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QUASI STEADY STATE APPROXIMATION OF THE SMALL
CLUSTERS IN BECKER-DÖRING EQUATIONS LEADS TO

BOUNDARY CONDITIONS IN THE LIFSHITZ-SLYOZOV LIMIT∗

JULIEN DESCHAMPS† , ERWAN HINGANT‡ , AND ROMAIN YVINEC§

Abstract. The following paper addresses the connection between two classical models of phase
transition phenomena describing different stages of clusters growth. The first one, the Becker-Döring
model (BD) that describes discrete-sized clusters through an infinite set of ordinary differential equa-
tions. The second one, the Lifshitz-Slyozov equation (LS) that is a transport partial differential equation
on the continuous half-line x∈ (0,+∞). We introduce a scaling parameter ε>0, which accounts for
the grid size of the state space in the BD model, and recover the LS model in the limit ε→0. The
connection has been already proven in the context of outgoing characteristic at the boundary x=0
for the LS model when small clusters tend to shrink. The main novelty of this work resides in a new
estimate on the growth of small clusters, which behave at a fast time scale. Through a rigorous quasi
steady state approximation, we derive boundary conditions for the incoming characteristic case, when
small clusters tend to grow.

Keywords. Becker-Döring system; Lifshitz-Slyozov equation; boundary value for transport equa-
tion; quasi-steady state approximation; hydrodynamic limit.
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1. Introduction

This paper addresses the mathematical connection between two classical models of
phase transition phenomena, describing different stages of the growth of clusters (or
polymers, or aggregates). The first one is the Becker-Döring model (BD), first intro-
duced in [3], which describes the early stages of cluster growth, at a small scale. Clusters
are made of elementary particles and may increase or decrease their size, one-by-one,
capturing (aggregation process) or shedding (fragmentation process) one particle, ac-
cording to the set of chemical reactions:

C1+Ci−⇀↽−Ci+1 i≥1,

where Ci stands for a cluster of size i (consisting of i particles), while C1 is a free ele-
mentary particle. In its mean-field version, the BD model is an infinite set of ordinary
differential equations representing the time evolution of each concentration (number per
unit of volume) of clusters made of i particles. In this work we focus on a dimensionless
BD model that involves a small parameter ε>0. We detail the standard scaling proce-
dure in Appendix. Denote by cεi (t) the concentration at time t≥0 of clusters consisting
of i≥2 particles and uε(t) the concentration of free particles (clusters of size 1), where
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we make explicit the dependence on ε>0. The dimensionless system reads:

d

dt
uε = −εJε

1 −ε
∑
i≥1

Jε
i , t≥0,

d

dt
cεi =

1

ε

[
Jε
i−1−Jε

i

]
, i≥2, t≥0,

(1.1)

where fluxes are defined by:

Jε
1 =αε(uε)2−εηβεcε2, and Jε

i =aεiu
εcεi −bεi+1c

ε
i+1, i≥2. (1.2)

Here, coefficients aεi and bεi+1, for i≥2, denote respectively the rates of aggregation
and fragmentation (ε-dependent), while αε and βε denote respectively the first rate of
aggregation (i=1) and the first rate of fragmentation (i=2). Finally, η is an exponent
standing for the strength of the first fragmentation rate, in which the results strongly
depend (see also Section 7 for discussions). Observe that such model (at least formally)
preserves the total number of particles (no source nor sink), that is

uε(t)+
∑
i≥2

ε2icεi (t)=mε, ∀t≥0. (1.3)

The constant mε is entirely determined by the initial conditions at t=0 given by uin,ε

and (cin,εi )i≥2, non-negatives and ε-dependents. For theoretical studies on the well-
posedness and long-time behavior of the deterministic Becker-Döring model (with ε=1),
we refer the interested readers to [1, 20, 28,32] among many others.

The second model of phase transition, is the Lifshitz-Slyozov model (LS) introduced
in [22]. This classically describes the late phase of cluster growth, at a “macroscopic
scale”. The LS model consists in a partial differential equation (of nonlinear transport
type) representing the time evolution of the size distribution function f(t,x) of clusters of
(continuous) size x>0 at time t≥0, together with an equation stating the conservation
of matter,

∂f

∂t
+

∂[(a(x)u(t)−b(x))f(t,x)]

