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THE PRINCIPAL EIGENVALUE WITH RESPECT TO

A PARAMETER IN GROWTH-FRAGMENTATION MODELS∗
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Abstract. We study the variations of the principal eigenvalue associated to a growth-fragmen-
tation-death equation with respect to a parameter acting on growth and fragmentation. To this aim,
we use the probabilistic individual-based interpretation of the model. We study the variations of the
survival probability of the stochastic model using a generation by generation approach. Then, making
use of the link between the survival probability and the principal eigenvalue established in a previous
work, we deduce the variations of the eigenvalue with respect to the parameter of the model.
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1. Introduction
In biology, microbiology and medicine, diverse models are used to describe struc-

tured populations. For example the growth of a bacterial population or of tumor cells
can be represented, in a constant environment, by the following growth-fragmentation-
death equation [1, 7, 9, 10,15,17,27]
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which describes the time evolution of the mass densitymt of the population of cells which
is subject to growth at speed g, cell division at rate b, with daughter cells generated by
a division kernel q and death at rate D. In order to study the asymptotic growth of the
population, the eigenproblem associated to this equation is generally considered. The
eigenvalue, also called Malthus parameter in this context, gives the asymptotic global
growth rate of the population and allows one to determine if the environment favors the
development of the population.

Biologically, it is interesting to study the variation of this growth rate when the
environment is changed (either by the action of an experimentalist or due to fluctuations
of external conditions). In this article, we consider the model described previously, in
which the growth function and the division rate depend on an environmental parameter
S describing the constant environment. The death rate is assumed independent of
S since we have in mind chemostat in which death is due to dilution at fixed rate.
This parameter can, for example, represent an external resource or the influence of
other populations supposed to be at equilibrium. The study of the influence of this
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parameter on the growth of the population is a question of biological interest for a
better understanding of the model, but also of numerical interest, for example, for the
study of mutant invasions in adaptive dynamics problems [11].

This new question seems to be difficult to approach with standard deterministic
mathematical tools where, to our knowledge, no result is available except a study of the
influence of asymmetric division in [20,21] and an asymptotical study of the influence of
the parameters by [2]. See also [24] for a study of the impact of the variability in cells’
aging and growth rates as well as [5] for comparison of Perron eigenvalue (for constant in
time birth and death rates) and Floquet eigenvalue (for periodic birth and death rates).
The approach that we propose in this article uses the probabilistic interpretation of the
growth-fragmentation-death equation under the form of a discrete stochastic individual-
based model. This class of piecewise deterministic Markov processes is studied a lot,
with recent interest focused on the estimation of the parameters of the model [8,13,14].
In this individual-based model, the growth of the population is determined by its growth
rate, but also by its survival probability in some constant environment. The link between
the eigenvalue of the deterministic model and the survival probability of the stochastic
model, which correspond to two different definitions of the biological concept of invasion
fitness [16, 18], was established in [3]. Our goal is to use this link to deduce variation
properties of the eigenvalue with respect to the environmental parameter S from the
variations on the survival probability. The probabilistic invasion fitness allows the use of
a generation by generation approach, which is more difficult to apply to the eigenproblem
since generations overlap. Using this approach, the variations of the survival probability
can be obtained by applying a coupling technique to the random process.

In an adaptive dynamics context, the variation of both invasion fitnesses are numer-
ically very useful. For instance, considering the time evolution of a bacterial population
in a chemostat, the invasion fitness determines if some mutant population can invade a
resident population when a mutation occurs [19]. The invasion fitness may be defined
as the growth rate of the mutant population in the equilibrium environment determined
by the resident population. In this example, the environmental parameter S represents
the substrate concentration at the equilibrium of the resident population. When the
mutant population appears in the chemostat its size is small. Hence, its influence on the
resident population and on the resource concentration can be neglected, which means
that the substrate concentration S can be assumed to be constant as long as the mu-
tant population is small. Moreover, due to the small number of mutant individuals, it
is essential to use a stochastic model [4, 12]. However, the stochastic invasion fitness
is numerically less straightforward to compute than the deterministic one. The mutual
variations of both invasion fitnesses established in this article considerably simplifies the
numerical analysis of a mutant invasion since the problem is reduced to the computa-
tion of a single eigenvalue that characterizes the possibility of invasion of the mutant
population [11].

In Section 2, we present the deterministic and the stochastic versions of our growth-
fragmentation-death model. We give the definitions of invasion fitness in both cases: for
the stochastic case it is defined as the survival probability, and for the deterministic case
it corresponds to the eigenvalue of an eigenproblem. We extend some results from [3], in
particular Theorem 2.1 linking these two invasion fitnesses, to our more general context.
Section 3.1 is devoted to the monotonicity properties of the survival probability of the
stochastic model with respect to the initial mass and the death rate. In Section 3.2
we prove, under suitable assumptions, the monotonicity of the survival probability with
respect to the environmental parameter S. In Section 3.3, we deduce from the previous
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results and from the link between the two invasion fitnesses, the monotonicity of the
eigenvalue with respect to S. Our assumptions are based on the realistic biological idea
that the larger a bacterium is the faster it divides, and the larger the parameter S is the
faster a bacterium grows. This is biologically consistent in the case where S represents
the substrate concentration. The monotonicity of fitnesses is obtained under additional
assumptions which are detailed in the following sections. We extend this result assuming
a particular form of the growth rate g and give a more general approach in Section 3.4.

2. Models description
In this Section we present two descriptions of the growth-fragmentation-death

model. This model is the one studied in [3], in which we add a dependence on a
one-dimensional environmental parameter S, which is supposed to be fixed in time. In
Section 3, we study the variation of the invasion possibility of the population (whose
definition depends on the considered description) with respect to S for both descriptions.

