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FRONT MIGRATION FOR
THE DISLOCATION STRAIN IN SINGLE CRYSTALS*

NICOLAS VAN GOETHEMT

Abstract. A single crystal is considered, i.e., a smooth elastic body Q2 CR3 containing a high
density of point-defects and dislocations. In particular, we consider prismatic dislocation loops which
result as the primary manifestation of irradiated or highly-deformed crystals. We consider linearized
elasticity and identify the macroscopic dislocation-induced strain and its trace, directly related to the
presence of dislocations, as the basic model variables. Further, we rely on a previously-introduced tensor
version of a Cahn—Hilliard system in the context of incompatible linearized elasticity and consider the
point-defects collapse into prismatic loops, yielding some well-formed microstructure. By means of a
formal asymptotic analysis, we determine the front dynamics and obtain as a result a tensor version of
Mullins—Sekerka dynamics. The associated gradient-flow formalism is also investigated.

Keywords. dislocations; linear elasticity; incompatibility; Cahn-Hilliard system; evolution law;
Second principle.
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1. Introduction

1.1. Foreword. Focussing on the mesoscopic scale, dislocations are seen as
loops of all sizes or lines with endpoints on the body boundary. They appear either by
applying high enough external forces, or by a size and temperature-dependent collapse
of 3d aggregates of point defects (namely point defect clusters in the case of point de-
fects in the form of interstitials, or the so-called voids in the case of vacancies, see [36]).
Specifically, this phenomenon takes place at those material points where the density
of point defects has become unstable (i.e., has reached a threshold), and hence dis-
solve and collapse to form stable structure such as two-dimensional dislocation clusters
(i.e., families of dislocation loops of various sizes), by minimizing a certain (Gibbs) free
energy (also related to the temperature and temperature gradient). Details on this
phenomenon can be found in [18,38,40,44]. According to [40] the other type of stable
structure that could result from instability of 3d clusters, called B-defects, do exhibit
relatively weak strain fields within the crystal. Hence we focus on A-defects such as
dislocation clusters and interstitial-type dislocation loops whose associated strain field
is of significant magnitude. These loops happen to form microstructures and patterns
such as polygonization and dislocation walls. Such dislocation-assisted phase separa-
tion processes are the motivation of this work, where a macroscopic model is sought
complying with basic thermodynamics principles. One severe issue when considering
the mesoscale is that loops of several scales of magnitudes coexist in real crystals, that
is, infinitesimal loops together with loops of the size of the crystal diameter. Therefore,
our choice is to work at a macroscopic scale on a tensor field called the dislocation-
induced strain, directly related to the stress tensor by the linear elastic law, and to the
dislocation density tensor by the incompatibility operator. Alternative approaches such
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1844 FRONT MIGRATION IN SINGLE CRYSTALS

as atomistic simulations are very promising but out of reach for large samples in terms
of computational cost [1]. We refer to [21] for consistent thermodynamics models at the
macroscopic scale.

1.2. Prismatic loops of interstitial type.  An important process where dis-
locations and point defect strongly interact is the irradiation of materials with particles
that create atomic displacements which can induce significant microstructural alter-
ation [17,51], such as radiation damage in crystals that contributes to the phenomenon
of embrittlement [16]. Particle or laser irradiation causes the production of structural
disorder with generation of a large amount of point defects. These point defects can or-
ganize into defects of higher dimension and stimulate the occurrence of non-equilibrium
phenomena (see [13]). For instance, interstitial loops arrise in solids bombarded by
high-energy radiation because this environnement produces sufficient quantities of self-
interstitials. This mechanism (usually taking place at a uniform temperature of several
hundred degrees) permits the nucleation of prismatic dislocation loops followed by their
growth in directions controlled by the climb forces'. The interstitial loop consists of a
disk-shaped layer of atoms (i.e., a plate-like or platelet structure), which is more stable
than the same number of atoms dispersed in the lattice as self-interstitials. In gen-
eral there also exist vacancy loops [20], but since they are intrinsically unstable at all
temperatures, rather than forming platelet-loops, vacancy condensation would result
in macroscopic voids (see [22]). Eventually, the accumulation of point defects into a
prismatic dislocation loop makes the point defects disappear: in the case of vacancies
in a plane, the adjacent planes collapse to form a perfect crystal, while in the case of
interstitials these introduce an additional plane which is also defect free in the interior
(see Figure 1.1). Moreover, they can grow or shrink only by the absorption of further
defects, and are free to move conservatively only along the edges of the prism defined by
the continuation of their perimeter along the crystallographic direction of their Burgers’
vector. Further, at nucleation, they have pure edge character, but in some circumstances
can tilt with respect to the prism axis, and acquire a screw component (see Figure 1.1).
In general, the prismatic loops arrise after quenching, irradiation, or after plastic de-
formation, and their density being often very high, they can influence considerably the
mechanical as well as some other physical properties of crystalline materials. It is im-
portant to note [25] that their stress field decreases more quickly with distance than
that of straight individual dislocations, which leads to a much weaker mutual elastic
interaction and to the possibility of formation of a very high local density of these de-
fects and therefore of microstructure (see next Section). Typical diameters of these
loops are a few hundred A° and their maximum density is 10'5 to 10'¢ loops/cm?®. This
mechanism of precipitation of point defect in prismatic loops was originally proposed by
Nabarro in 1947 [30] (i.e., in the case of vacancies) . Note that hexagonal or square loops
are often observed experimentally, as related to the polygonization mechanism. First
experimental evidences of the presence of prismatic loops where achieved in aluminium
in 1958 as reported in [20].

1.3. Microstructure formation and Mullins—Sekerka front dynamics.
Prismatic loops can also migrate (either vacancy-mediated or resulting from self-climb
[42]) away from their glide cylinder [15]. Moreover, some of these loops are highly
mobile along their Burgers vector directions, while others have much higher migration
barrier creating stationary sinks for point defects. The interaction of all these mecha-

IThe driving force for it being either the dislocation line tension [25] acting on the parts of the
prismatic loop not lying in the glide plane, or the super- or under-saturation of point defect.
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F1G. 1.1. Prismatic loop: formation of an interstitial (left) and vacancy (middle) loop; and motion
instde its glide cylinder (right: taken from [25]).

nisms is very complex and yet not fully understood, but it is known that they result in
loop coalescence [42], and give rise to a wide range of important plasticity mechanisms
including network coarsening (see, e.g., [6]), creep, swelling and hardening. Moreover,
mechanical or thermal polygonization [39], and recrystallization phenomena are also
observed in bent and annealed crystals (the first work on this subject is by R. W.
Cahn? [10], see also [14]). A sample of the variety of microstructure that is found in
single crystals is shown in Figure 1.2. It is observed that (i) point defect clusters form
plate-like structures (see black structures in Figure 1.2 in copper (above left) and nickel
(middle)); (ii) by coalescing and collapsing they may form interstitial loops (stacking
fault loops as in Figure 1.2 below left); (iii) they may coarsen in precise substructures
as in Figure 1.2 (rightmost) where the interstitial clusters have collapsed to form cells
with vanishing point-defect density in their interior, whereas the black regions show a
complex coexistence and interaction of loops and clusters.

