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MEANFIELD GAMES AND MODEL PREDICTIVE CONTROL∗

PIERRE DEGOND† , MICHAEL HERTY‡ , AND JIAN-GUO LIU§

Abstract. Mean-Field Games are games with a continuum of players that incorporate the time-
dimension through a control-theoretic approach. Recently, simpler approaches relying on the Best-
Reply Strategy have been proposed. They assume that the agents navigate their strategies towards
their goal by taking the direction of steepest descent of their cost function (i.e. the opposite of the
utility function). In this paper, we explore the link between Mean-Field Games and the Best Reply
Strategy approach. This is done by introducing a Model Predictive Control framework, which consists
of setting the Mean-Field Game over a short time interval which recedes as time moves on. We show
that the Model Predictive Control offers a compromise between a possibly unrealistic Mean-Field Game
approach and the sub-optimal Best-Reply Strategy.
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1. Introduction
In the past years there has been a growing interest in particle or agent descriptions

for sociological and economical processes [14,36]. Among the many examples are pedes-
trian flow dynamics [13,20], swarming problems [24,34], systemic risk problems in large
scale economies [4, 26, 32, 37, 38], opinion formation models [1, 2, 42] or price formation
models [11,12]. In particular, the study of the limit for infinitely many agents has been
intensively studied in order to obtain for example qualitative results on pattern forma-
tion. Hierarchies of kinetic and continuum models are obtained using meanfield limits.
Recently, the agent dynamics have been extended to include control-theoretic aspects.
In order to pass to the limit in the number of agents or particles those control actions
are typically closed-loop controls. The interplay of control action on the level of the
agents as well as in the meanfield limit has been studied to various extends in different
areas of applications. We give some examples.

In [1,2] control problems for opinion formation models in large agent populations [40]
have been studied. Therein, suitable (feedback) control measures have been formulated
in order to drive diverging opinions towards consensus.

In [13,20] control mechanism on the continuum level for pedestrian dynamics have
been discussed and the corresponding agent based formulation introduced. The control
measures should provide fast exit strategies in the case of pedestrian crowd dynamics.

In economics, a market may be modeled using a game theoretic setting, i.e. a set
of agents endowed with strategies (and possibly other attributes) that they may play
upon to maximize their utility function [26,36]. In a game, the utility function depends
on the other agents’ strategies. The proper functioning of a market is associated to a
Nash equilibrium of this game, i.e. a set of strategies such that no agent can improve on
his utility function by changing his own strategy, given that the other agents’ strategies
are fixed. At the market scale, the number and diversity of agents is huge and it is
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more effective to use games with a continuum of players. Games with a continuum of
players or agents have been discussed for example in [4, 32, 37, 38]. A recent work [17],
a meanfield limit is considered to model risk associated with inter-bank borrowing and
lending strategies.

Here, we consider a control-theoretic approach for possibly infinitely many agents,
where the optimal goal is not a simple Nash equilibrium, but a whole set of optimal
trajectories of the agents in the strategy space. Those problems may have applications
in economics, crowd dynamics, pricing models or opinion formation. Such an approach
has been formalized in the seminal work of [31] and popularized under the name of
‘Mean-Field Game (MFG)’. It has given rise to an abundant literature, among which
(to cite only a few) [6–8,16,29].

However, the fact that the agents are able to optimize their trajectory over a large
time horizon in the spirit of physical particles subjected to the least action principle
can be seen as a bit unrealistic. A related but different approach has been proposed for
example in [23] and builds on earlier work on pedestrian dynamics [20]. It consists in
assuming that agents perform the so-called ‘Best-Reply Strategy’ (BRS): they determine
a local (in time) direction of steepest descent (of the cost function, i.e. minus the utility
function) and evolve their strategy variable in this direction. This approach has been
applied to models describing the evolution of the wealth distribution among interacting
economies, in the case of conservative [21] and nonconservative economies [22]. However,
the link between MFG and BRS was still to be elaborated. This is the object of the
present paper. We show that the BRS can be obtained as a MFG over a short interval of
time which recedes as times evolves. This type of control is known as Model Predictive
Control (MPC) or as Receding Horizon Control. The fact that the agents may be able
to optimize the trajectories in the strategy space over a small but finite interval of
time is certainly a reasonable assumption and this MPC strategy could be viewed as
an improvement over the BRS and some kind of compromise between the BRS and a
fully optimal but fairly unrealistic MFG strategy. In this paper though, we propose a
general framework to connect BRS to MFG through MPC.

Recently, many contributions on meanfield games and control mechanisms for
particle systems have been made. For more details on meanfield games we refer
to [6–8,16,29,31]. Among the many possible meanfield games to consider we are inter-
ested in differential (Nash) games of possibly infinitely many particles (also called play-
ers). Most of the literature in this respect treats theoretical and numerical approaches
for solving the Hamilton–Jacobi Bellmann (HJB) equation for the value function of
the underlying game, see e.g. [16] for an overview. Solving the HJB equation allows
to determine the optimal control for the particle game. However, the associated HJB
equation posses several theoretical and numerical difficulties among which the need to
solve it backwards in time is the most severe one, at least from a numerical perspective.
Therefore, recently model predictive control (MPC) concepts on the level particles or
of the associated kinetic equation have been proposed [1,15,15,19–22,25]. While MPC
has been well established in the case of finite-dimensional problems [28, 33, 39], and
also in engineering literature under the term receding horizon control, contributions to
systems of infinitely many interacting particles and/or game theoretic questions related
to infinitely many particles are rather recent. It has been shown that MPC concepts
applied to problems of infinitely many interacting particles have the advantage to allow
for efficient computation [1, 21]. However, by construction MPC only leads to sub-
optimal solutions, see for example [30] for a comparison in the case of simple opinion
formation model. Also, the existing approaches mostly for alignment models do not
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necessarily treat game theoretic concepts but focus on for example sparse global con-
trols [15,19,25], time-scale separation and local mean-field controls [22] called best-reply
strategy, or MPC on very short time-scales [1] called instantaneous control. Typically
the MPC strategy is obtained solving an auxiliary problem (implicit or explicit) and
the resulting expression for the control is substituted back into the original dynamics
leading to a possibly modified and new dynamics. Then, a meanfield description is de-
rived using Boltzmann or a macroscopic approximation. This requires the action of the
control to be local in time and independent of future states of the system contrary to
solutions of the HJB equation. Usually in MPC approaches independent optimal control
problems are solved where particles do not anticipate the optimal control choices other
particles contrary to meanfield games [31].

In this paper we contribute to the recent discussion by formal computations leading
to a link between meanfield games and MPC concepts proposed on the level of particle
games and associated kinetic equations. The relationship we plan to establish is high-
lighted in Figure 1.1. More precisely, we want to show that the MPC concept of the
best-reply strategy [21] may be at least formally be derived from a meanfield games
context.