2.1. Basic mechanisms. We consider models in which each individual is
characterized by its mass x∈ [0,M ], where M is the maximal mass of individuals, and
is affected by the following mechanisms:

(1) Division: each individual of mass x divides at rate b(S,x), into two individuals
with masses αx and (1−α)x, where the proportion α is distributed according to
the probability distribution Q(x,dα) = q(x,α)dα on [0,1].

x

↵x

(1 � ↵) x

taux b(s, x)

(2) Death: each individual dies at rate D.
(3) Growth: between division and death times, the mass of an individual grows at

speed g :R+× [0,M ]→R+ depending on an environmental parameter S, i.e.

d

dt
xt=g(S,xt). (2.1)

In this model, the environmental parameter S is fixed in time, and individuals do not
interact with each other. This means that the resource S is not limiting for the growth
of the population, this is the case, for example, if the resource is continuously kept at the
same level or resource consumption is negligible with respect to the resource quantity.
This model is relevant for a population with few individuals in a given environment
where resource consumption is low.

For any S>0, let ASt be the flow associated to an individual’s mass growth in the
environment S, i.e. for any x∈ (0,M) and t≥0,

ASt (x) =x+

∫ t

0

g(S,ASu(x))du. (2.2)

Throughout this paper we assume the following set of assumptions.

Assumptions 2.1.
(1) For any x∈ [0,M ], the kernel q(x,.) is symmetric with respect to 1/2:

q(x,α) = q(x,1−α), ∀α∈ [0,1]

and
∫ 1

0
q(x,α)dα= 1.
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(2) For any α∈ [0,1], the function x 7→ q(x,α) is continuous on [0,M ].

(3) There exists a function q̄ : [0,1] 7→R+ such that q(x,α)≤ q̄(α) for any x∈ (0,M) and∫ 1

0
q̄(α)dα<+∞.

(4) g(S,0) =g(S,M) = 0 and g(S,x)>0 for any x∈ (0,M) and S>0.

(5) g(S,.)∈C[0,M ]∩C1(0,M) , where C[0,M ] and C1(0,M) respectively represent
sets of continuous functions on [0,M ] and continuously differentiable functions on
(0,M).

(6) b(S,.)∈C[0,M ], and there exists mdiv∈ [0,M) and b̄>0 such that

b(S,x) = 0 if x≤mdiv,

0<b(S,x)≤ b̄ if x∈ (mdiv,M).

Assumptions 2.1-(5) and 2.1-(4) ensure the existence and uniqueness of the growth
flow defined by equation (2.2) for x∈ (0,M) until the exit time Texit(x) := inf{t>
0|ASt (x)≥M} of (0,M), and they ensure that AS ∈C1(D) with D={(t,x), t<Texit(x)}
[6, Th. 6.8.1]. We define this flow as constant when it starts from M . Note that the exit
time Texit(x) is infinite if the convergence limx→M g(S,x) = 0 is sufficiently fast (see for
example [3, Assumption 3.] for more details). Assumption (4) means that the maximal
biomass of an individual is the same for any concentration of resources. This may not
be true in general, but we can always change the scale of biomass for each value of S so
that the maximal value of x is always M and modify the growth and birth parameters
accordingly. This is what we shall assume in the sequel.

2.2. Growth-fragmentation-death integro-differential model. The deter-
ministic model associated to the previous mechanisms is given by the integro-differential
equation
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(2.3)

where mS
t (x) represents the density of individuals with mass x at time t evolving in the

environment determined by S, with a given initial condition mS
0 .

Let GS be the non local transport operator such that ∂tm
S
t (x) =GSmS

t (x): for any
f ∈C1(0,M), x∈ (0,M),

GSf(x)
def
=−∂x(g(S,x)f(x))−(D+b(S,x))f(x)+2

∫ M

x

b(S,z)

z
q
(
z,
x

z

)
f(z)dz, (2.4)

and G∗S its adjoint operator defined for any f ∈C1(0,M), x∈ (0,M) by

G∗Sf(x)
def
=−(D+b(S,x))f(x)+g(S,x)∂xf(x)+2b(S,x)

∫ 1

0

q(x,α)f(αx)dα. (2.5)

We consider the eigenproblem

GS ûS(x) = ΛS ûS(x), (2.6a)

lim
x→0

g(S,x)ûS(x) = 0, D+ΛS>0, ûS(x)≥0,

∫ M

0

ûS(x)dx= 1 (2.6b)
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and the adjoint problem

G∗S v̂S(x) = ΛS v̂S(x), v̂S(x)≥0,

∫ M

0

v̂S(x)ûS(x)dx= 1. (2.7)

The eigenvalue ΛS is then interpreted as the exponential growth rate (or decay rate
if it is negative) of the population.

In the rest of the paper we will assume that the following assumption is satisfied.

Assumption 2.2. For any S>0, the system (2.6)–(2.7) admits a solution (ûS , v̂S ,ΛS)
such that ûS ∈C1(0,M) and v̂S ∈C[0,M ]∩C1(0,M).

In [3], we have given some conditions under which this assumption holds (see
also [7, 9] for sligthly different models and [15, 22, 26] for exponential stability of the
eigenfunctions).

2.3. Growth-fragmentation-death individual-based model. The mecha-
nisms described in Section 2.1 can also be represented by a stochastic individual-based
model, where the population at time t is represented by the counting measure

ηSt (dx)
def
=

Nt∑
i=1

δXi
t
(dx), (2.8)

where Nt=
∫M

0
ηSt (dx) is the number of individuals in the population at time t and

(Xi
t , i= 1,. ..,Nt) are the masses of the Nt individuals (arbitrarily ordered).

The stochastic individual-based model is relevant for small population whereas the
deterministic one is relevant for large population [4].