∂x
=0, t≥0, x>0,

u(t)+

∫ ∞

0

xf(t,x)=m, t≥0,

(1.4)

where a and b are functions of the size, respectively for the aggregation and fragmen-
tation rates. The constant m plays the same role as in the BD model. Various authors
studied this equation when the flux point outward at x=0 (i.e. when small clusters tend
to fragment), namely if a condition like a(0)u(t)−b(0)<0 holds, see [10, 18, 19, 24, 25]
among others for theoretical studies and technical assumptions. Indeed, in that case,
uniqueness of weak solutions to the limit system (1.4) holds. But, recent applications in
biology have raised the problem to include nucleation in the equation (i.e. small clus-
ters tend to aggregate), for instance in [2,15,29]. These cases consider fluxes that point
inward at x=0, thus the LS equation lacks a boundary condition to be well-posed. In
particular, general coagulation-fragmentation (or nucleation-aggregation) model applied
to amyloid fibrils formation are developed in [2,15], where equation (1.4), with incoming
fluxes, appears as a building block of an integro-differential operator. Also, the authors
in [29] considered a pure aggregation model to fit Polyglutamine in-vitro polymerization
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experiments, with b(x)=0 and a(0)>0. It is common in the aforementioned literature
to use a boundary condition of the type

a(0)u(t)f(t,0)=N(u(t)), (1.5)

which couples the behavior of small clusters to the free particles’ concentration u(t).
Such expression is typically justified by some pre-equilibrium hypothesis derived from
a microscopic nucleation model. Zero-flux boundary condition is also traditionally im-
posed when one chooses to ignore nucleation, or if small clusters are assumed to in-
stantaneously degrade into free particles (for instance when the first fragmentation rate
is too strong), see for instance the prion equation [12, 14, 21]. Finally, let us mention
that second-order expansion of the BD model yields a modified LS model for which a
boundary condition is also needed. Some boundary condition was conjectured in this
framework, e.g. in [8, 9, 11], but never rigorously proved.

In this work we aim to recover a solution of the LS equation and to construct
proper boundary conditions, departing from the BD system (1.1) as the parameter ε
goes to 0. This connection has been proved in [9, 20] for the classical case of outgoing
characteristics. The authors have represented the dynamics of the BD model by a
density function on a continuous size space. Accordingly, the size of each cluster is
represented by a continuous variable x>0, and we let, for all ε>0,

fε(t,x)=
∑
i≥2

cεi (t)1Λε
i
(x), x≥0, t≥0, (1.6)

where for each i≥2, we defined Λε
i =[(i−1/2)ε,(i+1/2)ε). We denote for the remainder

f in,ε :=fε(0,x). Hence, each cluster of (discrete) size initially i≥2 is seen as a cluster of
size roughly iε∈R+. The scaling used in the dimensionless BD system (1.1) consists in
an acceleration of the fluxes (by 1/ε), thus a cluster can reach an asymptotically infinite
size i=x/ε in finite time. Then, an appropriate scaling of the rate functions together
with the initial conditions (a large excess of particles) entails that {fε} converges to a
solution of the LS model (1.4). Here, we use the same strategy to construct solutions
to LS model and to derive appropriate flux conditions at x=0 when the reaction rates
behave near 0 as a power-law, that is

a(x)∼0+ axra and b(x)∼0+ bxrb ,

with a and b are positive numbers, and the exponents satisfying 0≤ ra<1 and ra≤ rb
which corresponds to entrant characteristic whenever u(t)> limx→0+

b
ax

rb−ra .

Remark 1.1. Another scaling approach considers the large time behavior of the
Becker-Döring model, and relates the dynamics of large clusters to solutions of various
version of Lifshitz-Slyozov equations. It is the so-called theory of Ostwald ripening, see
[23, 27,30].

We emphasize that the novelty of our work is based on the rigorous derivation of
a boundary condition at x=0 for the LS model (1.4), which is needed in the case of
entrant characteristic. Thanks to new estimates on the BD model (Proposition 4.1), we
identify the limit of quantities related to the (finite size) cεi ’s by a quasi steady state
approximation. From this identification, we were able to found various possible bound-
ary conditions depending on different scaling hypotheses on the first fragmentation rate,
i.e. according to the value of η in equation (1.2), with respect to ra and rb. Namely, we
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found three distinct cases for slow de-nucleation rate (η>ra) in Theorem 3.1, compen-
sated one (η= ra) in Theorem 3.2, and fast one (η<ra) in Theorem 3.3. We obtained
these main results for measure-valued solution to the LS equation, in Section 3. But in
Section 6, we improve these results to obtain density solutions when a and b are exact
power laws. Let us give an example of the results obtained.

Illustrating result. Assume, for all x≥0, a(x)=axra and b(x)= bxrb with ra<rb
and η= rb. We found the limit of {fε} is a solution of equation (1.4), with the boundary
value given by, for all t≥0,

lim
x→0+

(a(x)u(t)−b(x))f(t,x)=αu(t)2,

where α is the limit of αε in equation (1.2). In other words we recover the behavior of
f near x=0 with the free particles’ concentration through the limit

lim
x→0+

xraf(t,x)=
α

a
u(t).

Organization of the paper. In Section 2 we introduce the main assumptions along
with some properties of the BD model. Then, in Section 3 we state our main results
on measure-valued solution to LS model with boundary term. To do so we improved
previous compactness arguments on the re-scaled density (1.6), so that the boundary
term can be taken into account in Section 4. It is achieved thanks to a new estimate on
the growth of the “small” sized clusters (point-wise estimates of the density approxima-
tion, see Proposition 4.1). The identification of the boundary term in Section 5 follows
from a rigorous quasi-steady-state approximation of the small-sized clusters, in analogy
with slow-fast systems, and allow proving the main theorems. Finally, we extend some
results to a convergence in density, see Section 6. We conclude by a discussion and
further directions in Section 7.

