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GLOBAL SOLUTIONS TO ONE-DIMENSIONAL EQUATIONS FOR A
SELF-GRAVITATING VISCOUS RADIATIVE AND REACTIVE GAS

WITH DENSITY-DEPENDENT VISCOSITY∗
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Abstract. In this paper we are concerned with the global existence of smooth solutions to two
types of initial-boundary value problems to a system of equations describing one-dimensional motion
of self-gravitating, radiative and chemically reactive gas whose viscosity coefficient depends on density.
The main ingredient of the analysis is to derive the positive lower and upper bounds on both the specific
volume and the absolute temperature.

Keywords. global solutions; self-gravitating viscous radiative and reactive gas; density-dependent
viscosity; density- and temperature-dependent heat conductivity.

AMS subject classifications. 35Q35; 35D35; 76D05; 76V05.

1. Introduction and main results
We consider the one-dimensional motion of a compressible, viscous and heat-

conducting gas which is self-gravitating, radiative and chemically reactive. Such a
gaseous motion, especially in the processes of the unimolecular reactions whose kinetic
order is one, is described by the following equations in the Lagragian mass coordinates

vt−ux=0,

ut+p(v,θ)x=
(
μ(v)

ux

v

)
x
−G

(
x− 1

2

)
,

et+pux=
μ(v)u2

x

v
+

(
κ(v,θ)θx

v

)
x

+λφz, (1.1)

zt=

(
d

v2
zx

)
x

−φz.

Here x∈Ω⊆R is the Lagrangian space variable with Ω being some nonempty open set of
R, t∈R+ the time variable, and the primary dependent variables are the specific volume
v=v (t,x), the velocityu=u(t,x), the absolute temperature θ=θ(t,x) and the mass
fraction of the reactant z= z (t,x). μ(v) is the viscosity coefficient which satisfies μ(v)>
0 for all v>0 and the positive constants G, d and λ are the Newtonian gravitational
constant, the species diffusion coefficient and the difference in the heat between the
reactant and the product, respectively. The pressure p and the internal energy per unit
mass e are defined by

p(v,θ)=
Rθ

v
+

αθ4

3
, e= cvθ+αvθ4, (1.2)
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1424 1D VISCOUS RADIATIVE AND REACTIVE GAS

where the positive constants R, cv and α are the perfect gas constant, the specific
heat capacity at constant volume and the radiation-density constant, respectively. The
second terms on the right-hand side of both relations in the definition (1.2) stand for the
effect of radiation phenomena, whose forms are given by the famous Stefan–Boltzmann
law (see [29]). In the radiating regime, we naturally take into account the heat flux
from the radiative contribution, not only from the heat-conductive contribution. We
also assume that the bulk viscosity μ(v) is a positive function of specific volume v (t,x)
and the thermal conductivity κ=κ(v,θ) takes the form (see for example, [35, 36])

κ(v,θ)=κ1+κ2vθ
b (1.3)

with positive constants κ1, κ2 and b.
Furthermore, as in [35], we assume that the reaction rate function φ=φ(θ) is de-

fined, from the Arrhenius law, by

φ(θ)=Kθβ exp

(
−A

θ

)
, (1.4)

where positive constants K and A are the coefficients of the rate of the reactant and
the activation energy, respectively, and β is a non-negative number.

For mathematical theories on the equations (1.1), (1.2), (1.3), (1.4) with certain
prescribed initial and/or boundary conditions, although some well-posedness theories
have been obtained by many mathematicians recently, cf. [5, 11–16, 35, 36]) and the
references cited therein, all these results are concerned with the case when the viscosity
coefficient μ is a positive constant. We note, however, that since the energy producing
process inside the medium is taken into account in the Equations (1.1), that is, the
gas consists of a reacting mixture and the combustion process is current at the high
temperature stage, and the experimental results for gases at high temperatures in [39]
show that the viscosity coefficient μmay depend on the specific volume and temperature.
Thus it is necessary and interesting to consider such a case and the main purpose
of this paper is concentrated on the case when the viscosity coefficient μ is a smooth
function of the specific volume v. For the case when the viscosity coefficient μ depends
also on the temperature, since, as pointed out in [17] for one-dimensional compressible
Navier–Stokes equations, temperature dependence of the viscosity μ has turned out
to be especially problematic, we hope that we can have some contributions in such a
problem in the near future.

Throughout the rest of this paper, we assume that the reference configuration is
the unit interval [0,1], i.e. Ω=(0,1) and our fist goal in this paper focuses on the outer
pressure problem to the system (1.1), (1.2), (1.3), (1.4) with prescribed initial condition

(v(0,x),u(0,x),θ(0,x),z(0,x))=(v0 (x) ,u0 (x) ,θ0 (x) ,z0 (x)) forx∈Ω=[0,1] (1.5)

and boundary conditions

(σ(t,x),θx(t,x),zx(t,x)) |x=0,1=(−pe,0,0) for t>0, (1.6)

which is studied in [31, 35, 36] with positive constant viscosity coefficient, where
σ=−p(v,θ)+μ(v) ux

v stands for the stress and pe (a positive constant) is the exter-
nal pressure.

In this case, to illustrate our main ideas in deducing the desired global solvability
result, as in [3, 33], we assume that μ(v) takes the form

μ(v)=v−a. (1.7)
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Here a≥0 is some nonnegative constant. Moreover, without loss of generality, we may
assume that, cf. [35, 36] ∫ 1

0

u0(x)dx=0. (1.8)

For such a problem, our first result in this paper can be stated as in the following
theorem

Theorem 1.1. Suppose that

• The viscosity coefficient μ satisfies the equation (1.7);

• The parameters a,b and β are assumed to satisfy 0≤a< 1
b+1 , b≥8 and 0≤β<

b+9;

• The initial data (v0(x),u0(x),θ0(x),z0(x)) satisfies the compatibility conditions,
the condition (1.8) and

(v0(x),u0(x),θ0(x),z0(x))∈H1 (Ω) , (1.9)

inf
x∈Ω

v0 (x)>0, inf
x∈Ω

θ0 (x)>0, 0≤ z0 (x)≤1 for x∈Ω. (1.10)

Then there exists a unique solution (v(t,x),u(t,x),θ(t,x),z(t,x)) of the initial-boundary
value problem (1.1), (1.5, (1.6) with (1.2), (1.3), (1.4), (1.7), such that for any T >0

(v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x))∈C0
(
0,T ;H1 (Ω)

)
,

(ux (t,x) ,θx (t,x))∈L2
(
0,T ;H1 (Ω)

)
,

V 1≤v(t,x)≤V 1, ∀(t,x)∈ [0,T ]×Ω

Θ1≤θ(t,x)≤Θ1, ∀(t,x)∈ [0,T ]×Ω

0≤ z(t,x)≤1, ∀(t,x)∈ [0,T ]×Ω.

Here T is any given positive constant and V 1,V 1,Θ1,Θ1 are some positive constants
which may depend on T and the initial data (v0(x),u0(x),θ0(x),z0(x)).

Remark 1.1. Some remarks concerning Theorem 1.1 are listed below:

• From the proof of Theorem 1.1, it is easy to see that similar result still holds
when the viscosity coefficient μ is a general function of v which is assumed to
be sufficiently regular and satisfies the same asymptotic behaviors when v→0+

and v→+∞ as the function (1.7);

• As demonstrated in [35], the initial-boundary value problem (1.1), (1.5, (1.6)
with (1.2), (1.3), (1.4), (1.7) is equivalent to the free boundary problem of the
equations (1.1) in Eulerian coordinates

ρt+uρy =−ρuy,

ρ(ut+uuy)=(−p+μuy)y+ρf,

ρ(et+uey)=(κθy)y+(−p+μuy)uy+λρφz,

ρ(zt+uzy)=(dρzy)y−ρφz

in ∪t>0 ({t}×Ωt), where y is the Eulerian space variable, ρ=v−1 is the density,

Ωt :=
{
y∈R

∣∣∣y1(t)<y<y2(t)
}

and yi(t) for i=1,2 are fluctuating boundary
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functions which satisfy the dynamical and kinematic boundary conditions for
i=1,2

(−p+uy) |y=yi(t)=−pe for t>0,

dyi(t)

dt
=vi(t,yi(t)) for t>0

for some positive constant pe>0 (the outer pressure) and the thermal and
chemical boundary conditions for i=1,2

(κθy) |y=yi(t)=0 for t>0,

(dρzy) |y=yi(t)=0 for t>0,

and the initial condition

(ρ(t,x),u(t,x),θ(t,x),z(t,x)) |t=0=(ρ0(x),u0(x),θ0(x),z0(x)) for y∈Ω0

under the standard normalization
∫
Ω0

ρ0(x)dx=1. Here the external force per

unit mass f =f(t,y) is given by f =−Uy, where U(t,y) is the solution of the
boundary value problem

∂2U(t,y)

∂y2
=Gρ(t,y), (t,y)∈∪t>0 ({t}×Ωt) ,

U(t,y)|y=y1(t)=U(t,y)|y=y2(t)=0, t∈R+.

Our second goal in this paper is to deal with the system (1.1), (1.2), (1.3), (1.4) with
prescribed initial condition (1.5) and homogeneous Dirichlet boundary condition with
respect to the velocity u(t,x) and homogeneous Neumann boundary conditions with
respect to both the temperature θ(t,x) and the mass fraction of the reactant z(t,x), i.e.

(u(t,x),θx(t,x),zx(t,x)) |x=0,1=0 for t>0. (1.11)

Although the case when the viscosity coefficient is a positive constant has been studied
in [8], we consider in this paper the case when μ(v) is a smooth function of v for v>0.
Due to the limit of our technique, we need to ask that μ(v) is non-degenerate in the
sense that

μ(v)∼
{
v−l1 , v→0+,

vl2 , v→∞,
(1.12)

where l1,l2 are positive constants and f(x)∼g(x) as x→x0 means that there exists a
positive constant C≥1 such that C−1g(x)≤f(x)≤Cg(x) in a neighborhood of x0.