The process (ηSt )t≥0 is defined by

ηSt =

N0∑
j=1

δAS
t (Xj

0) +

∫∫∫∫
[0,t]×N∗×[0,1]3

1{j≤Nu−}1{θ1≤b(S,Xj
u− )/b̄}1{θ2≤q(Xj

u− ,α)/q̄(α)}
[
−δAS

t−u(Xj
u− )

+δAS
t−u(αXj

u− ) +δAS
t−u((1−α)Xj

u− )

]
N1(du,dj,dα,dθ1,dθ2)

−
∫∫

[0,t]×N∗

1{j≤Nu−} δAS
t−u(Xj

u− )N2(du,dj) (2.9)

where N1(du,dj,dα,dθ1,θ2) and N2(du,dj) are two independent Poisson random mea-
sures defined on R+×N∗× [0,1]× [0,1]× [0,1] and R+×N∗, corresponding respectively
to the division and death mechanisms, with respective intensity measures

n1(du,dj,dα,dθ) = b̄du
(∑
`≥1

δ`(dj)
)
q̄(α)dαdθ1 dθ2, (2.10)

n2(du,dj) =Ddu
(∑
`≥1

δ`(dj)
)
, (2.11)

(see [3, 4] for more details).

This population process can be seen as a multitype branching process with a con-
tinuum of types. We are interested in its survival probability.
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We suppose that, at time t= 0, there is only one individual, with mass x0, in the
population, i.e.

ηS0 (dx) = δx0
(dx).

The extinction probability of the population with initial mass x0 is

pS(x0)
def
= PSδx0

(∃t>0,Nt= 0),

where PSδx0
is the law of the process (ηSt )t≥0 under the initial condition ηS0 = δx0 . The

survival probability is then given by PSδx0
(survival) = 1−pS(x0).

We define the n-th generation as the set of individuals descended from a division of
one individual of the (n−1)-th generation. The zeroth generation corresponds to the
initial population. We denote by Zn the number of individuals in the n-th generation
and we define the probability of extinction before the n-th generation by

pSn(x0)
def
= PSδx0

(Zn= 0), n∈N.

It is obvious that

lim
n→∞

pSn(x0) =pS(x0).

Let τ be the stopping time of the first event (division or death). Then at time τ
the population is given by

ηSτ
def
=

{
0 if death,
δX1 +δX2 if division,

(2.12)

with X1 =αASτ (x0) and X2 = (1−α)ASτ (x0) where the proportion α is distributed ac-
cording to the kernel q(ASτ (x0),α)dα.

Applying the Markov property at time τ and using the independence of particles,
it is easy to prove (see [3]) that for any x∈ [0,M ] and n∈N∗

pSn(x) =D

∫ ∞
0

e−Dte−
∫ t
0
b(S,AS

u(x))dudt+

∫ ∞
0

b(S,ASt (x))e−
∫ t
0
b(S,AS

u(x))du−Dt

∫ 1

0

q(ASt (x),α)pSn−1

(
αASt (x)

)
pSn−1

(
(1−α)ASt (x)

)
dαdt. (2.13)

with pS0 (x) = 0. It can then be deduced [3, Proposition 3] that pS is the minimal non
negative solution of

pS(x) =

∫ ∞
0

De−Dte−
∫ t
0
b(S,AS

u(x))dudt

+

∫ ∞
0

b(S,ASt (x))e−
∫ t
0
b(S,AS

u(x))du−Dt

∫ 1

0

q(ASt (x),α)pS
(
αASt (x)

)
pS
(
(1−α)ASt (x)

)
dαdt, (2.14)

in the sense that for any non negative solution p̃ we have p̃≥pS .
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Remark 2.1. By a change of variable, we have

pS(x) =

∫ M

x

D

g(S,y)
e−

∫ y
x

b(S,z)+D
g(S,z)

dzdy

+

∫ M

x

b(S,y)

g(S,y)
e−

∫ y
x

b(S,z)+D
g(S,z)

dz

∫ 1

0

q(y,α)pS
(
αy
)
pS
(
(1−α)y

)
dαdy.

Therefore, the extinction probability is a solution of

g(S,x)∂xp
S(x)+D(1−pS(x))+b(S,x)

{∫ 1

0

q(x,α)pS(αx)pS((1−α)x)dα−pS(x)
}

= 0.

For any x∈]0,M [ and y>0 such that x≤y, let tS(x,y) be the first hitting time of
y by the flow ASt (x), i.e.

tS(x,y)
def
= inf{t≥0, ASt (x) =y}=

{
Ã−1
S,x(y), if x≤y<M,

+∞, if y≥M,
(2.15)

where Ã−1
S,x is the inverse function of the C1-diffeomorphism t 7→ASt (x).

In [3], we have made the link between the survival probability of the stochastic
process and the eigenvalue of the deterministic model, given by the theorem below.
This result was proved for a kernel q(x,.) which does not depend on x∈ (0,M), but it
can easily be extended to our case where q(x,.) depends on the mass x at the division
time as explained below.

Theorem 2.1 (Campillo, Champagnat, Fritsch (2016)). Under Assumptions 2.1 and
2.2, we have the following relation between the two invasion criteria

ΛS>0 ⇐⇒ PSδx(survival)>0,∀x∈ (0,M).

Note that, contrary to the works [7,9,15,22,26], we assume here a compact set [0,M ]
of biomasses to keep things simple in the sequel. The extension of our approach to a
non-compact case would require us to identify the good assumptions at infinity for the
last result to hold (the rest of our arguments should work similarly). The last problem is
not so easy because it strongly depends on the growth at infinity of the eigenfunctions
û and v̂ of Assumption 2.2. Note in addition that the problem of existence of these
eigenfunctions also requires a careful study at infinity (see [9]).