Fig. 1.1. Relation between MPC concepts and meanfield games. The starting point are finite-
dimensional differential games with N players in the top left part (Section 2). The connection for
N →∞ of this games has been investigated for example in [16,31] and leads to the HJB for meanfield
games in the bottom left part of the figure (Section 3). If applying MPC concepts to the differential
game as for example the best-reply strategy we obtain a controlled dynamics for N particles in the
top right part [21] (Section 2.1). The meanfield limit for N →∞ leads to a kinetic equation in the
bottom right part (Section 2.2). This paper also investigates the link between the meanfield game and
the kinetic equation indicated by a question mark.

2. Setting of the problem
In this section we introduce the basic notation of the studied problem. We consider

nonlinear controlled particle dynamics. Each particle follows an ordinary differential
equation and each particle has its own control. The control minimizes a suitable cost
functional. This depends on the state of all other particles as well as their choice of
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control. The particle dynamics are particular in the sense that they are symmetric
in order to allow for a suitable meanfield limit when the number of particles tend to
infinity.

We consider N particles labeled by i=1, . . . ,N where each particle has a state xi∈R.
We denote by X=(xi)

N
i=1 the state of all particles and by X−i=(xj)

N
j=1,j �=i the states of

all particles except i. Further, we assume that each particle’s dynamics is governed by a
smooth function fi :RN→R depending on the state X and we assume that each particle
may control its dynamics by a control ui. The dynamics for the particles i=1, . . . ,N is
then given by

d

dt
xi(t)=fi(X(t))+ui(t), i=1, . . . ,N, (2.1)

and initial conditions

xi(0)= x̄i. (2.2)

We will drop the time-dependence of the variables whenever the intention is clear.
Examples of models of the type (2.1) are alignment models in socio-ecological context,
microscopic traffic flow models, production and many more, see e.g. the recent survey
[34, 35, 41]. In recent contributions to control theory for equation (2.1) the case of a
single control variable ui≡u for all i has been considered [1,2,15]. Here, we allow each
particle to chose its own control strategy ui. We suppose a control horizon of T >0 be
given. As in [16] we suppose that particle i minimizes its own objective functional and
determines therefore the optimal u∗

i by

u∗
i (·)= argmin ui:[0,T ]→R

∫ T

0

(
αi(s)

2
u2
i (s)+hi(X(s))

)
ds, i=1, . . . ,N. (2.3)

Herein, X(s) is the solution to equations (2.1) and (2.2). The optimal control and
the corresponding optimal trajectory will from now on be denoted with superscript
∗. The minimization is performed on all sufficiently smooth functions ui : [0,T ]→R.
There is no restriction on the control ui similar to [31]. The objective hi :RN→R
related to particle i is also supposed to be sufficiently smooth. The weights of the
control αi(t)>0,∀i, t≥0 and under additional conditions convexity of each optimization
problem (2.3) is guaranteed. We will consider open-loop Nash equilibria [10, Definition
4.1]. For general cost functions and dynamics there is no guarantee that such points
exists. However, there is a subclass of problems where a solution can be expected
under additional regularity and convexity assumptions [10, Lemma 2.1]. The presented
cost functional and dynamics belong to this class due to the linear dependence of the
dynamics on the control and the decoupling of the control in the cost.

A challenge in solving the problem (2.3) relies on the fact that the associated HJB
has to be solved backwards in time. Contrary to [1, 15] problem (2.3) are in fact N
optimization problems that need to be solved simultaneously due to the dependence of
X on U =(ui)

N
i=1 through equation (2.1). This implies that each particle i anticipates

the optimal strategy of all other particles U∗
−i when determining its optimal control u∗

i .
Obviously, the problem (2.3) is simpler when each particle i anticipates a fixed strategy
of all other particles U−i. The optimization problems (2.3) decouple but the dynamics
is still coupled. It has been argued that this is the case for reaction in pedestrian
motions [22]. In fact, therein the following best-reply strategy has been proposed as a
substitute for problem (2.1)

ui(t)=−∂xi
hi(X(t)), t∈ [0,T ]. (2.4)
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As in the meanfield theory presented in [16,31] we need to impose Assumption (A) on
fi(X) and hi(X) before passing to the limit N→∞. The Assumption (B) will be used
in Section 3.

(A) For all i=1, . . . ,N and any permutation σi :{1, . . . ,N}\{i}→{1, . . . ,N}\{i} we
have

fi(X)=f(xi,X−i) and f(xi,X−i)=f(xi,Xσi
),

for a smooth function f :R×RN−1→R and whereXσi =(xσi(j))
N
j=1,j �=i. Further

we assume that for each i the function hi(X) enjoys the same properties as
stated for fi(X).

(B) We assume that αi(t)=α(t) for all t∈ [0,T ] and all i=1, . . . ,N.

Under additional growth conditions sequences of symmetric functions in many vari-
ables have a limit in the space of functions defined on probability measures, see e.g. [16,
Theorem 2.1], [8, Theorem 4.1]. The corresponding result is recalled as Theorem 4.1 in
the appendix for convenience.

To exemplify computations later on we will use a basic alignment or consensus
model. This model has been extended to model wealth evolution by including additional
factors like randomness and limited resources, see e.g. [9,18,22,23] The basic alignment
problem is

fi(X)=
1

N

N∑
j=1

P (xi,xj)(xj−xi), (2.5)

for some bounded, non-negative and smooth function P (x,x̃). Clearly, f fulfills As-
sumption (A). As objective function we use a measure depending only on aggregated
quantities as in [21]. An example fulfilling Assumption (A) is

hi(X)=
1

N−1

N∑
j=1,j �=i

φ(xi,xj) (2.6)

for some smooth function φ :R×R→R.
Finally, we introduce some additional notation. We denote by P(R) the space of

Borel probability measures over R. The empirical discrete probability measure mN ∈
P(R) concentrated at a positions X ∈RN is denoted by

mN
X =

1

N

N∑
i=1

δ(x−xi).

We also use this notation if X is time dependent, i.e., X=X(t), leading to the family of

probability measures mN
X =mN

X(t)= 1
N

N∑
i=1

δ(x−xi(t)). If the intention is clear we do not

explicitly denote the dependence on x of the measure mN
X (and on time t if X=X(t) is

time-dependent).
Based on the Assumption (A) we will frequently use Theorem [16, Theorem 2.1],

see Theorem 4.1. In view of this theorem we will denote the limit of a family of functions
(fN )N :R×P(R)→R by f :R×P(R)→R and write

f(ξ,X−i)=fN (ξ,mN−1
X−i

)∼ f(ξ,mN
X).
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2.1. From differential games to controlled particle dynamics. In this
section we derive a closed form of the optimal control for each particle using an ap-
proximation called MPC. By suitable discretization and approximation it is possible to
break the complexity of the coupled optimization problems introduced in the previous
section. The derived closed form allows to reformulate the particle dynamics in terms
of the states of the remaining particles only.