Notations. For any interval I⊆R, we denote by C(I), respectively Cc(I) and Cb(I),
the space of continuous function on I, respectively with compact support in I and
bounded on I. We also denote by C0(I) the completion of Cc(I) for the uniform norm.
We denote by Mf (I) the cone of non-negative and finite regular Borel measures on I
identified, by the Riesz’s representation theorem to the positive continuous linear form
on C0(I). We equip Mf (I) with the topology of the weak−∗ convergence (sometimes
called vague), i.e. for {νε} and ν inMf (I), ν

ε converges to ν inMf (I) (in the weak−∗
topology) if and only if for all ϕ∈C0(I)∫ ∞

0

ϕ(x)νε(dx)→
∫ ∞

0

ϕ(x)ν(dx).

Note for further remark thatMf (I) with the weak−∗ topology is a completely metriz-
able space.

2. Preliminaries and assumptions
In this section, we recall some known results on the BD system, together with as-

sumptions for the main results of this paper. First of all, we refer the reader to Theorem
2.1 in [20] for existence and uniqueness of (non-negative) global solution to equation (1.1)
satisfying the balance of mass equation (1.3) at fixed ε>0. Well-posedness follows from
growth conditions on the kinetic rates, namely we assume the following.

Assumption 1. The rates αε, βε, (aεi )i≥2 and (bεi )i≥3 are positives and, for each ε>0,
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there exists a constant K(ε)>0 such that

aεi+1−aεi ≤K(ε), i≥2,

bεi −bεi+1≤K(ε), i≥3.

From now, for each ε>0, we assume uε and (cεi )i≥2 are given by the non-negative
solution to equation (1.1), that belongs (each) to C([0,+∞)).

We construct aggregation and fragmentation rates as functions on R+ similarly to
fε, namely, for each ε>0 we define, for all x in R+,

aε(x) :=
∑
i≥2

aεi1Λε
i
(x), and bε(x) :=

∑
i≥3

bεi1Λε
i
(x).

Now, we are able to derive a weak equation on the density approximation fε, for each
ε>0, in which we will pass to the limit to recover weak solutions to equation (1.4). This
next proposition follows from [20, Lemma 4.1].

Proposition 2.1. Under Assumption 1, let {fε} constructed by equation (1.6). For
each ε>0, and all ϕ∈W 1,∞

loc (R+) such that ∂xϕ∈L∞(R+), we have, for all t≥0,∫ +∞

0

fε(t,x)ϕ(x)dx

=

∫ +∞

0

f in,ε(x)ϕ(x)dx+

∫ t

0

[αεuε(s)2−βεεηcε2(s)]

(
1

ε

∫
Λε

2

ϕ(x)dx

)
ds

+

∫ t

0

∫ +∞

0

[aε(x)uε(s)fε(s,x)Δεϕ(x)−bε(x)fε(s,x)Δ−εϕ(x)] dxds, (2.1)

where Δhϕ(x)=(ϕ(x+h)−ϕ(x))/h, for h∈R, and

uε(t)+

∫ ∞

0

xfε(t,x)dx=mε. (2.2)

In the next assumption we assume standard hypotheses on the convergence of the
rate functions and their sub-linear control, see also [9, 20].

Assumption 2. (Convergence of the rates). Let α and β be two positive numbers, and
let a and b be two non-negative continuous functions on [0,+∞) that are positive on
x∈ (0,+∞). As ε→0, we suppose that

{αε} converges towards α. (H1)

{βε} converges towards β. (H2)

{aε(.)} converges uniformly on any compact set of [0,+∞) towards a(.) and

∃Ka>0 s.t. aε(x)≤Ka(1+x), ∀x∈R+ and ∀ε>0. (H3)

{bε(.)} converges uniformly on any compact set of [0,+∞) towards b(.) and

∃Kb>0 s.t. bε(x)≤Kb(1+x), ∀x∈R+ and ∀ε>0. (H4)

We recall a discussion on the scaling of the coefficients is differed to Section 7.
The next assumption details the behavior of the rate functions around 0. This is the

essential assumption which allows us to identify the limit of εηcε2 in the second integral
in the right hand side of equation (2.1).
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Assumption 3. (Behavior of the rate functions near 0). We suppose there exist ra∈
[0,1), rb≥ ra, a>0, b>0 such that

a(x)∼0+ axra , b(x)∼0+ bxrb ,

aε(εi)=a(εi)+o((εi)ra), bε(εi)= b(εi)+o((εi)rb),
(H5)

where o is the Landau notation, i.e. o(x)/x→0 as x→0. We define the quantity

ρ := lim
x→0+

b(x)

a(x)
= lim

x→0+

b

a
xrb−ra ∈ [0,+∞). (2.3)

In the case ra= rb (ρ>0), we assume moreover that

b(x)≥ρa(x). (2.4)

Remark 2.1. Note, if 0≤ rb<ra or ra≥1, the kinetic rates a and b are related to
outgoing characteristics for which the theory already exists, see [9, 20]. The quantity ρ
defined above determines whether the characteristics at x=0 are ongoing or outgoing,
according to whether u(t) is greater or less than ρ. The assumption given by the relation
(2.4) is a technical condition needed to ensure that if u starts above the critical threshold
ρ, it stays above for all times (see Lemma 4.7). Removing this hypothesis would provide
only local in time convergence results in Theorems 3.1, 3.2, 3.3 when ra= rb.