Proof. The key argument of the proof is that the process (e−ΛS t
∑Nt

i=1 v̂S(Xi
t))t≥0

is a PSδx -martingale such that

e−Λs t
Nt∑
i=1

v̂S(Xi
t)−−−→

t→∞
Z PSδx -a.s.

where Z is an integrable random variable (see [3, Theorem 2 and Lemma 3]). The
arguments used in [3] to prove that

(1) if ΛS>0 then PSδx(survival)>0 for any x∈ (0,M)

(2) if ΛS<0 then PSδx(survival) = 0 for any x∈ [0,M ]
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can be directly applied to a kernel q(x,.) depending on the mass x of the cell which
divides. The first statement is proved using the fact that Z is bounded in L2 if ΛS>0,
while the second statement comes from the inequality

Eδx(Nt)≤CxeΛS t, ∀t≥0

where Cx>0 is a constant depending on the initial mass x∈ (0,M). Its proof in [3] is
technical, but the extension to kernels q depending on x is straightforward.

The only difficulty concerns the third point of the proof of [3, Theorem 2] in which
we prove that if ΛS = 0 then Mε

t →0 a.s. with Mε
t being the number of individuals

having mass in [ε,M−ε] at time t for 0<ε< M
2 . Then the fourth point of the proof,

stating that Mε
t →0 implies extinction, follows similarly. The main idea of this fourth

step is that the number of individuals Mε
t cannot indefinitely stay in a compact subset

{1,2,. ..,c} of N for either limsupt→∞M
ε
t =∞ or Mε

t →0 a.s. But limsupt→∞M
ε
t =∞

contradicts the fact that Z is integrable if ΛS = 0, hence Mε
t →0 a.s.

For the proof of the third point (see details in [3]), it suffices that for c>0, there
exists t0 such that

1>γ := inf
ε≤x≤M−ε

PSδx
(
Mε
t0 ≥ c

)
>0. (2.16)

If q(x,.) = q(.) is independent of the mother mass, it is sufficient to take ε>0 such
that x∈ (ε,M−ε) and q ([ε/(M−2ε), 1/2])>0 to obtain inequality (2.16) for one t0. In
our case, the last condition must be replaced by infε≤x≤M−εq(x, [ε/(M−2ε),1/2])>0
for some ε>0. Note that the infimum above is reached at some x0(ε)∈ [ε,M−ε],
by Assumptions 2.1-(2) and (3). Therefore, we proceed by contradiction and assume
that for all ε>0, there exists x0(ε)∈ [ε,M−ε] such that q(x0(ε),α) = 0 for almost all

α∈
[

ε
M−2ε ; 1

2

]
. Then, from the sequence

(
x0

(
1
n

))
n
, we can extract a subsequence which

converges towards x∗0. By continuity of x 7→ q(x,α), we then get q(x∗0,α) = 0 for almost

all α∈ (0,1). Hence
∫ 1

0
q(x∗0,α)dα= 0, which contradicts Assumptions 2.1-(1).

3. Variations of the invasion fitnesses with respect to the environmental
variable

Our goal is to study the variation of ΛS with respect to S. For this, we start by
studying the monotonicity properties of the survival probability in the stochastic model.

3.1. Monotonicity properties with respect to the initial mass and the
death rate on the stochastic model. From a biological point of view, little is
known about the dependence of the division kernel q with respect to x [25]. Most
often in applications it is assumed to be independent of x. In order to obtain the most
general result, we assume that q depends on x, and we need to state assumptions about
this parameter. Note, however, that the self-similar fragmentation is included in our
assumptions. Moreover, although q(x,α) is assumed to be regular with respect to α,
more general kernels can be considered, in particular, the following results should hold
for self-similar equal mitosis.

For any x∈ (0,1), let Fx : [0,1]→ [0,1] be the cumulative distribution function asso-
ciated to the law q(x,α)dα, that is, for any u∈ [0,1], let

Fx(u) =

∫ u

0

q(x,α)dα

and let F−1
x be its inverse function defined by

F−1
x (v) = inf

u∈[0,1]
{Fx(u)≥v} .
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Assumption 3.1. The cumulative distribution function Fx satisfies, for any u∈ (0,1)
and any x≤y,

xF−1
x (u)≤yF−1

y (u) and (1−x)F−1
x (u)≤ (1−y)F−1

y (u).

As we will see in Lemma 3.1 below, this assumption corresponds to a coupling
condition on the mass of offspring born from individuals of different sizes. We need this
condition because our method can be seen as a construction of a coupling of the masses
of individuals at each generation in two stochastic processes starting from different
initial masses (see our comments below, particularly Remark 3.3).

Remark 3.1. If F−1
x is such that for any u∈ (0,1), x 7→F−1

x (u)∈C1([0,M ]), and for
any x∈ (0,M), satisfies

x∂xF
−1
x (u)∈ [−F−1

x (u),1−F−1
x (u)],

then

∂x(xF−1
x (u)) =F−1

x (u)+x∂xF
−1
x (u)≥0.

Hence xF−1
x (u) is non decreasing. In the same way, (1−x)F−1

x (u) is non decreasing
too. Therefore, Assumption 3.1 holds.

Examples 3.1. We give some examples which satisfy Assumption 3.1.

(1) We consider the following division kernel,

q(x,α) =
1{l(x)≤α≤1−l(x)}

1−2l(x)
.

where l∈C1([0,M ],(0,1/2)). Then for u∈ (0,1),

F−1
x (u) = (1−2u)l(x)+u

and, by Remarks 3.1, Assumption 3.1 holds if for any x, 0≤xl′(x)+ l(x)≤1.