The best-reply strategy (2.4) is obtained also from a MPC approach [33] applied
to equations (2.1) and (2.3). In order to derive the best-reply strategy we consider
the following problem: suppose we are given the state X(t) of the system (2.1) at
time t>0. Then, we consider a control horizon of the MPC of Δt>0 and supposedly
small. We assume that the applied control ui(s) on (t,t+Δt) is constant. For particle i
we denote the unknown constant by ũi. Instead of solving the problem (2.3) on the full
time interval (t,T ), we consider the objective function only on the receding time horizon
(t,t+Δt). We also scale the cost by 1

Δt on this interval to have a meaningful integral
for small Δt. Further, we discretize the dynamics (2.1) on (t,t+Δt) using an explicit
Euler discretization for the initial value X̄=Xi(t). We discretize the objective function
by a Riemann sum. A naive discretization leads to a penalization of the control of the

type αi(t+Δt)
2 ũ2. Since the explicit Euler discretization in equation (2.7) is only accurate

up to order O((Δt)2) we additionally require to have ũi=O(1) to obtain a meaningful
control in the discretization (2.7) and also in the limit for Δt→0. A crucial point of
the scaling is in αi that is altered to Δtαi. This may be explained as follows: the term∫ T

0
αi(s)u

2(s)ds defines a global energy that is supposed to be minimized. In the MPC
framework each time interval does not see the global energy and no scaling of αi would
give a contribution of u on a time interval [t,t+Δt] towards the global energy of order
O(Δt) that will vanish for Δt→0. In order to compensate this the penalty αi is scaled.
Finally, this leads to a MPC problem associated with equation (2.3) and given by

xi(t+Δt)= x̄i+Δt
(
fi(X̄)+ ũi

)
, i=1, . . . ,N, (2.7)

ũi= argmin ũ∈R

(
hi (X(t+Δt))+Δt

αi(t+Δt)

2
ũ2

)
, i=1, . . . ,N. (2.8)

Solving the minimization problem (2.8) leads to

αi(t+Δt) ũi=−∂xi
hi(X̄), i=1, . . . ,N.

Now, we obtain a ũi of order O(1) by Taylor expansion of αi at time t. Within the MPC
approach the control for the time interval (t,t+Δt) is therefore given by equation (2.9).

ũi=−
1

αi(t)
∂xihi(X̄), i=1, . . . ,N. (2.9)

Usually, the dynamics (2.7) is then computed with the computed control up to t+Δt.
Then, the process is repeated using the new state X(t+Δt). Substituting (2.9) into
(2.7) and letting Δt→0 we obtain

d

dt
xi(t)=fi(X(t))− 1

αi(t)
∂xihi(X(t)), i=1, . . . ,N,t∈ [0,T ]. (2.10)

This dynamics coincide with the dynamics generated by the best-reply strategy (2.4)
provided that αi(t)≡1. Therefore, on a particle level the controlled dynamics (2.10) of
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the best-reply strategy [21] is equivalent to a MPC formulation of the problem (2.3).
For the toy example we obtain

d

dt
xi=

1

N

N∑
j=1

P (xi,xj)(xj−xi)−
1

(N−1)αi(t)

N∑
j=1,j �=i

∂xi
φ(xi,xj). (2.11)

2.2. From controlled particle dynamics (2.10) to kinetic equation. In
this section we derive the meanfield limit of the previous dynamics. Those equations
will be compared later with the meanfield limit of the full coupled optimization problem.

The considerations herein have essentially been studied for the best-reply strategy
in the series of papers [21–23] and it is only repeated for convenience. In order to
pass to the meanfield limit we assume that Assumptions (A) and (B) hold true. We
also identify the measure with its density function without explicitly stating this in the
following and subsequent sections. Then the particles are governed by

d

dt
xi(t)=f(xi(t),X−i(t))−

1

α(t)
∂xi

h(xi(t),X−i(t)), i=1, . . . ,N. (2.12)

Associated with the trajectories X=X(t) the discrete probability measure mN
X is

given by mN
X = 1

N

N∑
j=1

δ(x−xi(t)). Using the weak formulation for a test function ψ :R→

R we compute the dynamics of mN
X over time as

d

dt

∫
ψ(x)mN

Xdx=
1

N

N∑
i=1

∫
ψ′(x)

(
f(x,X−i)−

1

α
∂xh(x,X−i)

)
δ(x−xi(t))dx.

Using [16, Theorem 2.1] and denoting by mN−1
X−j

(t)= 1
N−1

∑
k=1,k �=j

δ(x−xk(t)) a fam-

ily of empirical measures on R we obtain from the previous equation

d

dt

∫
ψ(x)mN

Xdx=
1

N

N∑
i=1

∫
ψ′(x)

(
fN (x,mN−1

X−i
)− 1

α
∂xh

N (x,mN−1
X−i

)

)
δ(x−xi(t))dx,

for some function fN ,hN :R×P(R)→R. Assume that f and h fulfill the assertions
of [8, Theorem 4.1]. Then, f(x,mN

X)∼fN (x,mN−1
X−i

) and h(x,mN
X)∼hN (x,X−i) and

d

dt

∫
ψ(x)mN

Xdx=

∫
ψ′(x)mN

X

(
f(x,mN

X)− 1

α
∂xh(x,m

N
X)

)
dx.

This is the weak form of the kinetic equation for a probability measure m=m(t,x)

∂tm+∂x

(
m

(
f(x,m)− 1

α
∂xh(x,m)

))
=0. (2.13)

3. Results related to meanfield games
In this paragraph we consider the limit of the problem (2.3) for a large number of

particles. This has been investigated for example in [31] and derivations (in a slightly
different setting) have been detailed in [16, Section 7]. In order to show the links
presented in Figure 1.1 we require to extend and further develop the computations
in [16, Section 7].
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A notion of solution to the competing N optimization problem (2.3) is the concept
of Nash equilibrium, in fact, we study the so-called open loop Nash equilibrium. If it
exists it may be computed for the differential games using the HJB equation. We briefly
present computations leading to the HJB equation. Then, we discuss the large particle
limit of the HJB equation and derive the best-reply strategy.

3.1. Derivation of the finite-dimensional HJB equation. In this section
we solve the coupled optimization problem introduce in Section 2. In order to obtain
a closed form of the solution we introduce the HJB equations and state the formal
optimality conditions. An approximation to the dynamics of the HJB equations shows
on the level of the particles already the similarity to the BRS or MPC.