Finally, we assume some control on the initial conditions. For this, we introduce a set
of functions which shall play a key role. We denote by U the set of non-negative convex
functions Φ belonging to C1([0,+∞)) and piecewise C2([0,+∞)) such that Φ(0)=0, Φ′

is concave, Φ′(0)≥0, and

lim
x→+∞

Φ(x)

x
=+∞.

Note that Φ is increasing. These functions have remarkable properties when conjugate
to the structure of the Becker-Döring system and provide important estimates, see for
instance [19].

Assumption 4. (Initial conditions). We assume there exists uin>ρ and a non-negative
measure μin∈Mf ([0,+∞)) such that uin,ε converges to uin in R+ and {f in,ε} converges
to μin, in the weak−∗ topology ofMf ([0,+∞)). Moreover, we assume there exists Φ∈U
such that

sup
ε>0

∫ ∞

0

Φ(x)f in,ε(x)dx<+∞. (H6)

In particular, we can define

m :=uin+

∫ ∞

0

xμin(dx).

Moreover, we suppose that for all z∈ (0,1),

sup
ε>0

∑
i≥2

εracin,εi e−iz <+∞. (H7)
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Remark 2.2. m is well-defined since weak−∗ convergence plus the extra-moment in
(H6) give the limit ∫ ∞

0

xf in,ε(dx)→
∫ ∞

0

xμin(dx).

See for instance [9, Proof of Theorem 2.3 ].

Remark 2.3. In fact, we could obtain freely this Φ assuming a stronger weak
convergence (against (1+x)ϕ(x) for ϕ bounded and continuous). See for instance [7]
for the construction of such a Φ.

Remark 2.4. We highlight that condition (H7) is not restrictive. For example,

consider f in(x)=x−r on (0,1) and 0 elsewhere, with r≤ ra. Then, consider c
in,ε
i =(iε)−r

for i≤1/ε, and 0 elsewhere. We have that {f in,ε} trivially converges to f in in the sense
of (H6) and it satisfies (H7). Note that we do not necessarily require the initial condition
is composed of “ very large” clusters (of size i�1/ε).

3. Main results
For the remainder of the paper, we always assume that {fε} is constructed by

equation (1.6), that {uε} is given by the balance (2.2), and Assumption 1 to Assumption
4 hold true. The next definition extends the notion of a solution to the LS model (1.4),
with a general boundary condition, or nucleation rate.

Definition 3.1 (N-solution.). Let T >0, a function N ∈L∞
loc(R+) called nucle-

ation rate, uin>ρ, a measure μin∈Mf ([0,+∞)), and a measure-valued function μ∈
L∞([0,T ];w−∗−Mf ([0,+∞)). We say that μ is a N -solution to the LS equation (in
measure) on [0,T ] with mass m, when:

i) There exists a non-negative u∈C([0,T ]), such that u(0)=uin, and for all t∈ [0,T ],

u(t)+

∫ ∞

0

xμt(dx)=m. (3.1)

ii) For all ϕ∈C1c ([0,T )× [0,+∞))

∫ T

0

∫ ∞

0

[
∂tϕ(t,x)+(a(x)u(t)−b(x))∂xϕ(t,x)

]
μt(dx)dt

+

∫ ∞

0

ϕ(0,x)μin(dx)+

∫ T

0

ϕ(s,0)N(u(s))ds=0, (3.2)

Remark 3.1. The space L∞([0,T ];w−∗−Mf ([0,+∞)) consists of (equivalent classes
of) measurable functions from (0,T ) toMf ([0,+∞)) with respect to the weak−∗ topol-
ogy that are essentially bounded,

ess sup
t∈(0,T )

μt([0,∞))<+∞.

The essential supremum defines a norm on this space.

We now state the main results. The first theorem, when η>ra, corresponds to
the case where the first fragmentation rate is too slow and does not contribute to the
boundary value. Thus, the nucleation rate is proportional to the number of encounter
of free particles, namely u(t)2 at time t.
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Theorem 3.1 (The slow de-nucleation case). Assume η>ra. For any T >0 and any
sequence {εn} converging to 0, it exists a sub-sequence {εn′} of {εn} and μ a N -solution
to LS equation on [0,T ] with mass m, such that

fεn′ −−−−−⇀
n′→+∞

μ

in C([0,T ];w−∗−Mf ([0,+∞)), where, for all u≥0

N(u)=αu2.