(2) We can extend the previous example considering the following function q,

q(x,α) =
(α− l(x))β(x)

C(x)
1{l(x)≤α≤1/2}+

(1−α− l(x))β(x)

C(x)
1{1/2≤α≤1−l(x)} (3.1)

where C(x) = 2 (1/2− l(x))
β(x)+1

/(β(x)+1) is a normalizing constant. The previ-
ous example corresponds to β(x) = 0 for any x∈ [0,M ]. Then

Fx(u) =
1

2

(
u− l(x)
1
2− l(x)

)β(x)+1

1{l(x)≤α≤1/2}

+

(
1− 1

2

(
1−u− l(x)

1
2− l(x)

)β(x)+1
)
1{1/2<α≤1−l(x)}+1{1−l(x)<α} (3.2)

and for any u∈ (0,1)

F−1
x (u) =

((
1

2
− l(x)

)
(2u)1/(β(x)+1) + l(x)

)
1{0<u≤1/2}
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+

(
1− l(x)−

(
1

2
− l(x)

)
(2(1−u))1/(β(x)+1)

)
1{1/2<u<1}. (3.3)

An example of such functions is given in Figure 3.1.
For u∈ (0,1/2],

∂xF
−1
x (u) =

(
−l′(x)−

(
1

2
− l(x)

)
β′(x)

(β(x)+1)2
ln(2u)

)
(2u)1/(β(x)+1) + l′(x)

and for u∈ [1/2,1),

∂xF
−1
x (u) =

(
l′(x)+

(
1

2
− l(x)

)
β′(x)

(β(x)+1)2
ln(2(1−u))

)
(2(1−u))1/(β(x)+1)− l′(x)

Assumption 3.1 holds if 0≤x∂xF−1
x (u)+F−1

x (u)≤1 for any u∈ (0,1), for example
if β is a constant function and if 0≤ l(x)+xl′(x)≤1 for any x∈ (0,M).

0.0 0.2 0.4 0.6 0.8 1.0

α

0

2

4

6

8

10

12

q(
x
,α

)

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

F
x
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

u

0.3

0.4

0.5

0.6

0.7

F
−

1
x

(u
)

Figure 3.1. Representation of the function q (left), Fx (center) and F−1
x (right) respectively

defined by Equations (3.1), (3.2) and (3.3) with l(x) =0.25 and β(x) =5.

Lemma 3.1. Let f be a non-increasing function on [0,M ]. Then, under Assumption
3.1, the function

x 7→
∫ 1

0

q(x,α)f(αx)f((1−α)x)dα

is non-increasing.

Proof. For any x∈ (0,1), define θx by θx=F−1
x (U) where U is uniformly distributed

on [0,1]. Therefore the law of the variable θx is q(x,α)dα. By Assumption 3.1,

∂x(xθx) =θx+x∂xF
−1
x (U)≥θx−F−1

x (U) = 0 a.s.

and

∂x(x(1−θx)) = 1−θx−x∂xF−1
x (U)≥1−θx−(1−F−1

x (U)) = 0.
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Therefore, for any x<y we have xθx≤yθy a.s. and x(1−θx)≤y (1−θy) a.s. Hence,∫ 1

0

q(x,α)f(αx)f((1−α)x)dα=E(f(θxx)f((1−θx)x))

≤E(f(θy y)f((1−θy)y))

=

∫ 1

0

q(y,α)f(αy)f((1−α)y)dα.

Remark 3.2. Note that the last proof makes use of a probabilistic coupling argument,
since we actually prove and use the following property: the pair of random variables
(xθx,x(1−θx)), where θx is distributed as q(x,α)dα, is stochastically increasing with
respect to x. This means that, for all x≤y, there exists a coupling of the random
variables θx and θy, i.e. two random variables θ′x and θ′y with the same laws as θx
and θy can be constructed on the same probability space, such that xθ′x≤yθ′y and
x(1−θ′x)≤y(1−θ′y). Therefore, Assumption 3.1 means that the offspring masses of two
individuals reproducing at respective masses x and y can be coupled so that the masses
of the offspring are in the same order as those of the parents.

Proposition 3.1. Under Assumption 3.1, if the division rate b(S,.) is non decreasing
then the extinction probability pS :x 7→pS(x) is non increasing.

The assumption that b increases with the mass x of an individual is biologically
natural, since a bigger total biomass usually means a bigger fraction of biomass devoted
to the bio-molecular mechanisms involved in cellular division. We give below an analyt-
ical proof of this proposition, but it can also be proved using probabilistic arguments,
as explained in Remark 3.3 below.

Proof. We prove by induction that the function pSn is non increasing for any
n∈N∗, where pSn is given by equation (2.13). Let 0<x<y<M . As ASu(x)<ASu(y), for
any u≥0,

pS1 (x) =D

∫ ∞
0

e−
∫ t
0
b(S,AS

u(x))du−Dtdt≥D
∫ ∞

0

e−
∫ t
0
b(S,AS

u(y))du−Dtdt=pS1 (y).

Then the function pS1 is non increasing. Let n∈N∗, we assume that the function pSn is
non increasing.

We can write pSn+1(x) as

pSn+1(x) =pS1 (x)+PSδx
(
{extinction before the (n+1)-th generation}∩

{
ηSτ 6= 0

})
,

with

PSδx
(
{extinction before the (n+1)-th generation}∩

{
ηSτ 6= 0

})
=

∫ ∞
0

b(S,ASt (x))e−
∫ t
0
b(S,AS

u(x))du−Dt

∫ 1

0

q(ASt (x),α)pSn(αASt (x))pSn((1−α)ASt (x))dαdt.

The following relation holds

pSn+1(x) =pS1 (x)+pSn+1(x |ηSτ 6= 0)(1−pS1 (x))
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with

pSn+1(x |ηSτ 6= 0) =PSδx(extinction before the (n+1)-th generation |ηSτ 6= 0).