For the global solvability of the initial-boundary value problem (1.1), (1.5), (1.11),
we have

Theorem 1.2. Suppose that

• μ(v) is assumed to satisfy the condition (1.12) and the parameters l1>1, l2>0,
0≤β≤ b+4, and b satisfy one of the following two conditions:

(i) b≥8,

(ii) 44l1l2+54l1+32l2+16
6l1l2+7l1+4l2+2 <b<8;
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• The viscosity coefficient μ(v) satisfies

v|μ′ (v) |2≤μ3 (v); (1.13)

• The initial data (v0(x),u0(x),θ0(x),z0(x)) satisfies the compatibility conditions
and

(v0(x),u0(x),θ0(x),z0(x))∈H1 (Ω) , (1.14)

v0 (x)>0, θ0 (x)>0, 0≤ z0 (x)≤1 for x∈ [0,1]. (1.15)

Then there exists a unique solution (v(t,x),u(t,x),θ(t,x),z(t,x)) of the initial-boundary
value problem (1.1), (1.5), (1.11) with (1.2), (1.3), (1.4), (1.12), such that for any
T >0

(v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x))∈C0
(
0,T ;H1 (Ω)

)
,

(ux (t,x) ,θx (t,x))∈L2
(
0,T ;H1 (Ω)

)
,

V 2≤v(t,x)≤V 2, ∀(t,x)∈ [0,T ]×Ω,

Θ2≤θ(t,x)≤Θ2, ∀(t,x)∈ [0,T ]×Ω,

0≤ z(t,x)≤1, ∀(t,x)∈ [0,T ]×Ω.

Here T is any given positive constant and V 2,V 2,Θ2,Θ2 are some positive constants
which may depend on T and the initial data (v0,u0,θ0,z0).

Remark 1.2. Some remarks concerning Theorem 1.2 are given below:

• The condition b> 44l1l2+54l1+32l2+16
6l1l2+7l1+4l2+2 implies b≥3, which will be frequently used

in Section 3.

• The Assumptions (1.12) we imposed on the viscosity coefficient μ(v) in Theorem
1.2 implies that it is non-degenerate and tends to infinity both for v→0+ and for
v→+∞. Such an assumption excludes the case when the viscosity coefficient
is a positive constant. The problem to get a global solvability theory of the
initial-boundary value problem (1.1), (1.5), (1.11) with (1.2), (1.3), (1.4) and
more general, say for example degenerate, viscosity coefficient is under our
current research.

Now we outline the main ideas to deduce our main results Theorem 1.1 and Theorem
1.2. As is usual for the wellposedness theories of nonlinear partial differential equations,
the main difficulty in deducing the global solvability results to the above two types
of initial-boundary value problems is to control the possible growth of their solutions
induced by the nonlinearities of the equations (1.1) suitably and the key point is to
obtain the positive lower and upper bounds on the specific volume v (t,x) and the
temperature θ(t,x).

To explain our main ideas, we first recall the arguments used in [35] to deal with
the outer pressure problem (1.1), (1.5), (1.6) with (1.2), (1.3), (1.4), (1.7) for the case
of a=0 and in [8] to treat the initial-boundary value problem (1.1), (1.5), (1.11) with
(1.2), (1.3), (1.4) and constant viscosity. In both cases, since the viscosity coefficient μ
is a positive constant, the following useful explicit representation formula for the specific
volume v(t,x)

v (t,x)=
1

B (t,x)Y (t,x)D(t,x)

(
v0+

R

μ

∫ t

0

θ(τ,x)B (τ,x)Y (τ,x)D(τ,x)dτ

)
(1.16)
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is derived which is motivated by an argument developed by Kazhikhov and Shelukhin
to study the wellposedness problem of an one-dimensional viscous and heat conducting
ideal polytropic gas motion (cf. [23]). Here

B (t,x) :=exp

[
1

μ

∫ x

0

(u0 (ξ)−u(t,ξ))dξ

]
, Y (t,x) :=exp

(
1

μ
f (x)t

)
, (1.17)

f(x) :=pe+
1

2
Gx(1−x), D(t,x) :=exp

(
− α

3μ

∫ t

0

θ(τ,x)
4
dτ

)
. (1.18)

In fact, based on the above explicit representation formula for v(t,x) and the basic
energy type estimates obtained in Lemma 2.2 and Lemma 3.2, Umehara and Tani [35]
and Ducomet [8] can derive the desired positive lower and upper bounds on v(t,x) first.
With such an estimate on v(t,x) in hand, they can derive the positive lower bound on
θ(t,x) as in [2–4, 22], while the upper bound on θ(t,x) can obtained by employing the
argument used in [22].

But for the outer pressure problem (1.1), (1.5, (1.6) with (1.2), (1.3), (1.4), (1.7) for
the case of a>0 considered in this paper, since the viscosity coefficient coefficient μ(v)
is degenerate, one cannot hope to derive an explicit representation formula for v(t,x)
similar to (1.17) which holds only for the case of a=0, one cannot hope to deduce the
positive lower and upper bounds on v(t,x). To overcome such a difficulty, our main idea
is to estimate v (t,x) and θ(t,x) simultaneously and the key points in our analysis can
be outlined as in the following:

(i) Motivated by [22,28], our first step is to deduce the lower bound of the specific
volume v (t,x) based on the identity (2.10) for the auxiliary function g (v (t,x))=∫ v

1
μ(z)/zdz. It is worth to pointing out that the boundary condition (1.6) plays

an essential role in deducing the identity (2.10);

(ii) The second step is to control the lower bound of the absolute temperature in
terms of the upper bound on v(t,x), cf. the estimate (2.34) obtained in Lemma
2.6;

(iii) With the results obtained in the above two steps, we can then deduce an esti-

mate on
∫ 1

0
v2
x

v2(1+a) dx in terms of the upper bound on v (t,x) which is motivated
by an observation of Kanel’ for a viscous isentropic gas motion [21], cf. the
estimate obtained in Lemma 2.7, from which one can derive an upper bound
on v(t,x) provided that the parameters a and b involved satisfy certain condi-
tions stated in Theorem 1.1. Having obtained the upper bound on v(t,x), we
can then combine the estimate obtained in the second step to obtain the lower
bound of θ(t,x);

(iv) Having obtained the above bounds, the only thing left is to get the desired
upper bound on θ(t,x). The argument here to deduce such a bound is similar
to those used in [22,31].

For the initial-boundary value problem (1.1), (1.5), (1.11) with (1.2), (1.3), (1.4),
(1.12), in addition to fact that one cannot hope to deduce the desired positive lower and
upper bounds on v(t,x) via deriving an explicit representation formula similar to the
formula (1.17) for v(t,x) as in [8] for the case of constant viscosity, the story is a little
bitter different. In fact since the outer pressure boundary condition (1.6) imposed on

the stress σ=−p(v,θ)+ μ(v)ux

v is now replaced by the homogeneous Dirichlet boundary
condition (1.11) imposed on the velocity u(t,x), the identity (2.10) for the auxiliary
function g (v (t,x))=

∫ v

1
μ(z)/zdz, which holds for the initial-boundary value problem
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(1.1), (1.5), (1.6) with (1.2), (1.3), (1.4), (1.7), does not hold any longer. Thus one
cannot hope to use such an argument to yield the desired positive lower bound on
v(t,x). To overcome such a difficulty, we adopt Kanel’s argument (cf. [21]) to achieve
our goal in Section 3. The strategy to prove Theorem 1.2 can be outlined as follows:

(i) Our first observation is that from the structure of the equations (1.1), (1.2),
(1.3), (1.4), (1.12) under our consideration, we can derive the positive lower
bound of θ(t,x) provided that the viscosity coefficient μ(v) is assumed to satisfy
the condition (1.12) with the corresponding parameters l1 and l2 satisfying l1≥
1,l2≥0. It is worth to pointing out that the assumption on the non-degeneracy
of the viscosity coefficient μ(v) at both v→0+ and v→+∞ plays an important
role in our analysis;

(ii) Secondly, we apply Kanel’s method, cf. [21], to yield an estimate on the positive
lower bound and the upper bound of v (t,x) in terms of ‖θ8−b‖∞, cf. the
estimates obtained in Lemma 3.6;

(iii) Finally, we use the trick in [33] to bound θ(t,x) as in Lemma 3.7. Then we
can deduce the desired lower bound of v (t,x) and upper bounds of v (t,x) and
θ(t,x) if the involved parameters l1,l2,b,β satisfy the given conditions given in
Theorem 1.2.

Before concluding this section, we now review some related results briefly as follows:

• Firstly for the compressible viscous and heat-conducting model in one dimension
space, the global existence and /or large time behavior of smooth solutions have
been established by many authors:

– For polytropic ideal gas with positive constant transport coefficients, see
Antontsev, Kazhikhov and Monakhov [1], Kazhikhov and Shelukhin [23],
Jiang [18–20], Li and Liang [26] and the references cited therein;

– For polytropic ideal gas but with density and/or temperature dependent
viscosity and density and temperature dependent heat conductivity, see
Chen, Zhao and Zou [3], Liu, Yang, Zhao and Zou [27], Tan, Yang, Zhao
and Zou [33], Wang and Zhao [37] and the references cited therein;

– For polytropic ideal gas but with constant viscosity and density and/or
temperature dependent heat conductivity, see Jenssen and Karper [17],
Pan and Zhang [30] and the references cited therein;

– For general gas with density-dependent viscosity and density and temper-
ature dependent heat conductivity, see Dafemos and Hsiao [4], Kawhohl
[22], Luo [28] and the references cited therein.