Remark 3.2. The space C([0,T ];w−∗−Mf ([0,+∞))) has to be understood as
the measure-valued functions that are continuous in time for the weak−∗ topology on
Mf ([0,+∞)), i.e. for {νt}∈C([0,T ];w−∗−Mf ([0,+∞))), we have, for all t∈ [0,T ] and
ϕ∈C0([0,+∞)),

t �→
∫ ∞

0

ϕ(x)νt(dx)

is continuous. This space is equipped with the uniform topology (note that w−∗−
Mf ([0,+∞)) is metrizable).

The second theorem holds in the limit case when η= ra, i.e. the first fragmentation
rate has the same order of magnitude than the aggregation rate (i≥2). Compared to
the first case, the nucleation rate is balanced by a function varying between 0 and 1.

Theorem 3.2 (The compensated de-nucleation case). Assume η= ra. For any T >0
and any sequence {εn} converging to 0, it exists a sub-sequence {εn′} of {εn} and μ a
N -solution to LS equation on [0,T ] with mass m, such that

fεn′ −−−−−⇀
n′→+∞

μ

in C([0,T ];w−∗−Mf ([0,+∞)), where, for all u≥0

N(u)=

⎧⎪⎪⎨⎪⎪⎩
αu2 u

u+β/(ā2η)
, if η= ra<rb,

αu2 au−b

au−b+β/2η
, if η= ra= rb,

Remark 3.3. In the pure aggregation case, with βε= bεi =0, then b=0 and β= b=0.
Our results in Theorem 3.1 and Theorem 3.2 are consistent and remain true.

Remark 3.4. In both Theorems 3.1 and 3.2, the continuity in time of the limit allows
to recover the moment solutions, that is for all ϕ∈C([0,+∞)) and t∈ [0,T ]∫ ∞

0

ϕ(x)μt(dx)=

∫ ∞

0

ϕ(x)μin(dx)+

∫ t

0

∫ ∞

0

(a(x)u(s)−b(x))ϕ′(x)μs(dx)ds

+

∫ t

0

ϕ(0)N(u(s))ds=0,

Finally, the last theorem considers the case of a fast de-nucleation rate so that the
flux at the boundary vanishes, and the solution can reveal fast oscillations or disconti-
nuities in time near x=0.
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Theorem 3.3 (The fast de-nucleation rate). Assume η<ra. For any T >0 and
any sequence {εn} converging to 0, it exists a sub-sequence {εn′} of {εn} and μ a N -
solution to LS equation on [0;T ] with mass m, such that the restriction of μ to (0,+∞)
is C([0,T ];w−∗−Mf ((0,+∞)) and

fεn′ −−−−−⇀
n′→+∞

μ

in weak−∗−L∞([0,T ];w−∗−Mf ([0,+∞)), where, for all u≥0

N(u)=0.

Remark 3.5. Since C0([0,+∞)) is a separable Banach space (and since the Lebesgue
measure on [0,T ] is σ-finite) we can identify L∞([0,T ];w−∗−Mf ([0,+∞)) with the
positive continuous linear forms on L1([0,T ];C0([0,+∞)) whose (operator) norm is given
by the essential supremum defined in Remark 3.1, see [13, Section 8.18 ] and [4, Chap. 6,
§2, n. 6, Proposition 10 ]. Thus, this space can be equipped with the classical weak−∗
topology for which we derived convergence in the theorems.

Remark 3.6. In the last case, for Theorem 3.3, we were not able to prove equicontinu-
ity of the density approximation in w−∗−Mf ([0,+∞)). But, equicontinuity remains
true when the measure is restricted to (0,+∞), open in x=0. This suggests the limit
solution is more regular than only L∞ in time. Thus, fast oscillations or discontinuities
in time can only occur at x=0.

4. Compactness estimates
In this section we provide the main estimates to obtain sufficient compactness ar-

guments to pass to the limit in equations (2.1)-(2.2). Remark for further estimations,
under hypotheses (H1) and (H2), there exists a positive Kα,β such that, for all ε>0,

αε,βε,α,β∈ (0,Kα,β ], (4.1)

and hypotheses (H3)-(H4) imply that the limit functions also satisfy

a(x)≤Ka(1+x) and b(x)≤Kb(1+x), ∀x∈ [0,+∞). (4.2)

We fix these constants for the remainder.

4.1. Uniform bound for the density approximation. The first lemma gives
basic estimates. In particular, it constructs the compact set of Mf ([0,+∞)) in which
the sequence of solutions remains.