Since for any t≥0, ASt(x,y)+t(x) =ASt (y), then, by a change of variable,∫ ∞
tS(x,y)

b(S,ASt (x))e−
∫ t
0
b(S,AS

u(x))du−Dt

∫ 1

0

q(ASt (x),α)pSn(αASt (x))pSn((1−α)ASt (x))dαdt

=e−
∫ tS(x,y)

0 b(S,AS
u(x))du−DtS(x,y)

∫ ∞
0

b(S,ASt (y))e−
∫ t
0
b(S,AS

u(y))du−Dt

∫ 1

0

q(ASt (y),α)pSn(αASt (y))pSn((1−α)ASt (y))dαdt

=e−
∫ tS(x,y)

0 b(S,AS
u(x))du−DtS(x,y)pSn+1(y |ηSτ 6= 0)(1−pS1 (y)). (3.4)

For any t∈ [0,tS(x,y)] we have ASt (x)≤y. Since we assume that the function pSn is
non increasing, from Lemma 3.1, we then get∫ tS(x,y)

0

b(S,ASt (x))e−
∫ t
0
b(S,AS

u(x))du−Dt

∫ 1

0

q(ASt (x),α)pSn(αASt (x))pSn((1−α)ASt (x))dαdt

≥
∫ tS(x,y)

0

b(S,ASt (x))e−
∫ t
0
b(S,AS

u(x))du−Dtdt

∫ 1

0

q(y,α)pSn(αy)pSn((1−α)y)dα

=

(
1−e−

∫ tS(x,y)

0 b(S,AS
u(x))du−Dt(x,y)−D

∫ tS(x,y)

0

e−
∫ t
0
b(S,AS

u(x))du−Dtdt

)

×
∫ 1

0

q(y,α)pSn(αy)pSn((1−α)y)dα. (3.5)

Using again that the function pSn is non-increasing and Lemma 3.1,

PSδy
(
{extinction before the (n+1)-th generation}∩

{
ηSτ 6= 0

})
≤
∫ ∞

0

b(S,ASt (y))e−
∫ t
0
b(S,AS

u(y))du−Dtdt

∫ 1

0

q(y,α)pSn(αy)pSn((1−α)y)dα

= (1−pS1 (y))

∫ 1

0

q(y,α)pSn(αy)pSn((1−α)y)dα.

Hence ∫ 1

0

q(y,α)pSn(αy)pSn((1−α)y)dα≥pSn+1(y |ηSτ 6= 0).

Adding expressions (3.4) and (3.5), and using the last inequality, we then get

pSn+1(x |ηSτ 6= 0)≥
[

1−D
∫ tS(x,y)

0
e−

∫ t
0
b(S,AS

u(x))du−Dtdt

1−pS1 (x)
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−e−
∫ tS(x,y)

0 b(S,AS
u(x))du−DtS(x,y) pS1 (y)

1−pS1 (x)

]
pSn+1(y|ηSτ 6= 0).

Moreover,

pS1 (x) =D

∫ tS(x,y)

0

e−
∫ t
0
b(S,AS

u(x))du−Dtdt+e−
∫ tS(x,y)

0 b(S,AS
u(x))du−DtS(x,y)pS1 (y).

Hence,

pSn+1(x |ηSτ 6= 0)≥pSn+1(y |ηSτ 6= 0).

Thus,

pSn+1(x)−pSn+1(y) =pS1 (x)+pSn+1(x |ηSτ 6= 0)(1−pS1 (x))

−pS1 (y)−pSn+1(y |ηSτ 6= 0)(1−pS1 (y))

≥ (pS1 (x)−pS1 (y))(1−pSn+1(y |ηSτ 6= 0))≥0.

This ends the induction. Passing to the limit, we finally get

pS(x)−pS(y) = lim
n→∞

(pSn(x)−pSn(y))≥0.

Remark 3.3. The last result can also be proved by a probabilistic coupling argument
as follows. First, for all x∈ (0,M), the time of death or division of an individual of
mass x can be constructed from an exponential random variable E with parameter
1 as Tx= inf{t≥0 :

∫ t
0
(b(S,ASs (x))+D)ds≥E}. Hence, if x≤y then ASTx

(x)≤ASTy
(y).

Second, we observe that the probability D/(D+b(S,x)) of death given death or division
occurs for an individual of mass x is non-increasing as a function of x. Hence, using
Remark 3.2, given x≤y, we can construct a coupling between the branching processes
(ηSt ,t≥0) with ηS0 = δx and (η̂St ,t≥0) with η̂S0 = δy such that the random sets M1 and

M̂1 of masses at birth of the individuals of the first generation satisfy the following
property: the cardinalities of M1 and M̂1 are either 0 or 2. If |M̂1|= 0 then |M1|= 0.
And if both have cardinality 2, then M1 ={x1,x2} and M̂1 ={x̂1,x̂2} with x1≤ x̂1 and
x2≤ x̂2.

It then follows by induction that the processes (ηSt ,t≥0) and (η̂St ,t≥0) can be
coupled so that, for all n≥0, the masses at birth of all the individuals of the n-th
generation can be ordered into two vectors V n= (xn1 ,. ..,x

n
Gn

) and V̂ n= (x̂n1 ,. ..,x̂
n
Ĝn

),

where Gn and Ĝn are the random sizes of generation n in ηS and η̂S respectively,
satisfying the following property: for all n, Gn≤ Ĝn and for all 1≤ i≤Gn, xni ≤ x̂ni .
This implies Proposition 3.1 since survival of ηS means that Gn≥1 for all n and this
implies that η̂S also survives. Hence pS(x)≥pS(y).

We now extend the notation of the extinction probability with a dependence in D :
let pS,D(x) be the extinction probability of the population evolving in the environment
determined by S, with a death rate D and a initial individual with mass x.

Proposition 3.2. For any x∈ [0,M ], the function D 7→pS,D(x) is non-decreasing.

Proof. Let D′>D.

pS,D1 (x) =D

∫ ∞
0

e−
∫ t
0
b(AS

u(x))du−Dt= 1−
∫ ∞

0

b(ASu(x))e−
∫ t
0
b(AS

u(x))du−Dt
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≤1−
∫ ∞

0

b(ASu(x))e−
∫ t
0
b(AS

u(x))du−D′ t=pS,D
′

1 (x).