The HJB equation describes the evolution of a objective function Vi=Vi(t,Y ) of
the particle i defined as the future costs for a particle trajectory governed by equation
(2.1) and starting at time t∈ (0,T ), position Y and control ui : (t,T )→R,i=1, . . . ,N,

Vi(t,Y )=

∫ T

t

(
αi(s)

2
u2
i (s)+hi(X(s))

)
ds, (3.1)

where X(s)=(xi(s))
N
i=1 is the solution to equation (2.1) with control U and initial

condition

X(t)=Y. (3.2)

Among all possible controls ui we denote by u∗
i the optimal control that minimizes

Vi(t,Y ). We investigate the relation of Vi of particle i to the optimal control u∗
i . To

this end assume that the coupled problem (2.3) has a unique solution denoted by U∗=
(u∗

i )
N
i=1. Each u∗

i : [t,T ]→R for each i=1, . . . ,N , is hence a solution to

u∗
i = argmin ui(·):[t,T ]→R{Vi(t,Y ) :X solves (2.1)}, i=1, . . . ,N.

The corresponding particle trajectories are denoted by X∗=(x∗
i )

N
i=1 and are obtained

through (2.1) for an initial condition X∗(0)= X̄.

Since X∗(·) depends on U∗, minimizing the objective function (3.1) leads to the
computation of formal derivatives of Vi with respect to ui. The optimal control u∗

i is
then found as formal point (in function space) where the derivative of Vi with respect
to ui vanishes:

d

dui
Vi(t,Y )[v]=

∫ T

t

(
αi(s)u

∗
i (s)+

N∑
k=1

∂xk
hi(X

∗(s))∂ui
(x∗

k(s))

)
v(s)ds=0. (3.3)

The derivative is not easily computed due to the unknown derivative of each state x∗
k

with respect to the acting control u∗
i . However, choosing a set of suitable co-states φi

j :
[0,T ]→R for i=1, . . . ,N and j=1, . . . ,N, we may simplify the previous equation (3.3):
we test equation (2.1) by functions φi

j : [0,T ]→R for i,j=1, . . . ,N such that φi
j(T )=0,

integrate on (t,T ) with 0≤ t<T , sum over all particles and use the initial data at
X∗(t)=Y to obtain

N∑
j=1

{∫ T

t

− d

ds
(φi

j(s))x
∗
j (s)−φi

j(s)
(
fj(X

∗(s))+u∗
j (s)

)
ds−φi

j(t)yj

}
=0, i=1, . . . ,N.
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The derivative with respect to ui in an arbitrary direction v is then

∫ T

t

{
N∑

j=1

(
− d

ds
(φi

j(s))∂ui

(
x∗
j (s)

)−φi
j(s)

(
N∑

k=1

∂xk (fj(X
∗(s)))∂ui(x

∗
k(s))

))
−φi

i(s)

}

×v(s)ds=0. (3.4)

The previous equation can be equivalently rewritten as

N∑
k=1

⎛⎝− d

ds
φi
k(s)−

N∑
j=1

φi
j(s)∂xk

fj(X
∗(s))

⎞⎠∂ui
(x∗

k(s))v(s)ds=

∫ T

t

φi
i(s)v(s)ds.

Let φi
j for i,j=1, . . . ,N fulfill the coupled linear system of adjoint equations (or co-state

equations), solved backwards in time,

− d

dt
φi
j(t)−

N∑
k=1

φi
k(t)∂xj

(fk(X
∗(t))=∂xj

hi(X
∗(t)), φi

j(T )=0. (3.5)

Then, formally for every s∈ (t,T ) we have

N∑
j=1

∂xj
hi(X

∗(s))∂ui
(x∗

j (s))

=
N∑

k=1

− d

dt
φi
k(s)∂ui(x

∗
k(s))−

N∑
j=1

N∑
k=1

φi
j(s)∂xk

(fj(X
∗(s))∂ui(x

∗
k(s)).

and it follows that

N∑
j=1

∂xj
hi(X

∗(s))∂ui

(
x∗
j (s)

)
=φi

i(s),∀s∈ (t,T ).

At optimality the necessary condition is for a.e. s∈ (t,T ),

(αi(s)u
∗
i (s))+

N∑
j=1

∂xj
hi(X

∗(s))∂ui

(
x∗
j (s)

)
=0.

This leads to the following equation a.e. s∈ (t,T )

αi(s)u
∗
i (s)+φi

i(s)=0. (3.6)

From now on we assume that the associated optimal controls u∗
i fulfill this system.

The corresponding trajectories and co-state are denoted by S. We formally derive the
HJB based on the previous equations of PMP and refer to [27, Chapter 8] for a careful
theoretical discussion.

Consider the function Vi(t,Y ) evaluated along the optimal trajectory S, i.e., let
Vi(t)=Vi(t,X

∗(t)). Then, by definition of Vi and S we have

−αi(t)

2
(u∗

i )
2(t)−hi(X

∗(t))=
d

dt
Vi(t)
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=∂tVi(t,X
∗(t))+

N∑
k=1

∂xk
Vi(t,X

∗(t))(fk(X∗(t))+u∗
k(t)) .

Using the necessary condition (3.6) we obtain

− 1

2αi(t)
(φi

i)
2(t)−hi(X

∗(t))

=∂tVi(t,X
∗(t))+

N∑
k=1

∂xk
Vi(t,X

∗(t))
(
fk(X

∗(t))− 1

αk(t)
φk
k(t)

)
. (3.7)

The trajectory of X∗(s) depends on the initial condition Y =(yi)
N
i=1. The variation

of Vi(t,Y ) with respect to yo for o∈{1, . . . ,N} and evaluating at S can be explicitly
computed using the weak form of the state equation. Using the co-state equation we
obtain ∇Y Vi(t,Y )=(φi

k)
N
k=1 provided that φi

k is a solution to equation (3.5).
Now, along S we may express in equation (3.7) the co-state by the derivative of Vi

with respect to Y. Replacing Y =X∗(t) we obtain

− 1

2αi(t)
(∂xi

Vi(t,X
∗(t)))2−hi(X

∗(t))

=∂tVi(t,X
∗(t))+

N∑
k=1

∂xk
Vi(t,X

∗(t))
(
fk(X

∗(t))− 1

αk(t)
∂xk

Vk(t,X
∗(t))

)
.