Lemma 4.1. For all T >0,

sup
ε>0

sup
t∈[0,T ]

∫ +∞

0

(1+x+Φ(x))fε(t,x)dx<+∞, (4.3)

sup
ε>0

sup
t∈[0,T ]

uε(t)<+∞, (4.4)

sup
ε>0

∫ T

0

εηcε2(t)dt<+∞. (4.5)

Remark 4.1. Similar estimates can be found in [20] for a different scaling. For sake
of completeness we recall the proof below. Note that estimate (4.5), although trivial,
seems to have not been reported elsewhere, and will be important for the next.
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Proof. By Assumption 4, the convergence of {f in,ε} implies that the sequence lies
in a weak−∗ compact set of Mf ([0+∞)), and with (H6) we have

sup
ε>0

∫
R+

f in,ε(x)(1+x+Φ(x))dx<+∞. (4.6)

Let us start now with the estimate (4.4). By the mass conservation relationship (2.2),
uε(t)≤mε, for any t≥0, and thanks to Assumption 4, (mε) converges as ε→0, thus it
is bounded by a constant Km>0. Then estimate (4.4) directly follows. Similarly, we
obtain

sup
ε>0

sup
t∈[0,T ]

∫ +∞

0

xfε(t,x)dx<+∞.

Then, taking ϕ=1 in equation (2.1), it immediately yields by re-arranging the non-
positive terms

0≤
∫ +∞

0

fε(t,x)dx+

∫ t

0

βεεηcε2(s)ds≤
∫ +∞

0

f in,ε(x)dx+

∫ t

0

αεuε(s)2ds.

Using bounds (4.1), (4.4) and (4.6), we obtain the inequality (4.5) together with the
first part of estimate (4.3). Finally, we put ϕ=Φ in equation (2.1). Remark that the
derivative Φ′ is not uniformly bounded, thus we cannot use Proposition 2.1 straightfor-
wardly. However, with a classical regularizing argument, one can show that the next
computations hold true a posteriori, see for instance [20, proof of Lemma 4.2]. We
remark that

0≤ΔεΦ(x)≤Φ′(x+ε), −Δ−εΦ(x)≤−Φ′(x)≤0.

Moreover, Φ′(x+ε)≤Φ′(x)+εΦ′′(0). Thus, dropping the non-positive terms, using
(H3) and again that uε(t)≤Km,

∫ +∞

0

fε(t,x)Φ(x)dx≤
∫ +∞

0

f in,ε(x)Φ(x)dx+

∫ t

0

αεuε(s)2

(
1

ε

∫
Λε

2

Φ(x)dx

)
ds

+KmKa

∫ t

0

∫ +∞

0

(1+x)fε(s,x)(Φ′(x)+εΦ′′
1,r(0))dxds, (4.7)

Let δ>0. Note that xΦ′(x)≤2Φ(x) by [18, Lemma A.1], thus we get∫ +∞

0

(1+x)fε(s,x)Φ′(x)dx≤
∫ δ

0

fε(s,x)Φ′(x)dx+
(
1

δ
+1

)∫ +∞

0

xfε(s,x)Φ′(x)dx

≤
(
sup
(0,δ)

Φ′)∫ ∞

0

fε(s,x)dx+2

(
1

δ
+1

)∫ +∞

0

fε(s,x)Φ(x)dx.

We introduce this last estimate into equation (4.7) and we conclude using previous
bounds and Grönwall’s lemma.

4.2. Pointwise estimations on the density. We turn now to the main esti-
mate of this paper. Indeed, to obtain equicontinuity for the density {fε} (in a measure
space), and then identify the boundary condition, we need to control the behavior of the
small-sized clusters, particularly because of the term εηcε2 in the weak equation (2.1).
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Remark that we already have a weak bound (in time) given by equation (4.5). In the
next Proposition 4.1 we improve this estimate by a control on exponential moments
which depends on ρ (defined in equation (2.3)). Moments are classical tools and play a
key role in the well-posedness of BD theory. More recently, exponential moments were
also used [6, 16] to study long time behavior of BD solutions. Here, let us define the
discrete Laplace transform

F ε(t,z)=
∑
j≥2

εracεj(t)e
−jz, z∈ (0,1). (4.8)

From the re-scaled system (1.1), the sequence (dεi )i≥2 defined by dεi :=εracεi , for i≥2,
satisfies, for each ε>0, the following equations

ε1−ra
d

dt
dεi (t)=Hε

i−1−Hε
i , i≥2, (4.9)

where the fluxes are

Hε
1 =αεuε(t)2−βεεη−radε2(t), and Hε

i =aεiu
ε(t)dεi (t)−εrb−rab

ε

i+1d
ε
i+1(t), i≥2,

with, for all i≥2,

aεi =
aεi
εra

, and b
ε

i+1=
bεi+1

εrb
.

Note that, under hypotheses (H3), (H4) and (H5), the kinetic coefficients αε, βε and
aεi , b

ε

i , i≥2, are convergent sequences toward a positive value (resp. α, β, aira , birb).

Proposition 4.1. Let T >0 and {εn} a sequence converging to 0 such that {uεn}
converges toward u uniformly on [0,T ], with inft∈[0,T ]u(t)>ρ. There exists z0>0 such
that for all z∈ (0,z0)

sup
n≥0

sup
t∈[0,T ]

F εn(t,z)<∞. (4.10)

In particular, for all r≥ ra and i≥2, we have

sup
n≥0

sup
t∈[0,T ]

εrcεni (t)<+∞. (4.11)

Remark 4.2. It is immediate from estimate (4.11) that we can obtain compactness
in w−∗−L∞(0,T ) for any finite size cluster εrcεi , which will be used to prove both
Theorems 3.1 and 3.2.

