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STEADY SOLUTIONS TO VISCOUS SHALLOW WATER EQUATIONS.
THE CASE OF HEAVY WATER.∗

ŠIMON AXMANN† , PIOTR BOGUS�LAW MUCHA‡ , AND MILAN POKORNÝ§

Abstract. In this note, we show the existence of regular solutions to the stationary version of the
Navier–Stokes system for compressible fluids with a density dependent viscosity, known as the shallow
water equations. For arbitrary large forcing we are able to construct a solution, provided the total mass
is sufficiently large. The main mathematical part is located in the construction of solutions. Uniqueness
is impossible to obtain, since the gradient of the velocity is of magnitude of the force. The investigation
is connected to the corresponding singular limit as Mach number goes to zero and methods for weak
solutions to the compressible Navier–Stokes system.

Keywords. steady compressible Navier–Stokes system; shallow water equation; low Mach number
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1. Introduction and the main result
The subject of the paper is the following steady version of the Navier–Stokes system

for compressible fluid

div(�u)=0, (1.1)

div(�u⊗u)=divT+�F, (1.2)

where � is density, u the velocity field, F the specific external force, and the stress tensor
T(�,∇u)=S(�,∇u)−p(�)I with pressure p(�)=�γ , and the viscous stress S satisfying
the Stokes law for the Newtonian fluid

S(�,∇u)=μ(�)
(
∇u+∇Tu

)
+λ(�)divuI,

with the viscosity coefficients and pressure (some remarks to a more general situation
will be given at the end of this section)

μ(�)=�, λ(�)=0, p(�)=�γ .

We denote the symmetric part of the velocity gradient by D(u)= 1
2

(
∇u+∇Tu

)
. For the

two dimensional equations and γ=2 the model coincides with the well known shallow
water equations. However, we concentrate on the three dimensional version of the
system with general γ >1. The system is supplemented with the slip boundary condition
for the velocity

u ·n=0, (1.3)
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n ·S(�,∇u) ·τ k+fu ·τ k=0 at ∂Ω, (1.4)

where τ k, k=1,2 are two linearly independent tangent vectors to ∂Ω, n denotes the
normal vector and the constant f is the non-negative friction coefficient. Furthermore,
we assume the total mass is prescribed,∫

Ω

� dx= |Ω|m, (1.5)

with m>0, a given number. Domain Ω is assumed to be bounded, three-dimensional
with a smooth, say C2, boundary.

Our goal is to construct a regular solution of class (u,�)∈W 2,p(Ω)×W 1,p(Ω) for
arbitrary, possibly large, external force F, provided the total mass is large enough.
The slip boundary conditions allow to use the Helmholtz decomposition and effectively
use the information carried by the effective viscous flux. Here we meet the theory
of weak solutions to the compressible Navier–Stokes system and approaches from [19,
20]. The a priori estimate is relatively easy to get, but the main difficulty lies in
the construction of the solutions. Since the solutions are essentially large, we have to
modify standard applications of the Schauder fixed point theory. Our main theorem
can be compared to results of Choe and Jin [5] (see also [8] for the heat-conducting
case). Authors study there the low Mach number problem for the steady system with
Dirichlet boundary conditions. Working in the Hm framework, they obtain also large
solutions as a perturbation of corresponding incompressible flows. The statement of the
problems (our and from [5]) are similar for γ=2, but in the case of γ∈ (1,2) we obtain
essentially different asymptotics of the system.

Our main result reads as follows.

Theorem 1.1. Let γ >1. Suppose that Ω is a smooth bounded domain in R3, which
is not axially symmetric, F∈Lp(Ω) for some p∈ (3,6) and m is sufficiently large with
respect to the norm of F. Then there exists at least one strong solution to the Navier–
Stokes equations (1.1)–(1.5) in the class (�,u)∈W 1,p(Ω)×W 2,p(Ω).

First, let us note the result can be proved in the two dimensional case, too. The
methods and estimates are the same (coefficients are slightly different, but considera-
tions are easier). Thus we leave this case. We could also deal with the axially symmetric
domain Ω; however, we would be required to put several artificial and technical assump-
tions.

The most important case γ=2 is just the model of shallow water. Due to the
structure of the equations the system is related to the low Mach number limit [3, 4].
Concerning the known existence results of steady non-constant solutions near equilib-
rium, we refer to M. Padula [21], H. Beirão da Veiga [2] and R. Farwig [9, 10], see also
T. Piasecki [22]. The corresponding low Mach number limit is extensively studied as
well [1, 7, 11].

Now, we perform a formal analysis of our system. Provided the total mass is large,
we expect that the density can be considered in the following form

�=m+r, with

∫
Ω

r dx=0.

Our analysis will be based on this assumption. Provided m dominates r, we meet the
titled case of heavy (large density) fluids. However, as we will see, this restriction does
not limit the magnitude of the gradient of the velocity. Hence, for large forces we
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obtain turbulent flows, thus any uniqueness property is not possible to reach. Using
equations (1.1)–(1.2) and the form of S, we restate the system as follows

mdivu+u ·∇r+rdivu=0, (1.6)

(m+r)u ·∇u−mΔu−m∇divu+γ(m+r)γ−1∇r=2D(u)∇r+rΔu+r∇divu+�F.
(1.7)

Formally, norms of solutions are essentially smaller than m, the problem transforms into
the following one

divu=o(m), (1.8)

u ·∇u−Δu−∇divu+γmγ−2∇r=F+o(m), (1.9)

where o(m)→0 as m→∞ in suitable norms. Here we see that the case γ=2, which
corresponds to the low Mach number limit, is distinguished among all cases; the left-
hand side is independent of m. In the case γ∈ (1,2) the norms of constructed density
depend strongly on m. This picture illustrates the key difference to results from [5]. The
structure of system (1.8)–(1.9) is more complex and the linearization strongly depends
on parameter m.

We skipped a possible generalization of the result in the case

μ(�)∼�L for L>1, and/or λ(�)∼μ(�).