1.4. Scope of the work. In the present work, no specific mechanism will be
investigated (i.e., whether irradiation or mechanical power is used to create defect sub-
structures). We consider platelet aggregates of interstitial point defects and prismatic
loops such as the black structures observed in Figure 1.2 (middle and rightmost). These
point defects and loops interact, possibly coalescing, annihilating, migrating: they form
some microstructure, which separates the crystal in two regions, one with high and the
other with vanishing point defect density (cf. the black and white regions in the above
images). So, thickening the interface, an unstable state is observed where prismatic
loops and point defect aggregates coexist, whereas the perfect interface would exactly
separate the crystal in two regions with are in thermodynamic equilibrium, the first
with and the second without point defects. In the foregoing discussion, our goal is to
model the dynamics of these complex defect structures as a point-defect and dislocation-
mediated phase separation mechanism at the macroscale.

Coarsening dynamics are gradient flow dynamics, meaning that the evolution of an
out-of-equilibrium system towards relaxation follows the steepest descent in an energy
landscape. The descent in an energy landscape corresponds to reduction of the interface,
and the pattern formed by the two phases “coarsens” [33]. Moreover, phase separation
in alloys is known to obey the scalar Cahn—Hilliard equation (see [32] for a review, see
also [37]).

In this work we rely on a tensor Cahn—Hilliard system derived in a previous con-
tribution [47] and, interested in coarsening mechanisms, we are indeed concerned with

?Not to be confused with the other famous metallurgist J. W. Cahn whom the Cahn-Hilliard
equation is due.
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Fic. 1.2. Observed microstructure: Microstructure produced in Copper single crystal following
irradiation near 200 °C with fission neutrons (above; interstitial clusters of mazimal size of 30 nm)
and 1 MeV electron (below: moderate density of large faulted interstitial loops). Self-interstitial cluster
patterning in Nickel (middle, from [23], height of the sample is 1 um). Recrystalization in Copper:
one observes low-dislocation-density inside the cells (left: modified from [31]).

its sharp-interface counterpart, known as the Mullins—Sekerka problem (originally as-
sociated with solidification [29], see also [26] for crystal growth). The Mullins—Sekerka
problem preserve volume and decrease surface energy and it is a non-local problem
in that the motion of the surfaces cannot be ascertained without taking in considera-
tion the behavior within the entire domain containing the interfaces [37]. We consider
the macrosopic scale, where the fields are assumed smooth enough, that is the elas-
tic strain is at least square integrable. Let us consider the stress tensor o and the
linear strain e=A"!o, where A is the assumed constant and isothermal elasticity ten-
sor, i.e., A=2ully+ A\l ®1Is, where I and Iy are the fourth- and second-rank identity
tensors, respectively®, with p, A the Lamé coefficients. The stress is symmetric by con-
servation of kinetic momentum, therefrom the strain is also a symmetric tensor, and
thus writes by Beltrami decomposition [28] as e=V5u+¢€?, where Vou:=3(Vu+ V'u)
with u, the generalized displacement vector and €°, the incompatibility strain, i.e.,
the part of the elastic strain which is incompatible. The macroscopic Kroner’s rela-
tion (introduced in [24] and proved at the mesosopic scale in [48], see also [49]) reads
ince:= Curl Curl’ ¢ =ince® = Curl &, where & is the contortion tensor, as defined from
the dislocation density A by the relation k=A — H—zltrA, and with symbols Curl and
Curl’ denoting the curl and transpose curl operator, here acting on tensors. In gen-
eral A is divergence-free to account for the fact that dislocations are closed loops, as
opposed to k?. Because of Kroner’s relation, tensor € is called the dislocation-induced
strain. The starting point of this work is to consider this latter tensor is the main model
variable.

1.5. Linearized elasticity with dislocations and defect-induced density.
The strain energy density in small-strain elasticity and for an isotropic material
reads We(e) = %Ae'e, where € is the linearized elastic strain tensor. The stress tensor
is classically defined as 0:=9§.W,=Ae. Furthermore, by the symmetry property of e,
Beltrami decomposition holds, viz., e = VSu + incF, with the dislocation-induced strain,

3Componentwise, (L) sjm = %(5ik5jl +6410;1), and (I2);5 =d;;.
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e’ =incF. The potential energy is defined as W(e) = [, (We(€) — f-u—G- F)dzx, where
G is an externally applied load related to dislocations and incompatibility not further
discussed here. Note that in the absence of dislocations, i.e., as soon as F'=0, one has by
minimization the standard equilibrium equation, —div(Ae) = —div (AVS u) =f, with f
the body force and u the displacement field. Now, in the general case where dislocations
are present, the minimization problem writes as meinW(e) =minWW(e) among all (u,F)

such that e = Vou+ incF, whose associated Euler-Lagrange equations read in the strong
forms —dive = f and inco =G, that show clearly as a generalization of the standard
elasticity system in the presence of dislocations. Therefore, one must solve the coupled
problem with unknowns u and F:

{ —div (Avsu) = f+div ()\treoﬂg) ,

inc(AincF) = G—inc(Adivuly). (1.1)

As based on the preliminary works [4,28,45], the latter two being specifically dedicated
to the analysis of the incompatibility operator, some results and developments can be
found on this generalized elasticity system, see [46,47]. In particular, the work [47] is

devoted to develop and justify a dynamical law for the dislocation-induced strain €°.

Defect-induced density. Observing the problem (1.1), it is remarked that the
mechanical Equation (1.1)a (in a classical divergence form) is found with a non-standard
term on its right-hand side, namely a force proportional to the gradient of tre®. On
the other hand, the (dual) incompatibility Equation (1.1)b shows divu on its RHS,
i.e., the variation of matter density due to mechanical efforts. It is now observed that
tre¥ is exactly a variation of matter density due to incompatibility, i.e., to the presence
of dislocations and point defects. Specifically, it may be understood as a density of
point defects, since it will increase or decrease the local mass density, if interticials or
vacancies, respectively, are present. This scalar e:= tre® will play a crucial role in our
model.

1.6. Describtion of the model. We assume that tre’ models the density
of point defects and that for a certain threshold e,, the density reaches a critical value
such that the point-defect aggregates collapse to form dislocation loops. We consider the
previously formed and smooth time-evolving dislocation front X that separates €2 in two
subdomains Q1 and Q~, with Q= enclosed by X. It is assumed that ¥ is approximated
by a transition layer of thickness € and denoted by the volume ¥.. Point defects assume
values close to the critical points 0 and e, in QT \ X, and Q™ \ 3¢, respectively, whereas
their density is unstable in the thick interface Y., with values between 0 and e,, that
is, . is an unstable region of the crystal containing 3d interstitial clusters of various
sizes together with prismatic loops which result from the collapse of platelet point defect
aggregates. Let us emphasize that in the region where tre” is close to the critical value
e, the density of dislocations might be zero somewhere, in particular inside the point
defect plate-like structures which are ready to collapse to form prismatic dislocation
loops at their boundary. Note that after collapse, the point defect density inside these
platelets is also vanishing since one recovers the bulk structure. Further, one should
keep in mind that the limit € — 0 is an idealization where the crystal would be separated
in a bulk region and a prismatic loop region resulting from the collapse of point-defects,
see Figure 1.3. Indeed, physics (see Figure 1.2) rather corresponds with a finite value
of €).

