. In Hardy spaces Hp, Diamantopoulos and Siskakis [8] proved that H is bounded
for p>1 and found an upper bound of its operator norm. In 2004, Diamantopoulos
[9] showed that H is bounded on Bergman spaces for p>2 and obtained the upper
bound of its operator norm. Aleman, Montes-Rodrguez, Sarafoleanu [10] studied the
eigenfunctions of the Hilbert matrix operator on Hardy spaces Hp (p>1).

As a natural extension of a Hilbert matrix, the entries of an mth order infinite-
dimensional Hilbert tensor (hypermatrix) H= (Hi1i2···im) are defined by

Hi1i2···im =
1

i1 + i2 + ·· ·+ im+1
, ik = 0,1,2, ·· · , k= 1,2,·· · ,m.

Each entry of H is derived from the integral

Hi1i2···im =

∫ 1

0

ti1+i2+···+imdt. (1.4)

Clearly, H is positive (Hi1i2···im >0) and symmetric (Hi1i2···im are invariant for any per-
mutation of the indices), and H is a Hankel tensor with v= (1, 1

2 ,
1
3 , ·· · ,

1
n , ·· ·) (Qi [11]).

Song and Qi [12] studied infinite- and finite-dimensional Hilbert tensors, and showed
that H defines a bounded and positively (m−1)-homogeneous operator from l1 into lp

(1<p<∞), and found the upper bound of the corresponding positively homogeneous
operator norm.

A real mth order n-dimensional tensor (hypermatrix) A= (ai1···im) is a multi-array
of real entries ai1···im , where ij ∈{1,2, ·· · ,n} for j∈{1,2,·· · ,m}. Denote the set of all
real mth order n-dimensional tensors by Tm,n. Then Tm,n is a linear space of dimension
nm. Let A= (ai1···im)∈Tm,n. If the entries ai1···im are invariant under any permutation
of their indices, thenA is called a symmetric tensor. LetA= (ai1···im)∈Tm,n and x∈Rn.
Then Axm−1 is a vector in Rn with its ith component as

(
Axm−1

)
i
:=

n∑
i2,···,im=1

aii2···imxi2 ·· ·xim

for i∈{1,2,·· · ,n} ( [13]). For mth order finite-dimensional tensors, various structured
tensors were studied well. For more details, M-tensors see Zhang, Qi and Zhou [14] and
Ding, Qi and Wei [15]; P-(B-)tensors see Song and Qi [16], Qi and Song [17]; copositive
tensors see Song and Qi [18]; Cauchy tensor see Chen and Qi [19]; the applications
in nonlinear complementarity problem, tensor complementarity problem see Song and
Qi [20], Che, Qi, Wei [21], Song and Yu [22], Luo, Qi and Xiu [23], Gowda, Luo, Qi and
Xiu [24], Bai, Huang and Wang [25], Wang, Huang and Bai [26], Ding, Luo and Qi [27],
Suo and Wang [28], Song and Qi [29], Ling, He, Qi [30,31], Chen, Yang, Ye [32].

However, for the infinite-dimensional tensor (hypermatrix), the corresponding re-
sults are fewer. Clearly, this class of tensors may be referred to as a class of nonlinear
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operators with special structure on some infinite-dimensional space. Then by means of
its own specific structure, to study the properties of the infinite-dimensional tensor on
various infinite-dimensional spaces will be very interesting, which may help to interpret
the structure and properties of some infinite-dimensional spaces.

In this paper, we show that an mth order infinite dimensional Hilbert tensor defines
an (m−1)-homogeneous operator on the spaces of analytic functions (Hardy spaces Hp

(p>m−1) and Bergman spaces Ap (p>2(m−1))),

H(f)(z) =

+∞∑
k=0

 +∞∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
k+ i2 + i3 + ·· ·+ im+1

zk (1.5)

for all analytic functions f(z) =
+∞∑
k=0

akz
k. The upper bound of the Hilbert tensor operator

H(f) is found on Bergman spaces Ap (p>2(m−1)) with the help of the proof technique
of Diamantopoulos [9]. So two positively homogeneous operators may be defined on
Bergman spaces Ap by the formula

TH(f)(z) :=

{
‖f‖2−m

Ap(m−1)H(f)(z), f 6= 0

0, f = 0
and FH(f)(z) := (H(f)(z))