By definition we have Vi(T,X)=0 for all X. Therefore, instead of solving the PMP
equation we may ask to solve the N HJB for Vi=Vi(t,X) on [0,T ]×RN for i=1, . . . ,N
given by the reformulation of the previous equation:

∂tVi(t,X)+

N∑
k=1,k �=i

∂xk
Vi(t,X)

(
fk(X)− 1

αk(t)
∂xk

Vk(t,X)

)
+∂xi

Vi(t,X)fi(X)

=−hi(X)+
1

2αi(t)
(∂xi

Vi(t,X))2, (3.8)

with terminal condition

Vi(T,X)=0, i=1, . . . ,N. (3.9)

Remark 3.1. There are shorter ways to derive the HJB equation (3.8), see [27].
We pursued the presented way in order to compare it with the limit N→∞ in the
subsequent discussion.

The aspect of the game theoretic concept is seen in the HJB equation (3.8) in the
mixed terms ∂xk

Vi. If we model particles i that do not anticipate the optimal choice of
the control of other particles j �= i, thenN minimization problems for Vi in equation (3.1)
are independent. Therefore the corresponding HJB for Vi and Vj with j �= i decouple
and all mixed terms vanish. In a different setting this situation has been studied in [1,2]
where only a single control for all particles is present.

Assume that we have a (sufficiently regular) solution (Vi)
N
i=1 with Vi : [0,T ]×RN→

R. Then, we obtain the optimal control u∗
i (t) and the optimal trajectory X∗(t) for

minimizing Vi by

u∗
i (t)=−

1

αi(t)
∂xiVi(t,X

∗(t)), i=1, . . . ,N, (3.10)
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where X∗ fulfills equation (2.1). Then, the associated controlled dynamics are given by

d

dt
xi(t)=fi(X(t))− 1

αi(t)
∂xi

Vi(t,X(t)), j=1, . . . ,N, (3.11)

and initial conditions (2.2). Comparing the HJB controlled dynamics with equation
(2.10) we observe that in the best-reply strategy the full solution to the HJB is not
required. Instead, ∂xi

Vi(t,X) is approximated by ∂xi
hi(X(t)). This approximation is

also obtained using a discretization of equation (3.8) in a MPC framework. Since the
equation for Vi is backwards in time we may use a semi discretization in time on the
interval (T −Δt,T ) given by

Vi(T,X)−Vi(T −Δt,X)

Δt
+

N∑
k=1,k �=i

∂xk
Vi(T,X)

(
fk(X)− 1

αk(t)
∂xk

Vk(T,X)

)
+∂xi

Vi(T,X)fi(X)=−hi(X)+
1

2αi(t)
(∂xi

Vi(T,X))2+O(Δt),

Vi(T,X)=0.

Using the terminal condition we obtain that Vi(T −Δt,X)=hi(X) for all X ∈RN .
The derivation of the equation for the HJB equation for Vi(t,Y ) allows for an

arbitrary choice of T >t. Hence we may set the terminal time T also to T := t+Δt. If
we consider the function

V Δt
i (t,Y )=

1

Δt

∫ t+Δt

t

(
Δtαi(s)

2
u2
i (s)+hi(X(s))

)
ds,

where X(s),s∈ (t,t+Δt) fulfills the dynamics and where we indicate the dependence
on Δt by a superscript on Vi. Note that the scaling of the weight αi is done as in the
MPC approach for the discretized problem (2.7) and (2.8). Applying the explicit Euler
discretization as shown before leads therefore to

V Δt
i (t,Y )=hi(Y ), Y =X(t).

Hence, the best-reply strategy applied at time t for a finite-dimensional problem of N
interacting particles coincides with an explicit Euler discretization of the HJB equation
for a function given by V Δt

i (t,Y ) where Y =X(t) is the state of the particle system at
time t.

3.2. Meanfield limit of the HJB equation (3.8). Due to the similarity of
the approximation to the dynamics of the HJB equations for the particles we expect a
similar relation on the meanfield limit. To this end we require a meanfield limit of the
HJB equations. Using the strong symmetry in the dynamics and the cost function we
obtain the corresponding meanfield equation.

We turn to the meanfield limit of equation (3.8) for i=1, . . . ,N. To this end we
assume that Assumptions (A) and (B) hold. We further recall and introduce some
notation;

X=(xi)
N
i=1, Z=(zi)

N
i=1, Z=(η,z1, . . . ,zN−1), Zk := (zk,η,z1, . . . ,zk−1,zk+1, . . . ,zN−1) .

We obtain the following set of equations for Vi(t,X) and i=1, . . . ,N,

∂tVi(t,X)+

N∑
k=1,k �=i

∂xk
Vi(t,X)

(
f(xk,X−k)−

1

α(t)
∂xk

Vk(t,X)

)
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+∂xi
Vi(t,X)f(xi,X−i)=−h(xi,X−i)+

1

2α(t)
(∂xi

Vi(t,X))
2
, Vi(t,X)=0.

(3.12)

We show that a solution (Vi)
N
i=1 to the previous set of equations is obtained by con-

sidering the equation (3.13) below. Suppose that a function W =W (t,Z) : [0,T ]×R×
RN−1→R fulfills

∂tW (t,Z)+
N−1∑
k=1

∂zkW (t,Z)

(
f(Zk)−

1

α(t)
∂ηW (t,Z)

)
+∂ηW (t,Z)f(Z)

=−h(Z)+
1

2α(t)
(∂ηW (t,Z))2 , (3.13)

and terminal condition W (T,Z)=0. Suppose a solution W to equation (3.13) exists and
fulfills the previous equation pointwise a.e. (t,Z)∈ [0,T ]×RN . Then, we define

Vi(t,X) :=W (t,xi,X−i), i=1, . . . ,N. (3.14)

By definitionW =W (t,Z), therefore the partial derivatives of Vi are computed as follows
where

(xi,X−i)=(η,z1, . . . ,zN−1) :

∂tVi(t,X)=∂tW (t,xi,X−i), ∂xi
Vi(t,X)=∂ηW (t,xi,X−i),

∂xk
Vk(t,X)=∂xk

W (t,xk,X−k)=∂ηW (t,xk,X−k),

∂xk
Vi(t,X)=∂zkW (t,Z) for k∈{1, . . . ,i−1},

∂xk
Vi(t,X)=∂zk−1

W (t,Z) for k∈{i+1, . . . ,N}.

Due to Assumption (A) we have that

f(Zk)=f(zk,z1, . . . ,zk−1,zk+1, . . . ,zi−1,η,zi, . . . ,zN−1),

for any i∈{1, . . . ,N−1}. The same is true for the argument of h. Therefore,

f(xk,X−k)=f(Zk) and h(xi,X−i)=h(Z).

Therefore, Vi(t,X)=W (t,xi,X−i) fulfills equation (3.12). Hence, instead of studying
equation (3.12) we may study the limit for N→∞ of equations (3.13). In view of
Theorem 4.1 a limit exists provided W is symmetric (and fulfills uniform bound and
uniform continuity estimates).