1.7. Overview of the results. For dimensional homogeneity, we scale the
chemical potential associated to this process (i.e., the functional derivative of the asso-
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e=e, (inQ")

Fic. 1.3. Schematic dislocation-induced microstructure 3d cell: low-point-defect density (i.e.,
e=0) in QF critical (i.e., e=es) inside Q~. The thickened interface . is filled with dislocation
dipoles, prismatic loops and point defect clusters in an unstable thermodynamic configuration.

ciated Ginsburg-Landau energy &, see Section 3.5 for precise definitions) and get an
e-dependent potential y. with a term in &(g), another in &(1), and the last in &(e~1).
For this reason it is postulated that j. satisfies the Ansatz p. = ‘g + 1 +epa+ -
for some zeroth-to-second order potentials to be determined by asymptotic analysis.
Accordingly, the dislocation-induced strain is taken of the form €2 =€ +ee? +£%€3 +---.
We consider the formal passage to the limit ¢ — 0 and our main question is to found the
asymptotic front velocity V' =0;3. Our main results are the following:

(1) We determine that g is constant in each phase. Moreover, pu;(x,t) satisifies incp; =
0 in each phase, is fixed on X to a value depending on the front mean curvature
H(z,t) and lower order fields.

(2) The tangential traces of uq on X yield the value the front normal velocity.

(3) The front dynamics can be summarized by the following non-local Mullins—Sekerka

law:
Atrpy = M(tred) in QTUQ~
trur = m(e, &), tre?) on X
Y = —e; (s(tred) + {Ontropu}s) ’
2(0) = %o

where the ~ symbol indicated a field blow-up close to 3, and with an appropriate
condition on the external boundary depending on the dislocation density and the
strain. Let us emphasize a special, nonclassical feature of the system nonlocality,
namely H=0=m =0, which allows us to treat interfaces with H=0, i.e., associated
to polygonal structures (polygonization, see Figure 4.1).

2. Preliminary results: the mathematical setting

2.1. Notations, conventions, and functional spaces. Let Q CR? be a simply-
connected domain with smooth boundary. Let E € S? and T' € M?, where M? denotes the
space of square 3-matrices, and S? of symmetric 3-matrices. superscript ¢ stands for the
transpose of a tensor and subscript .S for the symmetric part of a tensor. The divergence
curl and curl transpose of a tensor E are defined componentwise as (divE); :=0;E;;,
(Curl E);j :=€j10x Eyr, and (Curlt E)ij = €110 E;; respectively, where symbol 0; stands
for the ith partial derivative, either in the strong or in classical distribution sense. Now,
the incompatibility of a tensor E is the symmetric tensor defined componentwise as
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follows™:
(incE);; :=(Curl Curl® E)ij=€ikm€jinOkO1 Emn. (2.1)
It holds (Ex N);; =—(N X E);j = —€jkm Nt Ein,. Define
H(Q):={Ec H*(Q,S%):divE=0 in O},
Ho(Q):={E€H(Q): E=Curl’ ExN=0 on §9Q}. (2.2)
These spaces are naturally endowed with the Hilbertian structure of H2(£2,S%). Further
more, symbol (-) means in general “duality product”, whereas the scalar product is

written as (-), possibly with a subscript indicating the associated functional space. We
enote by U® the symmetric part of a tensor U.

2.2. The curvinormal frame. We denote by Nyq the outward unit normal to

09, and by b the signed distance to 99, i.e., b(z)= { _ji::g’gg; iﬁig’ . We recall

the following result.

THEOREM 2.1 ( [12], Chap. 5, Thms 3.1 and 4.3).  There exists an open neighborhood
W of O such that (i) b is smooth in W, (ii) every x €W admits a unique projection
poa(z) onto 0K, (iii) this projection satisfies poa(z)=x—3iVb(z), Yz eW, (i) it
holds Vb(x) = Noq(paa(x)), VeeW.
We define the extended unit normal by N(z):=Vb(x)= Npq(psa(z)), Vx € W. For
all z € 0, the system (724, (), 75, (z), Naq (7)) is an orthonormal basis of R?, where 71,
stand for the Rth tangent vector to 9. In this basis, DN (x) takes the form
Kio(®) 0 0
DN(z)= 0 kE(x)0|, Vzeo,
0 0 O

where r%,, and k5, are smooth scalar fields (the surface curvatures) defined on 9. If
Re{A,B}, we denote by R* the complementary index of R, that is, R*=B if R=A
and R*=A if R=B. Let us suitably extend the tangent vectors to W. It holds

THEOREM 2.2 (Amstutz—Van Goethem [4]).  The following holds in W :
ONTE=0,0rN =B7E Oprl = —kBEN — A 78 gp.rlt =y R R
div N = trDN = Ab=2H, (2.3)

where scalar H stands for the mean curvature.

Let us consider the local orthonormal basis (74,78 ,N) in Q. For a general sym-

metric tensor F, one has in this basis:

Ean Ea Ean Egp —EaB 0
E= EBA EBB EBN s %(E)::(EXN)tXN: _EAB EAA 0]. (2.4)
Ena Eng Enn 0 0 0
Moreover, we define Tr(E):= Z (Ex7R) x 7% with
R=A,B
0 0 0 Enn 0—-Ean
(Ext)ixt4=[0 Exy —Epn |, (Ex7B)ixrB= 0 0 0 - (25)
0 _EBN EBB —EAN 0 EAA

4The last expression stemming from the symmetry of the incompatibility operator.
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Having defined the tangential operator 7y, one defines the tangential trace operator as
tro B :=trTo(E). (2.6)

Let us emphasize that the term tangential is used to mean orthogonal to the normal
direction, the latter not being limited to the domain boundary, since the normal has
been suitably extended, together with the tangent vectors, in the interior of the domain.

2.3. Functional results with the incompatibility operator.
THEOREM 2.3 (Beltrami decomposition [28]). Let p € (1,400) be a real number and let
EcLP(Q,S3) be a symmetric tensor. Then, there exist a vector field u€ WP (Q,R3)
and a tensor F € LP(2,S?) with Curl F € L?(Q,S%), incF € LP(Q,S?), divF =0 in Q and
FN=0 on 09, where N stands for the unit normal to 02, satisfying

E=V°u+inc F.

Moreover u can be taken with vanishing trace on 99, and such a pair (u,F') is unique.
The following result is a Green formula.

LEMMA 2.1 (Amstutz—Van Goethem, 2016 [4]).  Suppose that E €C*(Q,S?) and ne
H?(Q,S?). Then

/ - incndz = / incE-nde+ | Ti(E)-n dS@)+ | To(E)-oxndS(), (2.7)
Q Q oQ o0

with the trace operators defined as

To(E):=(ExN)' xN, (2.8)

S

TiE) == s"(Ext%) x4+ ((~0n +2H)Ex N)" x N -2 (Z(aRE x N)tx 7R> .
R R

(2.9)

As a consequence of technical results found in [4], one has

S
~Ti(E)+2HTo(E) =Y k" (Ex ™) x 1+ To(0n E) +2 (Z(aRE x N)t x TR> :
R R

=Y KExT) xR - To(0nE)—2(Cul' ExN)®.  (2.10)
R

THEOREM 2.4 (Coercivity: Amstutz—Van Goethem, 2016 [4]).  Let Q be a bounded
and connected domain with C'-boundary and let the nowhere flat subset I'g C Of)
with H*(T9) >0. There exists a constant C>0 s.t. for each E€Ho(Q),||E| m2(a) <
CHinCE”LZ(Q).