• Secondly, there are some recent results on heat-conducting radiative viscous gas,
cf. [5, 11–16, 35, 36] and the references cited therein. Among them, Ducomet
[10], Ducomet and Zlotnik [15, 16] studied a one-dimensional gaseous model
similar to this paper. Among these papers [10, 15, 16], they adopted as self-
gravitation, a special form independent of the time variable explicitly in the
Lagrangian mass coordinate, not the exact form. For the outer pressure problem
(1.1), (1.5), (1.6) with (1.2), (1.3), (1.4), (1.7), Umehara and Tani [35] proved
the global solvability of smooth solutions when the coefficient of viscosity is a
positive constant, i.e. the function (1.7) with a=0. Later on, they improved
their results in [36]. Moreover, Qin [31] further improved their results. On the
other hand, Ducomet [8] proved the global existence and exponential decay in
H1 of solutions to the initial-boundary value problem (1.1), (1.5), (1.11) with
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(1.2), (1.3), (1.4) and constant viscosity coefficient.

The rest of the paper is organized as follows. The proofs of Theorem 1.1 and
Theorem 1.2 will be given in Sections 2 and 3, respectively.

Notations: Throughout this paper, C>1 is used to denote a generic positive con-
stant which may dependent on inf

x∈Ω
v0 (x), inf

x∈Ω
θ0 (x), T and ‖(v0,u0,θ0,z0)‖H1(Ω).

Here T >0 is some given constant. Note that these constants may vary from line
to line. C (·, ·) stand for some generic constants depending only on the quantities
listed in the parenthesis. ε stand for some small positive constants. For function
spaces, Lq (Ω)(1≤ q≤∞) denotes the usual Lebesgue space on Ω with norm ‖·‖Lq(Ω),
while Hq (Ω) denotes the usual Sobolev space in the L2 sense with norm ‖·‖Hq(Ω). For
simplicity, we use ‖·‖∞ to denote the norm in L∞ ([0,T ]×Ω). For two functions f (x)
and g (x), f (x)∼g (x) as x→a means that there exists a positive constant C>0 such
that C−1f (x)≤g (x)≤Cf (x) in the neighborhood of a.

2. Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1 based on the continuation

argument. Such an argument is a combination of the local existence result with certain
energy estimates on the local solutions constructed.

Firstly, under the assumptions given in Theorem 1.1, we can get the following local
existence result.

Lemma 2.1 (Local existence). Under the assumptions listed in Theorem 1.1 or
Theorem 1.2, there exists a sufficiently small positive constant t1, which depends on
‖(v0,u0,θ0,z0)‖H1(Ω), inf

x∈Ω
v0 (x) and inf

x∈Ω
θ0 (x), such that the initial-boundary value

problem (1.1), (1.5), (1.6) (or (1.1), (1.5), (1.11)) admits a unique smooth solution
(v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x)) defined on [0,t1]×Ω.

Moreover, (v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x)) satisfies

(v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x))∈C0
(
0,T ;H1 (Ω)

)
,

(ux (t,x) ,θx (t,x))∈L2
(
0,T ;H1 (Ω)

)
,

1

2
inf
x∈Ω

v0 (x)≤v (t,x)≤2sup
x∈Ω

v0 (x) ,∀(t,x)∈ [0,t1]×Ω,

1

2
inf
x∈Ω

θ0 (x)≤θ(t,x)≤2sup
x∈Ω

θ0 (x) ,∀(t,x)∈ [0,t1]×Ω,

0≤ z (t,x)≤1,∀(t,x)∈ [0,t1]×Ω

and

sup
x∈Ω

{
‖(v,u,θ,z)(t)‖H1(Ω)

}
≤2‖(v0,u0,θ0,z0)‖H1(Ω).

Lemma 2.1 can be obtained by using a similar approach as in [23] for the one-
dimensional case or [34] for the three dimensional case. Hence we omit the details
for brevity.

Suppose that the local solution (v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x)) constructed in Lemma
2.1 has been extended to t=T ≥ t1 and satisfies the a priori assumption

(H1) V ′
1≤v (t,x)≤V

′
1, Θ

′
1≤θ(t,x)≤Θ

′
1, ∀(t,x)∈ [0,T ]×Ω.

Here V ′
1,V

′
1,Θ

′
1 and Θ

′
1 are some positive constants. To extend such a solution

step by step to a global one, we only need to deduce certain a priori estimates of
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(v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x)), which are independent of V ′
1,V

′
1,Θ

′
1, and Θ

′
1, but may

depend on the initial data
(
v0 (x) ,u0 (x), θ0 (x) ,z0 (x)

)
and the constant T .

We now deduce certain a priori estimates on (v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x)). The
first one is concerned with the basic energy estimate whose proof can be found in [35]
which is based on the following identity
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and its consequence
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Lemma 2.2 (Basic energy estimates). Under the assumptions given in Theorem 1.1,
for any t∈ [0,T ], we have∫ 1
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The next lemma is concerned with the estimate of z(t,x). To this end, we can
deduce by repeating the method used in [2] that

Lemma 2.3. Under the assumptions stated in Theorem 1.1, for any (t,x)∈ [0,T ]×Ω,
we have

0≤ z (t,x)≤1. (2.7)

To derive bounds on the specific volume v (x,t), if we define

g (v) :=

∫ v

1

μ(ξ)

ξ
dξ, (2.8)

then we can get that
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Integrating the equation (2.9) over [0,t]× [0,x] and using the boundary condition (1.6),
one has

−g (v (t,x))+
∫ t

0

p(τ,x)dτ =
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+

∫ t

0

pedτ−
∫ t

0

∫ x

0

G
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2

)
dxdτ, (2.10)

which implies

−g (v (t,x))≤C.

That is

g (v (t,x))≥−C. (2.11)

On the other hand, it is easy to see

g (v)=

{
1−v−a

a , a>0,

lnv, a=0,
(2.12)

which together with the estimate (2.11) implies that

Lemma 2.4. Under the assumptions stated in Theorem 1.1, there exists a positive
constant V 1 depending only on T and the initial data (v0 (x) ,u0 (x) ,θ0 (x) ,z0 (x)) such
that

v (t,x)≥V 1, ∀(t,x)∈ [0,T ]×Ω. (2.13)

With Lemma 2.2 and Lemma 2.4 in hand, we immediately get∫ 1

0

θrdτ ≤C, 0≤ r≤4. (2.14)

For each t∈ [0,T ], there exists x∗ (t)∈ [0,1] such that
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0
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and therefore, for any r≥0 and (t,x)∈ [0,T ]×Ω, we have
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. (2.16)

It is easy to see that

θr≤C
(
1+θb+4

)
(2.17)

holds for 0≤ r≤ b+4. We have from the bound (2.14) that∫ 1

0
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Combining the estimates (2.4), (2.16) and (2.18), one has

Lemma 2.5. Under the assumptions listed in Theorem 1.1, for any t∈ [0,T ] and b≥0∫ t

0
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x∈Ω

{θr (τ,x)}dτ ≤C, 0≤ r≤ b+4. (2.19)

Now we turn to estimate the term
∫ t

0

∫ 1

0
u2
x

v1+a dxdτ , which will be used later. Using the
identity (2.2) and Cauchy’s inequality, one has
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Integrating the inequality (2.20) with respect to t over(0,t), we obtain∫ 1
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while Lemma 2.2 together with Lemma 2.5 tells us that∫ t

0

∫ 1

0
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∫ t

0
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∫ t

0

∫ 1

0
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∫ t

0
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∫ t
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Combining the inequalities (2.21)-(2.23), we get∫ t

0

∫ 1

0
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dxdτ ≤C+C ‖v‖a∞ . (2.24)

Now we are concerned with the lower-bound estimate on θ(t,x). For this purpose,
setting h= 1

θ , we can deduce from the equation (1.1)3 that
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where
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It is easy to see that
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Using the identity (2.26) and Lemma 2.4, one has

ht≤
1

eθ
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v

)
x

+C
(
1+vaθ3

)
. (2.28)

Multiplying the inequality (2.28) by h2p−1 and integrating the result with respect to x
over Ω, one has
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we obtain
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2

ve3θ
dx. (2.32)

Integrating the inequality (2.32) with respect to t over (0,t), one can get, by using
Hölder’s inequality and by letting p→+∞, that

‖h‖L∞(Ω)≤C+C

∫ t
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Hence, we have

Lemma 2.6. Under the assumption in Theorem 1.1, we have

1
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≤C+C‖v‖a∞, ∀(t,x)∈ [0,T ]×Ω. (2.34)

Now we turn to estimate the upper bound of v (t,x). To do so, since
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we need to estimate the term
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and
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=
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)
t
−u

( vx
v1+a

)
t

=
( uvx
v1+a

)
t
−u

( ux

v1+a

)
x
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we can get by multiplying the equation (1.1)2 by
μ(v)vx

v and by using the above identities
that(
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x
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(2.38)
Integrating the identity (2.38) with respect to t and x over (0,t)×Ω, one has

1

2

∫ 1

0
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dx≤C+

∫ 1

0
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dx︸ ︷︷ ︸
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+
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+
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Now we deal with Ij(j=1,2,3,4,5) term by term. Since the estimate (2.24) gives the
desired estimate on I2, we only need to control the other four terms. In fact for I1, we
can get by using Cauchy’s inequality and the bound (2.3) that

I1≤C (ε)

∫ 1

0

u2dx+ε

∫ 1

0

v2x
v2(1+a)

dx

≤C (ε)+ε

∫ 1

0

v2x
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dx (2.40)

holds for any ε>0.
As to I3, one can conclude from the boundary condition (1.6) that

I3=
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{
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}
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0
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0
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Now for I4, by using the identity (2.36) and Cauchy’s inequality, we can get for each
ε>0 that
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≤C

∫ t

0

∫ 1

0
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+
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)
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0

∫ 1

0
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Finally for I7, due to

I5=

∫ t

0

∫ 1

0

upxdxdτ︸ ︷︷ ︸
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+

∫ t

0

∫ 1

0

uxpdxdτ︸ ︷︷ ︸
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,

we can get from the equations (1.2), Lemma 2.4, the estimates (2.24) and (2.19), and
Cauchy’s inequality that

K1≤C

∫ t

0

∫ 1

0
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v

+
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v2
+ |u|θ3|θx|

)
dxdτ

≤ ε

∫ t

0

∫ 1

0
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∫ t

0

∫ 1

0

(
θu2

v1−a
+
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)
dxdτ

and
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∫ t

0

∫ 1

0

(
θ|ux|
v

+θ4|ux|
)
dxdτ

≤C

∫ t

0

∫ 1

0

θ2
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dxdτ+C

∫ t

0

∫ 1

0

u2
x

v1+a
dxdτ+C

∫ t

0

∫ 1

0

θ4|ux|dxdτ

≤C+C

∫ t

0

∫ 1

0

θ4|ux|dxdτ+C‖v‖a∞.