1
m−1 (m is even),

(1.6)
where TH :Ap(m−1)→Ap and FH :Ap→Ap. We obtain the upper bounds of the operator
norms ‖TH‖ and ‖FH‖. In particular, when p= 4(m−1),

‖TH‖≤π and ‖FH‖≤π
1

m−1 . (1.7)

The paper is organized as follows: In Section 2, we will give some basic definitions
and facts, which will be used to the proof of main results. In Section 3, we first study
the definition of a Hilbert tensor operator and give the corresponding proof to show that
such an operator is well-defined. We prove the integral form of the Hilbert tensor oper-
ator. Secondly, the boundedness of the Hilbert tensor operator is proved on Bergman
spaces Ap (p>2(m−1)) by means of its integral form. Finally, we define two positively
homogeneous operators induced by the mth order infinite-dimensional Hilbert tensor
and prove the upper boundedness of their operator norms.

2. Preliminaries and basic facts
In this section, we will collect some basic definitions and facts, which will be used

later on. Throughout this paper, let C be the complex plane, and let

B :={z∈C :‖z‖<1}

be the open unit disk in C. Likewise, we write R for the real line. The normalized
Lebesgue measure on B will be denoted by dµ. Obviously,

dµ(z) =
1

π
dxdy=

1

π
rdrdθ

for z=x+yi= reiθ. For 0<p<+∞, the Bergman space Ap is the space of all analytic
functions f in B with

‖f‖Ap =

(∫
B
|f(z)|pdµ(z)

) 1
p

<+∞. (2.1)
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The Hardy space Hp is the space of all analytic functions f in B with

‖f‖Hp = sup
r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
) 1

p

<+∞. (2.2)

It is well known that both the Hardy space Hp and the Bergman space Ap are Banach
spaces for 1≤p, that Hp⊂Ap, that both Hp and Ap are embedded as closed subspaces
in Lebesgue space Lp(B), and that Hq⊂Hp and Aq⊂Ap for q≤p (for more details,
see [33,34]).

Let (X,‖·‖X) and (Y,‖·‖Y ) be two Banach spaces, let T :K⊂X→Y be an opera-
tor, and let r∈R. T is called

(i) r-homogeneous if T (tx) = trTx for each t∈C and all x∈K;

(ii) positively homogeneous if T (tx) = tTx for each t>0 and all x∈K;

(iii) bounded if there is a real number M>0 such that

‖Tx‖Y ≤M‖x‖X , for all x∈K.

The gamma function Γ(z) is defined by the formula

Γ(z) =

∫ +∞

0

e−ttz−1dt (2.3)

whenever the complex variable z has a positive real part, i.e., <(z)>0. The beta
function β(u,v) is defined by the formula

β(u,v) =

∫ 1

0

tu−1(1− t)v−1dt, <(u)>0, <(v)>0. (2.4)

The formula relating the beta function to the gamma function is the following:

β(u,v) =
Γ(u)Γ(v)

Γ(u+v)
. (2.5)

Furthermore, the gamma function has the following properties ( [35]):

(i) Γ(1) = 1 and Γ( 1
2 ) =
√
π;

(ii) Γ(z)Γ(1−z) =
π

sin(πz)
for non-integral complex numbers z.

(iii) The duplication formula: Γ(z)Γ(z+ 1
2 ) = 21−2z

√
πΓ(2z), i.e.,

Γ(z)Γ(z)

Γ(2z)
= 21−2z Γ(z)Γ( 1

2 )

Γ(z+ 1
2 )
. (2.6)

Lemma 2.1. ( [33, Page 36, Lemma]) If f ∈Hp and 0<p<+∞, then

|f(z)|≤
(

2

1−|z|

) 1
p

‖f‖Hp . (2.7)

Lemma 2.2. ( [36, Page 755, Corollary]) If f ∈Ap and 0<p<+∞, then

|f(z)|≤
(

1

1−|z|2

) 2
p

‖f‖Ap . (2.8)
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3. Hilbert tensor operators

3.1. Intergral form of the Hilbert tensor operator.

Lemma 3.1. Let H be an mth order infinite-dimensional Hilbert tensor, and let

f(z) =
+∞∑
k=0

akz
k ∈Lm−1(B). Then

H(f)(z) =

+∞∑
k=0

 +∞∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
k+ i2 + i3 + ·· ·+ im+1

zk (3.1)

is a well-defined analytic function on the unit disc B. Furthermore, H(f)(z) is well-
defined on the Hardy space Hp or on the Bergman space Ap (m−1<p<+∞).