3. The model

We consider a single crystal with a high density of point defects and dislocations.
Prismatic loops are simply one type of point-defect aggregate. They will form from
point defect clusters when their energy of formation is lower than other competing
structures (e.g. 3d aggregates). The thermodynamic mechanism consists in free en-
ergy minimiziation, i.e., the lowest free energy configuration wins. Typically loops (of
interstitial types) become more favorable as the size of the point defect cluster grows.
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Then, if the overall kinetics is favorable, the cluster will transition to loop structures.
In this work, we consider a crystal with 3d aggregates of interstital point defects and
interstitial loops resulting from their collapse. While the former are unstables above a
threshold, the latter are the stable structures. Another stable structure is of course the
absence of interstitials, i.e., their self-annihilation, or dilution.

3.1. Dissipation, gradient flows: origin of the model. Gradient flows
are evolutionary systems driven by an energy, in the sense that the energy decreases
along solutions. This decrease takes place “as fast as possible” by choosing a dissipation
mechanism, which is typically given by the choice of a norm, i.e., of a functional struc-
ture. Therefore, from a modelling point of view the two choices of the driving energy
&, and the dissipation mechanism completely determine the system. For instance, it is
well known that the diffusion equation 0;u=Au is a gradient flow, that is, writes as
Oru=—grad ;& (u), according to several possible choices of disspation mechanisms H
(here symbol grady; stands for the gradient flow associated to the functional & (u) with
the norm of H), i.e., chosen norms, see [35] for details. Having said that, we rather agree
with L. Tartar [43] that such a gradient flow minimization should not be considered as
a physical principle, since as soon as time is present in the model, conservation law
must prevail. Therefore, it might happen that energy conservation and minimization
principles coincide, but the latter should rather be seen as a mathematical “vue de
Pesprit”.

In this work, we focus on a linear elastic body which is incompatible due to the
presence of defects, and refer to [47] for details. We first introduce a specific Helmholtz
free energy as U =W, (¢) + Br° - k% + %MCurl k- Curl k+1gisio(€”) (the curl of a tensor
is defined in Section 2.1 and M is a material-dependent fourth-rank tensor), to empha-
size the role of the internal variables such as the dislocation density x (via a postulated
quadratic law) and the dislocation-induced strain € (through a nonlinear potential
¥dislo)- Note that the quadratic energy contributions involving the dislocation density
can be found in other models [8], whereas the last contribution is a newly-introduced
term. Let D be the global mechanical dissipation associated with ¥, i.e., whose specific
density is the difference between the power produced by internal forces upon deforma-
tion®, o-¢, and the available, “free” energy W. Let ® be the dissipated energy, i.e.,
D= ,%q). We define the incompatibility energy as part of the dissipated energy,

5(60):—/Q(;Minceo-inceoJr%(eO)) dx (3.1)

(where we have used Kroner’s relation ince’ = Curl & [24,49]) and also introduce the
“chemical potential” as p(e”) := — (Mince” +¥(e")) for some divergence-free tensor po-
tential ¢ related to some energy density 7, both to be defined below. Note that p(e")
is not divergence-free for a general M.

It has been derived in [47] that the non-negativeness of D resulting from the second
Law of Thermodynamics implies that

0 < Dincomp = (incp, 0e) = —(gradzfl &(€),0,€") = -0, (€Y).

Therefore, the model can be written either in the form of a tensor-valued evolution
transport-reaction-diffusion PDE of the following Cahn—Hilliard type:

adye® = incp = —inc (MinceOJr%(eO)), a>0, (3.2)

5Note however that in [47] o - V54 was considered, leading to some supplementary terms.
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whose trace reads as the scalar diffusion equation a0, tre® = Atry if i is divergence-free
(and thus, exactly corresponds to the classical scalar Cahn—Hilliard equation for the
scalar variable tre’, see [32] for a review), or as the gradient flow

adse’ = fgradzofl E (%),

for an appropriate functional structure, whose determination is one of the purposes of
this paper. For gradient flow dynamics in the present context we also refer to [7] (in
particular to the chapter by R. Pego). Though the system evolution may be understood
from a mathematical viewpoint as a gradient-driven free energy minimization, we know
that the physical process need not be minimization driven, since as shown in [47], it is
a consequence of the second law of thermodynamics.

3.2. Scalar variable and nonlinear potential. = The model variable being the
dislocation-induced strain tensor €, let us introduce the scalar

e:=tre’, (3.3)

which is a measure for the amount of point defects of interstitial type (and hence is
nonnegative). In fact, the trace of the strain is directly related to the change of specific
mass. Here, it is postulated that the trace of the dislocation-induced strain is related
to the “non-mechanical” variations of density, i.e., to the amount of point defect which
will increase (in the case of interstitials) or decrease (in the case of vacancies) the
density of the solid, see [36]. Specifically, we assume that for a certain “threshold”
value e, the point-defect aggregates collapse to form prismatic dislocation loops, and
hence the region {e~e,} is called the dislocated subset of €, though strictly speaking
it is a critical region for the dislocation strain: it consists of a region where dislocation
loops coexist with unstables 3d aggregates and isolated point defects, and subjected
to an overall kinetics, which is not discussed in this work. The physical phenomena
and processes associated with point defects (such a creation, annihilation, migration,
diffusion, etc.) are represented by a nonlinear potential ¢ which assumes two local
minima, the first being chosen as the thermodynamic equilibrium corresponding to
the absence of point defects, and the other being the stability threshold (inducing the
collapse of point defects, see Figure 1.3, see also leftmost image in Figure 1.2).

We postulate that this kinetics is represented by a two-well potential ¢(e) = %((e —
e®) (e—ey))? +y(e—e®l) + peq With 7v,deq >0. Setting e®d=poq =0, we assume that
the equilibrium value corresponds to the absence of point defects®. Moreover, as far
as minimization is concerned ¢ is insensitive to affine functions, since it would simply
change the value of the minimum by an additive constant, leaving the local minimizers
as unchanged. Therefore, we let the local minima of ¢ take distinct values at e=e°1=0
and at e=e,, that is, we consider the following nonlinear potential:

1

0(e) =5 (ele—e.))’ +7e. (3.4)

In other words, e®¥=0 and e, are the two local minima of ¢ such that at equilibrium of

point defects, ¢(e°?) =¢(0) =0, whereas at the critical value e, for the nucleation of dis-

location loops, ¢* := ¢(ex) =~e.. We remark that lim ¢”(e) = oo, thence ¢ is bounded
e— 00

from below, which is a required property for the existence result in [47]. Moreover

61t is usually considered that e, >e® >0, but we remark that this simply amount to a translation
of the energy function, which is impactless on the forthcomming theoretical developments.
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&' (0)=¢'(ex) =", ¢"(0) =" (ex) =€2 and ¢""(0) = —6e,,¢" (e4) = 6e,. Furthermore, we
assume that in the considered region there are no net creation or annihilation of point
defects (though there exists recombinations of course), thence the total amount of point
defects is prescribed, namely, [, e(z)dz=p>0, where 0<p<e,|Q|.

REMARK 3.1. Since loops are more ordered (i.e., create less entropy) than other
configurations, higher temperature will favor aggregates and the transition will take
place at larger cluster sizes. This means that e,,e®d p depend on the temperature T
and that e, increases with T. There is not a clear temperature for this transition, rather
a temperature/size dependence, which is not further discussed here.

