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GLOBAL EXISTENCE AND POINTWISE ESTIMATES
OF SOLUTIONS FOR THE GENERALIZED SIXTH-ORDER
BOUSSINESQ EQUATION*

CHANGHONG GUOT AND SHAOMEI FANGH

Abstract. This paper studied the Cauchy problem for the generalized sixth-order Boussinesq
equation in multi-dimension (n > 3), which was derived in the shallow fluid layers and nonlinear atomic
chains. Firstly the global classical solution for the problem is obtained by means of long wave-short
wave decomposition, energy method and the Green’s function. Secondly and what’s more, the pointwise
estimates of the solutions are derived by virtue of the Fourier analysis and Green’s function, which
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1. Introduction

In this paper, we consider the global existence and pointwise estimates for the
following Cauchy problem of generalized sixth-order Boussinesq equation in (x,t) € R™ x
[0,+00):

{utteAutAu+uA2uuA3uAf(u), (1.1)
u(z,0)=wug(z), w(z,0)=uq(x), )

where n>3, € >0 is a small enough constant. The coefficients p >0 and v >0. Awuy; is
a damping term, A3y is a dispersive term. f(u)=0(u"),y>2 is the nonlinear term.
up(x) and uy(z) are given two initial value functions.

For the equation (1.1) in the space dimension n=1 and without the damping term,
it reduces as

Ut — Ugz + PUgaar — VUigzzzrs = (f(u))aca: (12)

When f(u)=wu?, this equation (1.2) was derived in the shallow fluid layers and nonlinear
atomic chains, and described the bi-directional propagation of small amplitude and long
capillary-gravity waves on the surface of shallow water for bond number (surface tension
parameter) less than but very close to 1/3 [1,2]. Neglecting the sixth-order term, one
obtains the classical Boussinesq equation [3]

Ut — Uz + PUzgzs = (u2)wx7 (13)

which arises as mathematical model for describing the nonlinear motions of long waves
in shallow water. Thus equation (1.1) was called generalized sixth-order Boussinesq
equation.
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1458 EXISTENCE AND POINTWISE ESTIMATES FOR BOUSSINESQ EQUATION

For the sixth-order Boussinesq equation (1.2), G. Maugin also proposed in modeling
the nonlinear lattice dynamics in elastic crystals [4]. B. F. Feng et al. studied the solitary
waves and their interactions [5]. C. I. Christov et al. [6] investigated the stationary
propagating localized solutions, a numerical simulation of the collision of two solitary
waves was conducted and the impact of Galilean invariance on phase shift was discussed
in [7]. A. Esfahani and his coworkers also have done lots of work about the sixth-order
Boussinesq equation (1.2) under different conditions in one dimension space, such as
local well-posedness [8], global well-posedness [9,10], stability of solitary waves [11], and
blow-up [12]. For some other research results about the sixth-order Boussinesq equation
(1.2), see [13,14] and reference therein.

All works above studied the problem in one dimension space. For the space di-
mension n=1,2,3, we particularly mention V. Varlamov [15-18], who did lots of work,
such as local well-posedness and long-time decay for the generalized Boussinesq-type
equation

uge — 2bAu; — Au+aA*u=BAW?), x€R"(n=1,2,3),t>0. (1.4)

For n >3, some global existence of the weak solutions for the Boussinesq-type equation
without the sixth-order term are also studied by various researchers. we refer readers
to [19-21], and reference therein. We particularly refer M. Liu and W. K. Wang here,
who obtained the existence of classical solutions of the Cauchy problem for multidimen-
sional Boussinesq-type equations with the help of the method of long wave-short wave
decomposition, energy method and the Green’s function [22]. However, up to now, there
are few works on the problem for the multidimensional sixth-order Boussinesq equation.
Thus in this paper, we are going try to study the Cauchy problem for multidimensional
generalized sixth-order Boussinesq equation (1.1), first about the existence of classical
solutions and the pointwise estimates for the solution.

Notice that the generalized sixth-order Boussinesq equation (1.1) contains higher
order derivatives. Thus it is difficult to only use energy estimates for the Cauchy prob-
lem, since the lower-order derivatives of wu(x,t) and u(x,t) itself cannot be estimated
by the higher-order derivatives in the case of losing compactness. Thus we employ an-
other powerful methodologies, which are long wave-short wave decomposition, energy
estimates and the Green’s function to handle our problem. The method of Green’s
function provides extremely powerful tools for studying pointwise estimates for various
nonlinear evolution equations, and its point is to make use of Fourier transform to build
the Green’s function for the linearized equation and thereby obtain the representation
formulas entailing the Green’s functions for the nonlinear problem by Duhamel’s prin-
ciple [23]. The method has been successfully employed to study the pointwise estimates
for kinds of nonlinear evolution equations, such as Navier-Stokes systems [24], the Eu-
ler equations with damping [25], linear thermoelastic system with second sound [26],
dissipative wave equation [27,28], etc.

The rest of paper is organized as follows. In Section 2, we briefly give some notations
and preliminaries. In Section 3, we make use of the Fourier transform to build the
Green’s function for the linearized equation of the generalized sixth-order Boussinesq
equation (1.1). In Section 4, we study the unique global classical solution for the
problem (1.1), by dividing u(z,t) into two parts, long wave part and short wave part.
For the short wave part, we employ energy estimate to obtain the exponential decay
by virtue of the Poincaré-like inequality. For the long wave part, we make use of the
Green’s function to construct the estimates on the L?-norm and L>-norm. In Section 5,
the pointwise estimates of the solutions are obtained by applying the Green’s function,
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where we use the cut-off functions to divide the frequency space into low frequency part,
middle frequency part and high frequency part, and we make estimates for each part.
In the last Section 6, we make some conclusions.

2. Notations and preliminaries

We shall use the following conventional notations throughout the paper. Without
any ambiguity, we denote a generic positive constant by C which may vary from line
to line. a=(aq,a, - ,ay) and 8= (51,82, -+, F,) are multi-indexes. We denote D,, =

F ad i=1,2,---,n. WFP(R") is the usual k-th order Sobolev space with its norm

l[ullwes @y = Z |02 w(2)| Lo (mn),

|| <K
and when p=2, we write [|-|[ g+ = || |2 @n). And we denote
[l g = 108 u() || 22y
o=k

Meanwhile, we define the Fourier transform and inverse Fourier transform as

- ; 1 e~
u(&,t) z/ e " Sy(x,t)dr, u(x,t)= / et (e, t)de.
n (2m)"™ Jgn
where the notation i denotes the imaginary unit satisfying i2 = —1.
In what follows, we will frequently use following inequalities and lemmas.

LEMMA 2.1 (Gagliardo-Nirenberg inequality [29]).  Let Q be a bounded domain with
O in C™, and let u be any function in W™ (Q)NLY(Q), 1<q,r <oco. For any integer
J, 0<j<m, and for any number a in the interval j/m<a<1, set

1 ] 1 m 1
:j—i-a(—)—i—(l—a)
p n r on q

If m—j—n/r is not a nonnegative integer, then

1D ull o < Clullfym.r lull 77 (2.1)

If m—j—n/r is a nonnegative integer, then inequality (2.1) holds for a=j/m. The
constant C' depends only on Q,r,q,7j,a.

LEMMA 2.2. Let s and v>2 be two positive integers, and let 6 >0,p,q,r € [1,00]
be numbers such that %:%—&—%. Suppose that F(u)=u" is a function of class C*. If
w,v €WSINLPNL>® and ||u||p= <,||v| L= <6, then

1 () re.r < Clull e o] ol 12, (2.2)

109 F (u)]| . < Cl|Og ]| pallull Lo u 722, el <ss, (2.3)
and

17 (u) = F(@)[lwer < C(llullLo + 0] L)~
(lu=vllwsa(lullze + [0l o) + lu = vll Lo (Julwe.a + ||U||W-*v«())- )
24
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Proof.  The proof of the estimates (2.2) and (2.3) can be found in [28]. And the
estimates of (2.4) can be also obtained after a direct computation. 0

LEMMA 2.3.  For any nonnegative integers «, 3 and real number b>0, there holds

B(ra,—be2ty _ 0(1)5 1t )Be_bf% a>p,
Pele )‘{ O (1480 4, acp, >
and
[D(eme )| <cfen-p1ernete| 2.

where C' is a positive constant.