Note that, W as a solution to equation (3.13) is symmetric with respect to the
argument (z1, . . . ,zN−1). This holds true, since f and h are symmetric with respect
to X−i for any i∈{1, . . . ,N}. Hence, in the following we assume to have a solution
W to equation (3.13) with the property that for any permutation σ :{1, . . . ,N−1}→
{1, . . . ,N−1} we have

W (t,Z)=W (t,η,zσ1
, . . . ,zσN−1

). (3.15)

In view of Theorem 4.1 we expect W (t,Z) to converge for for N→∞ to a limit
function W : [0,T ]×R×P(R)→R in the sense of Theorem 4.1, i.e., up to a subsequence
and for Z ∈RN

lim
N→∞

sup
|η|≤R,t∈[0,T ],Z−N⊂RN−1

|W (t,Z)−W(t,η,mN−1
Z−N

)|=0.
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We obtain that the limit W : [0,T ]×R×P(R)→R fulfills the convergence if the
measure mN−1

Z−N
is replaced by the empirical measure mN

Z for any Z ∈RN . Using the
introduced notation in Section 2 we may therefore write

W (t,Z)=WN (t,η,mN−1
Z−N

)∼W(t,η,mN
Z ).

Similarly, we obtain the following meanfield limits for N sufficiently large (and
provided the assumptions of Theorem 4.1 and [8, Theorem 4.1] are fulfilled.

∂tVi(t,X)=∂tW (t,xi,X−i)=∂tW
N (t,xi,m

N−1
X−i

) ∼∂tW(t,xi,m
N
X),

hi(X)=h(xi,X−i)=hN (xi,m
N−1
X−i

) ∼h(xi,m
N
X),

(∂xiVi(t,X))2=(∂xiW (t,xi,X−i))
2=(∂xiW

N (t,xi,m
N−1
X−i

))2 ∼(∂xiW(t,xi,m
N
X))2.

It remains to discuss the limit of the mixed term in equations (3.12) and (3.13), respec-
tively.

N−1∑
k=1

∂zkW (t,Z)

(
f(Zk)−

1

α(t)
∂ηW (t,Z)

)
. (3.16)

In order to derive the meanfield limit for equation (3.16) we require f to be symmetric
in all variables, i.e.,

(C) We assume that f(Z)=f((zσi)
N
i=1) for any permutation σ :{1, . . . ,N}→

{1, . . . ,N} and for all Z ∈RN .
Under Assumption (C) we have in particular for all k∈{1, . . . ,N} and a permutation
σ :{1, . . . ,N−1}→{1, . . . ,N−1}

f(Zk)=f(η,z1, . . . ,zN−1)=f(η,zσ1 , . . . ,zσN−1
).

Therefore, f(Z)=fN (η,mN−1
Z−N )). We further obtain fN (η,mN−1

Z−N ))∼ f(η,mN
Z ) for any

(η,Z). However under Assumption (C) we also obtain f(Z)=fN (mN
Z )∼ f(mN

Z ). As-
suming the limit in Theorem 4.1 is unique we obtain that f is therefore independent of
η.

Now, consider the discrete measure mN
Z = 1

N

N∑
j=1

mN
zj and mzj = δ(x−zj)∈P(R). For

each j we denote by mzj (ζ)=Z(ζ)#mzj the push forward of the discrete measure
with the flow field c : (t,t+a)×R×P(R)→R and mzj (t)=mzj . Let the characteristic
equations for Z for fixed η be given by the flow field

d

dζ
Z(ζ)= c(ζ,η,mN

Z (ζ)) := f(mN
Z (ζ))− 1

α(ζ)
∂ηW(ζ,η,mN

Z (ζ)). (3.17)

Similarly to equation (4.8), we obtain the directional derivative of the measure of
W(t,η,mN

Z )with respect to the measure mN
Z in direction of the vectorfield c at ζ= t

as

N−1∑
k=1

∂zkW (t,Z)

(
f(Z)− 1

α(t)
∂ηW (t,Z)

)
∼

〈∂mW(t,η,mN
Z ),f(mN

Z )− 1

α(t)
∂ηW(t,η,mN

Z )〉L2

mN
Z

,



1416 MEANFIELD GAMES AND MODEL PREDICTIVE CONTROL

where L2
mN

Z
denotes the space of square integrable functions for the measure mN

Z . Per-

forming the limits for N→∞, replacing η by x, we obtain finally the meanfield equation
for W=W(t,x,m) : [0,T ]×R×P(R)→R given by

∂tW(t,x,m)+〈∂mW(t,x,m),f(m)− 1

α(t)
∂xW(t,x,m)〉L2

m
+∂xW(t,x,m)F(x,m)

=−h(x,m)+
1

2α(t)
(∂xW(t,x,m))

2
,W(T,x,m)=0. (3.18)

The previous equation is reformulated using the concept of directional derivatives of
measuresm outlined in the Appendix 4. Denote by c(t,x,m)= f(m)− 1

α(t)∂xW(t,x,m) a

field. Ifmxj (t)∈P(R) for each t is obtained as push forward with the vector field c, then,

mxj fulfills in a weak sense the continuity equation (4.4). Therefore, mN
X = 1

N

N∑
j=1

mxj

fulfills

∂tm
N
X(t,x)+∂x

(
c(t,x,mN

X)mN
X(t,x)

)
=0. (3.19)

As seen from the previous equations and the computations in equation (4.8) we therefore
have

∂tW(t,x,mN
X(t, ·))+〈∂mW(t,x,mN

X(t, ·)),f(mN
X(t, ·))− 1

α(t)
∂xW(t,x,mN

X(t, ·))〉L2

mN
X

=
d

dt
W(t,x,mN

X(t, ·)).

This motivates the following definition. For a family of measures (m(t))t∈[0,T ] with
m(t, ·)∈P(R), define w : [0,T ]×R→R by

w(t,x) :=W(t,x,m(t)). (3.20)

Then, from equation (3.18) we obtain

∂tw(t,x)+(∂xw(t,x))f(m)=−h(x,m)+
1

2α(t)
(∂xw(t,x))

2
, (3.21)

and from equation (3.19) we obtain using the definition (3.20)

∂tm(t,x)+∂x

((
f(m)− 1

α(t)
∂xw(t,x)

)
m(t,x)

)
=0. (3.22)

Provided we may solve the meanfield equations (3.21) and (3.22) for (w,m) we obtain a
solution W along the characteristics in m−space by the implicit relation (3.20). In this
sense and under the Assumptions (A) to (C) the meanfield limit of equation (3.12) or
respectively equation (3.13) is given by the system of the following equations (3.23) and
(3.24) for w : [0,T ]×R→R and m(t)∈P(R) for all t∈ [0,T ]. The terminal condition for
w is given by w(T,x)=0.