Then, looking at our formal asymptotics (1.8)–(1.9), we would obtain on the left-hand
side of equation (1.9)

m1−Lu ·∇u−Δu−∇divu

which implies that the convective term is marginalized and we arrive at the case of
small solutions with obvious uniqueness, which is not our aim. Similarly, the proof for
λ(�)∼μ(�) follows the same lines as for λ(�)≡0. The additional terms behave as the
terms we deal with for μ(�).

Within the paper we use the standard notation. By ‖·‖m,p we denote the norm
of the Sobolev space Wm,p(Ω) defined over domain Ω for m∈N, p∈ [1,∞]. Norms of
functionals and of traces are displayed by their full symbols.

2. A priori estimates
In this section we construct the a priori estimate, which determines the class of

regularity of our sought solutions. Assume

�=m+r,

where
∫
Ω
r dx=0 and 1

|Ω|
∫
Ω
� dx=m, with m large enough. For p>3 we define the

following quantity

Ξ=mγ−2‖r‖1,p+‖u‖2,p (2.1)

and consider solutions for which

m�Ξ+‖F‖p . (2.2)

System (1.1)–(1.2) can be then rewritten as follows

mdivu+u ·∇r+rdivu=0, (2.3)
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(m+r)u ·∇u−mΔu+∇p(m+r)=2D(u)∇r+rΔu+r∇divu+�F. (2.4)

The basic energy estimate reads∫
Ω

2m |D(u)|2dx+
∫
∂Ω

f |u|2dS=

∫
Ω

�F ·udx−
∫
Ω

2r |D(u)|2dx,

hence if we further assume m>2‖r‖∞ (see (2.2)), we obtain, due to Korn’s inequality,

‖u‖1,2≤C ‖F‖6/5 . (2.5)

Note that if f =0, the assumption that the domain can not be axially symmetric is
needed for Korn’s inequality to hold [12, 13]. Further, we test the momentum equation
with a function −Φ, Φ=B[r], where B∼div−1 denotes the Bogovskii operator [6],
accordingly we have ‖Φ‖6≤C ‖∇Φ‖2≤C ‖r‖2. This yields

(γmγ−1−‖r‖∞)‖r‖22 ≤Cm

(
‖∇u‖2‖∇Φ‖2+‖u‖3‖∇u‖2‖Φ‖6+‖F‖6/5‖Φ‖6

)
,

hence using Young’s inequality and inequality (2.5)

mγ−2‖r‖22≤
C

mγ−2

(
‖F‖46/5+‖F‖

2
6/5

)
.

In order to recover the effective viscous flux, we apply the Helmholtz decomposition
for functions in Lp(Ω) with values in R3. Linear operators read

P∇ :Lp(Ω)→W 1,p(Ω) and PH :Lp(Ω)→Lp
div(Ω) (2.6)

with the properties g=PH(g)+∇P∇(g), divg=ΔP∇(g), and n ·PH(g)=0 on ∂Ω. We
estimate the solenoidal and gradient part of the momentum equation separately.

First, applying the curl-operator on equation (2.4) yields for ω=curlu

−mΔω= curl
(
−�u ·∇u+div

(
2rD(u)

)
+�F

)
in Ω

with the boundary conditions

divω= 0,
ω ·τ 1= (f/(m+r)−2χ2)u ·τ 2,
ω ·τ 2= (2χ1−f/(m+r))u ·τ 2

⎫⎬⎭ on ∂Ω,

with χi denoting the curvatures corresponding to the directions τ i. The form of bound-
ary conditions in the above system comes from features of the slip boundary rela-
tions [13, 16]. Thus, according to the elliptic regularity theory (see also [23])

m‖ω‖1,p≤C
(∥∥curl(−�u ·∇u+div

(
2rD(u)

)
+�F

)∥∥
(W 1,p′ (Ω))∗+m‖u‖

W
1− 1

p
,p
(∂Ω)

)
,

where ‖u‖
W

1− 1
p
,p
(∂Ω)

≤C ‖u‖W 1,p(Ω) and (W 1,p′(Ω))∗ denotes the dual space to space

W 1,p′
0 (Ω). Further, PHu satisfies the overdetermined system

curlPHu=ω in Ω,

divPHu=0 in Ω, (2.7)



ŠIMON AXMANN, PIOTR B. MUCHA, AND MILAN POKORNÝ 1389

PHu ·n=0 on ∂Ω,

yielding [15,24]
∥∥∇2PHu

∥∥
p
≤C ‖ω‖1,p . Thus,∥∥∇2PHu

∥∥
p
≤ 1

m
C
(
‖�u ·∇u‖p+‖∇u‖∞‖∇r‖p+‖r‖∞

∥∥∇2u
∥∥
p
+‖�F‖p+m‖∇u‖p

)
.

(2.8)
Similarly, the potential part of the momentum equation (2.4) reads1

p(�)−{p(�)}Ω−2mdivu=P∇
(
G+mΔPHu

)
,

where we put

G=−�u ·∇u+2div
(
rD(u)

)
+�F. (2.9)

In our considerations we keep in mind that P∇(Δu)=ΔP∇u+P∇(ΔPHu) and ΔP∇u=
divu.

We use the Taylor expansion, in order to observe

p(�)=(m+r)γ =mγ+γmγ−1r+
1

2
p′′(ξ)r2, (2.10)

where ξ lies between m and m+r, whence
∣∣p′′(ξ)r2∣∣≤Cmγ−2r2. Subtracting the aver-

age from equation (2.10) yields

p(�)−{p(�)}Ω=γmγ−1r+
1

2

(
p′′(ξ)r2−{p′′(ξ)r2}Ω

)
.