Proof. Let fl(z) =
l∑

k=0

akz
k for all positive integers l. Obviously, lim

l→∞
fl(z) =f(z),

and so, lim
l→∞

(fl(z))
m−1 = (f(z))m−1. Thus for each z∈B, there is a positive integer N

such that |fl(z)|m−1≤|f(z)|m−1 +1 for all positive integers l>N . So for all positive
integers l>N , we have∣∣∣∣∣∣

l∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
i1 + i2 + ·· ·+ im+1

∣∣∣∣∣∣=
∣∣∣∣∣∣

l∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
∫ 1

0

si1+···+imds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0

 l∑
i2,i3,···,im=0

ai2ai3 ·· ·aimsi2+···+im

si1ds
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ 1

0

(
l∑
i=0

ais
i

)m−1

si1ds

∣∣∣∣∣∣
=

∣∣∣∣∫ 1

0

(fl(s))
m−1

si1ds

∣∣∣∣
≤
∫ 1

0

|fl(s)|m−1|s|i1ds≤
∫ 1

0

|fl(s)|m−1ds

≤
∫ 1

0

(|f(s)|m−1 +1)ds<+∞ (since f ∈Lm−1(B)).

Then, ∣∣∣∣∣∣
+∞∑

i2,i3,···,im=0

ai2ai3 ·· ·aim
i1 + i2 + ·· ·+ im+1

∣∣∣∣∣∣<+∞,

and hence, the coefficient
+∞∑

i2,i3,···,im=0

ai2ai3 ···aim
k+i2+···+im+1 of the power series

+∞∑
k=0

 +∞∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
k+ i2 + i3 + ·· ·+ im+1

zk
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is bounded. So for |z|<1, the above power series is absolutely convergent, denoted by
H(f)(z). That is,

H(f)(z) =

+∞∑
k=0

 +∞∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
k+ i2 + i3 + ·· ·+ im+1

zk,
and then, the convergence radius of the power series H(f)(z) is greater than or equal
to 1. Thus H(f)(z) is an analytic function on the unit disc B. The desired conclusions
follow.

Lemma 3.2. Let

G(f)(z) =

∫ 1

0

(f(s))
m−1

1−zs
ds (m≥2) (3.2)

for z∈B. The operator G(f)(z) is well-defined on the Hardy space Hp (m−1<p<+∞)
or on the Bergman space Ap (2(m−1)<p<+∞).

Proof.
(1) For f ∈Hp, from Lemma 2.1 and the fact that

1

|1−zs|
≤ 1

1−|z||s|
≤ 1

1−|z|
,

it follows that

|G(f)(z)|≤
∫ 1

0

(|f(s)|)m−1

|1−zs|
ds

≤
∫ 1

0

((
2

1−s

) 1
p ‖f‖Hp

)m−1

1−|z|
ds

=
2

m−1
p ‖f‖m−1

Hp

1−|z|

∫ 1

0

1

(1−s)
m−1

p

ds<+∞ (
m−1

p
<1)

since the integral
∫ 1

0
1

(1−s)r ds converges for r<1.

(2) For f ∈Ap, it follows from Lemma 2.2 that

|G(f)(z)|≤
∫ 1

0

((
1

1−s

) 2
p ‖f‖Ap

)m−1

1−|z|
ds

=
‖f‖m−1

Ap

1−|z|

∫ 1

0

1

(1−s)
2(m−1)

p

ds<+∞ (
2(m−1)

p
<1).

The desired conclusions follow.

Lemma 3.3. Let H be an mth order infinite-dimensional Hilbert tensor, and let f ∈Hp

(m−1<p<+∞) or f ∈Ap (2(m−1)<p<+∞).Then for each z∈B,

(i) H(f)(z) =G(f)(z) =
∫ 1

0
(f(s))m−1

1−zs ds;