3.3. Model equations. Let LeS? and G=incL. As discussed in [47], let
¥ =G —L in equation (3.2) and set

1

~¢/(e)L,. (3.5)

(%) :=— (Mince® +G(e”) —L), with G(?):=pBe’— 3

In this work we will consider the boundary-value problem (as derived and discussed
in [47])

adpe® — incp(e?) =0 in Qx[0,T)

(€)r=(One")r= (") nn =0 on 02 x [0,T )
, (3.6

(Curl’ )x N=0 on 02 x[0,T] (

rH (MinceO)RN+3R(Minceo)R*R* — Op+ (MinceO)RR* =0 on 0 x [O,T]

with R= A, B, where subscript r stands for the square submatrix with the tangential
components. Moreover, the model parameters are the scalar & >0 and the fourth-rank
symmetric positive definite tensor M (assumed with the same symmetry as the elasticity
tensor).

Well-posedness. Well-posedness of system (3.6) relies on the coercivity of the
form (MincE,incE), itself relying on the relation || E| g2(q,ss) SCHincE||%2(QS3) for
some C' > 0. The latter stems from the three following properties: (i) Poincaré inequality
with the assumption Er=0 (or alternatively EN =0) on 9 ; (ii) the fact the the
gradient of a divergence-free field F' might be bounded by its curl provided that F'x N =
0 (or alternatively that F'N =0) on 0%2; and finally from the relation (9;F)x N =0
(or alternatively (0,E)N =0) on 99 for every [=1,2,3 (see, e.g. [4,9]). The first two
conditions are satisfied by the boundary conditions of system (3.6) (take E=¢€" and
F = Curl® €°). As for the the third, it is a direct consequence of Lemma 3.1 in [4], since
(OnE)r = Curl® Ex N =0 implies that €iquNv€minO1Enj; =0 which multiplied by €4
and by the symmetry of E yields (9;E) x N=0. Now, with the addition of low-order
terms the coercivity might be lost for the associated elliptic system, but not for the
evolution equation (3.6), by the classical change of variable trick E:exp(—fot)E for
some &y >0 (see, e.g., [3]).

REMARK 3.2. If EN =0 holds on 0f2 then the divergence-free property of E yields
(See Eq. (2.16) in [4]) ONEnn — Y. g Err =0, itself implying that (8, E)N =0 on 02
for every [ =1,2,3 and hence the form is coercive. This property was used without proof
in [47].

REMARK 3.3 (Generalized elasticity). Let K€S? be a prescribed generalized force.
In [5] we have established the system of generalized elasticity as (i) inc(Ae+£ince) =
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incK coupled with (i) —div(Ae+fince) = —divK, with the total strain e=Vu+¢° and
A=2ul,+ ANl ®I5 the tensor of elasticity. Eq. (ii) yields a functional dependence of
divu=trVSu in terms of e = tre’. Therefore equation (i) rewrites as inc(2€® + £ince® +
1 (e)l; —K) =0 for some function 1, that is, is the stationnary system associated with
equation (3.2) Where the potential p of definition (3.5) is taken with M=/l =2pu,
K=L and ¢ =—3

3.4. Incompatlbility energy: gradient flow and scaling. Recall the in-
compatibility energy (3.1), considered as a part of the dissipated energy, and define
the potential (") = —(G,e") 2 + g(Curllt e?, Curl €) 2 — £¢(e). Integration by parts

0 _ 0
yields (incG(e”) -G, F) = lim H (& +nF) — A ()
n—

, for every F' € Ho(Q2) and where (-,-)

n
denotes the pairing between Ho(2) and H~!:=(Ho(Q2))’. Then, integration by parts,
and the Green formula of Lemma 2.1, imply that that the Gateau differential of & at
2 € €>(Q) in the direction F € Ho(Q) reads

(gradj-ﬁ?éa(eo),F%:/ inc(MinceO—F%(eo))-Fdx:/ (Mince’ +9(e")) - incFdz,
Q

: (3.7)
where we recall that & =G —L= ¢’ — £¢/(e)I, — L. Taking €’ € H,({2), the distribution
inc (Minceo +¥ (eo)) defines a linear map of H ! precisely by the rightmost integral of
equation (3.7).

Scaling. Tensor M has the dimensions of a force times a surface, scalar 8 of a
force, while ¢ has the dimensions of a force divided by a surface. Thus, to keep these
terms of the same order as characteristic surface areas increase or decrease, one should
multiply M and divide ¢ by a parameter € with the dimensions of an inverse surface,

3 .__ ( characteristic_thickness )2 .
respectively. Set €:= ( harattorietic suface ) . The scaled energy functional reads

1
é@(eo)::/ (25Mince0-ince0+%(60)) dr,
Q

where 7 (€%) = —(G,e) 12 + g(Curlt e, Curl €%) 2 — 27 g(tre?).
For a general € € H(S2), one defines by equation (3.7) the H~!-gradient as follows:

(gradZ‘llé’E(eo)7F> ::/ (eMince’ + % (e")) - incFdx, VF € Ho(9),
Q

where ¥.(°) := B’ — 714/ (e)I, — L. The linear and continuous map grad’®®, &.(¢°) is
associated to a unlque GYeH, such that incincGY = inc (eMince® +%. (e )75[ and Riesz

theorem yields (gradf}_t,lé"E ("), F) = [, incG?- incFdx, the RHS being a scalar product
on Hy by Theorem 2.4.

3.5. Dual functional spaces and gradient flow formalism. Set
Ho(Q):={FeH(Q): FN =0 on 09},
and introduce the Hilbert space

Hyt = {TG(H(Q))’:EITEH*(Q):<T,E>:/QincT-incde, VEE’H(Q)},

where (-,-) denotes the duality pairing between H () and (#(2))’. Remark that such
tensor T is unique since it is defined up to a symmetric gradient which must be
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divergence-free, and hence vanishes by the boundary condition TN =0. Let us call
this unique tensor” T=inc; 27. We define the Hy L_gradient as

<gradzo_1§5(eo),F) = —/ e - incFdz, VF € H(QY),
Q
where we have introduced the “chemical potential” as the tensor
pie(€) := — (eMince’ + % (")) = —inc (inc;z(gradzflé’g(eo)o € L*(0,S?).
0

The gradient gradzal &.(€Y) is the dual of y. in the sense that incu. = 7gradZ0—1 (%)=
—inc (eMince® + ¥, (e)). Therefore, our model evolution equation (3.6)a rewrites as the
following H !_gradient flow:

1 1 1
9, = 7agradz0,1 &= - inc (eMlince’ +%. (%)) = S incge, (3.8)

where the e-dependent solution of equation (3.8) will be denoted by €” in the sequel.
In particular, we see that the driving force for diffusion is the incompatibility of the
dislocation potential. Indeed, it can be noted that taking the trace of equation (3.8)
yields 0;trel =1 (Atrp. — divdivy:). We remark that if M has the form M=24l,+
A, ® 15, the highest-order term of the RHS reads —% (h+ :\)Atreg, yielding the classical
scalar Cahn—Hilliard equation.