Proof.  First the estimates (2.5) can be obtained by the induction. Furthermore,
for a< 3, one gets

EE (1 €21) eI =0 R (€2) F (14€20) T e e
SETIAHE0) T (14+€2) 7 e
— B (L4 g2 e,
That is to say, the estimates (2.5) can be written in the same form (2.6). d

LEMMA 2.4.  Suppose that f(g,t) is the Fourier transform of f(x,t). For any multi-
indezes a and positive integer N, if there exists a constant b>0, such that f(&,t) satisfies

DZ(EF(€,t))| < O(jg|IelHE=18D+ 4 felal+hel81/2)(1 4 |¢2ymetlelt - (2.7)

for any fized integers k and m and any multi-indexes B with |5]| <2N, where (a)y =
max{a,0}. Then we have the estimates

ntlaltk

D f(z,t)] <Cnt™ By (|z],1), (2.8)

where Cn is a positive constant and By (|x|,t) = (1+ |111t>

Furthermore, if supp{f(f,t)} C{(& )] <ro,t>0}, 0<rg <400, we also have the
following estimates

ntlal+k
2

|Dg f(z,t)| <Cn(1+41)~ By (Jxl,t)- (2.9)

Proof.
(1) If | 5] < || 4+ k|, then by the direct calculation, we have
B o Zﬁ iz-£ MBea 7y
|27 D% f(2,t)| = e EDPE f(€,t)dg
(2m)" Jrn

<O| [ elltesg fglete42) 1.4 geymeHPeag
RTL

_ ntlal+k—|8]
<Ct p
| _ ntlal+k

<O(1+1)'F e, (2.10)
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where we use the known results

/ 7bx dr

(2) If |8 > |a| + K|, by the direct calculation, we also have

<Cb~ formeN*andb>O

B , N
!w’jD“ﬂx,t)!:‘ : / e“”fDﬁsf"f@,wdf’
(27'(')” Rn
<of [ rgleitin g geme et
SC(1+t7|a‘+§_lm)t7%
gc(l+t)_\a\+§*|ﬁ|t_%
; lal+k
18] _ ntlo|+k 2
= 1 T 2 -
o HesE (1)
<CO(1+1)'F (2.11)

Taking 3=0 when |z|? <1+t and |3|=2N when |z|?> > 1+¢, from inequalities (2.10)
and (2.11), we obtain

8 o _ ntlaltk . 1+t N
2" D f(2,t)| <Ct™ 2 min |1, E . (2.12)
Noticing the fact
|z 2, |22 <1+t
L 2
14t el |z|*>1+t¢,

we obtain

min (1, G;;)N> SM;”VZQNBN(MH). (2.13)

Thus combining inequalities (2.12) and (2.13) yields estimate (2.8).

Furthermore, if f(,t) satisfies the condition supp{f(£,t)} C{(&,1)||¢] <ro,t >0},
0<r9g<4o00. Then

(1) If | 5] < |ao| + k| and t>1, from (2.10) we can compute that

Bl _ ntlalt+k
t 2

|28 D f(z,8)| <C(1+1) 7

" n+|g\+k
<OA+0)F (1rn (j )
§0(1+t)%(1+t) +\t21\+k .2n+|c2¥\+k
<O(1+1)'F @+ (2.14)
While || <|a|+k| and 0<t <1, there also holds
%
BDf ()| = | € pheaf(e t)d
D% o) = | e [ €D Fiene
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<O| [ (eflertIo gl 1 g ag
|€]<ro
<ol [ b e
|€]<ro
<C
181 _ 181
<C(+t) =z (1+¢) 2
Sc(l_i_t)%(l_i_t)_anHk (1+t> anH’@_%
<C(1+t)%(1+t) ntlolth ) mtlal koo
181 _ntlaltk
<C(1+t) =7 (1+¢) T, (2.15)
Combining inequalities (2.14) and (2.15) together, we have

ntlol+k
2 .

|28 D f(a,t)| <C(1+1)'T (144)" (2.16)

For the case |B]|>|al+k|, we can obtain the similar estimates. Together with the
property of By(|x|,t), one can prove estimate (2.9). Thus the proof of Lemma 2.4 is
completed.

a

LEMMA 2.5.  Suppose f(x,t) and g(z,t) are two given bounded functions and f(@t) =
e“ttG(&,t), where c € (—o0,00) is some real constant. Then if |g(x,t)| < z(z,t), we have

[f(z,t)| <z(z+ct,t). (2.17)

Proof. 1t is easily obtained from the following induction

@) = gy fon €= €T € 1)
ey
= | kg S €O )|

=|g(x+ct,t)|
<z(x+ect,t).
LEMMA 2.6.  When ni,ny> %, and n3=min(ny,ne), we have that .
/ i _m(1+| 2 nagy <o (14220 - (2.18)
. 1+1 Y = 1+t) '
Proof. The proof of the Lemma 2.6 can be found in [25]. O

-N
LEMMA 2.7.  For the function By(|z|,t)= (1—1—%) , we have the following esti-
mates

N
2

/ By(|z|,t)dz <C(1+t) (2.19)

and

(|x\,s)) ds

’</ot(1+ts) =5 By (Jal, t5)>*((1+8)
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n+|

<C(1+t)"" " By(|a|,t), (2.20)

where C' are positive constants.

Proof. The estimates (2.19) can be obtained by direct induction. we mainly prove
the estimate (2.20), and denote the left-hand of (2.20) as I. First when |z|? <t, we have

—-N
1<2V(1+ J=P (2.21)
= 1+t )

and thus

é _ ntlol+1 _ ntlol-1
r=| [* ] (e 1) By (ol - 9) Bl shdyds
0 n

t _ntlaltl _ntlal-1
U] s () B — yl,t— ) B (), s)dyds
gc/2(1+t—s)*"*'3‘“(1+s)f"*"5‘*1/ Bx(|yl,s)dyds
0 Rn
t _ntlaltl _ntlal-1
+C’/(1+t75) 7 (1+5s) 2 /BN(|xfy\,tfs)dyds
t Rn
2
SC/2(1+t—5)7n+|;‘+1(1+S)7n+|a‘2_1_NdS
0
t ntlal41-N ntlal—1
—|—C’/(1+t—s)7 > (1+4s)” 2 ds
%
SC’(1+t)7n+lg\+l +(1+t>in+lg\—1
SC(l—I—t)ian‘il 1
<O+t~ By (|l 0). (2.22)

When |z|? >, there holds the estimates for 7€ [0,]

—N N —N
|37|2 N[(1+T |x\2
14 <3V — 14— 2.2
<+1+r - 1+t +1+t ’ (2.23)

and

3  ntlalt1 _ ntlal—1
[ [ e ) Byt 5) Byl s)dyds
O n

I<

_|_

t
n+lal+1 ntlal—1
// (Lt — )~ "5 (14 )5 By (jo —y|,t — ) By ([yl. 5)dyds
5 n

2 n o n o —
/ (1+t—s)_ tlolt1 (1+8)_ o1
0

—N N —N
lz—y|? 1+s ||
: 142240 S N T B R
/n( s 1+t R yas

<C




1464 EXISTENCE AND POINTWISE ESTIMATES FOR BOUSSINESQ EQUATION

t
/ (1+t—8)_n+‘gl+ (H_S)_nﬂ;\

2
N —N _N
1+t—s |x‘2 |y|2
' I+ 1 dyd
/< 1+t ) (+1+t s yas
L || e ntlol+1-N et lal—1_2N
<C 1 1+t—s)" =2z (1 |
= (1+t)N( +1+t) /0 (1+t=s) (1+s) $
1 |$|2 N| .t ntlal+1—2N ntlal—1-N
c 1 1+t—s)" =z (1 |
" (1+t>N( +1+t) /< Ti=s) (1+5) s

1 |x\2 N _ntlal+1-N
<C 1+ (1+1) 2

+C

(140N 1+t
1 2\ _ntlal-1-N
+C(1+t)N (1+1+t> (1+1)
<C(1+¢)” (|z|,t). (2.24)

Combining estimates (2.22) and (2.24) yields (2.20). Thus the proof of Lemma 2.7 is
completed.
O

3. The Green’s function

In this section, we use the Fourier transform to build the Green’s function G(x,t) for
the linearized equation of the generalized sixth-order Boussinesq problem (1.1). Thus
the Green’s function G(z,t) satisfies