Hence D 7→pS,D1 (x) is non-decreasing. For n∈N∗, let assume that D 7→pS,Dn (x) is non-
decreasing, then

pS,Dn+1(x) = 1−
∫ ∞

0

b(ASu(x))e−
∫ t
0
b(AS

u(x))du−Dt

[
1−
∫ 1

0

q(ASt (x),α)pD,Sn (αASt (x))pD,Sn ((1−α)ASt (x))dα

]
dt

≤1−
∫ ∞

0

b(ASu(x))e−
∫ t
0
b(AS

u(x))du−D′ t

[
1−
∫ 1

0

q(ASt (x),α)pD
′,S

n (αASt (x))pD
′,S

n ((1−α)ASt (x))dα

]
dt

=pS,D
′

n+1 (x)

Then for any n, pS,Dn (x)≤pS,D′n (x). Passing to the limit,

pS,D(x) = lim
n→∞

pS,Dn (x)≤ lim
n→∞

pS,D
′

n (x) =pS,D
′
(x).

3.2. Monotonicity properties with respect to S on the stochastic model.
We now study the variations of the survival probability with respect to the environ-

mental parameter S. We need additional assumptions.

Assumptions 3.2.
(1) The division rate function b is non decreasing in the two variables S and x.

(2) The growth speed g in non decreasing in S:

g(S1,x)≤g(S2,x), ∀x∈ [0,M ], 0<S1<S2.

(3) For any x∈ (0,M), the function S 7→ b(S,x)
g(S,x) is non increasing.

Assumptions (1) and (2) above are natural from the biological point of view since a
bigger total biomass means a bigger fraction of biomass devoted to division and a larger
amount of resources means a more efficient growth and division of cells. Assumption (3)
means that the growth rate increases faster in S that the division rate. This excludes
that, with increasing S, a faster division produces individuals too small to grow and
reproduce. Note that these assumptions are satisfied if, for instance, b does not depend
on the variable S, and if g is of the form g(S,x) =µ(S) g̃(x) where µ is a non decreasing
function. For example, in Monod kinetics [23], µ(S) =µmax

S
K+S where µmax and K

are constants. The form g(S,x) =µ(S) g̃(x) means that the resource concentration S
influences the speed of growth of bacteria independently of the way x influences growth.
In other words, the flow t 7→AS

′

t (x) is just a proportional time change of t 7→ASt (x) for
all S,S′.

Theorem 3.1. Under Assumptions 3.1 and 3.2, we have for any x∈ (0,M)

PS1

δx
(survival)≤PS2

δx
(survival), ∀0<S1≤S2.
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In other words, for the chemostat model, under the assumptions of the previous
theorem, the higher the substrate concentration in the chemostat at the mutation time,
the higher the survival probability.

Remark 3.4. Following Remark 3.3, the last result could also be proved by proba-
bilistic coupling arguments. These arguments would actually only require the assump-
tion that, for all x≤y and S1≤S2, there exists a coupling between the sets Mx,S1

1

and My,S2

1 of biomasses at birth of the individuals of the first generation in the re-
spective branching processes (ηS1

t ,t≥0) with ηS1
0 = δx and (ηS2

t ,t≥0) with ηS2
0 = δy. It

would then be enough that the coupling satisfies the following property: |My,S2

1 |= 0

implies |Mx,S1

1 |= 0, and when both have cardinality 2, then Mx,S1

1 ={x1,x2} and

My,S2

1 ={y1,y2} with x1≤y1 and x2≤y2. The proof of Theorem 3.1 given below actually
consists in checking that the coupling assumption above is implied by Assumptions 3.1
and 3.2. However, this coupling assumption is hard to check in practice and this is why
we chose to give an analytical proof based on the Assumptions 3.1 and 3.2, which are
stronger, but easier to check.

Of course, Theorem 3.1 is certainly valid under weaker assumptions, for example
if b or g are not monotonic with respect to S, but our probabilistic approach requires
coupling assumptions like the one stated in this remark, so the method would not extend
easily to such cases.

Proof. For any y∈ (0,M) the function S 7→g(S,y) is non decreasing, then AS
1

u (x)≤
AS

2

u (x) for any u≥0. Moreover the function (S,x) 7→ b(S,x) is non decreasing in the two
variables S and x, then we have

pS
1

1 (x)−pS2

1 (x) =D

∫ ∞
0

e−Dt
[
e−

∫ t
0
b(S1,AS1

u (x))du−e−
∫ t
0
b(S2,AS2

u (x))du
]

dt≥0.

The function S 7→pS1 (x) is then non increasing for any x∈ (0,M). Let n∈N∗, we assume
that the function S 7→pSn(x) is non increasing for any x∈ (0,M).

The function t 7→
∫ t

0
(b(S,ASu(x))+D)du is a bijection from [0,∞[ to [0,∞[. Hence,

for X≥0, there exists a unique TSx (X) such that X=
∫ TS

x (X)

0
(b(S,ASu(x))+D)du. By

the change of variable X=
∫ t

0
(b(S,ASu(x))+D)du in equation (2.13), we obtain

pSn+1(x) =

∫ ∞
0

[
D

b
(
S,AS

TS
x (X)

(x)
)

+D
+

b
(
S,ASTS

x (X)(x)
)

b
(
S,AS

TS
x (X)

(x)
)

+D
ΨS,x
n (X)

]
e−X dX

with

ΨS,x
n (X) =

∫ 1

0

q
(
ASTS

x (X)(x),α
)
pSn

(
αASTS

x (X)(x)
)
pSn

(
(1−α)ASTS

x (X)(x)
)

dα. (3.6)