Then we combine

γmγ−1r−2mdivu+
1

2

(
p′′(ξ)r2−{p′′(ξ)r2}Ω

)
=P∇

(
G+mΔPHu

)
(2.11)

with the continuity equation

mdivu+u ·∇r+rdivu=0,

in order to get

γmγ−1r+2∇r ·u=−2rdivu+P∇

(
G+mΔPHu

)
− 1

2

(
p′′(ξ)r2−{p′′(ξ)r2}Ω

)
. (2.12)

Differentiating equation (2.12), we obtain

γmγ−1∇r+2u ·∇∇r=−2∇rdivu−2r∇divu−2∇u∇r− 1

2
∇
(
p′′(ξ)r2

)
+∇P∇

(
G+mΔPHu

)
. (2.13)

Note that P∇ is continuous from Lp to W 1,p, so ∇P∇ is actually a zero order operator.
To obtain from equation (2.13) the required information about ∇r, we test the k-th

component of equation (2.13) by ∂kr |∂kr|p−2
. The second term on the left-hand side

can be then rewritten using integration by parts as∫
Ω

u ·∇∂kr |∂kr|p−2
∂krdx=−

1

p

∫
Ω

divu |∂kr|pdx;

1We denote {g}Ω= 1
|Ω|

∫
Ωgdx.



1390 STEADY SOLUTIONS TO VISCOUS SHALLOW WATER EQUATIONS∣∣∇(p′′(ξ)r2)∣∣≤Cmγ−2 |r| |∇r| . Thus, we get due to the Poincaré inequality and the fact
that m�1

mγ−1‖r‖1,p≤C
(
‖∇r‖p‖∇u‖1,p+‖G‖p+m

∥∥∇2PHu
∥∥
p

)
. (2.14)

The first term on the right-hand side can be put to the left-hand side for Ξ�mγ−1.
Moreover, using (2.11), we bound the potential part of the velocity. Since

2m∇divu=γmγ−1∇r+
1

2
∇
(
p′′(ξ)r2−{p′′(ξ)r2}Ω

)
−∇P∇

(
G+mΔPHu

)
,

we obtain for the quantity ∇divu similar estimate, namely

m‖∇divu‖p≤C
(
mγ−1‖∇r‖p+‖G‖p+m

∥∥∇2PHu
∥∥
p

)
. (2.15)

Putting together inequalities (2.8), (2.14) and (2.15) yields

Ξ≤ C

m
‖G‖p+C ‖∇u‖p .

By equation (2.9) it is easy to see that the most restrictive term is the convective term.
We estimate it for p∈ (3,6] with interpolation and energy inequality (2.5) as follows

‖�u ·∇u‖p≤‖�‖∞‖u‖6‖∇u‖ 6p
6−p

≤
(
m+‖r‖∞

)
‖u‖6‖∇u‖

6−p
3p

2 ‖∇u‖
4p−6
3p∞

≤Cm‖F‖
2p+6
3p

6/5

∥∥∇2u
∥∥ 4p−6

3p

p
.

To sum up, we get for p<6

Ξ≤C
(
‖F‖p+‖F‖

2p+6
6−p

6/5

)
.

Thus, under the assumption γ >1, we obtain the a priori estimate

‖∇u‖1,p+mγ−2‖r‖1,p=Ξ≤CF. (2.16)

The basic idea is to take m sufficiently larger than the right-hand side of inequal-
ity (2.16), id est

CF�min(mγ−1,m). (2.17)

Finally, we look back on the continuity equation (2.3), and conclude from (2.16) that

‖divu‖p≤2
C2

F

mγ−1
.

It expresses how far we are from the incompressible flow. Note that as γ→1+, condition
(2.17) requires larger and larger m. In particular, γ=1 would demand small external
force.
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3. Approximation
Let us denote the classes of regularity where the solutions are searched for

Mr(m)=

{
f ∈W 1,p(Ω),

∫
Ω

f dx=0,mγ−2(‖f‖∞+‖∇f‖p)≤CF

}
,

Mu(m)=
{
f ∈W 2,p(Ω,R3), f ·n=0 on ∂Ω,

‖∇f‖2≤E, ‖∇f‖∞+‖f‖∞+
∥∥∇2f

∥∥
p
≤CF, m

γ−1‖divf‖p≤2C2
F

}
,

where CF is from inequality (3.36), and E represents the upper bound for the kinetic
energy, see inequality (3.32). However, Mu(m) is not a compact subset of W 2,p(Ω).
Therefore, in order to perform in our last step a Schauder fixed point argument, we
introduce additionally another set, which is a closed subset of W 1,∞(Ω), Mu(m)⊂
MdivU(m), namely

MdivU(m)=
{
f ∈W 1,∞(Ω,R3), f ·n=0 on ∂Ω,∥∥∇f

∥∥
2
≤E,

∥∥∇f
∥∥
∞+‖f‖∞≤CF, m

γ−1
∥∥divf∥∥

p
≤2C2

F

}
.

Our general strategy is as follows. We denote �̃=m+ r̃. First, we fix U∈MdivU(m),
and r̃∈Mr(m) and use the Leray–Schauder, as well as the Banach fixed point theorem
to show the existence of a solution (r,u)∈Mr(m)×Mu(m) to the following system

mdivu+div(ru)=0, (3.1)

�̃U ·∇u−div
(
2�̃D(u)

)
+γmγ−1∇r+∇Rm(r̃)= �̃F in Ω, (3.2)

u ·n=0, n ·2�̃D(u) ·τ k+fu ·τ k=0 on ∂Ω, (3.3)

where, see equation (2.10),

Rm(r̃)=p(m+ r̃)−γmγ−1r̃−mγ , and |Rm(r̃)|≤Cmγ−2r̃2.

The uniqueness for problem (3.1)–(3.3) will be a consequence of the construction. Then,
fixing U∈MdivU(m), we show via the Banach contraction principle that there exists a
solution (r,u)∈Mr(m)×Mu(m) to the system

mdivu+div(ru)=0, (3.4)

(m+r)U ·∇u−div
(
2(m+r)D(u)

)
+γmγ−1∇r+∇Rm(r)=(m+r)F (3.5)

with boundary conditions (1.3)–(1.4). Finally, we show the existence of a fixed point of
the mapping T (U)=u in Mu(m) by means of the Schauder fixed point theorem.

We start with the following proposition concerning problem (3.1)–(3.3).