Remark 4.3. We cannot prove that the pseudo-moment F ε is propagated along limit
solution for which u(t)≤ρ on some time interval. This is important in the case ra= rb
since ρ>0 and u can eventually cross this threshold, which is up to our knowledge an
open problem. For that reason, we imposed the extra Assumption (2.4) on a,b, needed
in the proof of Lemma 4.7.

Proof. Let z>0 and ε>0. First, note the discrete Laplace transform defined in
equation (4.8) is finite for each ε>0 and for all t in [0,T ], since

F ε(t,x)≤εra−1

∫ ∞

0

xfε(t,x)dx.
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Let us derive F ε with respect to time (derivation under the sum is justified by similar
bound). For all t∈ [0,T ], we get

ε1−ra∂tF
ε(t,z)=

∑
j≥2

e−jz
[
Hε

j−1−Hε
j

]
= e−2zHε

1−(1−e−z)
∑
j≥2

e−jzHε
j .

Thus, after developing the fluxes we get

ε1−ra∂tF
ε(t,z)= e−2zHε

1−(1−e−z)
∑
j≥2

e−jzaεju
ε(t)dεj(t)

+(1−e−z)
∑
j≥2

e−jzεrb−rab
ε

j+1d
ε
j+1(t).

Then, re-indexing the second sum on the right hand side, we obtain

ε1−ra∂tF
ε(t,z)=e−2zHε

1−(1−e−z)e−2zaε2u
ε(t)dε2(t)

−(1−e−z)
∑
j≥3

e−jzaεj

[
uε(t)−

bεj
aεj

ez

]
dεj(t). (4.12)

Since inft∈[0,T ]u(t)>ρ, we can find a constant c such that inft∈[0,T ]u(t)≥ c>ρ. Then,
by uniform convergence of {uεn}, there exists ε̃>0 small enough, such that for all n
with εn≤ ε̃, inft∈[0,T ] u

εn(t)≥ c>ρ. Also, we can choose δ>0 and z0>0, both small
enough, such that for all t∈ [0,T ] we have c>ρez0 +2δ. Then, there exists N >0 such
that, for all z∈ (0,z0)

inf
n≥N

inf
t∈[0,T ]

uεn(t)>ρez+2δ.

Then, by hypothesis (H5), for all 3≤ j≤1/
√
ε,

bεj
aεj

=
b

a

(εj)rb +o((εj)rb)

(εj)ra +o((εj)ra)
=

b

a
(εj)rb−ra(1+o(1)),

so that, we have, for N large enough,

sup
n≥N

sup
j∈[3,...,�1/√εn�−1]

∣∣∣∣∣ρ− bεnj
aεnj

∣∣∣∣∣<δe−z.

The latter gives a uniform control in j for the relatively “small” sizes j≤1/
√
ε.

We separate the sum in equation (4.12) in two parts, the small-size clusters for
j∈ (3, . . . ,�1/√εn�−1) in one side, for which (for n≥N)

uεn(t)−
bεnj
aεnj

ez =uεn(t)−ρez+ez

(
ρ−

bεnj
aεnj

)
≥2δ−δ= δ,

and the large-size clusters in another side. Hence, for all t∈ [0,T ],

∑
j≥3

e−jzaεnj

[
uεn(t)−

bεnj
aεnj

ez

]
dεnj (t)
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≥ δ

�1/√εn�−1∑
j=3

e−jzaεnj dεnj (t)+
∑

j≥�1/√εn�
e−jzaεnj

[
uεn(t)−

bεnj
aεnj

ez

]
dεnj (t). (4.13)

Using hypothesis (H5), there exists x0 such that for all x∈ (0,x0), a(x)/xra >3a/4.
Thus, there exists Ñ such that for all n≥ Ñ and for all 2≤ i≤1/

√
εn we have εni≤

√
εn<

x0 and a(εi)/(εni)
ra ≥3a/4. Still, with hypothesis (H5), we can choose Ñ such that for

all n>Ñ , and for all 2≤ i≤1/
√
εn, we have a

ε(εi)/(εni)
ra ≥a/2. Hence, from the rank

Ñ , there exists a constant K̃a>0 such that for all n≥ Ñ and for all 2≤ j≤1/
√
εn, we

have

aεnj =
aεnj
εran

≥ K̃a :=
1

2
a2ra .

Accordingly, the rest of the proof has to be understood for n large enough. Using the
equation on Hε

1 and plugging inequality (4.13) into equation (4.12) we obtain

ε1−ra
n ∂tF

εn(t,z)≤ e−2z[αεnuεn(t)2−εη−ra
n βεndεn2 (t)]

−(1−e−z)e−2z[aεn2 uεn(t)−δK̃a]d
εn
2 (t)−(1−e−z)δK̃a

�1/√εn�−1∑
j=2

e−jzdεnj (t)

−(1−e−z)
∑

j≥�1/√εn�
e−jzaεnj

[
uεn(t)−

bεnj
aεnj

ez

]
dεnj (t).