4. Asymptotic analysis

The analysis in the present section will be made in the spirit of R. Pego’s work [34]
for the classical scalar Cahn—Hilliard system. The analysis is formal but its main purpose
here is to identify the equations and the jump conditions in our tensor-valued and
incompatibility-based setting. The interested reader may find rigourous results about
the classical Cahn—Hilliard system in, e.g., [2,11,27]. It is assumed that the time-evolving
front ¥ with unit normal N separates the domain in two subdomains Q" and Q= (with
Q~ possibly disconnected), where 00 =0Q", i.e., Q~ is enclosed by X. Moreover, it
is assumed that ¥ is approximated by a smooth thick interface a width of order € >0,
and therefore the associated transition layer is denoted by the volume X, (see Figure
1.3). Furthermore, we consider the dynamics second stage, i.e., we assume that the
interface has been formed previously, is smooth at the initial time t =0, and that the
point defects assume values close to the critical points 0 and e, in QT \ X, and QO \ 2.,
respectively. Therefore, we are concerned with the evolution of the dislocation strain
€Y, and the evolution of the interface. In particular, we seek the front (otherwise called,
interface) velocity V :=09;%. Setting

Z(%):=p" — L, (4.1)
equation (3.8) rewrites as (recall the definition e:= tre”)

1
adie? =incp., pe:=—eMince? — 2 (%) + gé‘ild)/(trﬁg)ﬂg. (4.2)

The initial value is prescribed, i.e., €2(-,0)=€j, and satisfies [, trejodz=p>0. For
simplicity we take a=1.

7This notation arrise from the fact that for smooth tensors one has incincT=7 by taking E with
compact support.
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4.1. Far-from-the-front. Let us expand €Y, e, := tre? and p. as powers of e:

€ =eg+ee)+eed+--
e. =eg+teei+eeg+- (4.3)
pe = € o+ p Fepa -

where € e;:=tre} and y; are functions of # and t. Note that €} are divergence-free
tensors. Moreover, the boundary trace e(l)aQ:egl sq and hence =€eJ=0 on 9Q. By

identification, definition (4.2) yields

po = 5¢'(eo)lz
= 59" (eo)erls —Z(e)) : (4.4)
Lo = %qﬁ”'(eo)ef]b + ¢ (eg) ezl —Mince) — Be?

Order-zero solution. Expanding equation (4.2) with the expressions (4.3), tak-
ing its trace, and considering the order —1 term yields A¢'(eq)=¢"(eo)|Veo|? +
@"(eg)Aeg =0, whose case study (in function of the zeroes of ¢ and ¢ and the maxi-
mum principle) entails that eq is constant, i.e.,

eo=01in QF, eg=e, in Q. (4.5)
From a physical viewpoint, the fact that eq =e, reflects the fact that the collapse of the
point-defect platelet in prismatic loops will take place with the release of the residual

strain e,.

Then ¢'(0) =¢'(ex) =7y yields
_ —0;
o= §H2, Onpo=0in Q. (4.6)
Recalling that ¢(0) =¢" (e.) = €2, we note that
1
truy =eey; —PBeg+trl and  divy, = 563V61 +div in QtuQ.  (4.7)

Time evolution, far from the front. The time-evolution in Q X [0,7] reads

0 incpug
Ored = incu; . (4.8)
0¢el = incus

The constant value of ey in QT UQ ™, the relations G = incL and ¢ (eg) =e? imply that
0=0:eg = trincuy = Atruy — divdivpg, and hence by equation (4.7),

—nAe; = t1G in QTUQ™
Oyer =0 on >, (4.9)
e1r =0 on o0

with n:= %ef. Thus, e; is determined as soon as ¥ is known, which is the ultimate goal
of this work.
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Long-time behaviour. Let us define the slow time as t* =e~'t. Then, following

equation (3.8), far from the front one has ad;-e® =cincpu., and equation (4.8) yields

Op-€) = incug =0, and hence €} remains at its initial value €),:=€J(-,0), i.e.,

. 0 inQ*
Q(t)=€Sy in Q  and eo{e* I (4.10)
Recapitulating, by virtue of expressions (4.4)-(4.10), one has in Qx [0,71],
po = 312
= 50" (eo)erlls — L (ey) = zeierlls — Bedy +L
Mo = %d)m(eo)efﬂg =+ %(ZS”(@O)@QI[Q — MinC€80 — 56(1) . (411)

{ *6*6%]12 + %eieg]lg —ﬂe? in Ot

exelly + %6362112 —BeY  in Q-

4.2. Close-to-the-front. Let b(z,t) stand for a time-dependent signed distance
function from ¥, as introduced in Section 2.2. In particular b>0 in Q7 and b<0 in
Q™. Furthermore, 9,;b(x,t) represents the velocity of the front for « € 3 (while b(z,t) =0
if z€Y). Define a stretched distance function z:=e~1b(x,t). Let us expand € and p.
close to the interface, as powers of ¢ as follows:

€ =& +edd 2+
€. = é0+861+8252+--- , (412)
pe = & o+ i+ efia +

where €?,éi and fi; are now functions of = and ¢ and of z. Introduce the following
notations for a generic tensor E:

E=E(x,t):=E(z,x,t), z=2%(x;¢)=¢ 'b(x,t), (4.13)

i.e., e7'b is a streched normal distance. Moreover, one defines the jump across the
interface as

[E(2)]5:= E(+00) — E(—00).

Thus, & (z,t) =& (z,2,t) = (e~ 1b(x,t),x,t) and fi;(z,t):=f1;(e*b(z,t),z,t). By equa-

7
tion (4.10), the matching conditions for the zeroth-order term reads®

0 asz—+o0
€x as z——00

&(z,x,t) =€) (x,t) as =400 and éo(z7x,t)—>{ (4.14)

Recalling that the extended normal, defined as N:=Vb (i_.e.7 pointing inwards o)
is independent of the normal coordinate z, one has VE(x,t)~:E_1N8ZE(z,x,t)+
V.E(z,z,t), and hence Curl E(z,t)=e ‘N xd,E(z,x,t) + Curl,F(z,z,t) and

divE(z,t) =10, (E(z,o:,t)N) +div, E(z,2,t). (4.15)

8In a suitable norm, say C2 for convenience.
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Then, incE(z,t) = Curl (Curlt E(m,t)) = incwE(z,x,t) +e 75 (@E(z,x,t)), where de-
composing along the curvinormal frame and recalling the formulae of Theorem 2.2, one
has (for a generic tensor F'=F(x,t):= F(z,x,t),
1
(7—2(F))mk = iemjnekpi (8p(N]F1n) +8J(Nszn))

1 N
= €mjn€hpi (Z TRl + 5 (N30 Fin + Ny Fin) +51Nijazﬂn> .
R

Moreover, by the definition of 7o (see definition (2.8)), from an index-wise com-
putation one has T(F)=e"1T4(0,F)+T3(F) where the operator 73 is defined as

Ta(F):=Ta(F)— ((Curl F)! x N)*, with Tr(F) =Y x(F x 78)t x 7R, Setting

(To(OnF)=T1(F)) and  Tu(F):=HTo(F)+Tr(F),

|~

Ta(F):=
and recalling equations (2.5), (2.8), (2.9) and (2.10), one obtains
Ts(F)="Tu(F)+Ta(F), (4.16)

with H, the mean curvature. Taking F =0,F (z,z,t), the final expression for the incom-
patibility is found as

incE(z,t) = inc, E(z,z,t) + T3 (8ZE(z,x,t)) +e7%T (83E(z,x,t)) . (4.17)

Divergence-free condition. By virtue of equation (4.15), the divergence-free con-
dition dive® =0 implies that

0=e"10, (E)N) + (divyé)+ 0. (E)N)) +e (divye) + 9. (IN)) +£>div, &,
therefrom €Y N is independent of z, i.e.,
&(z,x,t)N(z,t) = EgN (z,t) (4.18)
for some Ey depending on 2 and ¢ only. In particular 9.(8N-N)=0, and hence
9. (trég) = 0:(trr &), (4.19)

where the tangential trace is given in definition (2.6). Moreover, the definition of p. in
(4.2) and equation (4.12) imply that the e~ 2-term must vanish, i.e.