Consequently

I5≤C (1+‖v‖a∞)+ε

∫ t

0

∫ 1

0

θv2x
v3+a

dxdτ

+C

∫ t

0

∫ 1

0

(
θu2

v1−a
+

θ2x
θv1+a

+ |u|θ3|θx|+θ4|ux|
)
dxdτ. (2.43)

Combining the estimates (2.39)-(2.43) and by choosing ε small enough, we have∫ 1

0

v2x
v2(1+a)

dx+

∫ t

0

∫ 1

0

θv2x
v3+a

dxdτ

≤C+C

∫ t

0

∫ 1

0

(
θ2x

v1+aθ
+

θ3|vx||θx|
v1+a

+ |u|θ3|θx|+θ4|ux|
)
dxdτ

+C

∫ t

0

∫ 1

0

G

∣∣∣∣x− 1

2

∣∣∣∣ |vx|v1+a
dxdτ+C‖v‖a∞. (2.44)

To bound the terms on the right hand side of the estimate (2.44), noticing that the
estimate (2.4) tells us that ∫ t

0

∫ 1

0

κ(v,θ)θ2x
vθ2

dxdτ ≤C, (2.45)

we thus get from the assumption b≥8 that∫ t

0

∫ 1

0

θ2x
v1+aθ

dxdτ =

∫ t

0

∫ 1

0

κ(v,θ)θ2x
vθ2

· θ

κ(v,θ)va
dxdτ
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≤C

∥∥∥∥1θ
∥∥∥∥b−1

∞
, (2.46)

∫ t

0

∫ 1

0

θ3|vx||θx|
v1+a

dxdτ≤C

∫ t

0

∫ 1

0

v2x
v2(1+a)

dxdτ+C

∫ t

0

∫ 1

0

κ(v,θ)θ2x
vθ2

· vθ8

κ(v,θ)
dxdτ

≤C

∫ t

0

∫ 1

0

v2x
v2(1+a)

dxdτ+C

∥∥∥∥1θ
∥∥∥∥b−8

∞
, (2.47)

∫ t

0

∫ 1

0

|u|θ3|θx|dxdτ≤C

∫ t

0

∫ 1

0

κ(v,θ)θ2x
vθ2

dxdτ+C

∫ t

0

∫ 1

0

u2θ8v

κ(v,θ)
dxdτ

≤C+C

∫ t

0

∫ 1

0

u2

θb−8
dxdτ

≤C+C

∥∥∥∥1θ
∥∥∥∥b−8

∞
, (2.48)

and ∫ t

0

∫ 1

0

θ4|ux|dxdt≤C

∫ t

0

∫ 1

0

u2
x

v1+a
dxdτ+C

∫ t

0

∫ 1

0

θ8v1+adxdτ

≤C+C‖v‖a∞. (2.49)

Combining the estimates (2.44)-(2.49) and using Lemma 2.6, we arrive at∫ 1

0

v2x
v2(1+a)

dx+

∫ t

0

∫ 1

0

θv2x
v3+a

dxdτ≤C+C‖v‖a∞+C

∥∥∥∥1θ
∥∥∥∥b−1

∞
+C

∥∥∥∥1θ
∥∥∥∥b−8

∞
≤C+C‖v‖a∞+C‖v‖a(b−1)

∞ +C‖v‖a(b−8)
∞

≤C+C‖v‖a(b−1)
∞ . (2.50)

Hence, we have the following lemma:

Lemma 2.7. Under the assumptions listed in Theorem 1.1, for any t∈ [0,T ], we have∫ 1

0

v2x
v2(1+a)

dx≤C+C‖v‖a(b−1)
∞ . (2.51)

Combining the estimates (2.3), (2.35) and (2.51), we can get that

v (t,x)≤C+C‖v‖a+
1
2∞
(
1+‖v‖a(b−1)

∞
) 1

2

≤C+C‖v‖a+
1
2+

a(b−1)
2∞ . (2.52)

Having obtained the estimate (2.52), if the parameters a and b are suitably chosen such
that 0≤a< 1

b+1 and by employing the estimate (2.34), we can obtain the following result

Lemma 2.8. Under the assumptions given in Theorem 1.1, there exist positive con-
stants V 1 and Θ1 depending only on T and the initial data (v0 (x) ,u0 (x) ,θ0 (x) ,z0 (x))
such that

v (t,x)≤V 1, θ(t,x)≥Θ1 ∀(t,x)∈ [0,T ]×Ω. (2.53)
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Since up to now we have obtained the desired positive lower bound and upper bound
of v (t,x), the estimates (2.24) and (2.50) can be rewritten as∫ t

0

∫ 1

0

u2
xdxdτ ≤C (2.54)

and ∫ 1

0

v2xdx+

∫ t

0

∫ 1

0

θv2xdxdτ ≤C. (2.55)

To continue our analysis, we need to estimate
∫ t

0

∫ 1

0
u4
xdxdτ , which will be used later.

To this end, by employing the argument used in [4, 22, 25], we can get the following
lemma.

Lemma 2.9. Under the assumptions stated in Theorem 1.1, for any t∈ [0,T ], we have∫ t

0

∫ 1

0

u4
xdxdτ ≤C. (2.56)

Proof. Setting

U (t,x)=

∫ x

0

u(t,y)dy, (2.57)

under the boundary conditions (1.6), we can get by integrating the equation (1.1)2 with
respect to x over (0,x) that

Ut−
μ(v)

v
Uxx=pe−G

(
1

2
x2− 1

2
x

)
−p(x,t) ,

U (0,x)=

∫ x

0

u0 (y)dy, (2.58)

U (t,0)=0,

U (t,1)=

∫ 1

0

u(t,x)dx≤C.

Hence the standard Lp-estimates for solutions to the linear problem (2.58), cf. [25],
yields ∫ t

0

∫ 1

0

u4
xdxdτ=

∫ t

0

∫ 1

0

U4
xxdxdτ

≤C+C

∫ t

0

∫ 1

0

(
pe−G

(
1

2
x2− 1

2
x

)
−p(x,t)

)4

dxdτ

≤C+C

∫ t

0

∫ 1

0

(
θ4+θ16

)
dxdτ

≤C+C

∫ t

0

max
x∈Ω

{
θ12(τ,x)

}
dτ. (2.59)

Since b≥8, Lemma 2.5 implies that∫ t

0

max
x∈Ω

{
θ12(τ,x)

}
dτ ≤C. (2.60)
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Thus the proof of Lemma 2.9 is complete.

Finally, we derive the upper bound on θ(t,x). For this purpose, we set

X :=

∫ t

0

∫ 1

0

(
1+θb+3

)
θ2t dxdτ,

Y :=max
t

∫ 1

0

(
1+θ2b

)
θ2xdx, (2.61)

Z :=max
t

∫ 1

0

u2
xxdx.

Observe first that

θ2b+6≤C+C

∫ 1

0

θ2b+5|θx|dx

≤C+C‖θ‖b+3
L∞(Ω)

(∫ 1

0

θ4dx

) 1
2
(∫ 1

0

θ2bθ2xdx

) 1
2

≤C+C‖θ‖b+3
L∞(Ω)Y

1
2 , (2.62)

which implies

‖θ‖L∞(Ω)≤C+CY
1

2b+6 . (2.63)

Secondly, noticing that∫ 1

0

u2
xdx≤C

∫ 1

0

u2dx+C

(∫ 1

0

u2dx

) 1
2
(∫ 1

0

u2
xxdx

) 1
2

, (2.64)

from which and the estimate (2.3), we have

max
t

∫ 1

0

u2
xdx≤C+CZ

1
2 . (2.65)

Moreover, by using the inequality

u2
x (t,x)≤

∫ 1

0

u2
x(t,x)dx+2

∫ 1

0

|ux(t,x)| |uxx(t,x)|dx, (2.66)

one has

‖ux‖L∞(Ω)≤C+CZ
3
8 . (2.67)

With the above preparations in hand, our next result is to show that X and Y can
be controlled by Z.

Lemma 2.10. Under the assumptions listed in Theorem 1.1, we have

X+Y ≤C+CZ
7
8 . (2.68)

Proof. In the same manner as in [35] and [22], if we set

K (v,θ)=

∫ θ

0

κ(v,ξ)

v
dξ, (2.69)
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then it is easy to verify that

Kt=Kvux+
κ(v,θ)θt

v
, (2.70)

Kxt=

[
κθx
v

]
t

+Kvuxx+Kvvvxux+
(κ
v

)
v
vxθt, (2.71)

|Kv(v,θ)|+ |Kvv(v,θ)|≤Cθ. (2.72)

Multiplying the equation (1.1)3 by Kt and integrating the resulting identity over (0,t)×
(0,1), we arrive at∫ t

0

∫ 1

0

(
eθθt+θpθux−

μ(v)u2
x

v

)
Ktdxdτ+

∫ t

0

∫ 1

0

κ(v,θ)

v
θxKtxdxdτ

=

∫ t

0

∫ 1

0

λφzKtdxdτ. (2.73)

Combining the results (2.70)-(2.73), we have∫ t

0

∫ 1

0

eθκ(v,θ)θ
2
t

v
dxdτ+

∫ t

0

∫ 1

0

κ(v,θ)θx
v

(
κ(v,θ)θx

v

)
t

dxdτ ≤C+

15∑
k=6

Ik, (2.74)

where the definition of Ik(6≤k≤15) will be given below.
We now turn to control Ik(k=6,7, · · · ,15) term by term. To do so, we have first

that ∫ t

0

∫ 1

0

eθκ(v,θ)θ
2
t

v
dxdτ≥C

∫ t

0

∫ 1

0

(
1+θ3

)(
1+θb

)
θ2t dxdτ

≥CX (2.75)

and ∫ t

0

∫ 1

0

κ(v,θ)θx
v

(
κ(v,θ)θx

v

)
t

dxdτ

=
1

2

∫ 1

0

(
κ(v,θ)θx

v

)2

dx− 1

2

∫ 1

0

(
κ(v,θ)θx

v

)2

(0,x)dx

≥CY −C. (2.76)