Moreover, for all X≥0, for S1≤S2, by the changes of variable AS
i

u (x) =y for i= 1,2
and by Assumption 3.2-(3), we have∫ AS2

TS2
x (X)

(x)

x

b(S2,y)+D

g(S2,y)
dy=X=

∫ AS1

TS1
x (X)

(x)

x

b(S1,y)+D

g(S1,y)
dy

≥
∫ AS1

TS1
x (X)

(x)

x

b(S2,y)+D

g(S2,y)
dy,
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therefore AS
2

TS2
x (X)

(x)≥AS1

TS1
x (X)

(x). We deduce from Lemma 3.1 and Proposition 3.1

that ΨS1,x
n (X)≥ΨS2,x

n (X). Hence, using ΨS1,x
n (X)≥ΨS2,x

n (X) in the expression of

pS
1

n+1, subtracting the expression of pS
2

n+1 and factorizing the terms, we obtain

pS
1

n+1(x)−pS2

n+1(x)≥
∫ ∞

0

[
D

b
(
S1,AS

1

TS1
x (X)

(x)
)

+D
− D

b
(
S2,AS

2

TS2
x (X)

(x)
)

+D

]

(1−ΨS2,x
n (X))e−X dX

and as ΨS2,x
n (X)≤1, by Assumptions 3.2-(1), pS

1

n+1(x)≥pS2

n+1(x). Finally, passing to
the limit, we get

pS
1

(x)−pS2

(x) = lim
n→∞

(pS
1

n (x)−pS2

n (x))≥0.

3.3. Properties on the variations of the eigenvalue. Until now, we only
studied the probability of survival of the branching process ηS . The underlying coupling
arguments require consideration of the population state at each generation in a process
where generations actually overlap. This is why such an approach is hard to apply
directly to the integro-differential eigenvalue problem, where the notion of generations is
difficult to define. However, the link between the stochastic and deterministic problems
stated in Theorem 2.1 allows one to extend the monotonicity properties of Theorem 3.1
to the eigenvalue ΛS , as proved below. The next corollary is a direct consequence of
Theorems 2.1 and 3.1.

Corollary 3.1. Under Assumptions 3.1 and 3.2,

(1) if there exists S1>0 such that ΛS1
>0, then ΛS2

>0 for any S2>S1;

(2) if there exists S1>0 such that ΛS1
≤0, then ΛS2

≤0 for any S2<S1.

This Corollary allows us to deduce the following result about variation of the eigen-
value with respect to S.

Corollary 3.2. Under Assumptions 3.2, the function S 7→ΛS is non decreasing.

The monotonicity of b is important to obtain the monotonicity of the eigenvalue
(and of the survival probability). For example, one can imagine cases where a fast
growth rate g transports individuals to big masses and if the division rate is low for
high values, the monotonicity of the eigenvalue does not hold (see [2] for non monotonic
examples).

Proof. Let S∗>0 be fixed. We set D′=D+ΛS∗ >0. Let Λ′S be the eigenvalue of
the following eigenproblem:

∂x(g(S,x)û′S(x))+(b(S,x)+D′+Λ′S)û′S(x) = 2

∫ M

x

b(S,z)

z
q
(
z,
x

z

)
û′S(z)dz.

For S=S∗, we have Λ′S∗ = 0, then from Corollary 3.1, for any S≤S∗, Λ′S≤0. Moreover

Λ′S = ΛS+D−D′= ΛS−ΛS∗ .

Hence ΛS≤ΛS∗ .
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3.4. Extensions and concluding remarks. The previous method can be
applied for more general g, for which the growth in one environment is larger than
the growth in the other one for all masses. A particular case is given in the following
corollary.

Corollary 3.3. We assume that the division rate function b does not depend on the
variable S and is non decreasing in the variable x and that the growth speed g is of the
form g(S,x) =µ(S) g̃(x), where g(S,x)>0 for any x∈ (0,M) and g̃∈C[0,M ]∩C1(0,M)
is such that g̃(0) = g̃(M) = 0. Then, we have

PS
1

δx (survival)≤PS
2

δx (survival)⇐⇒µ(S1)≤µ(S2)

and

ΛS1 ≤ΛS2⇐⇒µ(S1)≤µ(S2).

More generally, the following result states the link between the comparison of the
survival probability and the comparison of the eigenvalue.

We extend the notations of the survival probability PS,Dδx (survival) and the eigen-

value ΛDS with a dependence to the death rate D.

Proposition 3.3. Let S1,S2>0. If for any x∈ [0,M ] and for any D>0, we have

PS1,D
δx

(survival)≥PS2,D
δx

(survival), then

∀D>0, ΛDS1
≥ΛDS2

.

The condition on the survival probability stated in the previous theorem could of
course be obtained under the appropriate coupling assumptions (as in Remark 3.3),
but it seems hard to find general practical conditions on the parameters of the model
ensuring such a property. Note also that this coupling method could be applied to the
case where the division distribution q also depends on the variable S. The results of
Section 3.1 would remain true as, for this section, the substrate concentration is fixed.
The difficulties are in the control of the variation in S of ΨS,x

n defined by equation (3.6).

Proof. Let S1>0. We set D′=D+ΛDS1
>0. Let Λ′S be the eigenvalue associated

to the eigenproblem

∂x(g(S,x)û′S(x))+(b(S,x)+D′+Λ′S)û′S(x) = 2

∫ M

x

b(S,z)

z
q
(x
z

)
û′S(z)dz.

For S=S1, Λ′S1
= 0, we then deduce, from Theorem 2.1, that PS1,D

′

δx
(survival) = 0 and

then, by assumption, that PS2,D
′

δx
(survival) = 0. From Theorem 2.1 Λ′S2

≤0. Moreover

Λ′S2
= ΛDS2

+D−D′= ΛDS2
−ΛDS1

hence

ΛDS2
≤ΛDS1

.
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