(ii) H(f)(z) =G(f)(z) =
∫ 1

0

(
f( s

(s−1)z+1 )
)m−1

1
(s−1)z+1ds.
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Proof. (i) Let fl(z) =
l∑

k=0

akz
k. Obviously, lim

l→∞
fl(z) =f(z), and hence,

lim
l→∞

(fl(z))
m−1

= (f(z))m−1. Now we may define a power series

H(fl)(z) =

+∞∑
k=0

 l∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
k+ i2 + i3 + ·· ·+ im+1

zk.
Then we have

H(fl)(z) =

+∞∑
k=0

zk
l∑

i2,i3,···,im=0

ai2ai3 ·· ·aim
∫ 1

0

sk+i2+···+imds

=

+∞∑
k=0

zk
∫ 1

0

 l∑
i2,i3,···,im=0

ai2ai3 ·· ·aimsi2+···+im

skds
=

+∞∑
k=0

zk
∫ 1

0

(
l∑
i=0

ais
i

)m−1

skds

=

+∞∑
k=0

∫ 1

0

(fl(s))
m−1

(zs)kds

=

∫ 1

0

(fl(s))
m−1

(
+∞∑
k=0

(zs)k

)
ds

=

∫ 1

0

(fl(s))
m−1

1−zs
ds.

For z∈B and p>m−1, it is obvious that the fact that f(z)∈Hp implies that

(f(z))m−1∈H
p

m−1 , and hence, (f(z))
m−1−(fl(z))

m−1∈H
p

m−1 . Furthermore, from
Lemma 2.1, it follows that

|H(fl)(z)−G(f)(z)|=

∣∣∣∣∣
∫ r

0

(fl(s))
m−1−(f(s))

m−1

1−zs
ds

∣∣∣∣∣
≤
∫ 1

0

|(fl(s))m−1−(f(s))
m−1 |

|1−zs|
ds

≤
∫ 1

0

(
2

1−s

)m−1
p ‖fm−1

l −fm−1‖
H

p
m−1

1−|z|
ds

=

(
2

m−1
p

1−|z|

∫ 1

0

1

(1−s)
m−1

p

ds

)
‖fm−1
l −fm−1‖

H
p

m−1
.

Therefore, for each z∈B,

lim
l→∞
H(fl)(z) =

+∞∑
k=0

 +∞∑
i2,i3,···,im=0

ai2ai3 ·· ·aim
k+ i2 + i3 + ·· ·+ im+1

zk =G(f)(z).
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Then G(f)(z) defines an analytic function H(f)(z) = lim
l→∞
H(fl)(z). That is,

H(f)(z) =G(f)(z) =

∫ 1

0

(f(s))
m−1

1−zs
ds

for each f ∈Hp (m−1<p<+∞).
Similarly, for f ∈Ap, it follows from Lemma 2.2 that

|H(fl)(z)−G(f)(z)|≤
∫ 1

0

|(fl(s))m−1−(f(s))
m−1 |

|1−zs|
ds

≤
∫ 1

0

(
1

1−s

) 2(m−1)
p ‖fm−1

l −fm−1‖
A

p
m−1

1−|z|
ds

=

(
1

1−|z|

∫ 1

0

1

(1−s)
2(m−1)

p

ds

)
‖fm−1
l −fm−1‖

A
p

m−1
,

and so, H(f)(z) =G(f)(z) for every f ∈Ap (2(m−1)<p<+∞).

(ii) Given f ∈Hp (m−1<p<+∞) or f ∈Ap (2(m−1)<p<+∞), the integral
G(f)(z) is independent of the path of integration. Then for z∈B, we may choose
the path of integration

s(t) =
t

(t−1)z+1
,0≤ t≤1,

and hence

s′(t) =
ds(t)

dt
=

((t−1)z+1)− tz
((t−1)z+1)2

=
1−z

((t−1)z+1)2
.

So we have

G(f)(z) =

∫ 1

0

(
f( t

(t−1)z+1 )
)m−1

1−z t
(t−1)z+1

s′(t)dt

=

∫ 1

0

(
f(

t

(t−1)z+1
)

)m−1
(t−1)z+1

(t−1)z+1−zt
1−z

((t−1)z+1)2
dt

=

∫ 1

0

(
f(

t

(t−1)z+1
)

)m−1
1

(t−1)z+1
dt.

The desired conclusion follows.