Proposition 3.1. Suppose U∈MdivU(m) and r̃∈Mr(m) for m sufficiently large,
then there exists a solution (r,u) to problem (3.1)–(3.3) in the class Mr(m)×Mu(m).

Proof. First, for a given G∈Lp(Ω), ũ∈Mu(m) and h∈W 1− 1
p ,p(∂Ω) we study the

problem

mdivu+div(rũ)=0, (3.6)

−mΔu+γmγ−1∇r=G− �̃U ·∇u in Ω, (3.7)
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u ·n=0, (3.8)

n ·2mD(u) ·τ k+fu ·τ k=h on ∂Ω,

∫
Ω

rdx=0. (3.9)

Lemma 3.1. Given G∈Lp(Ω), ũ∈Mu(m) and h∈W 1− 1
p ,p(∂Ω), there exists a unique

solution to system (3.6)–(3.9) with r∈W 1,p(Ω), u∈W 2,p(Ω).

Proof. First note that the system is linear. We proceed in the following way. We
fix r∈W 1,2(Ω) and use elliptic regularization of the continuity equation in order to get
merely weak solution to the system with fully linearized continuity equation, then we
use the Leray–Schauder argument to obtain a solution to the system (3.6)–(3.9), and
finally improve the regularity using the method of decomposition.

For ε>0 and r∈W 1,2(Ω) we consider

−εΔr+εr+mdivu+div(rũ)=0, (3.10)

−mΔu+γmγ−1∇r+ �̃U ·∇u=G in Ω, (3.11)

u ·n=0, n ·∇r=0, (3.12)

n ·2mD(u) ·τ k+fu ·τ k=h on ∂Ω. (3.13)

It is a strictly elliptic problem, hence the existence of a unique solution follows from
the Lax–Milgram theorem; note that ‖div(�̃U)‖2�m, so the convective term is not
problematic. Further, using as test function for equation (3.10) the function γmγ−2r
and for equation (3.11) the function u, we get estimates

εmγ−2‖r‖21,2+m‖u‖21,2≤C(G,h,U,ũ, r̃,‖r‖1,2)

with C independent of ε, and from equation (3.10) we conclude that actually r∈
W 2,2(Ω). Therefore, we see that the mapping T : r �→ r defined through the prob-
lem (3.10)–(3.13) is a continuous and compact mapping on W 1,2(Ω) for any ε>0. To
apply the Leray–Schauder fixed point theorem, it remains to show that the possible
fixed points

�T (r)= r (3.14)

are bounded in W 1,2(Ω) independently of �∈ [0,1]. Relation (3.14) is in fact nothing but

−εΔr+εr+�mdivu+�div(rũ)=0, (3.15)

−�mΔu+γmγ−1∇r+��̃U ·∇u=�G in Ω, (3.16)

u ·n=0, n ·∇r=0, (3.17)

n ·2mD(u) ·τ k+fu ·τ k=h on ∂Ω. (3.18)

We test the second equation by �u and the first one by γmγ−2r concluding

�2m‖u‖21,2+εmγ−2γ‖∇r‖22+εmγ−2γ‖r‖22
≤ �2(‖G‖6/5‖u‖6+‖h‖W 1/2,2(∂Ω)‖u‖L2(∂Ω))+�mγ−2γ‖div ũ‖∞‖r‖

2
2 . (3.19)

In order to close the estimates, the last term is estimated by the Bogovskii operator.
This reads after using Young’s inequality

γmγ−1‖r‖22≤C�2
(
m3−γ ‖∇u‖22+m3−γ ‖U‖23‖∇u‖22+m1−γ ‖G‖26/5

)
. (3.20)
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Incorporating this into inequality (3.19), we obtain

�2m‖u‖21,2+εmγ−2‖∇r‖22+εmγ−2‖r‖22

≤C

(
�2

m
(‖G‖26/5+‖h‖W 1/2,2(∂Ω))+

�3

m
‖div ũ‖∞

(‖∇u‖22
mγ−3

(1+E2)+
‖G‖26/5
mγ−1

))

and consequently, since E2
∥∥∇2ũ

∥∥
p
�mγ−1,

εmγ−2‖∇r‖22+εmγ−2‖r‖22≤C
(
‖G‖6/5 ,‖h‖W 1/2,2(∂Ω)

)
, (3.21)

where C is independent of ε and �. Thus, we get for given ε>0 a fixed point of T , which
satisfies estimate (3.21), and then (3.20) with �=1, so we pass to the limit with ε→0+

to get a weak solution to the problem (3.6)–(3.9).

To improve the regularity of the solution we use the method of decomposition of
Novotný and Padula [19]. Here we use a bootstrap method, first we perform below
estimates for p=2, having the weak solution, and then we are allowed to do it for p>3.
First, we deduce by applying curl on equation (3.7) that ω fulfills

−mΔω= curl
(
−�̃U ·∇u+G

)
in Ω,

divω=0,

ω ·τ 1=−
(
2χ2−

f

m

)
u ·τ 2− h

m
,

ω ·τ 2=
(
2χ1−

f

m

)
u ·τ 1+

h

m
on ∂Ω.

Next, the vorticity satisfies the following bound

m‖ω‖1,p≤C
(
‖curl(−�̃U ·∇u+G)‖(W 1,p′ (Ω))∗+m‖u‖

W
1− 1

p
,p
(∂Ω)

+‖h‖
W

1− 1
p
,p
(∂Ω)

)
.

As PHu satisfies the system (2.7), we get that

m
∥∥∇2PHu

∥∥
p
≤C

(
m‖∇u‖p+‖G‖p+m‖u‖

W
1− 1

p
,p
(∂Ω)

+‖h‖
W

1− 1
p
,p
(∂Ω)

)
.

Further, using the well-known vector identity Δu=∇divu−curl(curlu), we observe
that the linearized effective viscous flux

P =γmγ−2r−2divu (3.22)

solves

m∇P =G− �̃U ·∇u−mcurlω,

∫
Ω

Pdx=0,

with the estimate

m‖P‖1,p≤C
(
‖G‖p+m‖∇u‖p+m‖curlω‖p

)
.