With the above two estimates in hand, Ik(k=6,7, · · · ,14) can be estimated term by term
by employing Cauchy’s inequality, Hölder’s inequality and Young’s inequality as follows

|I6|=
∣∣∣∣∫ t

0

∫ 1

0

eθθtKvuxdxdτ

∣∣∣∣
≤C

∫ t

0

∫ 1

0

(1+θ)
4 |θtux|dxdτ

≤ εX+C (ε)
(
1+Z

3
4

)
, (2.77)

|I7|=
∣∣∣∣∫ t

0

∫ 1

0

θpθuxKvuxdxdτ

∣∣∣∣
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≤C‖1+θ‖5∞
∫ t

0

‖ux‖2dτ

≤ εY +C (ε) , (2.78)

where we have used the estimate (2.54),

|I8|=
∣∣∣∣∫ t

0

∫ 1

0

μ(v)u2
x

v
Kvuxdxdτ

∣∣∣∣
≤C

∫ t

0

∫ 1

0

θu2
x|ux|dxdτ

≤C‖ux‖∞ max
t∈[0,T ]

‖ux‖2
∫ t

0

max
x∈Ω

θdτ

≤C
(
1+Z

7
8

)
, (2.79)

|I9|=
∣∣∣∣∫ t

0

∫ 1

0

θpθκ(v,θ)uxθt
v

dxdτ

∣∣∣∣
≤C

∫ t

0

∫ 1

0

(
1+θ3

)
θ
(
1+θb

)
|uxθt|dxdτ

≤ εX+C (ε)‖1+θ‖b+5
∞

∫ t

0

‖ux‖2dτ

≤ ε(X+Y )+C (ε) , (2.80)

|I10|=
∣∣∣∣∫ t

0

∫ 1

0

μ(v)u2
xκ(v,θ)θt
v2

dxdτ

∣∣∣∣
≤C

∫ t

0

∫ 1

0

(
1+θb

)
|θt|u2

xdxdτ

≤C (ε)+εX+C (ε)

∫ t

0

∫ 1

0

θb−3u4
xdxdτ

≤C (ε)+ε(X+Y ) , (2.81)

where we have used Lemma 2.9,

|I11|=
∣∣∣∣∫ t

0

∫ 1

0

κ(v,θ)θxKvuxx

v
dxdτ

∣∣∣∣
≤C

∫ t

0

(∫ 1

0

κθ2x
θ2

dx

) 1
2
(∫ 1

0

κθ4u2
xxdx

) 1
2

dτ

≤C+C
∥∥∥κ 1

2 θ2
∥∥∥
∞
Z

1
2

≤C+εY +CZ
3
4 , (2.82)

|I12|=
∣∣∣∣∫ t

0

∫ 1

0

λφzκ(v,θ)θt
v

dxdτ

∣∣∣∣
≤C

∫ t

0

∫ 1

0

(
1+θb

)
zφ|θt|dxdτ
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≤ εX+C (ε)
(
1+θb+β−3

)∫ t

0

∫ 1

0

φz2dxdτ

≤C (ε)+εX+CY
b+β−3
2b+6

≤C (ε)+ε(X+Y ) , (2.83)

where we have used the assumption 0≤β<b+9 given in Theorem 1.1,

|I13|=
∣∣∣∣∫ t

0

∫ 1

0

κ(v,θ)θxKvvvxux

v
dxdτ

∣∣∣∣
≤C

∫ t

0

∫ 1

0

(
1+θb+1

)
|θxvxux|dxdτ

≤C‖ux‖∞Y
1
2

(∫ t

0

max
x∈Ω

(
1+θb+2

)
‖vx‖2dτ

) 1
2

≤C+εY +C (ε)Z
3
4 , (2.84)

where we have used the inequality (2.55),

|I14|=
∣∣∣∣∫ t

0

∫ 1

0

λφzKvuxdxdτ

∣∣∣∣
≤C‖θ‖∞‖ux‖∞

∫ t

0

∫ 1

0

φzdxdτ

≤ εY +C (ε)
(
1+Z

3
4

)
. (2.85)

For I15, similarly we can get that

|I15|=
∣∣∣∣∫ t

0

∫ 1

0

κ(v,θ)θx
v

(κ
v

)
v
vxθtdxdτ

∣∣∣∣
≤C

∫ t

0

∫ 1

0

(
1+θb

)
|θxvxθt|dxdτ

≤ ε

∫ t

0

∫ 1

0

(
1+θb+3

)
θ2t dxdτ+C (ε)+C (ε)

∫ t

0

∥∥∥∥κθxv
∥∥∥∥2
L∞(Ω)

‖vx‖2dτ

≤ εX+C (ε)+C (ε)

(∫ t

0

∥∥∥∥κθxv
∥∥∥∥2dτ

) 1
2
(∫ t

0

∥∥∥∥(κθx
v

)
x

∥∥∥∥2dτ
) 1

2

. (2.86)

Here we have used the Sobolev inequality and the inequality (2.55).
Since Lemma 2.9 tells us that∫ t

0

∥∥∥∥κθxv
∥∥∥∥2dτ≤C

(
1+‖θ‖b+2

∞
)

≤C
(
1+Y

b+2
2b+6

)
(2.87)

and∫ t

0

∥∥∥∥(κθx
v

)
x

∥∥∥∥2dτ ≤C

∫ t

0

∫ 1

0

(
e2θθ

2
t +θ2p2θu

2
x+u4

x+φ2z2
)
dxdτ
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≤C

∫ t

0

∫ 1

0

[(
1+θ6

)
θ2t +

(
1+θ8

)
u2
x+u4

x+θβφz
]
dxdτ

≤C

(
1+

∥∥∥∥1θ
∥∥∥∥b−3

∞

)
X+C‖ux‖2∞

∫ t

0

(
1+max

x∈Ω
θ4
)∫ 1

0

(
1+θ4

)
dxdτ

+C+C‖θ‖β∞
∫ t

0

∫ 1

0

φzdxdτ

≤C+CX+CZ
3
4 +CY

β
2q+6 , (2.88)

we can thus deduce from the estimates (2.86)-(2.88) that

I15≤C+εX+C
(
1+Y

b+2
2b+6

) 1
2
(
1+X+Z

3
4 +Y

β
2b+6

) 1
2

≤C+εX+C
(
1+X

1
2 +Z

3
8 +Y

β
4b+12 +Y

b+2
4b+12 +X

1
2Y

b+2
4b+12 +Y

b+2
4b+12Z

3
8 +Y

b+2+β
4b+12

)
≤C (ε)+3εX+5εY +CZ

3
8 +C (ε)Z

3b+9
6b+20

≤C (ε)+3εX+5εY +εZ
7
8 . (2.89)

Here we have used the assumption 0≤β<b+9 given in Theorem 1.1 again.
Finally, combining the estimates (2.74)-(2.89) and choosing ε>0 small enough, we

can get the inequality (2.68). This completes the proof of Lemma 2.10.

Our last result in this section is to show that Z can be bounded by X and Y .

Lemma 2.11. Under the assumptions listed in Theorem 1.1, we have

Z≤C+CX+CY +CZ
3
4 . (2.90)

Proof. Differentiating the equation (1.1)2 with respect to t, multiplying it by
ut, then integrating the resulting equation with respect to x over Ω and by using the
boundary conditions (1.6), we have

1

2

d

dt
‖ut‖2+

∫ 1

0

u2
tx

v1+a
dx=

∫ 1

0

(
pt+

(1+a)u2
xuxt

v2+a

)
dx. (2.91)

Since

pt=

(
R

v
+

4

3
αθ3

)
θt−

Rθux

v2
,

we can deduce from the identity (2.91) that

‖ut(t)‖2+
∫ t

0

‖uxt(τ)‖dτ≤C

(
1+

∫ t

0

∫ 1

0

(
p2t +u4

x

)
dxdτ

)
≤C+C

∫ t

0

∫ 1

0

(
1+θ6

)
θ2t dxdτ+C

∫ t

0

∫ 1

0

θ2u2
xdxdτ

≤C+CX+CY
2

2b+6

≤C+CX+CY. (2.92)

Moreover, we can conclude from the equation (1.1)2 that

uxx=v1+a

[
ut+px+G

(
x− 1

2

)
+

(1+a)uxvx
v2+a

]
. (2.93)
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Combining the inequality (2.92) and the identity (2.93), one has

‖uxx(t)‖2≤C

(
1+

∫ 1

0

(
u2
t +p2x+u2

xv
2
x

)
(t,x)dx

)
≤C

(
‖ut(t)‖2+

∫ 1

0

(
1+θ6(t,x)

)
θ2x(t,x)dx

+

∫ 1

0

(
θ2(t,x)+u2

x(t,x)
)
v2x(t,x)dx

)
≤C+CX+CY +C‖θ‖2∞‖vx(t)‖2+C‖ux‖2∞
≤C+CX+CY +CZ

3
4 , (2.94)

which gives the inequality (2.90) immediately. This completes the proof of Lemma 2.11.

Combining Lemma 2.10 with Lemma 2.11, we can deduce that Y ≤C. Thus we can
get the desired upper bounds on θ(t,x) from the estimate (2.63). Since we have obtained
the desired positive lower and upper bounds on v (t,x) and θ(t,x), then Theorem 1.1 can
be proved by employing the standard continuation argument and we omit the details
for brevity.

3. Proof of Theorem 1.2
This section is devoted to the proof of Theorem 1.2. Similar to the proof of Theorem

1.1, the argument here is also a combination of the local existence result with certain
energy estimates on the local solutions constructed.