G —eAG— AG+ pA*G —vA3G =0, (3.1)
G(z,0)=0, Gi(x,0)=6(z), '
where 0(z) is the Dirac function. By the Fourier transform, we obtain that
Gt +el€PGot (€7 +plel* +v[E1°) G =0, (32)
G(£0)=0, Gi(&0)=1,
where £ € R™. The symbol of the operator for the equation (3.2) is
o =X el A+ €]+ ulg +v€)°, (3.3)
where )\ and & correspond to %, and D,,,(i=1,2,---,n). We can compute the eigenval-
ues of equation (3.3) are
1 .5 1
As (€)= —5lélP+ 2 00(8), (3.4
where 60y(& 22|§|\/1+ — 1e2)[¢[2+v[¢|*. By direct calculation, we have
~ 1 1 ~ ~
G(&t) = M (&)t Ot =GT (e, )+ G (&,1), 3.5
0= 5@ 00(6) EOre D )
where G*(f,t):%#(g)eh(ﬁ)t and G~ (&,t)= (E) -1,
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Let

wo-{y §55 weo-{y EZRT e

be two smooth cut-off functions, where r and R are any fixed positive numbers satisfying
2r <1< R. Moreover we set

x2(§) =1—=x1(&) — x3(). (3.7)

Meanwhile, we define the long-short wave decomposition (ur(x),us(z)) for a function
u(x) based on the Fourier transform

ur(§)=(1—xs(£)u(§), us(§)=xs(&)u(s),

which imply up,(z)=(1—xs3(D))u(z), and ug(xz) =x3(D)u(z). Here x3(D) is the oper-
ator with the symbol x3(£). Then we have

u(z,t) =ur(z,t)+ug(z,t), (3.8)

which implies that the function u(x,t) can be divided into two parts: long wave part
ur(z,t) and short wave part ug(z,t).
On the other hand, we denote G (&,t) = x:(€)GF(&,t), G; (£,1) =x:(£)G~(,t), and
n t

@f(g,t):@j(f,t)—i-@ (&,t) for i=1,2,3. The G(&,t) in (3.5) can be rewrote as

E=GHEN+G (6t
=GT(E0)+GF (&) + T (E0) + G (6,8)+C5 (6,6)+ G5 (&.1)
=GE(EN)+GF (1) +GT (6 1), (3.9)

That is to say, the frequency space is divided into low frequency part éli(f ,t), middle
frequency part G;t (&,t) and high frequency part G3i (&,1).

4. Global existence for problem (1.1)

In this section, we will make use of the long-short wave decomposition (3.8) to study
the global existence for the nonlinear problem (1.1). For a given integer [ > [ ] +5 and
some constant M >0, we define a function space

X v ={u(z,t)|Dy(u) <M}, (4.1)
where D;(u) is defined as
Difu) =sup {1407 ) (g s 00T w0} (42

Thus (X ar,D;(u)) is a Banach space, and we will consider the problem (1.1) in this
space. Next we construct a convergent sequence {u™ (z,t)}°9_; to get the global solution
to the nonlinear problem. Here u™(z;t) is the solution of the following linear problem:

ul? —eAu* — Au™ + pA%u™ — v ASum = A f(um™ 1),
( (4.3)

W (2,0)=up (), (2,0) =i (),

for m>1 and u°(z,t) =0.
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According the definition of short wave part of u(x,t), we have the following lemma
and proposition.

LEMMA 4.1 (Poincaré-like inequality). Assume u(z) € H™ ,m >0 is an integer. Then
for short wave part ug(xz,t), there exists constant C sunch that

llus||z2 < Cllus]| g

holds for any integer s € [0,m].

PROPOSITION 4.1.  Suppose that u(x,t) is the solution of problem (1.1) and ug(x,t)
is the short wave part of u(x,t). Then for |o| <min{l—[%]—1,n}, where [>[%]+5,
there exists a constant C'>0 such that

D% s () s + | D use (2,20
<c / ' | D f(ul, 7)) |yrdr + C / o / 1D f(u(r,5)) |2 dsdr
0 0 0

| DguoI7s + (1D ual|72), (4.4)

t
+c/ e~ ' ESdr+Ce T (
0
where B = || D2us |2+ ]| D2+ usol>+ | D3+2usol|+ | D2+ Puso |2 depending on the
mitial values.

Proof.  Considering the short wave part ug(x,t) of the problem (1.1), there holds

{ usi —eAugs — Aug + uA ug — vA3us = A(xs(D) f(u(z,t))), (4.5)

ug(z,0)=ugo(z), usi(x,0)=ug1(x).
Multiplying the above equation by ugs:(x,t) and integrating over R™, we have
d 1
77 (sl + Vs |+ | Aus | + V| AVus |[*) +2 | Vuse|* 2 [V (e (D) f (w,6) |
(4.6)

Integrating over the region (0,t) to give that
1 [t
luse]|* < g/ IV (xs(D) f (u@,s) |*ds+ [[us1||* + [ Vusol|* + el Ausol|* +v[| AVusol|?
0

=2 [ IV D) ule )l as + 6 (4.7

where E{ = [|us1|*+[[Vusol|® + ull Ausol* + V][ AVuso[|* < C([luollfys +luall7=) is a
constant depending on the initial values.
Meanwhile, we multiply equation (4.5) by ug(x,t) and integrate over R™

d € 3
G | (ususc+ 5I¥usl?) dot 31 9us]* + | Aus|*+ | AVus
dt Jon 2 4
<[V (s (D) f (ul, )1+ fluse||*. (4.8)
Adding inequalities (4.6) and (4.8) together, and noticing inequality (4.7), we obtain

d

e+1
7 <u5uSt+|uSt|2+2|VuS|2+uAuS2+V|AVuS|2> dx
R‘n,
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3
+el| Vus | + 3 [IVus| + pll Aus|* + v [ AVus||?
1 t
§||V(X3(D)f(u($,t)))||2+g/o IV (s (D) f (u(z, ))) | *ds + Eg.- (4.9)

According the Poincaré-like inequality in Lemma 4.1, there exists some positive con-
stants Cy and C7 such that

lus|® < ColVus|?,  Jluse||* < Cul|Vus|*. (4.10)

Then taking C* = min{l we have

2e 3
1 3C1 7 2(Co+e+1) [

3
el Vusl|* + 7 [Vus|* + ul Aus|* + v AVus |

300 C 1
> 3999, t|2+(20+8;)C*||Vus||2+MC*||AUS||2+VC*|AVUS||2
C’ C’ . 5+1 .

G Tus )2+ L VusilP + 010 [ Vusil P+ S 0 Vs 2

JruC‘*IIAttsHQJrl/C*IIAVltsH2

cr cr * e+1 * * *
> sl + = lluse” +Cllus|* + —=C* [ Vus |* + pC* | Aus||* +vC | AVus |*

>C* (usu5t+|us752+2|Vus|2—|—uAu5|2+z/|AVuS|2) dx. (4.11)
R‘VL

Then combining inequalities (4.9) and (4.11), we get

d e+1
(ec* / <usuSt—|— \u5t|2+ 2Vu52+,u|AuS|2+u|AVus2> dx)

<t (||v<x?,<D>f<u<x,t>>>||2+i / |v<X3<D>f<u<x,s>>>||2ds+E8>. (4.12)

Changing the variables (x,t) of the inequality above to (x,7), integrating over the region
7€ (0,t) and employing Lemma 4.1 again to yields that

lus (2,6) 7 + luse (@, 1)l|72

<0/e = m>>||H1dT+C/e & [ty dsar.

+C’/ e_tC;*TEng—FCe_%(
0

[uoll s +IlualZ2). (4.13)

For the estimates for higher-order derivatives, we can process the deduction in the
similar way and obtain

1D us (2,) |3 + [ D use (1) 17

t t T
<c / ¢~ D2 f (u(z,7)) |2 dr 4+ C / o / 1D fu(z,)) |2 dsdr
0 0 0

t
+C/ e & Bgdr+Ce™ o (|| Dguo| o + | D [72), (4.14)
0
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where E¢' = || Dfus:[|*+ || Dy uso||* + pl| Dy usol|* + v[[ DS Puso||* < C(I[Dguo |7 +

|D%uq|?2) is a constant. The proof of Proposition4.1 is completed. o
For the long wave part of u(x,t), we have the following proposition.