Next, combining the continuity equation (3.6) together with relation (3.22), we observe
that the variation of the density r actually satisfies the stationary transport equation

r+div
( 2rũ

γmγ−1

)
=

P

γmγ−2
in Ω,

∫
Ω

rdx=0. (3.23)
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Noting that

‖ũ‖2,p
mγ−1

≤α (3.24)

for some α sufficiently small and ũ ·n=0 on ∂Ω, we can deduce that the unique solution
r of problem (3.23) satisfies

mγ−2‖r‖W 1,p(Ω)≤C ‖P‖W 1,p(Ω) ,

see [17, Theorem 5.1].
Finally, the definition of Helmholtz decomposition yields that actually divu=

ΔP∇u, hence according to equation (3.22) the potential part of the velocity field P∇u
satisfies the Neumann problem

−2ΔP∇u=P −γmγ−2r in Ω,

∇P∇u ·n= 0 on ∂Ω,

providing by the standard elliptic theory the estimate

m‖∇P∇u‖2,p≤Cm
∥∥P −γmγ−2r

∥∥
1,p

.

Therefore, summing up the estimates above, we get that solution to the problem (3.6)–
(3.9) fulfils

m‖u‖W 2,p(Ω)+mγ−1‖r‖W 1,p(Ω)

≤C
(
m‖∇u‖Lp(Ω)+m‖u‖

W
1− 1

p
,p
(∂Ω)

+‖G‖Lp(Ω)+‖h‖W 1− 1
p
,p
(∂Ω)

)
.

The first two terms can be put to the left-hand side by means of interpolation with the
energy norm, while the rest is controlled, so we see that the solution has the proposed
regularity. This completes the proof of this lemma.

In order to finish the proof of Proposition 3.1 we find a fixed point of the mapping
ũ �→u defined through2

mdivu+div(rũ)=0, (3.25)

−div
(
2mD(u)

)
+γmγ−1∇r=div

(
2r̃D(ũ)

)
+∇Rm(r̃)+ �̃F− �̃U ·∇u in Ω, (3.26)

u ·n=0, (3.27)

n ·2mD(u) ·τ k+fu ·τ k=−n ·2r̃D(ũ) ·τ k on ∂Ω,

∫
Ω

rdx=0. (3.28)

The mapping is according to the previous lemma well-defined from W 2,p(Ω) to W 2,p(Ω).
We want to show that in fact it maps Mu(m) into itself and that it is a contraction.
For this purpose, we test the first equation with γmγ−2r, the second equation with u,
and sum up the resulting relations. We end up with∫

Ω

2m |D(u)|2dx+
∑
k=1,2

∫
∂Ω

f |u ·τ k|2dS=

∫
Ω

2r̃D(ũ) :D(u)dx

2Let us recall the notation 	̃=m+ r̃.
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+

∫
Ω

(
−�̃U ·∇|u|

2

2
− γmγ−2

2
r2div ũ+Rm(r̃)divu+ �̃F ·u

)
dx.

The first term on the right-hand side can be using the Hölder inequality controlled by
the left-hand side, while the convective term can be estimated∣∣∣∣∣

∫
Ω

div
(
(m+ r̃)U

) |u|2
2

dx

∣∣∣∣∣≤m

∫
Ω

|divU| |u|2dx+
∫
Ω

|∇r̃| |U| |u|2dx

≤C ‖u‖21,2
(
m‖divU‖p+‖∇r̃‖p‖U‖3

)
. (3.29)

The second last term on the right-hand side can be estimated by Young’s inequality∣∣∣∫
Ω

Rm(r̃)divudx
∣∣∣≤m

2
‖divu‖22+Cm2(γ−2)−1‖r̃‖2∞.

Thus, using the assumptions on r̃,U, especially C2
F�min(m,mγ−1)

m
∥∥∇u

∥∥2
2
≤C

(
mγ−2‖r‖22

∥∥div ũ∥∥∞+m
∥∥F∥∥2

6/5
+1

)
. (3.30)

In order to obtain the L2-estimate of the density, we test the momentum equation with
−Φ, Φ=B [r], so ‖∇Φ‖2≤C ‖r‖2 . This leads to

γmγ−1‖r‖22≤mγ−2‖r̃‖∞‖r̃‖2‖r‖2+2m‖∇u‖2‖∇Φ‖2+2‖r̃‖∞‖∇ũ‖2‖∇Φ‖2
+

∫
Ω

(
(m+ r̃)U ·∇u ·Φ−(m+ r̃)F ·Φ

)
dx

≤C
(
(mγ−2‖r̃‖2+‖∇ũ‖2)‖r̃‖∞+m‖∇u‖2+m‖U‖3‖∇u‖2+m‖F‖6/5

)
‖r‖2 ,

that is,

mγ−1‖r‖22≤C
(
mγ−3‖r̃‖2∞‖r̃‖

2
2+(1+E2)

(
m3−γ ‖F‖26/5+1+‖r‖22‖div ũ‖∞

))
.

Assuming mγ−1�E2CF, the last term can be put to the left-hand side, hence going
back to (3.30), we obtain that

∥∥∇u
∥∥2
2
≤C

((
m3(1−γ)+(1+E2)

(‖F‖26/5
mγ−1

+
1

m2

))
‖div ũ‖∞+‖F‖26/5+m−1

)
≤E2.