Suppose that the local solution (v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x)) constructed in Lemma
2.1 has been extended to t=T ≥ t1 and satisfies the a priori assumption

(H2) V ′
2≤v (t,x)≤V

′
2, Θ

′
2≤θ(t,x)≤Θ

′
2, ∀(t,x)∈ [0,T ]×Ω.

Here V ′
2,V

′
2,Θ

′
2 and Θ

′
2 are some positive constants. Similar to that of Section 2,

we only need to deduce certain a priori estimates on (v (t,x) ,u(t,x) ,θ(t,x) ,z (t,x))

which are independent of V ′
2,V

′
2,Θ

′
2, and Θ

′
2 but may depend on the initial data

(v0 (x) ,u0 (x) ,θ0 (x) ,z0 (x)) and the constant T .
Firstly, similar to that of Lemma 2.2 and Lemma 2.3, we have

Lemma 3.1 (Basic energy estimates). Under the assumptions given in Lemma 2.1,
for any t∈ [0,T ], we have∫ 1

0

[
1

2
u2+Cvθ+αvθ4+λz+

1

2
G(1−x)xv

]
dx≤C, (3.1)

∫ 1

0

{Cv (θ−1− logθ)+R(v−1− logv)}dx

+

∫ t

0

∫ 1

0

(
μ(v)u2

x

vθ
+

κ(v,θ)θ2x
vθ2

+
λφz

θ

)
dxdτ ≤C, (3.2)

∫ 1

0

zdx+

∫ t

0

∫ 1

0

φzdxdτ =

∫ 1

0

z0dx, (3.3)
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0

1

2
z2dx+

∫ t

0

∫ 1

0

(
d

v2
z2x+φz2

)
dxdτ =

∫ 1

0

1

2
z20dx. (3.4)

0≤ z (t,x)≤1. (3.5)

Based on Lemma 3.1, especially the estimates (3.1) and (3.2), we can get the fol-
lowing lemma, which will be frequently used later on.

Lemma 3.2. Under the assumption in Lemma 3.1, for any t∈ [0,T ], we have∫ t

0

max
x∈Ω

θr (τ,x)dτ ≤C, 0≤ r≤ b+1. (3.6)

Proof. Using the same method in Lemma 2.5, for any r≥0 and (t,x)∈ [0,T ]×Ω,
we have

θ(t,x)
r
2 ≤C+C

(∫ 1

0

vθr

1+vθb
dx

) 1
2
(∫ 1

0

(
μ(v)u2

x

vθ
+

κ(v,θ)θ2x
vθ2

+
λφz

θ

)
dx

) 1
2

. (3.7)

It is easy to see that

θr≤C
(
1+θb+1

)
, (3.8)

holds for 0≤ r≤ b+1, thus∫ 1

0

vθr

1+vθb
dx≤C

∫ 1

0

(v+θ)dx≤C. (3.9)

Combining the estimates (3.2), (3.7) and (3.9), we can complete the proof of this lemma.

Remark 3.1. One can find the difference between Lemma 3.2 and Lemma 2.5. The
main reason to cause such a difference is that we have already obtained the positive lower
bound of v (t,x) before proving Lemma 2.5, while we have not obtained the positive lower
bound of v (t,x) here, and consequently we can only make use of the estimate (3.1) to
prove Lemma 3.2.

Now we turn to derive a positive lower bound estimate on the temperature θ(t,x) in
the following lemma, and it is worth to pointing out that the nondegerate assumption
(1.12) plays an essential role in our analysis.

Lemma 3.3. Under the assumptions stated in Lemma 3.1, there exists a positive
constant Θ2 depending only on T and the initial data (v0 (x) ,u0 (x) ,θ0 (x) ,z0 (x)) such
that

θ(t,x)≥Θ2, ∀(t,x)∈ [0,T ]×Ω. (3.10)

Proof. Setting h= 1
θ , similar to the proof of Lemma 2.6, one can deduce that

ht≤
1

eθ

(
κ(v,θ)hx

v

)
x

+C

(
1

vμ(v)
+

θ3

μ(v)

)
. (3.11)
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Multiplying the inequality (3.11) by h2p−1 and integrating the result with respect to x
over Ω, one has

‖h‖2p−1
L2p (‖h‖L2p)t≤C

∫ 1

0

(
1

vμ(v)
+

θ3

μ(v)

)
h2p−1dx+C

∫ 1

0

h2p−1

eθ

(
κ(v,θ)hx

v

)
x

dx.

(3.12)
Using the identity (2.30) and the inequality (2.31), we arrive at

‖h‖2p−1
L2p (‖h‖L2p)t≤C

∫ 1

0

(
1

vμ(v)
+

θ3

μ(v)

)
h2p−1dx+

1

2p−1

∫ 1

0

κ2 (v,θ)h2p ((eθ)x)
2

ve3θ
dx.

(3.13)
Integrating the estimate (3.13) with respect to t over (0,t), one can get, by using Hölder’s
inequality and by letting p→+∞, that

‖h‖L∞(Ω)≤C+C

∫ t

0

(∥∥∥∥ 1

vμ(v)

∥∥∥∥
L∞(Ω)

+

∥∥∥∥ θ3

μ(v)

∥∥∥∥
L∞(Ω)

)
dτ

≤C+C

∥∥∥∥ 1

vμ(v)

∥∥∥∥
∞
+C

∥∥∥∥ 1

μ(v)

∥∥∥∥
∞

∫ t

0

max
x∈Ω

{
θ3 (τ,x)

}
dτ

≤C+C

∥∥∥∥ 1

vμ(v)

∥∥∥∥
∞
+C

∥∥∥∥ 1

μ(v)

∥∥∥∥
∞
, (3.14)

where we have used Lemma 3.2 and the fact b≥3.
Since l1>1,l2>0, we can deduce from the condition (1.12) that∥∥∥∥ 1

vμ(v)

∥∥∥∥
∞
+

∥∥∥∥ 1

μ(v)

∥∥∥∥
∞
≤C, (3.15)

and the estimate (3.10) follows immediately from the estimates (3.14) and (3.15). This
completes the proof of Lemma 3.3.

Now we turn to deduce the desired positive lower and upper bound on v (t,x). To
this end, we first derive the following lemma, which will be used later.

Lemma 3.4. Under the assumptions listed in Lemma 3.1, for any t∈ [0,T ], we have∫ 1

0

[
1

2
u2+

1

2
G(1−x)xv

]
dx+

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ ≤C. (3.16)

Proof. Multiplying the equation (1.1)2 by u and integrating the result with respect
to t and x over (0,t)×(0,1), we arrive at∫ 1

0

[
1

2
u2+

1

2
G(1−x)xv

]
dx+

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ

≤C+

∫ t

0

∫ 1

0

(
Rθux

v
+

α

3
θ4ux

)
dxdτ. (3.17)

Since Lemma 3.2 together with the fact b≥3 tells us that∫ t

0

∫ 1

0

Rθux

v
dxdτ≤ ε

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

θ2

v2
· v

μ(v)
dxdτ
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≤ ε

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ+C (ε)

∥∥∥∥ 1

vμ(v)

∥∥∥∥
∞

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ+C (ε) (3.18)

and ∫ t

0

∫ 1

0

α

3
θ4uxdxdτ≤ ε

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

θ8 · v

μ(v)
dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ+C (ε)

∥∥∥∥ 1

μ(v)

∥∥∥∥
∞

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ+C (ε) , (3.19)

we can get the inequality (3.16) immediately by putting the estimates (3.17), (3.18) and
(3.19) together and by choosing ε>0 small enough. This completes the proof of Lemma
3.4.

Now we try to exploit Kanel’s argument (see [21]) to deduce the desired positive
lower bound and the upper bound on v (t,x) in terms of ‖θ8−b‖∞. To this end, set

Φ(v)=

∫ v

1

√
φ(z)

z
μ(z)dz, where φ(x)=x− lnx−1. (3.20)

On one hand, it is easy to see that there exist positive constants C1 and C2 such that

|Φ(v) |≥C1

(
v−l1 +vl2+

1
2

)
−C2. (3.21)

On the other hand,

Φ(v)≤C+

∫ 1

0

∣∣∣Φ(v (y,t))y

∣∣∣dy
≤C+

∫ 1

0

∣∣∣∣∣
√
φ(v)

v
μ(v)vx

∣∣∣∣∣dx
≤C+C

(∫ 1

0

φ(v)dx

) 1
2
(∫ 1

0

μ2 (v)v2x
v2

dx

) 1
2

≤C+C

(∫ 1

0

μ2 (v)v2x
v2

dx

) 1
2

. (3.22)

Thus to yield an estimate on the positive lower and upper bounds on v(t,x), we need to

estimate the term
∫ 1

0
μ2(v)v2

x

v2 dx suitably first. For this purpose, multiplying the equation

(1.1)2 by μ(v)vx
v , one has(

μ2 (v)v2x
2v2

)
t

=

(
μ(v)uvx

v

)
t

−
(
u
μ(v)ux

v

)
x

+
μ(v)u2

x

v

+
μ(v)vxpx

v
+G

(
x− 1

2

)
μ(v)vx

v
. (3.23)



1448 1D VISCOUS RADIATIVE AND REACTIVE GAS

Integrating the identity (3.23) over (0,t)×Ω, one can deduce that

1

2

∫ 1

0

μ2 (v)v2x
v2

dx≤C+

∫ 1

0

μ(v)uvx
v

dx︸ ︷︷ ︸
I16

+

∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ︸ ︷︷ ︸

I17

+

∫ t

0

∫ 1

0

μ(v)vxpx
v

dxdτ︸ ︷︷ ︸
I18

+

∫ t

0

∫ 1

0

G

(
x− 1

2

)
μ(v)vx

v
dxdτ. (3.24)

Now we control Ii(i=16,17,18) suitably. To this end, since Lemma 3.4 gives a nice
estimate on I17, we only need to deal with the terms I16 and I18. Firstly, for I16, we
can get by using Cauchy’s inequality that