PROPOSITION 4.2.  For n>3 and f € L'(R™), then there exists some constant C >0
such that for h=0,1 and a>0

-2 |al+h
2

IDSOF G (. t) % f ()| 2 < C(1+1) " £z (4.15)
IDSOPGL () f ()| SO+ T =2 ]| 1. (4.16)
Proof. For h=0, we first know that
0601 = [pilely 1+ (u— el il | 220
And from equation (3.5), we have
GL.t)| <Cle| e el (4.17)

Applying the Plancherel’s identity and Hausdorff-Young inequality, we obtain

1

1DSG L (1) F ()| 2 = < / |<is>aéL(s,t>f<s>2dx)

R

<C (/ ||s|ale%6'5'2tf<s>2dx>
[E|<RA+1

<C||fllz (/ |J€|ote2elél td:c)
[¢]<R+1

1
2

2

n— lo|
<Ol (1407 %, (4.18)
where we use the following results
/ H§|Ia|f ef%E\E\Qtdxgctf%Hfla\/ ‘n|2\a|72eféelnl2dn
[£|<R+1 [¢|<R+1

sCt‘%“_'a‘/OOYz'“‘—Qe—%EYZY"—ldY

0

1
t

<C(1+t)~ "zl (4.19)

<C(+t)~ "= ~lel(1+ )"T’Zﬂal/ e 3eY ynt2lal-3 y
0

In the same way, we can compute
1D Gr(x,t)* f(2)][ee <C|fllpr[|DE Gr(,t) ||l
<Ol [ (G Gulenesielo
[€l<R+1

<COIflual / oo bl ge
|¢|<R+1
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1 o

n— |
SCfllpr )= = 7= (4.20)
Finally, we can complete the proof for h=1 in the same way. Thus the proof of Propo-
sition 4.2 is completed. 0

Based on the results of Proposition 4.1 and Proposition 4.2, we have the following
theorem for the global well-posedness.

THEOREM 4.1. Let [>[2]+5, |[a|<min{l—[2] —1,n}, and set
Eo=luollmnrr + luall gi-snpr-

If Eqy is suitably small and E0§0(1+t)—”%1 for some positive constant C, and M
is also suitably small. Then the sequence {u™(x,t)}oo_ € X; p is a Cauchy sequence,
which means the problem (1.1) has a unique global classical solution u(x,t) € X ar.

Proof.  'We will prove the theorem by induction on m for {u™(z,t)}o°_; € Xi m-
Firstly we consider m=1. Since H*(R") < L>(R") for k> %, then we have the esti-
mates for the short wave part

g (@) g < D IDIug (8|2
1Bl<i=[3]-1

<C Z ||D£U?($7t)||i{[%]+l
|81<i—[3]-1
<Cllug () |l3- (4.21)

According to the estimates in Proposition 4.1, we have
t
1 _t=T 2 2 -t 2 2
l[us (2, t) || o SC/ e 7 (uollzge +lluallge-s)dr+Ce™ e (luollg: + luallg-s)
0

t
SCEO/ 6_%(1+T)_%dT+CE()6_#
0

<CEy(1+t)~"%

<CEy(141) "7, (4.22)
Then from inequality (4.21), there holds
ks (@, )y 151-1.00 < Ol (@) | < CEo(144) "7, (4.23)
Thus we have
(L+6) "7 b (a,0) |y -t31-1.00 + (LD [l (,8)] 11 < C B, (4.24)

On the other hand, for the long wave part, based on the Duhamel’s principle, we have

Dou(z,t) =DS0,Gr(x,t)*ug+ DG (x,t) * (ug —eAug)

+f0tD3AGL($,t—s)*f(um—l(x,s))ds. (4.25)

Then from Proposition 4.2, we have

IDgur (@,6)] L2 < | DFOG L (w,t) xuol L2 + | DEGL ()  (u —eAug)| 2
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n2

Lo
SC(lﬁ*t)i HUO”LI +C(1+t) 2 ||U17€AUQ||L1

§C’E0(1+t)_T, (4.26)
and

||D°‘uL(x )| <||DY0GL(x,t) xug|| Lo + | DY G 1 (z,t) * (w1 —eAug) || L=

—1

n— || ||
<O+ "7 =2 |Jug|| s + C(L+8) " 2 [Juy — eAug]| s

<CEy(1+1) "7, (4.27)
Thus from inequalities (4.26) and (4.27), there holds
(1) | Dgul (,0)]| 1 + (1407 | Dgu (2,)|| .2 < CEp. (4.28)
Combining inequalities (4.24) (4.28) and taking E; suitably small, one can prove
ul(z,t) € Xy

Next we assume that {u/(z,t)}52, € Xj s is valid for j<m—1(m>1), and one
needs to get that u/(z,t) € X; ps(j =m) holds. Firstly from Lemma 2.2 , we have

L ) e < Ol () s ™= () oo ™ ) 122
< CM’Y(I‘i’t)ian (1+t)*"771(771)
<CMY(1+t)~ "%, (4.29)
and

1f (@™ a,6) || 1 < Cllu™ (e, t)IILzllu’”‘l(x )z llu™ (@, 1)[|7 22
<CMY(1+4t)~ " (14¢)~ "z 0D, (4.30)

By the estimates in Proposition 4.1, one can obtain
2 ' 1 2
[ug' ()] SC/O em o [f (@™ (2, 7)) [ —2dr
t — T
0 [ [ o) dsdr
0 0

ol + [l )

+C/Otetcf(llu(>||?{z + |31 )dr +Ce™ e (

<CM2“’/te_t0*T(1—}—7‘)_“(1+7’)_("_1)('Y_1)d7'
+CM27/6 c*/ (145)~ "7 (145)~ DO Ddsdr
+CE0/O e~ (147)" "= “dr+CEge™

t
SCMWIH)*"T’ZOMQ”/ e*c;*’uﬂr%ﬂdf
0

+CEy(14+t)~ "% +CE0(1+t)
<(CM* +CEy)(14t)~ "7

(4.31)



CHANGHONG GUO AND SHAOMEI FANG 1471
which implies
(1+8)"5 [ (2,8)|| s < (CM> +CEp)?. (4.32)
In the same way, we can compute

(141)" |Jul(z,t) |1 < (CMP +CEy)?. (4.33)

||Wl*[%

And therefore

(L)% [ (@) it os e+ (L) T B (@)l < (CM? +CEp)Y. (4.34)

||Wl*[
On the other hand, from equation (4.25) and inequality (4.30), we compute
I1DZur (x,t)|| L2 S| DZ0GL(x,t) *uol| L2 + (| DG Gr(x,t) * (ur —eAu)|| >

t
+/ ||D§‘AGL(x,t75)*f(umfl)(x,s)Hdes.
0

<CO+8)"F 5 fug||pr + C(L+6) " F % luy — eAug | 11
+ O+ @ @)
<O+~ 5 (flugll = + a2
FOMY(141)™ T (144) " (144) "7 O~
<C(Bo+M")(1+t) "7, (4.35)
and similarly to obtain that
| DU (2,8) | Lo < C(Eo+ M) (14+8) "7 (4.36)
And thus there holds
(1+8) "7 [ DZuf (2,8)]| o + (14+8) T | DSuE (@,8)] 12 SC(Bo+ M7).  (4.37)

Combining inequalities (4.34) and (4.37), taking Ey and M suitably small, we can
conclude that {u™(z,t)}>°_; € X) u.