0, fioN (z,2,t) =0. (4.20)

Dislocation potentials in the transition layer. By identification, the definition
of pe in (4.2) and equations (4.12) and (4.17) yield

fio = 3¢/ (€0)I — MT, (02€))
fir = 5¢"(€0)é1la — ZL(€§) —MT5 (9.€0) —MT; (92€9) (4.21)
fir = §¢""(e0)&1z + 5" (8)allz — Minc, &) — 5&) —MT; (9:€)) — MT; (9283)

Differentiating equation (4.21)a in z and multiplying the result by é; yields
(0:f10)€1 = £ (€0)0.€0€112 — M Ty (03€]) €1. Multiplying equation (4.21)b by 8.¢éy yields
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(fir +-Z (&) + MT5 (0.€3)) 060 = 16" (80)é10.E012 —M Ty (92€7) 9.éo. Hence, substract-
ing the two equalities, and anticipating the fact that 9,fio =0 (see equation (4.31)), we
deduce the following formula which we will use later:

(fir + L (&) +MT; (0.€)) ) 060 = —MTo (92600, — 03€)¢é1 ) . (4.22)

With a view to the final formulae let us compute the incompatibility in x of equation
(4.21)a,

incg fig = %(%A—aiaj)qs’(éo) — 0, (inc,MT; (9.€9)) - (4.23)
Asymptotic matching of the dislocation potentials. It is required that
(e Yo+ +efia+---)(z,2,t) ~ (e Lo+ 1 +epg +--- ) (x+e2N),t)
at a 0(e)-distance from the interface. Recalling definition (4.13), one gets
fio(z,x,t) = 3o as z—Fo0

2
fir(z,2,t) = pa(@,1) + 20N po(@,t) +0(€) as z—Fo0 . (4.24)
fiz(z,2,t) = pi (z,t) + (zaN,ul + %812\,#0) (z,t)+o(e) as z—+oo

In particular, since g is constant, one has
Ozfi0=0np1+0(e) as z— too, (4.25)
thence a formula which will be used later:
/OO 02 figdz = {Onp }z +o(g), as z— Foo, (4.26)
where we have introduced the following notation for the jump across 3:
{E(@,t)}s=E(u(z",t)) —E(u1(z,t)) = gi_)mO(E(x—l—(Sb,t) —E(x—4b,t)), (4.27)

for a generic tensor E and recalling that b(z,t) is the signed distance from the front.

Time evolution, close to the front. The front velocity is given by

0 X :=V(x,t):=0b(x,t), z€X. (4.28)
For a generic tensor E=FE(z,t)=FE(z,z,t), one has O.E(x,t)=0.E(zx,t)+
e WVO,E(z,x,t). Identification among equations (4.2), (4.16), and (4.17) yields the
order e 73,672 and ¢! as follows:

0 =70(0%)
0 = T3(8:fi0)+To (92f1n) : (4.29)
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Zeroth-order dislocation strain. Equation (4.29) a yields 0="Ty (9%fi), i.e., re-
calling that 7y is a tangential operator, fig = Ag(x,t)z+Bo(z,t) + CF (2,2,t) =By (x,t) +
CY (z,z,t), since jig is finite at z — +o00, and where C{ is a symmetric matrix such that
its tangential submatrix vanishes, i.e., 7o(CJ')=0. There is perfect phase separation
away from the interface and hence equations (3.4), (4.14) and (4.21)a yield (recalling
identities 7o(I2) =1 — N®N),

1
To(fi0) =Boo :=To(Bo) = lim To(fio)=_lim To(fio) = 37(l2=N®N). (4.30)

Moreover, equation (4.20) implies that BoN +C{' N and hence also C¥ =CJ' N is inde-
pendent of z, and hence

fio=Bo(z,1). (4.31)
Let us go back to equation (4.21)a, that is,

92 (To(&)) =To (M—l (;¢/(50)H2—B0>), (4.32)

which is the tensor counterpart of the equation y” = f(y), whose solution is obtained
by considering the ODE dy=,/2 f;) f(s)dsdz for some well-chosen initial condition yg.
Let us denote the unique solution of equation (4.32) by

Eo(z,2,t) :=To(&).

Hence, Ey:= & :]E0+C’év , where the last term might depend on z and satisfies
To(C§')=0. Yet by equation (4.18), EoN =(Eq +C)N=CJ' N is independent of z,
that is, C¥ N and thus C{¥ must be independent of z. Therefore,

E‘o(z,x,t):]Eo(z@,t)—i—éév(x,t), (4.33)

where the constant C)Y =C{(x,t) is determined by matching the inner and outer solu-
tions, viz., by virtue of equation (4.10) and (4.14),

0 asz—+o

, (4.34)
€y as z— —00

Eoﬁego as z—+oo and éoztrEOH{

with
62(;0:8;550:0 as z— to0. (435)

Long-time behaviour. Let us define the slow time as ¢* =¢" !t and the slow ve-
locity as Vi :=0;+b, in such a way that 0, Eo(x,t) = 10 Eo(2,2,t) + e 2Va0. Eo(z,2,t)
satisfies by equations (4.17), (4.31) and (4.33),

Va0:Eo =T (- fi0) + To (02i1) = To (92 f11) - (4.36)

Taking the trace of equation (4.36), integrating from —oo to +00, and recalling definition
(2.6), yields

Vi = [tr:(0: fi1) I [trEo]5: (4.37)
where by expression (4.34),
[é0]y; = [trEo]y = trEyf — trEy = —e.. (4.38)

Equation (4.37) shows that to have an expression of the slow velocity, the next order
must be determined in order to find an expression of fi;.
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4.3. Close to the front: first-order terms. By equations (4.29)b and (4.31)
it holds that 0="7y (83/11) and hence the above reasoning can be repeated leading to

fir =B (x,1). (4.39)
Therefore equation (4.21)b yields (recall that &y:= tréd = trEp)

02 (To(@)) =M~ (éd’(éo)élﬂz — (o) —MT; (9.Eo) —Bl) . (440)

which is of the same form as equation (4.32) and has a unique solution
Ey(z,x,t) =E1(z,2,t) + CN (z,t). (4.41)

Let us compute the integral of the RHS of equation (4.22) from —oo to +o00. By

expression (4.34), one has lim Ej= lim E{ =0, and hence integrating by parts yields
z—+o0 z—+o0

+oo +oo
/ (831%30 tfg(f - 336?82«&0) dz :VO = —/ (8§E08Z tFEl + 831[41182 trEo) dZ,