∂tw(t,x)+∂x (w(t,x))f(m(t,x))− 1

2α(t)
(∂xw(t,x))2=−h(x,m(t,x)), (3.23)

∂tm(t,x)+∂x

((
f(m(t,x))− 1

α(t)
∂xw(t,x)

)
m(t,x)

)
=0. (3.24)
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Remark 3.2. The control u∗
i given by equation (3.10) can be expressed in the mean

field limit as follows.

u∗
i (t)=−

1

α(t)
∂xi

Vi(t,xi(t),X−i(t)).

Under Assumption (B) and using equation (3.14) and equation (3.20) for any X we
have

− 1

α(t)
∂xi

Vi(t,X)=− 1

α(t)
∂xW (t,xi,X−i)∼

− 1

α(t)
∂xW(t,x,mN

X(t, ·))=− 1

α(t)
∂xw(t,x).

3.3. MPC and best-reply strategy for the meanfield equation (3.23)–
(3.24). Finally, we approximate on the meanfield level the HJB dynamics. The
approximation is similar to the one conducted on the particle level. In the end, we
obtain the best-reply strategy through a MPC approach.

First note, that the calculations leading to equation (3.23) are independent of the
terminal time T. Now, let a time τ ∈ [0,T ] be fixed and let Δt>0 be sufficiently small.
Consider the function on the receding horizon (τ,τ+Δt) with initial conditions given
at τ and where we, as before, add Δt as a superscript to indicate the dependence on
the short time horizon. Further, we also scale the control weight by Δt as in equations
(2.7) and (2.8).

V Δt
i (τ,Y )=

1

Δt

∫ τ+Δt

τ

(
Δtαi(s)

2
u2
i (s)+hi(X(s))ds

)
ds. (3.25)

We obtain equation (3.23) defined only for t∈ [τ,τ+Δt] as

∂tw(t,x)+∂x (w(t,x))f(m(t,x))− 1

2α(t)
(∂xw(t,x))2=−h(x,m(t,x)),

∂tm(t,x)+∂x

((
f(m(t,x))− 1

α(t)
∂xw(t,x)

)
m(t,x)

)
=0,

w(τ+Δt,x)=0.

Note that w corresponds to the non-weighted value function Vi(t,X) whereas we are
now interested in the scaled value function V Δt

i (τ,Y ). The difference between Vi and
V Δt
i is simply a scaling of Δtαi and hi by

1
Δt . Therefore, an Euler backwards in time

discretization of the meanfield equation in (w,m) corresponding to V Δt
i reads

w(τ+Δt)−w(τ,x)+Δt ∂x (w(τ+Δt,x))f(m(τ+Δt,x))

− Δt

2α(τ+Δt)
(∂xw(τ+Δt,x))2=−Δt

h(x,m(τ+Δt,x))

Δt
.

Hence, we obtain

w(τ,x)=h(x,m(t,x))+O(Δt). (3.26)

Substituting this relation in the equation for m we obtain the MPC meanfield equation
for the running cost V Δt

i as

∂tm(t,x)+∂x

((
f(m(t,x))− 1

α(t)
∂xh(x,m(t,x))

)
m(t,x)

)
=0. (3.27)
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This equation is precisely the same as we had obtained for the controlled dynamics using
the best-reply strategy derived in the previous section and given by equation (2.13).

Remark 3.3. The best-reply strategy for a meanfield game corresponds therefore
to considering at each time τ an objective function measuring only the costs for a
small next time step. Those costs may depend on the optimal choices of the other
agents. However, for a small time horizon the derivative of the running costs (i.e. h)
is a sufficient approximation to the otherwise intractable solution to the full system of
meanfield equations (3.23)-(3.24).

We summarize the findings in the following Proposition.

Proposition 3.1. Assume that Assumptions (A) to (C) holds true and let Δt>0
be given. Denote by f(m) and h(x,m) the meanfield limit for N→∞ of f(X) and
h(X), respectively. Assume that m : [0,T ]×R→R be such that m(t, ·)∈P(R) and fulfill
equation

∂tm(t,x)+∂x

((
f(m(t,x))− 1

α(t)
∂xh(x,m(t,x))

)
m(t,x)

)
=0. (3.28)

and let

w(t,x)=h(t,x).

Then, for any t∈ [0,T ] and up to an error of order O(Δt) the function W : [t,t+Δt]×
R×P(R)→R implicitly defined by

W(s,x,m(t,x))=w(s,x), x∈R,s∈ [t,t+Δt],

is a solution to the meanfield equation

∂sW(s,x,m)+〈∂mW(s,x,m),f(m)− 1

α(s)
∂xW(s,x,m)〉L2

m
+∂xW(s,x,m)f(m)

=−h(x,m)+
1

2α(s)
(∂xW(s,x,m))

2
,W(t+Δt,x,m)=0.

The meanfield equation is the formal limit for N→∞ of an N particle game on the
time interval (t,t+Δt) and described by equation (2.1) for i=1, . . . ,N, i.e.,

d

ds
xi(s)=fi(X(s))+ui(s),

ui(s)= argmin u:[t,t+Δt]→R

1

Δt

∫ t+Δt

t

(
Δtαi(s)

2
u2(r)+hi(X(r))

)
dr.

A solution to the associated ith HJB equations for Vi : [t,t+Δt]×RN→R are given
by Vi(t,X) :=W(s,xi,m

N
X−i

) for i=1, . . . ,N, and the optimal control is u∗
i (s)=

− 1
αi(s)

∂xi
Vi(s,X(s)).

The meanfield equation (3.28) coincides with the formal meanfield equation obtained
using the best-reply strategy (2.13).

4. Technical details
This section includes results related to the meanfield limit of particle systems and

shows the necessity of the requirements Assumptions (A) and (C). We collect some
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results of [16] for convenience. The Kantorowich–Rubenstein distance d1(μ,ν) for mea-
sures μ,ν ∈P(Q) is given defined by

d1(μ,ν) :=sup{
∫

φd(μ−ν) :φ :Q→R,φ 1 - Lipschitz }. (4.1)

Theorem 4.1 (Theorem 2.1 [16]). Let QN be a compact subset of RN . Con-
sider a sequence of functions (uN )∞N=1 with uN :QN→R. Assume that each uN (X)=
uN (x1, . . . ,xN ) is a symmetric function in all variables, i.e.,

uN (X)=uN (xσ(1), . . . ,xσ(N)),

for any permutation σ on {1, . . . ,N}. Denote by d1 the Kantorowich–Rubenstein dis-
tance on the space of probability measures P(Q) and let ω be a modulus of continuity
independent of N . Assume that the sequence is uniformly bounded ‖uN‖L∞(QN )≤C.