In what follows, we will prove that {u™ (x,t)}3°_; € X; u is a Cauchy sequence. Set
v =u™ —u™" ! and o™t =um " —u™ 2 for m > 2 (u®(x,t) =0), then v (z,t) satisfies
the following system

VI — AV — Av™ + A2 — v A3 = A f (u™ ) — A f(umT?), (4.38)
v™(z,0) =v"(x,0)=0. '
Then the Duhamel’s principle shows
t
Div™(x,1) =/ DIAG(wt—s)*(f(u™ " (2,5)) = f(u™*(x,5)))ds. (4.39)
0

First from Lemma 2.2, we have

1f @™ 1) = F (™ =2) | g2

<C(flu™ Hlzoe + a2 )2
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=t =2 e (™ e+ a2 )
+ Hum_l—um_QHLOO(Hum_lHHzfz+Hum_2||Hl,2)]
SCM771(1+t)7%(7*2)
'(”umﬂ_“m72||Hl—2(1+t)7nT_l+||um*1—um72\|Loc(1+t)7nT_2>
<CM”‘1<1+t>‘”T””—2)<1+t>-”T”uvm—lnw
+OMIT A4 T O (L) T o
<CM7_1(1+t)_’T(7—2)(1+t) 14t 42Dz( ey
FOMY Y (14+4) " 0D (1 4 T (1+0) " (o1
<SCMYH(1+1)” 474772(7*2)Dz(vm71), (4.40)

and
1 (™) = f ™) [ SOl | poo + [[u™ 2| Lo )72
(™ 2+ ||u7"*2\|Lz)Hu“H —u" 73| e
<OM A+ 07D (A1) o s
<CM~ 1(1+t)_7(7 D(144)""F (1+8) (v™ 1)
(

<CM Y14t~ T 07Dy Y. (4.41)

Similar to obtain the estimate in Proposition 4.1, we can obtain the estimates

o8 @ <C [ F ) wr) = Fum ) ) fp-sde
t . T
0 [ [ @,8) = Fm ) s

t
+C/ e (0™ (2,0) |3 + (|00 (x.,0) [ Fpi—s)dr
0

0™ (2,0)[[ 77 +[|9¢v(,0) [ Fr1-2)

—4

t P
<OM*0D(Dy(w m‘1>)2/ e T (1) T 0 dr

+Ce™ T (

+CM20-Y ™) /e C*/ (I4+s)” St () ggdr

<CcM?0~ 1>(D( 24~ (Y

—2

<CMPO=D(Dy (0" )2 (141) " (4.42)
which also means
(14875 ol (2, 0) | s < CM O~V Dy (1), (4.43)
Furthermore, there holds
103 (@, 8) [ ypi-31-100 SCJ0Z (@,0)|[ e SCMOID (1) (14657 . (444)

Combining inequalities (4.43)(4.44) together implies
Dy(v?) <CMO~Y Dy (v™ 1), (4.45)
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On the other hand, from Proposition 4.2, estimates (4.39) and (4.41), we get

t
1Dz oE | 2 S/O IDEAG (,t =) * (f(u™ (x,5)) = f(u" " (x,5))) || 2ds

n—2_ |a|+2

<c / (Lt —8)~ 5752 | f = (a,8)) — (™2, 5)) | o s

gCM“Dl(vml)/Ot(Hts)Hz‘12“(1+s)"22"21<72>ds
<CMYY(1+t)""T Dy(v™ Y, (4.46)
and also similarly
IDSV | Lo < CMY~L(14)""F D™ ). (4.47)
From inequalities (4.46)(4.47), one gets
Dy(v) <OMO=YDy(u™m ). (4.48)

Finally using inequalities (4.45)(4.48), setting = CM (=1 and taking M suitably small
yields

Dy(v™) <Dy (v™ 1), (4.49)

where 0 < < 1. Thus we can conclude that {u™(z,t)}o°_; € X; ar is a Cauchy sequence,
and there exists u(x,t) € X; ps , which is the limit of {u”(x,t)}2o_; since X is a
Banach space. Thus, the proof of Theorem 4.1 is completed. ]

5. Pointwise estimates for problem (1.1)

In this section, we will employ the Green’s function to study the pointwise estimates
for the solutions of the problem (1.1). As is well known, the decay of the solution is

mainly related to the properties of G(&,t) near £ =0 in the frequency space. According
to the value of &, we make use of equation (3.9) to divide the frequency space into

low frequency part G\li (&,t), middle frequency part G'\g[ (&,t) and high frequency part

@Si (&,t). And we study the pointwise estimates for each part respectively.
Firstly we have the following proposition about the estimates on G1(x,t).

PROPOSITION 5.1.  Suppose G1(z,t) is the inverse Fourier transform of CA}'l(f,t), and
|| >0. Then for sufficient small r>0 and h=0,1, we have the following estimate

01 DEGr(w,0)| < C(14+6) 75 By Jal ), (5.1)
. oy - ‘3’,‘|2 -N
where C is a positive constant and By (|z|,t)=(1+ 135

Proof.  For || being sufficiently small, by applying the Taylor expansion, we can
obtain

A+ (€)== 5elel” + 260(€) =~ 5le? +iE +O(E), (52)

A (€)= —5ele? — 2 00(€) = —5ele ~iE +O(€Y), (53)
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1 1 __i_~_4 —g2
00(8) Rl —A(EP+pEF ) 26 16

Then there holds that
MOt — o (—3eleP 4O (1 L O(e3)r), A Ot =258 8)0 (14 O(€3)1),

iE+0(£2). (5.4)

and
0| 10
:'< % |§|2+z§+0(53)>h (_;é+4u1_(s€2i’5+0(52)>

~e(7%5\§|2+i€)t(1 +O(§3)t)‘
SO (Je" ="+ [P + [P 2 + g h2e) e delee
<O (Je) g 4 | 2e) e el (55)

Firstly for ¢>1 and from the properties of the Fourier transform, we have

|D2op G (w,t)|

RES ﬁgaahGJr 5 t df‘

”’%axl(oafw(s,t)dg‘

<C

eiz~§ <|§‘|a\+h—1+|£|\a|+h+1+|§|\a|+h+2t) 6_%5|5|2td€

0<l¢|<2r

<C / eiz-§|£|a+h—1e—és|§|2td§‘

+C

| e ((enpg et arg et e e
<[¢]<2r

nt|a|+h—1 nt|a|+h—1 _ ntlal+htl
2

<Ct~ 2 -l—Ct* 2 +Ct-t

n+|a \Jrh

<Ct™

<C(1+1) ntlath-1 <1—t|—t)

ntlal+h—1
2

<O(1+1)~ (5.6)
When 0 <t <1, we obtain the estimates as
|D20r G (2,t))|
e’ ) —
/ e”'%aafGr(wdf‘

BICOE

— (;:)n /Rnem-égam(f)afa(g’t)dg‘

/ i (e L A T A
<[¢]<2r

<C
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<C

/ ((2r)‘°‘|+h_1+(2r)‘“|+h+1+(2r)\o¢|+h+2) de
<[¢]<2r

n+lal+h—1

<O+t = (1+1)

n+|a|+h—1

<O+t (5.7)

n4|al+h—1
2

Combining inequalities (5.6) and (5.7) to yield that
[DOPGY ()| C(L4+6) 57 (5.8)

Secondly since G+ (&,1) is a smooth function to the variable £ near £ =0, and from
Lemma 2.3, we have

‘Df (ﬁo‘ﬁth@Jr(ﬁ,t))‘gC’D? ((‘€||a|+h71+|£‘|a\+h+1+|£‘|a\+h+2t> e*%dfl%)

181 4
=+t —%s\g\zt_

(5.9)

<O (Jgllerr=1100e . feleb 1 ) (1 gf22)

for 1< <2N. Then there holds
D¢ (e apcten )| =|pe (e°0t (a(©)Gt en))|

<| Y 22 Dloale) Dzl at (e )

l+m=p
< C(|g|elth=1=ImDs 4 jg|lolth=137

|m|

YL+ [¢]2t) F e elelt
<C(l¢| (|a|+h—1—|8])+ +|€||a‘+h_1t7)(1+|€|2t)%+1e_%5‘5‘2t,
(5.10)
Since G (£,t) = x1(§)GT(&,1), thus from inequality (2.9) in Lemma 2.4, we have

n+|0‘\+

|0/ DG (z,t)| < Cn(1+t)" ~ By(|a],t), (5.11)

where Cy is a positive constant. Combining inequalities (5.8) and (5.11), we obtain

n+\f¥|+

|0p DG (z,t)|<C(1+t)" = By(lz|t). (5.12)

Similarly, we can obtain the estimate for Gy (z,t) in the same way, which concludes

n-HaH—h 1

|0 DYGY (z,t)|<C(1+t)" = Bn(|a|,1). (5.13)

Combining inequalities (5.12) and (5.13) together, we have that

n+|o¢\+h 1

|0/ DG (w,8)| < C(1+8) 2" By (|a|,t). (5.14)

Thus the proof of Proposition 5.1 is completed. ]

Secondly we have the following proposition for the estimate on Ga(x,t).
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PROPOSITION 5.2.  Suppose Ga(x,t) is the inverse Fourier transform of éz(é,t), and
|| >0. Then for any fized v and R, and h=0,1, we have the following estimate

0} DG (x,t)| < Ce " By (||, 1), (5.15)
where C' and by are some positive constants.