(3.31)
The last inequality is satisfied for properly chosen E and sufficiently large m, which will
be chosen later, keeping in mind constraint (3.31). Thus we have

‖∇u‖2≤E. (3.32)

Next, we show that Ξ≤CF for (r,u). Introduce

G̃=−�̃U ·∇u+2div(r̃D(ũ))+ �̃F,

where �̃= r̃+m. First, applying curl on equation (3.26) yields

−mΔω= curlG̃ in Ω,
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mω ·τ 1=− r̃ω̃ ·τ 1−
(
2mχ2−f

)
u ·τ 2−2r̃χ2ũ ·τ 2,

mω ·τ 2=− r̃ω̃ ·τ 2+
(
2mχ1−f

)
u ·τ 1+2r̃χ1ũ ·τ 1,

divω=0 on ∂Ω,

and since PHu satisfies the system (2.7), we conclude

m
∥∥∇2PHu

∥∥
p
≤C

(
‖r̃ω̃‖1,p+

∥∥G̃∥∥
p
+m‖u‖1,p+‖r̃ũ‖1,p

)
. (3.33)

Similarly, the potential part of the momentum equation (3.26) reads

γmγ−1r+Rm(r̃)−{Rm(r̃)}Ω−2mdivu=P∇
(
mΔPHu+ G̃

)
(3.34)

which combined with the continuity equation

mdivu+div(rũ)=0

yields

γmγ−1r+Rm(r̃)−{Rm(r̃)}Ω+2∇r · ũ=−2rdiv ũ+P∇
(
mΔPHu+ G̃

)
.

After differentiating,

γmγ−1∇r+2ũ ·∇∇r=−2∇rdiv ũ−2r∇div ũ−2∇ũ∇r

−∇Rm(r̃)+∇P∇
(
mΔPHu+ G̃

)
. (3.35)

Using the same trick as in the a priori estimates part (for justification of the formal
computation, see e.g. [18]),∫

Ω

ũ ·∇∂kr |∂kr|p−2
∂krdx=−

1

p

∫
Ω

div ũ |∂kr|pdx,

we obtain

mγ−1‖∇r‖p≤C
(
‖∇ũ‖∞‖∇r‖p+‖r‖∞

∥∥∇div ũ
∥∥
p
+‖∇r‖p

∥∥div ũ∥∥∞
+‖∇Rm(r̃)‖p+

∥∥G̃∥∥
p
+m

∥∥∇2PHu
∥∥
p

)
,

hence since mγ−1�Ξ,
∫
Ω
rdx=0,

‖∇r‖p≤
C

mγ−1

(
‖∇Rm(r̃)‖p+

∥∥G̃∥∥
p
+m

∥∥∇2PHu
∥∥
p

)
.

Moreover, using (3.34), we bound the potential part of the velocity. As

2m∇divu=γmγ−1∇r+∇Rm(r̃)−∇P∇
(
mΔPHu+ G̃

)
,

due to the fact that ‖∇2P∇u‖1,p≤C‖divu‖1,p≤ C̃‖∇divu‖p, we obtain

Ξ≤ C

m

(
‖∇Rm(r̃)‖p+‖r̃ω̃‖1,p+

∥∥G̃∥∥
p
+m‖u‖1,p+‖r̃ũ‖1,p

)
.



ŠIMON AXMANN, PIOTR B. MUCHA, AND MILAN POKORNÝ 1397

According to C2
F�m, the only problematic term in G̃ is again the convective term. At

this point we use that U satisfies the energy inequality, so∥∥�̃U ·∇u
∥∥
p
≤ ‖�̃‖∞‖U‖6

∥∥∇u
∥∥

6p
6−p

≤
(
m+‖r̃‖∞

)
‖U‖6

∥∥∇u
∥∥ 6−p

3p

2

∥∥∇u
∥∥ 4p−6

3p

∞ ≤CmE
2p+6
3p Ξ

4p−6
3p .

Thus,

Ξ≤C
(
1+

∥∥F∥∥
p
+EΞ

4p−6
3p

∥∥F∥∥ 2p+6
3p

6/5

)
.

As 4p−6
3p <1 for p<6, we conclude finally

mγ−2
(
‖r‖1,p+‖r‖∞

)
+‖u‖2,p+‖∇u‖∞+‖u‖∞≤C

(
1+‖F‖p+‖F‖

2p+6
6−p

6/5 E
3p

6−p

)
,

(3.36)
where C is an absolute constant independent of the solution, provided Ξ�m. It is suf-
ficient to set m to be appropriately greater than the right-hand side of inequality (3.36)
— let us denote it by CF. Having in mind that restriction (3.31) has to be fulfilled, we
take

min(m,m
γ−1
4 )

α−1+15
>max

(
CF,C

2
F,CFE

2,C2
FE

2,C1,C2

)
·max(CP ,CK ,CE ,CB), (3.37)

where C1 is from (3.42), C2 from (4.6), α represents the smallness constant in (3.24), and
CP , CK and CE denotes the constant from the Poincaré, Korn, embedding (W 1,p ↪→L∞)
inequality, respectively. The symbol CB stands for the constant induced by the Bogov-
skii operator. Looking back to the continuity equation, we conclude from inequal-

ity (3.36) that ‖divu‖p≤2
C2

F

mγ−1 .

Now let us prove that mapping ũ �→u is in fact a contraction. Indeed, differences
of two solutions V=u1−u2, R= r1−r2 corresponding to Ṽ= ũ1− ũ2 satisfy

mdivV+div(Rũ1)+div(r2Ṽ)=0, (3.38)

�̃U ·∇V−2mdiv
(
D(V)

)
−div

(
2r̃D(Ṽ)

)
+γmγ−1∇R=0 in Ω, (3.39)

V ·n= 0, n ·2mD(V) ·τ k+fV ·τ k=−n ·2r̃D(Ṽ) ·τ k on ∂Ω. (3.40)

Basic energy estimate reads

∫
Ω

2m |D(V)|2dx+
2∑

k=1

∫
∂Ω

f
∣∣V ·τ k

∣∣2dS=

∫
Ω

2r̃D(Ṽ) :D(V)dx

=

∫
Ω

(
−�̃U ·∇|V|

2

2
− γmγ−2

2
R2div ũ1+div(r2Ṽ)γmγ−2R

)
dx.

Further, using again estimate (3.29), we obtain

m‖∇V‖22≤C
(
mγ−2‖R‖22‖div ũ1‖∞+

‖r̃‖2∞
m

∥∥∇Ṽ
∥∥2
2
+mγ−2

∥∥div(r2Ṽ)
∥∥
2
‖R‖2

)
.