— 00 — 00

which is a known value by virtue of equations (4.33) and (4.41). Note that for simplicity
we have writen E{(z) to mean 9,Eq(z,z,t). Then, the tangential projection of equation
(4.22) integrates as
“+o00
To (/]1 +$(]E0) +MT3 (8ZE0)) 0,€0dz=Wy:="T (M'ﬁ) (Vo)) R (442)

— 00

which, recalling equation (4.39), implies that

+oo
| T+ Torss (Bi(2)) 0+ W

+o00
= %(Bl)azéodzz%(Bl)[[éo]]E :—6*76(131), (443)

— 00
by virtue of equation (4.38), and where we have defined the operator Toars:=ToMTs.
First-order potential on the interface. Equation (4.16) yields Tous(Eq)=

To (M’E{(Eé)) +7o (M’ﬁ(Eé)), where we have defined the operators 7oy g :=ToMTh

and Toprq:=ToMTs. Hence the tangential part of the first-order potential ji; writes by
equations (4.39) and (4.43) as

To(fin)(z,t) =To(B1) = (Su(x,t) — Qo(x,t))e; !, zeX, (4.44)

where the following tensors (depending on (x,t) and independent of z) have been intro-
duced:

Sy = / 5 (0475 (B4 (2)) ) 0-20d2, (4.45)

—00

+o0o

Qo:= (wo - [ (7 (w7 (552) + o (2 (Eal)) azéodz)) . (40)
Now, observe that equations (4.24)b and (4.6) yield [ (z,2,t) =p1(z,t)+o(e) as

z— to0o. Hence considering expression (4.44) on the interface, i.e., as e =0, one has

To(p1)(,t) = (Su(,t) = Qo(x, 1)) e . (4.47)
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4.4. Time-evolution of the dislocation front. The front ¥ is assumed to
be known at time t and its velocity 0, =V (z,t), where V is given in definition (4.28)
and is obtained by integrating equation (4.29)c from —oo to +o00 and letting € — 0. By
virtue of equations (4.26) and (4.39), this yields

VIEo]y=Po+To({Onp}s), (4.48)

where Py ::fj;; inc, fipdz can be written componentwise by equations (4.23), (4.3)b
and (4.35) as

+o0 1

Thus, we need to compute the jump of Oy in equation (4.48). To this aim, the

asymptotic values of the far-field first-order potential p; are required. By equations
(4.8) and (4.10), one has

Oreg=0pey=0=1incpy, in QTUQ, (4.50)
with the value of the potential on the interface given by equation (4.47), namely,

{76(#1) = (Su—Qo)e;on X
Ti(p1) =0 on Y’

Let H be a solution to

incincH =0 in QTUQ~

To(incH) = (Su—Qp)e;! on X (451)

Ti(incH) =0 on X '
H="Ts(0nyH) =0 on 9

Then p; =incH+C for some compatible tensor C. Further, it is easy to see that
incHN =0 on 99Q. Recalling equations (4.7) and (4.11)b, one has C=V%u with u so-
lution of divVSu= divu; = %eiVel +divL in QT UQ~, where e; is solution of equation
(4.9) with (VSu)N =0 on ¥ and (VSu)N = p3 N =puN on 952 Moreover, by Theorems
2.1 and 2.4, the variational problem associated to (4.51) is

H = argmin {/Q(incF)de—i—e*_l/E(SH—QO)-GNFdS(JJ)},

FeHo(Q)

_ Further, the front velocity V' =9;3 depends on the jump at the interface of p; and
Ey and reads by equation (4.48) and definition (4.27),

{ [Eols,V =Po+To ({Onp1}s)

o) -, , (4.52)

where p11 =incH+C. Thus, [To(Eo)]V =To(Po)+{9OnTo(11)}s. Taking the trace in
the latter, and integrating equation (4.19), the front velocity reads

{ % = [trEo]l 5 (t1:Pg+ {0 trop }x) = —e L (t:Po+ {0 tropaa } ) (4.53)

2(0) = %
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Fic. 4.1. Observed microstructure with flat boundaries: defect cluster patterning into walls in
SCS irradiated with protons (left: from [51]). Polygonization in magnesium-ozide single crystals

(right: from [41])

with tI‘T]P)O = tI‘]PO —]PQNN: fj—oo; (%Az(ﬁ/(éo) —(9]2\,(,25/(60)) dz.

Equations (4.51) and (4.53) constitute the global tensor-valued evolution system,
analogous to the Mullins—Sekerka law obtained for the classical scalar Cahn—Hilliard
equation [2,11,27]. Though, there exists a notable difference, namely that the right-
hand side of equation (4.51) is given by a term proportional to the total curvature
of the front, viz., Sy (as in the Mullins—Sekerka law), plus a term, i.e., —Qq, that is
independent of the curvature. Hence 11 will be nonzero even for flat interfaces (such as
polygonal regions or flat walls, see Figure 4.1).

Now, let us deduce a scalar equation from the tensor-valued system (4.51): taking
the traces of equations (4.51) a and b and recalling definition (2.6), one has by (4.4)
and (4.9) tr(incp;)=Atrus — divdivp; =0 and trpg = trepg +p3 N - N. Thus,

{Atr,ul =M in QTUQ~

tru; =m on X’ (4.54)

where M := %eiAel + divdivLL and m:=e; ! (trSg — trQp) + %eiel +ILN-N, with eq the
solution of equation (4.9) and recalling equation (4.11)b and the fact that divel, =0
in © implies that )y N =0 on X. The scalar system (4.53) and (4.54) is similar to the
classical Mullins—Sekerka law, the only difference being the terms on the right-hand side
of equation (4.54)b independent of the front curvature. In fact, one has a system where
the value of tru; is fixed on the interface, where in each phase one solves a Poisson
problem. Moreover the interface has a velocity 0;3 that depends on the jump of the
normal derivative of tryu; across the front, which we denote according to [27] as the
restricted Laplacian to X, i.e., Ax(trpy) :=—{0ntrus }s. In particular, equation (4.54)
may be rewritten as Atru; = M + Agmdys. Let us emphasize that because of the terms
independent of the front curvature, the dynamics is more complex than gradient-flow
area minimization, as in classical scalar Cahn-Hilliard [27], and in particular makes it
possible to capture flat boundaries, which arrise in the actual crystals.

5. Concluding remark

This paper is a direct follow-up of the recent work [47] where a tensor version of
Cahn—Hilliard system was derived in the context of incompatible linearized elasticity.
Interpreting the trace of the incompatible strain as the density of point defects, in the
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present paper we propose a model for point defects collapse into dislocation loops in
single crystals as based on Cahn-Hilliard dynamics. Moreover, by means of asymptotic
analysis, we determine the front dynamics. In particular we obtain a tensor version of
Mullins—Sekerka law which allows for flat interfaces. As polygonization is an observed
phenomena in single crystals with dislocations, this feature is of particular interest.
The chosen asymptotic approach is required to determine the form of the equations,
though rigourous results may also be derived in future works. The proposed approach
is to the knowledge of the author the first macroscopic model to address the problem
where the incompatibility strain is the main model variable. Other approaches exist at
the macroscale as in [13,16,31,42]. Further, alternative approaches are the atomistic
simulations, which are very promising but still have a huge computational cost and thus
are restricted to samples of limited size, see e.g., [19,50]. It is yet an open question to
determine to what extend this model is acceptable for engineers and practicioners.
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