Proof.  For any fixed r and R, when ¢ lies in the bounded interval [r, R+1], we
know that the real part of the eigenvalues of A in (3.4) are negative. And

< L <C. 1
- 27‘\/1+(;L7%52)r2+w4 <C (5 6)

1 ‘_
0o(§) |

1
2i[€]/1+(u—Le2) |2 +ve]*

Thus we can choose some positive constant by (0 <by< %57‘2) such that

@t L e

1 1012
e <Ce 25l < gebot, 5.17
(©) G : (517

|-

and

e <Ce 2kt < Cebot. (5.18)

~ h h
|-

Then we have
orGaten|<clor (e©)Gen) | sce (5.19)

and furthermore

0P DG ()| ' / e”faﬁ??h(f,wdf‘

1
(2m)m
/ e o€, 1) dE

r<|é|<R+1

<ce | €| de
r<|¢|<R+1

< Cebot, (5.20)

A

C

Next, we will prove the following estimate by induction on 5
‘D?@fég(g,t)‘ <C(1+1)Pebot, (5.21)

When =0, the estimate holds obviously from inequality (5.19). Now we suppose that
it holds for 5 <I—1, which implies

‘Dé’lafég(f,t)‘ <O(1+t)"tebot, (5.22)
we will prove that it is true for 3 =1. First from equation (3.2), we can get

(0%, +¢l€[20; +[€[2 + ple|* +v|¢|5) DLAF G(E, 1)

_ n_(-ph £|? DP2(or G &t
T (D2 (€7D LG )

+DZ (62 + ulel* +vIEl°) DL (9 E,1)) )
DL(OFG)(&,0)=a0, 0, (DLOLE)) (€.0)=ar,

(5.23)
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where ag and a; are polynomials of |£]. Multiplying (5.23), whose variables are now

changed to (&;s) by G(&;t—s) and integrating over the region s€ (0,¢), then we can
have that

| DL} G t)| < Clla| + e ) G &, 1)

noo )
DB (€2) D (1B,
" mw;l,ﬁl#oﬁl!ﬁﬂ/o <€ e (€D (9 G (&)

+ DR+ el +vIEl) DE (91 GIE,5)) ) Ggst — 5)ds
t
gCe_th—i—C/ (1+8)l—16—bose—bo(t—s)d8
0

<C(1+t)le ™t (5.24)

Thus the assertion of inequality (5.22) is completed. In all, for 1<3<I and taking
0 < by <bg, there holds

B ) —
|270] Dy G (w,1)] = @ / | emeg(athDng(f,t))df‘

joth , _~
= éﬂ)ﬂ /R ) e”fo@aasz(f,w)ds‘

e [ DA G )]

2 : 5' B1(ea DB2 h A+
S /T<|§|< 1Bl = ﬂ/81'52| 3 (€ X2(£)) £ ( t (§7t)) §

gCe‘bot(lth)ﬁ/ d¢
r<[§|<R+1

<Ce bt (141)8
< Cetitem(o=b)t (1 4B
<Cebit(14+4)7, (5.25)
which implies
8
|0 D2 Gy ()| < Ce1t (1;;’5) - (5.26)
Since 0 < by <bg, thus from (5.20), there holds
|8fD§‘G2(x,t)‘ <Ce bt < et (5.27)
By using (5.26) when |z|> <1+t and (5.27) when |z|?>>1+t, we have

1+\"
|(3'thDgG2(l'7t)| Sce*bltmin <1, <;;) ) . (5.28)

Noticing the fact that

2
2ol 2|2 >1+t,

EE { 2, 2> <1+,
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we get that
0/ D2 Go(z,t)| < Ce™ ™ By (|z|.1), (5.29)
which completes the proof of Proposition 5.2. ]
Finally about the estimate on G3(x,t), we have the following proposition.
PROPOSITION 5.3. Let Gs(z,t) is the inverse Fourier transform of Gs(&,t), and
|| >0. Then for h=0,1, there exists some positive constants by and C' such that

Ol DGy (1) _0(1)67%ER%F(z,t)\ <Ce "By (|z],t). (5.30)

where F(x,t) is defined as

(Oé+3h73)+

F(z,t)= > DEs(x). (5.31)

k=0

Proof. When ¢ is sufficient large, we can obtain the approximate Tayloy expansion
of the eigenvalues near £ =oo, which are

A+(£):f%slélzﬁﬁfg—iﬁaéﬂﬁd%+0(1>§i3, (5.32)
A (€)== g€l —ivig ivoug —ividg +O() g5, (5.33)
and
1 1 7 1 ic 1 1
— 4+ ——4+0(1)—= 5.34
00©) e e es) e e W B3

— p— 2 .
where a = £ - dp g = Gdv=e BSSE e 161 and c= 4’{65 are constants. Next by direct com-
putation, we have
e

DO G (2,1)] = | —

/ e“'%aa?G\mt)dg‘

(QW)n R
- m eena(€) (1 GF (D) dé“’
_ ZCE£ a (/\+(€))h )\+(£)t> ‘
‘m LN 5)< e ¢ )%

h
<o [ e (i Jelef - iving 1V +00) 5 )
lE|>R §

(ot L el i/OE% — Lel€|2—iv/Tag)t
< 25 83 f€5+0() )e( )

: <1+iﬁd€t+0( )§3 )

<C

/ (iEEH(VTE —Tat)t) = et a3
61>R
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_(_2\%513 \2;515 O(1)— ><1+zfd t+0(1) 13t)df‘

<c / (iEEH(VTE —Tat)t) = helel*t) a3
61>R

1 1 1
| <s|3+|5|5+ e >d§’ (5.35)

In what follows, we will discuss the estimates under different conditions. They are:
(1) When a=0 and h=0, we have

| D207 G (2,1)]

e (VI —ia)t) - bele] t(++t+t> de
/|£>R [ A I R I L

<C

1
gce—%632t(1+t)/ -
e/ €]

<Ce 3R (141). (5.36)
(2) When a=0 and h=1, we get
| D20y G (2,1)]

11
SC/ e H(TE —Bag)t) el t|§|3( PRI +t)d§
le|> R €13 1€l gt €L
<CeeR / (EEH(/TE —VTae)0) g
€[> R
+Ce 3R / ldf +Ce 2 / Loine ge
gl>r € >R €
<Ce 2R (1 41). (5.37)

(3) When a=1 and h=0, there holds
| D207 G (.1)]

(HEEH(IE —Tae)D) o~ helePt ¢ ( 11 )df
/m I et s T e

<Ce 2R1(1 +t)/

e1>r 1€
<Ce 2 R1(14+¢). (5.38)

<C

(4) When =1 and h=1, there yields
| D20y G (1)

/ SieEH(VBE —Ba)t) —s£2t|§4< 1 1.1, +t> i
6> R

<C
- &P TTEr e e

Jone

<Ce 3R / eiE|¢|de + Ce 351
[§I>R
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g2 1
+Cem 2l tt/ —d¢
lej>r 1€l

Sceésm/m Remgléldé+ce*%€’*“(1+t>- (5.39)
>

+ Ce—%eRQtt

/ (it (VI —VTat)t) e
€[> R

(5) When a=2 and h=0, we obtain
| D20y G (2,1)]

(@B~ Ba)t) ,~ bele] t|§|2< LI +t) dé
/|§|>R A S N

L ine
ZZ d
/§|>R |§| §

<C

SC’e*%ERQt/ d€+067§5R t
|§|>R |§|

+Ce 2R tt/ %df
|¢|>R ‘5|
<Ce 2R (1 41). (5.40)

(6) Finally, for a+h >3, we have the estimate
|DSO}GE (z,t)| <C

1 1 1
I A
<|€I3+IE5+I£I4H§I6t> ’5‘

(a4+3h—3)

SCe*%ERQt/ et Z ehde
[§I>R

/§>Re |f| ‘
1
—d

/5>R|£2 5'

(+3h—3) 4+

gce*%dﬁ/ e S ghde| 4 CeFR (14t). (5.41)
[§I>R k=0

/ (VT =V Ta)D) o~ et at3h
1> R

+Cem 2 (1 4¢)

+Ce 2 (1 4)

where (a+3h—3); =max(a+3h—3,0). In sum, based on the results from esti-
mates (5.36)-(5.41), the estimate (5.35) can be computed as the uniform form