(3.41)
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Estimating the density using the Bogovskii operator leads to

γmγ−1‖R‖22≤2m‖∇V‖2‖∇Φ‖2+‖r̃‖∞
∥∥∇Ṽ

∥∥
2
‖∇Φ‖2+

∫
Ω

(
(m+ r̃)U ·∇V ·Φ

)
dx

≤C
(
m
∥∥∇V

∥∥
2
+‖r̃‖∞

∥∥∇Ṽ
∥∥
2
+m‖U‖3

∥∥∇V
∥∥
2

)
‖R‖2 ,

hence by Young’s inequality and (3.41)

mγ−1‖R‖22≤C
(
m3−γ ‖∇V‖22+

‖r̃‖2∞
∥∥∇Ṽ

∥∥2
2

mγ−1
+m3−γE2‖∇V‖22

)
≤C(1+E2)

(
‖R‖22‖div ũ1‖∞+

∥∥div(r2Ṽ)
∥∥
2
‖R‖2

)
+C

‖r̃‖2∞
mγ−1

∥∥∇Ṽ
∥∥2
2
.

As ‖div ũ1‖∞�mγ−1, the first term can be put to the left-hand side, so we get again
by Young’s inequality

mγ−1‖R‖22≤C

(
(1+E4)

∥∥div(r2Ṽ)
∥∥2
2

mγ−1
+
‖r̃‖2∞
mγ−1

∥∥∇Ṽ
∥∥2
2

)
.

Since
∥∥div(r2Ṽ)

∥∥
2
≤‖r2‖∞

∥∥∇Ṽ
∥∥
2
+‖∇r2‖3

∥∥Ṽ∥∥
6
, we conclude

mγ−1‖R‖2≤C(1+E2)CF

∥∥∇Ṽ
∥∥
2
.

Going back to inequality (3.41) we obtain almost final form of the desired estimate

m‖∇V‖22≤C
(
1+E2

)(C2
F

mγ

∥∥∇Ṽ
∥∥2
2
‖div ũ1‖∞+

C2
F

m

∥∥∇Ṽ
∥∥2
2

)
.

Therefore, for m sufficiently large, we write for some C1 which is independent of m,∥∥∇V
∥∥
2
≤ C1

m

∥∥∇Ṽ
∥∥
2
. (3.42)

Taking m>C1, we obtain that the mapping is contraction in the W 1,2-metric. Thus,
using the boundedness in Mu(m)⊂W 2,p(Ω) as well, Proposition 3.1 is proved.3

4. Elimination of the density linearization
Proposition 4.1. Suppose U∈Mu(m) for m sufficiently large, then there exists a
unique solution (r,u) to problem (3.4)–(3.5) with boundary conditions (1.3)–(1.4) in the
class Mr(m)×Mu(m).

Proof. We apply the Banach contraction principle on the mapping SU :Mr(m)→
Mr(m), defined as a solution operator to the following problem S(rn)= rn+1

mdivun+1+div(rn+1un+1)=0, (4.1)

3More precisely, we use the following simple consequence of standard Banach contraction argument
and weak compactness of reflexive spaces.

Theorem 3.1. Let X, Y be Banach spaces such that X is reflexive and continuously embedded into Y
(X ↪→Y ), let K⊂X be a non-empty, convex, bounded subset of X. Suppose further that T : K→K is
a contraction mapping in Y -metric, id est

‖T (u)−T (v)‖Y ≤κ‖u−v‖Y , ∀u,v∈K,

for some 0≤κ<1. Then T possesses a unique fixed point in K.
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(m+rn)U ·∇un+1−div
(
2(m+rn)D(un+1)

)
+γmγ−1∇rn+1+∇Rm(rn)=(m+rn)F,

(4.2)

with conditions

un+1 ·n=0,

n ·2(m+rn)D(un+1) ·τ k+fun+1 ·τ k=0 on ∂Ω,

∫
Ω

rn+1dx=0. (4.3)

The solvability of system (4.1)–(4.3) in Mr(m)×Mu(m) was proven in Proposition 3.1.
Thus, S indeed maps Mr(m) into itself. We show that S is contraction. Let us denote

u=un+1−un, r= rn+1−rn, r−= rn−rn−1,

then the difference (u,r) satisfies

mdivu+div(run+1)+div(rnu)=0

(m+rn)U ·∇u+r−U ·∇un−div[(2(m+rn)D(u))+(2r−D(un))]

+γmγ−1∇r+∇
(
Rm(rn)−Rm(rn−1)

)
=r−F in Ω,

u ·n=0,

n · [2(m+rn)D(u)+2r−D(un)] ·τ k+fu ·τ k=0 on ∂Ω. (4.4)

First, let us test the momentum equation of (4.4) by the difference u and the continuity
equation by γmγ−2r, this turns after usage of Hölder’s and Young’s inequalities into

m
∥∥∇u

∥∥2
2
≤C

(‖r−‖22
m

‖∇un‖2∞ (1+E2)+mγ−2‖rn+rn+1‖∞‖r−‖2‖divu‖2

+mγ−2
(
‖divun+1‖∞‖r‖

2
2+‖div(rnu)‖2‖r‖2

)
+
‖r−‖22‖F‖

2
3

m

)
.