3.2. Boundedness of the Hilbert tensor operator.
Theorem 3.1. Let H be an mth order infinite-dimensional Hilbert tensor, and let
H(f) be as in Lemma 3.1. Then H is bounded and (m−1)-homogeneous on the Bergman
space Ap(m−1) for 2<p<+∞, and satisfies the following:

(i) If 4≤p<+∞ and f ∈Ap(m−1), then

‖H(f)‖Ap ≤ π

sin( 2π
p )
‖f‖m−1

Ap(m−1) . (3.3)
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(ii) If 2<p≤4 and f ∈Ap(m−1), then

‖H(f)‖Ap ≤M‖f‖m−1
Ap(m−1) , (3.4)

where M = 4
4
p−1√π Γ(1− 2

p )

Γ( 3
2−

2
p )
.

Proof. Let

ϕ(t,z) =
t

(t−1)z+1
and ψ(t,z) =

1

(t−1)z+1

for all z∈B and all real number t with 0<t<1. Then

∂ϕ(t,z)

∂z
=

−t(t−1)

((t−1)z+1)2
= t(1− t)(ψ(t,z))2.

Let Tt(f)(z) =ψ(t,z)(f(ϕ(t,z)))
m−1

. Then for each t∈ (0,1), we have

‖Tt(f)‖pAp =

∫
B
|ψ(t,z)|p

∣∣∣(f(ϕ(t,z)))
m−1

∣∣∣pdµ(z)

=

∫
B
|ψ(t,z)|p−4 |f(ϕ(t,z))|p(m−1) |ψ(t,z)|4dµ(z)

=

∫
B
|ψ(t,z)|p−4 |f(ϕ(t,z))|p(m−1) 1

t2(1− t)2

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z)

=
1

t2(1− t)2

∫
B
|ψ(t,z)|p−4 |f(ϕ(t,z))|p(m−1)

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z).

(i) For +∞>p≥4 and each t∈ (0,1), we have

ψ(t,z) =
ϕ(t,z)

t
,

|ϕ(t,z)|= t

|(t−1)z+1|
≤ t

1−|t−1||z|
≤ t

1−(1− t)
= 1

and furthermore,

‖Tt(f)‖pAp =
1

t2(1− t)2

∫
B

∣∣∣∣ϕ(t,z)

t

∣∣∣∣p−4

|f(ϕ(t,z))|p(m−1)

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z)

=
1

tp−2(1− t)2

∫
B
|ϕ(t,z)|p−4 |f(ϕ(t,z))|p(m−1)

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z)

≤ 1

tp−2(1− t)2

∫
B
|f(ϕ(t,z))|p(m−1)

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z)

=
1

tp−2(1− t)2

∫
D
|f(y)|p(m−1)

dµ(y),

where y=ϕ(t,z), D={y=ϕ(t,z);z∈B} and dµ(y) =
∣∣∣∂ϕ(t,z)

∂z

∣∣∣2dµ(z). Therefore, we have

‖Tt(f)‖Ap ≤ 1

t1−
2
p (1− t)

2
p

(∫
D
|f(y)|p(m−1)

dµ(y)

) 1
p
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=
1

t1−
2
p (1− t)

2
p

((∫
D
|f(y)|p(m−1)

dµ(y)

) 1
p(m−1)

)m−1

=t
2
p−1(1− t)−

2
p ‖f‖m−1

Ap(m−1) . (3.5)

From the equality

H(f)(z) =

∫ 1

0

ψ(t,z)(f(ϕ(t,z)))
m−1

dt=

∫ 1

0

Tt(f)(z)dt

and Minkowski’s integral inequality, it follows that

‖H(f)‖Ap =

(∫
B
|H(f)(z)|pdµ(z)

) 1
p

=

(∫
B

∣∣∣∣∫ 1

0

Tt(f)(z)dt

∣∣∣∣pdµ(z)

) 1
p

≤
∫ 1

0

(∫
B
|Tt(f)(z)|pdµ(z)

) 1
p

dt

=

∫ 1

0

‖Tt(f)‖Apdt, (3.6)

and hence, using inequality (3.5), we have

‖H(f)‖Ap ≤
(∫ 1

0

t
2
p−1(1− t)(1− 2

p )−1dt

)
‖f‖m−1

Ap(m−1)

=β(
2

p
,1− 2

p
)‖f‖m−1

Ap(m−1)

=
Γ( 2

p )Γ(1− 2
p )

Γ( 2
p +1− 2

p )
‖f‖m−1

Ap(m−1)

=
π

sin( 2π
p )
‖f‖m−1

Ap(m−1) .