(a+3h73)+

|DgO G (w,t)| < Ce 2=t / et 3T ehde| 4 Cem R (141
|§1>R k=0
=L +Ce =Rt (1 4¢), (5.42)

From Lemma 2.5 and the inverse Fourier transform, we have

(a+3h—3)

11:067%51{21: / eigr Z fkdf
IEI>R

k=0
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(a+3h—3)1
SCe—%ER%/ eifm Z é—kdé-
" k=0
(a+3h—3)4
=0(1)e 3 N" DE§(z)=0(1)e” 2= F (x,1), (5.43)
k=0

where F'(z,t) is defined in equation (5.31). Combining estimates (5.42) and (5.43), and
taking some suitable number 0 < by < isRQ, we can obtain

DeOPGE (2,t)—O(1)e 2R F(a, )| < Cem 2R (1+-1)
Sce—%stte%stt
<Ce b2t (5.44)
Meanwhile, we also can compute P Dg‘@fG;(x,t) in the same way

| ot (e @tciem))

jotB
(2m)"

/§|>R‘3W£D? (§“><3(€)(8£’é+(§,t)))|

[ et (@ (“;(é)))@))‘

(a+3h—3—P8)4

<Ce 2Rt / e’ Z kg
l€I>R

k=0

1 .

— et qe
/|£|>R |’f|

1
—=d
~/|£|>R |§|2 5‘

=TI+ Ce 2 (1 1), (5.45)

|xﬁDg‘8thG§f(x,t) |=

<C

<C

+Cem 2/ (1 41)

+Cem 2 (1 41)

where
(a+3h—3—8) 4

Ii :667%63215 / eiEm Z fkdf
[§I>R

k=0

(a+3h—3—P)+

<Cem2eR / el Z ¢kag

k=0

) (a+3h—3-p)+
<Ce#Et N DEg(a). (5.46)
k=0
With the help of the following relationship, there holds
(a+3h—3) (a+3h—3)+

PSS D= [ enl| 3 e

k=0 k=0
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iB (a+3h—3—P)+

k=0
(a+3h—3—p8) 4
= ) Dix), (5.47)
k=0

which also implies that
| o, (@F3R—3=F) 1_p2
I} <Ce2eft > DE§(z) <Cem 287t 28 . F(x,1). (5.48)
k=0

Combining inequalities (5.45) and (5.48), and taking some suitable b3 >0, we have

)xﬁDgafG;(x,t) —0(1)xﬁe—%sR2tF<x,t)( < Ce 3R (1 4y)

<CeP(1+1)7, (5.49)
which concludes that
) 8
t 2
‘Dg&fG;(m) —0(1)e—%€thF(x,t)‘ <Ce bt (t) : (5.50)
x
Combining inequalities (5.44) and (5 50) together, taking by =min(be,bs) and noticing
the result mln( (L5L) ) <2NBy(|z|,t) again, we can obtain
‘Dgathc:;(x,t) —0(1)6—%ER2tF(x,t)] < Ce Mt By (|z),t). (5.51)

Similarly, we can obtain the estimate for D9G3 (z,t), which implies
’Df;@ng (,8) 0(1)e*%€RQtF(x,t)‘ <Ce "By (|z|,t). (5.52)
Thus combining inequalities (5.51) and (5.52), we complete the proof of Proposition 5.3.
]
In summary, we have the following theorem about the Green’s function G(x,t).

THEOREM 5.1. For h=0,1, and any multi-indexes o, we have

n+|a Hh

|0/ DG (,t) — K (2,t)| <C(1+1)~ Bn(|z|,t). (5.53)

where

K(z,t)=0(1)e 27t F(x,t). (5.54)

Proof. From the estimates of Proposition 5.1, Proposition 5.2 and Proposition 5.3,
one can find that

|0} D2 G (x,t) — K (,t)|
= |0/ DE G (x,t) + 0] DY G2 (x,t) + 0 DY G (2, t) — K (2,t)|
<|0f DS Gy (2,t)|+ |0 DY Ga(a,t)| + |0/ DY Gs(,t) — K (2,t)] .
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ntlal+h—1

<O@+0)" "5 By (], t) + Ce ™" By (Ja],£) + Ce "' By (Jal.¢)

ntla|+h—1

<C(+t)" 2z  Bn(lz|,t)+Ce "By (|z|,t)

ntlal+h—1

<C(1+t) =  Bn(|z|,0), (5.55)

which completes the proof of Theorem 5.1. ]

Based on the pointwise estimate of the Green’s function G(x,t), we have our main
theorem about the pointwise estimate for problem (1.1) as follows

THEOREM 5.2. For the space dimension n>3, let [ > [%} +5 and the initial values
satisfy

lluollgract +llutllgi-snrr <e, (5.56)

where e 1 is a constant. Furthermore assume that ug(z) and ui(z) have compact
support. Then for |a| <min{l— [%} —1,n}, the solutions of the Cauchy problem for the
generalized sizth-order Boussinesq equation (1.1) possess the following estimate

. _ntla|—-1 |£L‘|2 N
DRue )| <O+~ (1455 ) (5.57)

where N > [%] +1 and C is a positive constant.

Proof. First by applying the Duhamel’s principle, we can obtain that the solution
of the problem (1.1) can be expressed as

u(sc,t):Gt(m,t)*uo—i—G(x,t)*(ul—gAuo)—i—/O Gz, t—s)* A(f(u(z,s)))ds. (5.58)

Applying D to the solution yields that
Dyu(z,t) =Dy 0rG(x,t) xug+ Dy G (z,t) % (ug —eAug)
+/thE‘G(x,t—s)*A(f(u(x,s)))ds (5.59)
-] jJ2+J3. (5.60)

In what follows, we will obtain the estimates for Ji,Jo and J3 respectively. First we
notice that, since ug(x) has compact support, we have

| D ug(z)| <C(1+2%) 7%, k=0,1,2,--, (5.61)
for any positive numbers s. If we choose s > N, then
| K (x,t) xug| = O(l)e_%sttF(x,t)*uo‘
(a+3h—3)+

=|0(1)e 2" > Dis(a)*ug
k=0

(a+3h—3)

=lo)e = N W9 ()

k=0
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—1cR%t 2\—s
<Ce 2% Y (1+427)

2 —s
<Ce-éfR2t<1+ x ) . (5.62)

1412
Then according to Lemma 2.6 and (5.62), we have

| J1| =] D20, G (@, )+ uq|
=|(Dg0:G(x,1) = K (2,t) + K (x,1)) * uo|

<O(141)~nFleb/2 / BN(Ix—yl’t)uO(y)dy’ + K () uol

<C(1 +t)—(n+|a\)/2

2 —8
BN<|x—y|,t><1+|y|2>-de‘+0e-28R2t(1+ . )

R" 1412
ntlal a1 a2 \7°
<C(1+t)~ B H+C(1+t)” 1+——
<O F B(lal a0 (141 )
<C(1+4)~" 5 By (|zl,). (5.63)

In the same way, we can also compute that
|Jo| =|DSG(x,t)* (ug —eAug)|

=|(DSG(x,t) — K(x,t)+ K(x,t)) % (ug —eAug)|
<DSG(x,t) — K(x,t)) % (ug —eAug)| + | K (2,t) * (ug —eAuyg)|

_ ntlal-1
<oy [ BN<x—y|,t><u1<y>—eAw(y))dy\
R‘IL
2(04+3h73)4r
Flome i e 3 (W @) - eug ™ @)
k=0
ntlal—1 ntlal—1 22\ °
<CO(1+t)” 2 By(Jz[,t) +C(1+t)" 2 <1+1+t2>
<O+t~ By (zl,0). (5.64)

In order to obtain the estimate for J3, we set

O, t) = (1+6) 5 (By (ja],1)) 7, (5.65)
and
2= _sw_ [Dfu(zs)|6(s). (5.66)
Then we have
ID%u(z,t)| < Bt (1+1) =5 By (jzl,1). (5.67)

And since f(u)=0(u?), after some direct computation, there holds

ntlal—1

1Dz f(u(z, )| <7 () (1+8)" = Bn(|z],t). (5.68)
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From inequality (2.24) in Lemma 2.7, we have

/0 (DEAG(,t—5)— K (.t — )% (f(u(z,5)))ds

t
gc/(1+t_s) S g (el s)

( Y(1+s)” (|x|,s))ds‘

g ) —(n+lal=1)/2
<CP7(t) (1+t sz (1+4s)

[ B a=sl.t= Byl o)dyds
<COV(t)(141)" (|zl,1).