The second term on the right-hand side can be put directly to the left-hand side, and
similarly we proceed with the other term containing u, this leads to

m
∥∥∇u

∥∥2
2
≤C

(‖r−‖22
m

‖∇un‖2∞ (1+E2)+mγ−2‖divun+1‖∞‖r‖
2
2

+m2γ−5(‖rn‖∞+‖rn+1‖∞)2‖‖r−‖22+
‖rn‖∞+‖∇rn‖3

m5−2γ
‖r‖22+

‖r−‖22‖F‖
2
3

m

)
. (4.5)

Further, using the Bogovskii type of estimates we obtain

mγ−1‖r‖22≤C
(
m‖U‖3‖∇u‖2+‖r−‖2‖U‖3‖∇un‖∞+m‖∇u‖2

+‖r−‖2‖∇un‖∞+mγ−2‖rn+rn+1‖∞‖r−‖2+‖r−‖2‖F‖3
)
‖r‖2

and by means of Young’s inequality

mγ−1‖r‖22≤C

(‖U‖23‖∇u‖22
mγ−3

+
‖r−‖22‖U‖

2
3‖∇un‖2∞

mγ−1
+
‖∇u‖22
mγ−3
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+
‖r−‖22‖∇un‖2∞

mγ−1
+
‖rn+rn+1‖2∞‖r−‖

2
2

m3−γ
+
‖r−‖22‖F‖

2
3

mγ−1

)
.

Next, using inequality (4.5)

mγ−1‖r‖22≤C(F)‖r−‖22
( 1

mγ−1
+

1

m

)
+(1+E2)

(
CF+2

CF

m

)
‖r‖22 .

The last term can be put to the left-hand side, while the rest is controlled, hence we
obtain

‖r‖22≤
C
(
‖F‖3

)
mγ−1

‖r−‖22=
C2

m
‖r−‖22 . (4.6)

The mapping is contraction for m>C2 and bounded in Mr(m)⊂W 1,p(Ω), so we obtain
a unique solution in Mu(m)×Mr(m) using the same type of contraction result as above.

5. Elimination of the velocity linearization
We now consider (3.4)–(3.5) with boundary conditions (1.3)–(1.4). The last step

consists in proving that the map T (U)=u possesses a fixed point. This will be proved
by applying the Schauder fixed point theorem. The previous propositions yield that
T maps MdivU(m) into Mu(m). Since Mu(m)⊂MdivU(m), MdivU(m) is a convex and
closed subset of W 1,∞(Ω) and Mu(m) is a compact subset of W 1,∞(Ω), it remains to
show that T is continuous on MdivU(m). Let us take U1,U2 and the corresponding
solutions (r1,u1) and (r2,u2). We would like to estimate r= r1−r2 and u=u1−u2 by
means of U=U1−U2. We have for k=1,2

mdivuk+div(rkuk)=0,

(m+rk)Uk ·∇uk−div
(
2(m+rk)D(uk)

)
+γmγ−1∇rk+∇Rm(rk)=(m+rk)F.

Taking the difference yields

mdivu+div(ru1)+div(r2u)=0,

(m+r1)U1 ·∇u+(m+r1)U ·∇u2+rU2 ·∇u2−div
[
2(m+r1)D(u)+(2rD(u2))

]
+γmγ−1∇r+∇

(
Rm(r1)−Rm(r2)

)
=rF.

Further

u ·n=0,

n · [2(m+r1)D(u)+2rD(u2)] ·τ k+fu ·τ k=0

on ∂Ω. The standard energy estimate reads

(m−‖r1‖∞)‖∇u‖22≤C
(
(m‖U‖3‖∇u2‖2+‖r‖2‖U2‖∞‖∇u2‖3)‖u‖6

+‖r‖2‖F‖3‖u‖6+‖r‖2‖∇u2‖∞‖∇u‖2+mγ−2‖divu1‖∞‖r‖
2
2

+mγ−2‖div(r2u)‖2‖r‖2
)
,

where we have used the fact that the first term coming from the convective term can
be rewritten as∫

Ω

(m+r1)U1 ·∇
|u|2
2

dx=−
∫
Ω

(
(m+r1)divU1

|u|2
2

+U1 ·∇r1
|u|2
2

)
dx,
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and pushed to the left-hand side, as well as the term from the nonlinear part of the
pressure. Thus, after systematic usage of Young’s inequality we end up with

m
∥∥∇u

∥∥2
2
≤C

(
m‖U‖23

∥∥∇u2

∥∥2
2
+
‖r‖22‖U2‖2∞

∥∥∇u2

∥∥2
3

m
+
‖r‖22

∥∥F∥∥2
3

m

+
‖r‖22

∥∥∇u2

∥∥2
∞

m
+mγ−2

∥∥divu1

∥∥
∞‖r‖

2
2+mγ−2

∥∥∇r2
∥∥
p

∥∥∇U
∥∥
2
‖r‖2

)
≤Cm

∥∥∇U
∥∥2
2
+Cmγ−2‖r‖22

(
C2

FE
2+1

)
. (5.1)

Next, we use as usually the test function Φ=B[r] in the momentum equation to get

mγ−1‖r‖22≤C
(
m‖U1‖3‖∇u‖2‖Φ‖6+m‖U‖3‖∇u2‖2‖Φ‖6+‖r‖2‖F‖3‖Φ‖6

+‖r‖2‖U2‖∞‖∇u2‖3‖Φ‖6+2m‖∇u‖2‖∇Φ‖2+‖r‖2‖∇u2‖∞‖∇Φ‖2
)

and using C2
F,‖F‖3�mγ−1

mγ−1‖r‖22≤Cm3−γ
(
‖U1‖23‖∇u‖22+‖U‖

2
3‖∇u2‖22 +

∥∥∇u
∥∥2
2

)
. (5.2)

Combining inequalities (5.1) and (5.2) yields, using once more that C2
FE

2�m

m‖u‖21,2≤C(m,F)
∥∥U∥∥2

1,2
.

Moreover, we can use the higher order estimate following from the previous construction

m‖u‖2W 2,p(Ω)≤C(m,F)
(
‖U1‖2W 1,∞(Ω)+‖U2‖2W 1,∞(Ω)+1

)
in order to interpolate

‖u‖1,∞≤C ‖u‖α1,2‖u‖
1−α
2,p

≤C(m,F)‖U‖α1,2
(
‖U1‖1−α

1,∞ +‖U2‖1−α
1,∞ +1

)
for some α∈ (0,1), yielding the desired continuity in W 1,∞(Ω). Thus, we apply the
Schauder fixed point theorem, which completes the proof of our main result. The proof
of Theorem 1.1 is done.
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