I16≤ ε

∫ 1

0

μ2 (v)v2x
v2

dx+C (ε)

∫ 1

0

u2dx

≤ ε

∫ 1

0

μ2 (v)v2x
v2

dx+C (ε) . (3.25)

As for I18, by making use of the identity (2.36), we have

I18=

∫ t

0

∫ 1

0

Rμ(v)vxθx
v2

dxdτ︸ ︷︷ ︸
K3

+

∫ t

0

∫ 1

0

4αμ(v)vxθ
3θx

3v
dxdτ︸ ︷︷ ︸

K4

−
∫ t

0

∫ 1

0

Rμ(v)v2xθ

v3
dxdτ,

while K3 and K4 can be estimated by exploiting Cauchy’s inequality as follows

K3≤C

∫ t

0

∫ 1

0

μ2 (v)v2x
v2

dxdτ+C

∫ t

0

∫ 1

0

κθ2x
vθ2

· θ
2

vκ
dxdτ

≤C

∫ t

0

∫ 1

0

μ2 (v)v2x
v2

dxdτ+C

∥∥∥∥ θ2vκ
∥∥∥∥
∞

≤C

∫ t

0

∫ 1

0

μ2 (v)v2x
v2

dxdτ+C

∥∥∥∥1v
∥∥∥∥2
∞

and

K4≤C

∫ t

0

∫ 1

0

μ2 (v)v2x
v2

dxdτ+C

∫ t

0

∫ 1

0

κθ2x
vθ2

· vθ
8

κ
dxdτ

≤C

∫ t

0

∫ 1

0

μ2 (v)v2x
v2

dxdτ+C

∥∥∥∥vθ8κ
∥∥∥∥
∞

≤C

∫ t

0

∫ 1

0

μ2 (v)v2x
v2

dxdτ+C
∥∥θ8−b

∥∥
∞ .

Consequently

I18≤C

∫ t

0

∫ 1

0

μ2 (v)v2x
v2

dxdτ+C

(∥∥θ8−b
∥∥
∞+

∥∥∥∥1v
∥∥∥∥2
∞

)

−
∫ t

0

∫ 1

0

Rμ(v)v2xθ

v3
dxdτ. (3.26)
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Combining the estimates (3.24)-(3.26), the estimate (3.16) obtained in Lemma 3.4
and by using Gronwall’s inequality, we have the following lemma:

Lemma 3.5. Under the assumptions given in Lemma 3.1, for any t∈ [0,T ], we have∫ 1

0

μ2 (v)v2x
v2

dx+

∫ t

0

∫ 1

0

μ(v)θv2x
v3

dxdτ ≤C+C

∥∥∥∥1v
∥∥∥∥2
∞
+C

∥∥θ8−b
∥∥
∞ . (3.27)

Having obtained Lemma 3.5, we can deduce from the inequalities (3.21) and (3.22)
and Lemma 3.5 that

v−l1 +vl2+
1
2 ≤C+C

∥∥∥∥1v
∥∥∥∥
∞
+C

∥∥θ8−b
∥∥ 1

2

∞ . (3.28)

Since l1>1, with the help of the Young inequality, we can obtain that

v−l1 +vl2+
1
2 ≤C+C

∥∥θ8−b
∥∥ 1

2

∞ . (3.29)

Thus we have the following lemma:

Lemma 3.6. Under the assumptions listed in Lemma 3.1, for any t∈ [0,T ], we have

1

v
≤C+C

∥∥θ8−b
∥∥ 1

2l1

∞ , (3.30)

v≤C+C
∥∥θ8−b

∥∥ 1
2l2+1

∞ . (3.31)

Now we turn to deduce the upper bound on θ(t,x). To this end, we first give the
following lemma.

Lemma 3.7. Under the assumption in Lemma 3.1, for any t∈ [0,T ], we have

‖θ‖L∞(Ω)≤C+C

∫ t

0

(∥∥∥∥μ(v)u2
x

v2θ3

∥∥∥∥
L∞(Ω)

+
∥∥∥ ux

v2θ2

∥∥∥
L∞(Ω)

+

∥∥∥∥uxθ

v

∥∥∥∥
L∞(Ω)

+

∥∥∥∥ θβ

vθ3

∥∥∥∥
L∞(Ω)

)
dτ.

(3.32)

Proof. Firstly, the equation (1.1)3 can be rewritten as(
Cv+4αvθ3

)
θt+

(
Rθ

v
+

4

3
αθ4

)
ux=

μ(v)u2
x

v
+

(
κ(v,θ)θx

v

)
x

+λφz. (3.33)

Multiplying the above identity by 2pθ2p−1, we arrive at(
θ2p

)
t
+

2p(2p−1)θ2p−2κ(v,θ)θ2x
v (Cv+4αvθ3)

=

{
2pθ2p−1κ(v,θ)θx
v (Cv+4αvθ3)

}
x

+
2pλθ2p−1φz

Cv+4αvθ3
+

2pθ2p−1μ(v)u2
x

v (Cv+4αvθ3)
− 2pθ2p−1ux

Cv+4αvθ3

(
Rθ

v
+

4

3
αθ4

)
+
8pαθ2p−1κ(v,θ)θx

(
vxθ

3+3vθ2θx
)

v (Cv+4αvθ3)
2 . (3.34)

Noticing that

8pαθ2p−1κθx
(
vxθ

3+3vθ2θx
)

v (Cv+4αvθ3)
2
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=

√
2p(2p−1)θp−1θx

√
κ√

v (Cv+4αvθ3)
· 8pαθp

√
κ
(
vxθ

3+3vθ2θx
)

√
2p(2p−1)

√
v (Cv+4αvθ3)

3

≤ 1

2

2p(2p−1)θ2p−2κθ2x
v (Cv+4αvθ3)

+
64p2α2θ2pκ

(
vxθ

3+3vθ2θx
)2

(2p2−p)v (Cv+4αvθ3)
3 , (3.35)

we can deduce from the identity (3.34) and the above inequality that

(
θ2p

)
t
+

2p(2p−1)θ2p−2κ(v,θ)θ2x
2v (Cv+4αvθ3)

≤
{
2pθ2p−1κ(v,θ)θx
v (Cv+4αvθ3)

}
x

+
64p2α2θ2p−1κθ

(
vxθ

3+3vθ2θx
)2

(2p2−p)v (Cv+4αvθ3)
3

+
2pθ2p−1μ(v)u2

x

v (Cv+4αvθ3)
− 2pθ2p−1ux

Cv+4αvθ3

(
Rθ

v
+

4

3
αθ4

)
+
2pλθ2p−1φz

Cv+4αvθ3
. (3.36)

Integrating the above inequality with respect to x over Ω and using Hölder’s inequality,
we obtain

(‖θ‖L2p)t≤
2pC

2p2−p

∥∥∥∥∥κθ
(
vxθ

3+3vθ2θx
)2

v (Cv+4αvθ3)
3

∥∥∥∥∥
L2p

+C

∥∥∥∥ μ(v)u2
x

v (Cv+4αvθ3)

∥∥∥∥
L2p

+C

∥∥∥∥ |ux|
Cv+4αvθ3

(
θ

v
+θ4

)∥∥∥∥
L2p

+C

∥∥∥∥ θβ

Cv+4αvθ3

∥∥∥∥
L2p

. (3.37)

Integrating the above inequality with respect to t over (0,t) and letting p→+∞, we
can obtain the inequality (3.32). This completes the proof of Lemma 3.7.

From Lemma 3.7, if 0≤β≤ b+4, one can deduce that

‖θ‖L∞(Ω)≤C+C

∥∥∥∥μ(v)v2θ3

∥∥∥∥
∞

∫ t

0

‖ux(τ)‖2L∞(Ω)dτ+C

∫ t

0

‖ux(τ)‖2L∞(Ω)dτ

+C

∥∥∥∥ 1

v4θ4

∥∥∥∥
∞
+C

∥∥∥∥1v
∥∥∥∥2
∞

≤C+C

(
1+

∥∥∥∥μ(v)v2

∥∥∥∥
∞

)∫ t

0

‖ux(τ)‖2L∞(Ω)dτ+C

∥∥∥∥1v
∥∥∥∥4
∞
. (3.38)

Thus to deduce the desired upper bound on θ(t,x), we had to deal with the term∫ t

0
‖ux(τ)‖2L∞(Ω)dτ . For this purpose, noticing that we can get from Lemma 3.4 that∫ t

0

‖ux(τ)‖2L∞(Ω)dτ≤
∫ t

0

‖ux(τ)‖‖uxx(τ)‖dτ

≤
(∫ t

0

‖ux(τ)‖2dτ
) 1

2
(∫ t

0

‖uxx(τ)‖2dτ
) 1

2

≤
∥∥∥∥ v

μ(v)

∥∥∥∥
∞

(∫ t

0

∫ 1

0

μ(v)u2
x

v
dxdτ

) 1
2
(∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ

) 1
2
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≤C

∥∥∥∥ v

μ(v)

∥∥∥∥
∞

(∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ

) 1
2

, (3.39)

thus we need to estimate the term
∫ t

0

∫ 1

0
μ(v)u2

xx

v dxdτ . To this end, differentiating the
equation (1.1)2 with respect to x, multiplying the resulting identity by ux, we have

∂t

(
u2
x

2

)
+

(
μ(v)ux

v

)
x

uxx=uxxpx+(uxut)x+G

(
x− 1

2

)
uxx. (3.40)

Integrating the above identity with respect to t and x over (0,t)×(0,1) and using the
boundary condition (1.11), we arrive at