(ii) For 2<p≤4 and each t∈ (0,1), we also have

|(ψ(t,z))−1|= |(t−1)z+1|≤2,

and so,

‖Tt(f)‖pAp =
1

t2(1− t)2

∫
B
|ψ(t,z)|p−4 |f(ϕ(t,z))|p(m−1)

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z)

=
1

t2(1− t)2

∫
B

∣∣(ψ(t,z))−1
∣∣4−p |f(ϕ(t,z))|p(m−1)

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z)

≤ 24−p

t2(1− t)2

∫
B
|f(ϕ(t,z))|p(m−1)

∣∣∣∣∂ϕ(t,z)

∂z

∣∣∣∣2dµ(z)

=
24−p

t2(1− t)2

∫
D
|f(y)|p(m−1)

dµ(y),
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where y=ϕ(t,z), D={y=ϕ(t,z);z∈B} and dµ(y) =
∣∣∣∂ϕ(t,z)

∂z

∣∣∣2dµ(z). Therefore, we have

‖Tt(f)‖Ap ≤ 2
4
p−1

t
2
p (1− t)

2
p

((∫
D
|f(y)|p(m−1)

dµ(y)

) 1
p(m−1)

)m−1

=2
4
p−1t−

2
p (1− t)−

2
p ‖f‖m−1

Ap(m−1) . (3.7)

From inequalities (3.6) and (3.7) and the duplication formula (2.6) of the gamma func-
tion Γ(·), it follows that

‖H(f)‖Ap ≤
∫ 1

0

‖Tt(z)‖Apdt

≤2
4
p−1

(∫ 1

0

t(1−
2
p )−1(1− t)(1− 2

p )−1dt

)
‖f‖m−1

Ap(m−1)

=2
4
p−1β(1− 2

p
,1− 2

p
)‖f‖m−1

Ap(m−1)

=2
4
p−1

Γ(1− 2
p )Γ(1− 2

p )

Γ(2− 4
p )

‖f‖m−1
Ap(m−1)

=2
4
p−1

(
21−2(1− 2

p )√π
Γ(1− 2

p )

Γ(1− 2
p + 1

2 )

)
‖f‖m−1

Ap(m−1)

=4
4
p−1√π

Γ(1− 2
p )

Γ( 3
2−

2
p )
‖f‖m−1

Ap(m−1) .

The desired conclusions follow.

Define an operator TH :Ap(m−1)→Ap by the formula

TH(f)(z) :=

{
‖f‖2−m

Ap(m−1)H(f)(z), f 6= 0

0, f = 0.
(3.8)

When m is even, define another operator FH :Ap→Ap by the formula

FH(f)(z) := (H(f)(z))
1

m−1 . (3.9)

Clearly, both FH and TH are bounded and positively homogeneous by Theorem 3.1. So
we may define the following operator norms ( [38]):

‖TH‖= sup
‖f‖

Ap(m−1)=1

‖TH(f)‖Ap and ‖FH‖= sup
‖f‖Ap=1

‖FH(f)‖Ap . (3.10)

The following upper bounds and properities of the operator norm may be established.

Theorem 3.2. Let H be an mth order infinite-dimensional Hilbert tensor, and let
H(f) be as in Lemma 3.1. Then TH is a bounded and positively homogeneous opera-
tor from the Bergman space Ap(m−1) to Ap for 2<p<+∞, and its norm satisfies the
following:

(i) If 4≤p<+∞, then

‖TH‖≤
π

sin( 2π
p )
. (3.11)
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(ii) If 2<p≤4, then

‖TH‖≤4
4
p−1√π

Γ(1− 2
p )

Γ( 3
2−

2
p )
. (3.12)

Proof. It follows from definition (3.8) of the operator TH that

‖TH(f)‖Ap =‖‖f‖2−m
Ap(m−1)H(f)‖Ap =‖f‖2−m

Ap(m−1)‖H(f)‖Ap .

Then an application of Theorem 3.1 yields the following:

(i) For 4≤p<+∞,

‖TH(f)‖Ap ≤‖f‖2−m
Ap(m−1)

(
π

sin( 2π
p )
‖f‖m−1

Ap(m−1)

)
=

π

sin( 2π
p )
‖f‖Ap(m−1) .