Meanwhile according the definition of K (x,t), there holds

/ K(x,t—s)* f(u(x,s))ds

= / O(1 3R (t— SF(x,t—s)*f(u(x,s))ds
(a+3h—3) 4
= / o1 —3eR?(i=s) Z DE§(x)* f(u(z,s))ds
k=0
(a+3h—3) 4
_ / O(1)e3=R(t=2) Z 8 (u(z,5))ds

+Ia

<C "By (|| s)ds

/(1+t—s) 57 (5)(145)""

0

ntlal—1

<CPY(t)Bn(|zl,t) ’/ (14+t—5)"2(1+s)" "2 ds

71+|a

<CPV(t)(1+1)~ "B (Jzl,t).

Thus combining inequalities (5.69) and (5.70) together, we have

|J3|—\ [ P9 At

t

(DO‘AG(:E t—s)—K(x,t—s))*(f(u(z,s)))ds

/th—s Fu(,s))ds

(l]2)-
In the end, from inequalities (5.59) (5.63) (5.64) and (5.71), there holds

<CPV(t)(1+1)~

n+|a\

|Dgu(e,t)]| <C(L+@7(8)(1+1)" By (Jzl,t)-
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(5.69)

(5.70)

(5.71)

(5.72)
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By virtue of equation (5.66), we can conclude that

(L) <C(1+D7(1)). (5.73)
Since we choose s> N, there holds
®(0)=  sup |Dg‘u(w70)|(1+\x|2)N§C’(1+:E2)N*S§1. (5.74)
0<s<t,xeR"

Thus using(5.73) and the continuity of ®(t), we assert ®(¢)<1. Then from esti-
mate (5.74), we can complete that

N ndlal-1 |z |2 N
|DSu(z,t)| <C(1+t)" 2 1+1—+t : (5.75)

Thus the proof of the Theorem 5.2 is completed. 0

6. Conclusions

Since the sixth-order Boussinesq equation was derived in the shallow fluid lay-
ers and nonlinear atomic chains and was also proposed in modeling the nonlinear lat-
tice dynamics in elastic crystals, it has significant physical backgrounds and practical
meaning. Thus it is an interesting topic for physicists, mathematicians and other re-
searchers. From the view point of mathematics, some research have been done for the
equation in one dimension space. However, there are few works on problem for the
sixth-order Boussinesq equation in multidimension. Thus in this paper, we studied the
multidimensional generalized sixth-order Boussinesq equation mathematically. We ap-
plied the long wave-short wave decomposition method, energy method and the Green’s
function to obtain that the Cauchy problem for the generalized sixth-order Boussi-
nesq equation (1.1) has a unique global classical solution w(z,t) € X; pr. And what’s
more, we made use of the Fourier analysis and the method of Green’s function to de-
rive the pointwise estimates of the solutions for problem (1.1), which concludes that

o _mtlelmn (4 JaP) TN n
| D&z, t)| <C(1+1)~ "5 (Hm) for N> [2]+1.

REFERENCES

[1] P. Daripa and W. Hua, A numerical study of an ill-posed Boussinesq equation arising in water
waves and nonlinear lattices: Filtering and regularization techniques, Appl. Math. Comput.,
101:159-207, 1999.

[2] P. Daripa and R.K. Dash, Studies of capillary ripples in a sizth-order Boussinesq equation
arising in water waves, Mathematical and Numerical Aspects of Wave Propagation, STAM,
Philadelphia, PA, 285-291, 2000.

[3] J. Boussinesq, Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire
horizontal, et communiquant au liquide contene dans ce canal des vitesses sensiblement
pareilles de la surface au fond, J. Math. Pures. Appl. Ser., 17:55—-108, 1872.

[4] G. Maugin, Nonlinear Waves in Elastic Crystals, in: Oxford Mathematical Monographs Series,
Oxford University Press, Oxford, 2000.

[5] B.F. Feng, T. Kawahara, and T. Mitsui, Solitary-wave propagation and interactions for a sizth-
order generalized Boussinesq equation, Int. J. Math. Math. Sci., 9:1435-1448, 2005.

[6] C.I. Christov, G.A. Maugin, and M.G. Velarde, Well-posed Boussinesq paradigm with purely
spatial higher-order derivatives, Phys. Rev. E., 54(4):3621-3638, 1996.

[7] C.I. Christov, An energy-consistent dispersive shallow-water model, Wave Motion, 34:161-174,
2000.

[8] A. Esfahani and L.G. Farah, Local well-posedness for the sizth-order Boussinesq equation, J.
Math. Anal. Appl., 385:230-242, 2012.

[9] HW. Wang and A.Esfahani, Well-posedness for the Cauchy problem associated to a periodic
Boussinesq equation, Nonlinear Anal., 89:267-275, 2013.



[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]
[21]

(22]

23]
[24]
[25]
(26]
27]
(28]

29]

CHANGHONG GUO AND SHAOMEI FANG 1487

H. W. Wang and A.Esfahani, Global rough solutions to the sizth-order Boussinesq equation,
Nonlinear Anal., 102:97-104, 2014.

A. Esfahani and S. Levandosky, Stability of solitary waves for the generalized higher-order
Boussinesq equation, J. Dynam. Diff. Egs., 24:391-425, 2012.

A. Esfahani, L.G. Farah, HW. Wang, Global existence and blow-up for the generalized sixzth-
order Boussinesq equation, Nonlinear Anal., 75:4325-4338, 2012.

S.X. Xia and J. Yuan, Ezistence and scattering of small solutions to a Boussinesq type equation
of sizth order, Nonlinear Anal., 73:1015-1027, 2010.

Y.Z. Wang and K.Y. Wang, Decay estimate of solutions to the sizth order damped Boussinesq
equation, Appl. Math. Comput., 239:171-179, 2014.

V. Varlamov, FEzxistence and uniqueness of a solution to the Cauchy problem for the damped
Boussinesq equation, Math. Methods Appl. Sci., 19:639-649, 1996.

V. Varlamov, Asymptotics as t — oo of a solution to the periodic Cauchy problem for the damped
Boussinesq equation, Math. Methods Appl. Sci., 20(10):805-812, 1997.

V. Varlamov, Eigenfunction expansion method and the long-time asymptotics for the damped
Boussinesq equation, Discrete Contin. Dynam. Systems, 7(4):675-702, 2001.

V. Varlamov, On the spatially two-dimensional Boussinesq equation in a circular domain, Non-
linear Anal., 46(5):699-725, 2001.

Z.J. Yang and B.L. Guo, Cauchy problem for the multi-dimensional Boussinesq type equation,
J. Math. Anal. Appl., 340:64-80, 2008.

Z.J. Yang, Long time dynamics of the damped Boussinesq equation, J. Math. Anal. Appl.,
399:180-190, 2013.

N. Kutev, N. Kolkovska, and M. Dimova, Global existence of Cauchy problem for Boussinesq
paradigm equation, Comput. Math. Appl., 65:500-511, 2013.

M. Liu and W.W. wang, Global existence and pointwise estimates of solutions for the multi-
dimensional generalized boussinesq-type equation, Commun. Pure Appl. Anal., 13(3):1203~
1222, 2014.

W.K. Wang, Nonlinear evolution systems and Green’s function, Acta Math. Sin. (Engl. Ser.),
30B(6):2051-2063, 2010.

T.P. Liu and W.K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes
systems in odd multi-dimensions, Commun. Math. Phys., 196:145-173, 1998.

W.K. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping
in multi-dimensions, J. Diff. Egs., 173:410-450, 2001.

W.K. Wang and Z.J. Wang, The pointwise estimates to solutions for 1-dimensional linear ther-
moelastic system with second sound, J. Math. Anal. Appl., 326:1061-1075, 2007.

W.K. Wang and Y.Q. Liu, The pointwise estimates of solutions for dissipative wave equation
in multi-dimensions, Discrete Contin. Dynam. Systems, 20(4):1013-1028, 2008.

W.K. Wang and W.J. Wang, The pointwise estimates of solutions for semilinear dissipative
wave equation in multi-dimensions, J. Math. Anal. Appl., 366:226-241, 2010.

A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, New York, 1969.