‖ux(t)‖2+
∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ

≤C+C

∫ t

0

∫ 1

0

|μ′ (v)vxuxuxx|
v

dxdτ︸ ︷︷ ︸
I19

+C

∫ t

0

∫ 1

0

|θxuxx|
v

dxdτ︸ ︷︷ ︸
I20

+C

∫ t

0

∫ 1

0

μ(v) |vxuxuxx|
v2

dxdτ︸ ︷︷ ︸
I21

+C

∫ t

0

∫ 1

0

θ|vxuxx|
v2

dxdτ︸ ︷︷ ︸
I22

+C

∫ t

0

∫ 1

0

θ3|θxuxx|dxdτ︸ ︷︷ ︸
I23

+C

∫ t

0

∫ 1

0

∣∣∣∣x− 1

2

∣∣∣∣ |uxx|dxdτ︸ ︷︷ ︸
I24

, (3.41)

and the terms Ij(j=19, · · · ,24) can be estimated as in the following

I19≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

|μ′ (v) |2u2
xv

2
x

μ(v)v
dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∥∥∥∥ |μ′ (v) |2u2
xv

μ3 (v)

∥∥∥∥
L∞(Ω)

∫ 1

0

μ2 (v)v2x
v2

dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ

+C (ε)

∥∥∥∥ |μ′ (v) |2v
μ3 (v)

∥∥∥∥
∞

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+
∥∥θ8−b

∥∥
∞

)∥∥∥∥ v

μ(v)

∥∥∥∥
∞

(∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ

) 1
2

≤2ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥ |μ′ (v) |2v
μ3 (v)

∥∥∥∥2
∞

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+
∥∥θ8−b

∥∥
∞

)2∥∥∥∥ v

μ(v)

∥∥∥∥2
∞
,

(3.42)

where we have used the inequality (3.39) and Lemma 3.5,

I20≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

κθ2x
vθ2

· θ2

μ(v)κ
dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥ 1

μ(v)vθb−2

∥∥∥∥
∞
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≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε) , (3.43)

I21≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

μ(v)u2
xv

2
x

v3
dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∥∥∥∥ u2
x

μ(v)v

∥∥∥∥
L∞(Ω)

∫ 1

0

μ2 (v)v2x
v2

dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ

+C (ε)

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+
∥∥θ8−b

∥∥
∞

)∥∥∥∥ v

μ(v)

∥∥∥∥
∞

(∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ

) 1
2

≤2ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+
∥∥θ8−b

∥∥
∞

)2

, (3.44)

where we have used the estimates (3.15) and (3.39) and Lemma 3.5,

I22≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

θ2v2x
μ(v)v3

dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∥∥∥∥ θ2

μ3 (v)v

∥∥∥∥
L∞x

∫ 1

0

μ2 (v)v2x
v2

dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥ 1

μ3 (v)v

∥∥∥∥
∞

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+C

∥∥θ8−b
∥∥
∞

)

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+C

∥∥θ8−b
∥∥
∞

)
. (3.45)

Here we have used the fact l1>1,l2>0 again,

I23≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

κθ2x
vθ2

· v2θ8

μ(v)κ
dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥ v2θ8

μ(v)κ

∥∥∥∥
∞

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥vθ8−b

μ(v)

∥∥∥∥
∞

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥ v

μ(v)

∥∥∥∥
∞

∥∥θ8−b
∥∥
∞ , (3.46)

where we have used the condition (1.3) and the inequality (3.2), and

I24=

∫ t

0

∫ 1

0

√
μ(v)uxx√

v
·
√
v
∣∣x− 1

2

∣∣√
μ(v)

dxdτ

≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∫ t

0

∫ 1

0

v
(
x− 1

2

)2
μ(v)

dxdτ
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≤ ε

∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ+C (ε)

∥∥∥∥ v

μ(v)

∥∥∥∥
∞
. (3.47)

Here we have used the fact that Ω :=(0,1) is a bounded domain and Cauchy’s inequality.
Combining the estimates (3.41)-(3.47), by choosing ε>0 small enough and if we

further assume that

v|μ′ (v) |2≤μ3 (v) , (3.48)

then we have the following lemma:

Lemma 3.8. Under the assumptions listed in Lemma 3.1, for any t∈ [0,T ], we have

‖ux(t)‖2+
∫ t

0

∫ 1

0

μ(v)u2
xx

v
dxdτ ≤C+C

∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+
∥∥θ8−b

∥∥
∞

)2

. (3.49)

Having obtained Lemma 3.8, one can deduce from the estimate (3.39) that∫ t

0

‖ux(τ)‖2L∞(Ω)dτ ≤C

∥∥∥∥ v

μ(v)

∥∥∥∥
∞

⎡⎣1+∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+
∥∥θ8−b

∥∥
∞

)2
⎤⎦ 1

2

≤C+C

∥∥∥∥ v

μ(v)

∥∥∥∥
∞
+C

∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

(
1+

∥∥∥∥1v
∥∥∥∥2
∞
+
∥∥θ8−b

∥∥
∞

)

≤C+C

∥∥∥∥ v

μ(v)

∥∥∥∥2
∞
+C

∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

∥∥∥∥1v
∥∥∥∥2
∞
+C

∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

∥∥θ8−b
∥∥
∞ .

(3.50)

Combining the above inequality with the estimate (3.38), we arrive at

‖θ‖L∞(Ω)≤C+

29∑
k=25

Ik (3.51)

and the definition of Ik(27≤k≤31) will be given below.
Now we estimate I25−I29 term by term. First of all, we can deduce from the

condition (1.12) that

μ(v)≤C

(
1+

∥∥∥∥1v
∥∥∥∥l1
∞
+‖v‖l2∞

)
. (3.52)

Thus one can get from Lemma 3.6 that

I25=C

(
1+

∥∥∥∥μ(v)v2

∥∥∥∥
∞

)
≤C+C

∥∥∥∥1v
∥∥∥∥2
∞

(
1+

∥∥∥∥1v
∥∥∥∥l1
∞
+‖v‖l2∞

)

≤C+C

∥∥∥∥1v
∥∥∥∥l1+2

∞
+C

∥∥∥∥1v
∥∥∥∥2
∞
‖v‖l2∞

≤C+C
∥∥θ8−b

∥∥ l1+2
2l1

∞ +C
∥∥θ8−b

∥∥ 2
2l1

+
l2

2l2+1

∞ , (3.53)
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I26=C

(
1+

∥∥∥∥μ(v)v2

∥∥∥∥
∞

)∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

≤C

(
1+

∥∥θ8−b
∥∥ l1+2

2l1

∞ +
∥∥θ8−b

∥∥ 2
2l1

+
l2

2l2+1

∞

)(
1+

∥∥θ8−b
∥∥ 2

2l2+1

∞
)

≤C+C
∥∥θ8−b

∥∥ l1+2
2l1

+ 2
2l2+1

∞ , (3.54)

I27=C

(
1+

∥∥∥∥μ(v)v2

∥∥∥∥
∞

)∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

∥∥∥∥1v
∥∥∥∥2
∞

≤C

(
1+

∥∥θ8−b
∥∥ l1+2

2l1
+ 2

2l2+1

∞

)(
1+

∥∥θ8−b
∥∥ 2

2l1

∞
)

≤C+C
∥∥θ8−b

∥∥ l1+4
2l1

+ 2
2l2+1

∞ , (3.55)

I28=C

(
1+

∥∥∥∥μ(v)v2

∥∥∥∥
∞

)∥∥∥∥ v

μ(v)

∥∥∥∥2
∞

∥∥θ8−b
∥∥
∞

≤C

(
1+

∥∥θ8−b
∥∥ l1+2

2l1
+ 2

2l2+1

∞

)∥∥θ8−b
∥∥
∞

≤C+C
∥∥θ8−b

∥∥ l1+2
2l1

+ 2
2l2+1+1

∞ , (3.56)

and

I29=C

∥∥∥∥1v
∥∥∥∥4
∞

≤C+C
∥∥θ8−b

∥∥ 2
l1

∞ . (3.57)

Combining the estimates (3.51)-(3.57), we finally arrive at

‖θ‖L∞(Ω)≤C+C
∥∥θ8−b

∥∥ l1+2
2l1

+ 2
2l2+1+1

∞ . (3.58)

With the above presentation in hand, we now turn to deduce the desired lower and
upper bounds on v (t,x) and θ(t,x). In fact, we have

Corollary 3.1. Under the conditions listed in Lemma 3.1, if we further assume that
the parameters l1, l2 and b satisfy one of the following two conditions

(i) b≥8;

(ii) 44l1l2+54l1+32l2+16
6l1l2+7l1+4l2+2 <b<8.

Then there exist positive constants V 2, V 2, Θ2 and Θ2 which depend only on the initial
data (v0(x),u0(x),θ0(x),z0(x)) and T , such that

V 2≤v (t,x)≤V 2, Θ2≤θ(t,x)≤Θ2, ∀(t,x)∈ [0,t]×Ω. (3.59)

Proof. We first consider the case b≥8. In this case, the inequalities (3.30), (3.31)
and (3.58) can be rewritten as

1

v
≤C+C

∥∥∥∥1θ
∥∥∥∥ b−8

2l1

∞
, (3.60)
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v≤C+C

∥∥∥∥1θ
∥∥∥∥ b−8

2l2+1

∞
, (3.61)

and

‖θ‖L∞(Ω)≤C+C

∥∥∥∥1θ
∥∥∥∥
(

l1+2
2l1

+ 2
2l2+1+1

)
(b−8)

∞
. (3.62)

With the above inequalities and Lemma 3.3 in hand, we can obtain the lower bound of
v (t,x) and the upper bound of v (t,x) ,θ(t,x) immediately.

For the case b<8, (3.58) can be rewritten as

‖θ‖L∞(Ω)≤C+C‖θ‖
(

l1+2
2l1

+ 2
2l2+1+1

)
(8−b)

∞ , (3.63)

since 44l1l2+54l1+32l2+16
6l1l2+7l1+4l2+2 <b<8, one has

0<

(
l1+2

2l1
+

2

2l2+1
+1

)
(8−b)<1. (3.64)

With the inequalities (3.63) and (3.64) in hand, we can deduce the upper bound of
θ(t,x) by using the Young inequality.

Having obtained the upper bound of θ(t,x), the lower bound and the upper bound
of v (t,x) can be obtained from Lemma 3.6. This completes the proof of the corollary.

With Corollary 3.9 in hand, Theorem 1.2 follows immediately from the standard
continuation argument and we omit the details for brevity.
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