(ii) For 2<p≤4,

‖TH(f)‖Ap ≤‖f‖2−m
Ap(m−1)

(
4

4
p−1√π

Γ(1− 2
p )

Γ( 3
2−

2
p )
‖f‖m−1

Ap(m−1)

)

=4
4
p−1√π

Γ(1− 2
p )

Γ( 3
2−

2
p )
‖f‖Ap(m−1) .

So the desired conclusions directly follow from the definition (3.10) of the operator norm.

Theorem 3.3. Let H be an mth order infinite-dimensional Hilbert tensor, and let
H(f) be as in Lemma 3.1. Then FH is a bounded and positively homogeneous operator
from the Bergman space Ap to Ap for 2(m−1)<p<+∞ if m is even, and its norm
satisfies the following:

(i) If 4(m−1)≤p<+∞, then

‖FH‖≤

(
π

sin( 2(m−1)π
p )

) 1
m−1

. (3.13)

(ii) If 2(m−1)<p≤4(m−1), then

‖FH‖≤4
4
p

(√
πΓ(1− 2(m−1)

p )

4Γ( 3
2−

2(m−1)
p )

) 1
m−1

. (3.14)

Proof. It follows from definition (3.9) of the operator FH and Minkowski’s integral
inequality that

‖FH(f)‖Ap =

(∫
B

∣∣∣(H(f)(z))
1

m−1

∣∣∣pdµ(z)

) 1
p

=

((∫
B
|H(f)(z)|

p
m−1 dµ(z)

)m−1
p

) 1
m−1
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=

(∫
B

∣∣∣∣∫ 1

0

Tt(f)(z)dt

∣∣∣∣
p

m−1

dµ(z)

)m−1
p


1

m−1

≤

(∫ 1

0

(∫
B
|Tt(f)(z)|

p
m−1 pdµ(z)

)m−1
p

dt

) 1
m−1

=

(∫ 1

0

‖Tt(f)‖
A

p
m−1

dt

) 1
m−1

, (3.15)

Using the proof technique of Theorem 3.1 (p is replaced by p
m−1 ), the following may be

proved easily:

(i) For 4≤ p
m−1 <+∞,

‖Tt(f)‖
A

p
m−1
≤ t

2(m−1)
p −1(1− t)−

2(m−1)
p ‖f‖m−1

Ap ,

and hence,

‖FH(f)‖Ap ≤

(
π

sin( 2(m−1)π
p )

‖f‖m−1
Ap

) 1
m−1

=

(
π

sin( 2(m−1)π
p )

) 1
m−1

‖f‖Ap .

(ii) For 2< p
m−1 ≤4,

‖Tt(f)‖
A

p
m−1
≤2

4(m−1)
p −1t−

2(m−1)
p (1− t)−

2(m−1)
p ‖f‖m−1

Ap ,

and hence,

‖FH(f)‖Ap ≤

(
4

4(m−1)
p −1√π

Γ(1− 2(m−1)
p )

Γ( 3
2−

2(m−1)
p )

‖f‖m−1
Ap

) 1
m−1

=4
4
p

(√
πΓ(1− 2(m−1)

p )

4Γ( 3
2−

2(m−1)
p )

) 1
m−1

‖f‖Ap .

So the desired conclusions directly follow from the definition (3.10) of the operator norm.

Let p= 4 in Theorem 3.2 ((i) or (ii)) and p= 4(m−1) in Theorem 3.3((i) or (ii)),
respectively. Then the following conclusions are easily obtained.

Corollary 3.1. Let H be an mth order infinite-dimensional Hilbert tensor, and let
H(f) be as in Lemma 3.1. Then

(i) TH :A4(m−1)→A4 is a bounded and positively homogeneous operator and

‖TH‖≤π;

(ii) FH :A4(m−1)→A4(m−1) is a bounded and positively homogeneous operator if m
is even and

‖FH‖≤π
1

m−1 .
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Remark 3.1.

(i) In this paper, the boundedness of the Hilbert tensor operator is obtained on
Ap for p>2(m−1). For 0<p≤2(m−1), it is not clear that whether or not
the Hilbert tensor operator is bounded on the Bergman space Ap or the Hardy
space Hp or other spaces of analytic functions.

(ii) Are the upper bounds of the norm of the Hilbert tensor operator the best in
this paper?

(iii) May the operator norms of TH and FH be given the exact value?

Acknowledgment. The authors would like to thank the anonymous refer-
ees/editors for their valuable suggestions which helped us to improve this manuscript.
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