Further assume that for all X,Y ∈QN and all N we have

|uN (X)−uN (Y )|≤ω(d1(m
N
X ,mN

Y )),

where mN
ξ ∈P(Q) is defined by mN

ξ (x)= 1
N

N∑
i=1

δ(x−ξi).

Then there exists a subsequence (uNk
)k of (uN )N and a continuous map U :P(Q)→

R such that

lim
k→∞

sup
X∈RN

|uNk
(X)−U(mNk

X )|=0. (4.2)

An extension is found in [8, Theorem 4.1]. As toy example consider uN (X)=

1
N

N∑
i=1

φ(xi). If φ :R→R is compactly supported, bounded and |φ′(ξ)|≤C for all ξ∈R,
then the assumptions of the previous theorem are fulfilled. Note that the assumption on
φ implies that for each i we have |∂xiuN (X)|≤ C

N for all X and all N. This condition im-
plies the estimate on uN . The corresponding limit is given by the function U :P(R)→R
defined by U(m)=

∫
φdm. We have U(mN

X)=uN (X).
Derivatives in the space of measures are described for example in [3]. They may be

motivated by the following formal computation. Let ψ be a smooth function on R and
let y′(t)= c for t∈ (a,b) and y(a)=x. We denote by a subindex t=a the evaluation at
t=a of the corresponding expression and by a prime the derivative of ψ. Then,

cψ′(x)=
∫

ψ′(z)cδ(x−z)dz=

(∫
ψ′(z)cδ(y(t)−z)dz

)
|t=a=

(∫
ψ∂z (cδ(y(t)−z))

)
|t=a,

cψ′(x)=
(

d

dt
ψ(y(t))

)
|t=a=

(
d

dt

∫
ψ(z)δ(y(t)−z)dz

)
|t=a.

Therefore, we may write

∂tδ(y(t)−z)+∂z (c δ(y(t)−z))=0,

provided that y′(t)= c. Further, δ(y(t)−z)=y(t)#δ(x−z) where # is the push for-
ward operator, see below. Hence, for the family of measures δ(y(t)−z) the previous
computation lead to a notion of derivatives. This can be formalized to a calculus for
derivatives in measure space and we summarize in the following more general results
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from [3, Chapter II.8]. We consider the space of probability measures Pp(R) [3, eequa-
tionquation (5.1.22)]:

Pp(R)=

{
μ∈P(R) :

∫
|x− x̄|pdμ(x)<∞ for some x̄∈R

}
.

Let Pp(R) be equipped with the Wasserstein distance Wp(μ,ν) [3, Chapter 7.1.1]. In the
case p=1 and for bounded measures μ,ν this distance is equivalent to d1(ν,μ) defined
in equation (4.1). For the case p=2 we refer to [5] for a different characterization.

We consider absolutely continuous curves m : (a,b)→Pp(R). The curve m is called
absolutely continuous if there exists a function M ∈L1(a,b) such that for all a≤s<t≤ b
we have

Wp(m(s),m(t))≤
∫ t

s

M(ξ)dξ, (4.3)

see [3, Definition 1.1.1]. For an absolutely continuous curve m : (a,b)→Pp(R), i.e.,
m(t)∈Pp(R), and p>1 there exists a vector field v : (a,b)×R→R with v(t)∈Lp(R;m(t))
a.e. t∈ (a,b) such that the continuity equation

∂tm(t,x)+∂x (v(t,x)m(t,x))=0, (4.4)

holds in a distributional sense. Further, ‖v(t)‖Lp(R;m(t))≤|m′|(t) a.e. in t. Here, t→
|m′|(t) for t∈ (a,b) is the metric derivative of the curve m. The precise statement is
given in [3, Theorem 8.3.1] and the metric derivative is given in [3, Theorem 1.1.2] by

|m′|(t) := lim
s→t

Wp(m(s),m(t))

|s− t| . (4.5)

The limit exists a.e. in t, provided that m is absolutely continuous (4.3). We have
|m′|(t)≤M(t) a.e. for each function M fulfilling equation (4.3), see [3, Chapter 1].
Also, the converse result holds true: If m fulfills in a weak sense equation (4.4) for
some v∈L1(a,b;Lp(R;m(·)), then m is absolutely continuous. Furthermore, solutions
to equation (4.4) can be represented using the methods of characteristics, see [3, Lemma
8.1.6, Proposition 8.1.8]. Under suitable assumptions on m and v we have that a weak
solution to equation (4.4) is

m(t, ·)=X(t;a, ·)#m(a, ·)∀t∈ [a,b], (4.6)

provided that X(t) solves characteristic system for every x∈R and every s∈ [a,b] :
X(s;s,x)=x and ∂tX(t;s,x)=v(t,X(t;s,x)). (4.7)

Here, (s,x) is the initial position of the characteristic in phase space and # is the
push forward operator, i.e., if applied to the set {x} we have m(t,{X(t;a,x)})=
m(a,{X(a;a,x)})=m(a,{x}). equation (4.4) may also be viewed as the directional
derivative of the family of measures m(t, ·) in direction v.

In Section 3 we need to discuss a term of the type
N∑
j=1

c(xj)∂xjf(x1, . . . ,xN ) for a

symmetric function f. Now, consider a family of paths mj : (a,b)→P(R) generated by
mj(t,z)=yj(t)#δ(xj−z) where yj solves the characteristic equation y′j(t)= c(yj(t)) and

yj(a)=xj . Let m
N
Y (t,z) := 1

N

N∑
j=1

δ(yj(t)−z). We have then

∂tm
N
Y (t,x)=−∂x

(
c(x)mN

Y (t,x)
)
.
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If we assume that f fulfills the assumption of Theorem 4.1, then, there exists:P(R)→R
and then f(y1(t), . . . ,yN (t))=fN (mN

Y )∼ f(mN
Y ). The following computation similar to

the motivation shows the expression of the unknown term for large N :

N∑
j=1

c(xj)∂xj
f(x1, . . . ,xN )=

d

dt
f(y1(t), . . . ,yj(t), . . . ,yN (t))|t=a (4.8)

=
d

dt
fN (mN

Y (t))|t=a∼
d

dt
f(mN

Y (t))|t=a. (4.9)

In order to make the link with the theory developed in [16], we note that the last
derivative at m=mN

Y can be interpreted as

d

dt
f(mN

Y (t))|t=a= 〈∂mf(m),c〉L2
m
,

with L2
m the space of square integrable functions with respect to the measure m. This

formula can either be seen as the definition of ∂mf(m) if one follows the approach of [3]
(which is the route taken here) or as a consequence of its definition if one follows the
approach of [16].
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