We remark that aεn2 uεn(t)−δK̃a≥ K̃a(ρe
z+2δ−δ)≥ K̃aρ≥0. Using the moment esti-

mates (4.4) and hypothesis (H3), we have supt∈[0,T ]α
εuε(t)2≤K0 uniformly in ε>0.

Thus, dropping also some negative terms, we have

εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃a

�1/√εn�−1∑
j=2

e−jzdεnj (t)

+(1−e−z)
∑

j≥�1/√εn�
e−jz

bεnj
εnra

dεnj (t).

Now using that

�1/√εn�−1∑
j=2

e−jzdεnj (t)=F εn(t,z)−
∑

j≥�1/√εn�
e−jzdεnj (t),

we obtain

εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃aF

εn(t,z)

+(1−e−z)δ
∑

j≥�1/√εn�
e−jzK̃ad

εn
j (t)+(1−e−z)ez

∑
j≥�1/√εn�

e−jz
bεnj
εnra

dεnj (t).

At this point, we recall that by definition we have, for all j≥2, dεj/ε
ra = cεj , and K̃a<

aεj/ε
ra , so that, with K=max(δ,ez),
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εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃aF

εn(t,z)

+(1−e−z)K
∑

j≥�1/√εn�
e−jz(aεnj +bεnj )cεnj (t).

Finally, by hypotheses (H3)-(H4), we have, for all j≥�1/√ε� (and ε small enough)

e−jz(aεj+bεj)≤ (Ka+Kb)(1+εj)e−jz≤ (Ka+Kb)ε.

Thus,

εn
1−ra∂tF

εn(t,z)≤K0e
−2z−(1−e−z)δK̃aF

εn(t,z)

+(1−e−z)K(Ka+Kb)

∫ +∞

0

fεn(t,x)dx.

By the moment estimates (4.3), there exists K̃ independent from εn such that

εn
1−ra∂tF

εn(t,z)≤−(1−e−z)δK̃aF
εn(t,z)+K̃. (4.14)

We can conclude that

F εn(t,z)≤F εn(0,z)+
K̃

δK̃a(1−e−z)
,

and the result (4.10) follows thanks to the initial bound on F ε(0,z) given by hypothesis
(H7). Note that (4.11) directly follows from the previous bound (4.10) and the definition
of the discrete Laplace transform (4.8).

Remark 4.4. The estimate (4.14) on F ε can be easily generalized for any exponent
r instead of ra. Writing G

ε

(t,z)=
∑

j≥2ε
rcεj(t)e

−jz, and following the same steps, we
find

ε1−ra∂tG
ε(t,z)≤−(1−e−z)δK̃aG

ε(t,z)+εr−raK̃.

Thus, this inequality provides valuable information if r≥ ra.

4.3. Equicontinuity lemmas. We now turn to the equicontinuity of the density
approximation, as a measure-valued time-dependent function. The new result here is to
provide equicontinuity in a measure space on [0,∞) (see Lemma 4.4) . The first lemma
is independent on η and similar to [9, 20].

Lemma 4.2. Let T >0. The family {uε} is equicontinuous on [0,T ].

Proof. Let us fix T >0. From the mass conservation (2.2), we can deduce that the

equicontinuity of {uε} directly follows from the one of the sequence {
∫ +∞
0

xfε(·,x)dx}.
Thus, we focus on the latter. We have, from equation (2.1) with ϕ(x)=x, for all
t∈ [0,T −h] and s∈ [0,h] with 0<h<T ,∣∣∣∣∫ +∞

0

[fε(t+s,x)−fε(t,x)]xdx

∣∣∣∣
≤
(
1

ε

∫
Λε

2

xdx

)∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))dσ
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+

∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)fε(σ,x)−bε(x)fε(σ,x)|dxdσ. (4.15)

The first term in the r.h.s of (4.15) can be bounded, thanks to the bound (4.1), by(
1

ε

∫
Λε

2

xdx

)∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))dσ

≤2Kα,β

[
ε sup
t∈[0,T ]

uε(t)2+ sup
t∈[0,T ]

εη+1cε2(t)

]
h.

Then, since η≥0 and remarking that εcε2 is obviously bounded by the L1 norm of fε,
we can use the moment estimates in equations (4.3) and (4.4), so that for ε sufficiently
small, there exists K independent of t and ε such that(

1

ε

∫
Λε

2

xdx

)∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))dσ≤Kh. (4.16)

Let us now focus on the second term on the right hand side of equation (4.15). Using
hypotheses (H3)-(H4) and the moment estimates in equation (4.3), we get∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)fε(σ,x)−bε(x)fε(σ,x)|dxdσ

≤
(
Ka sup

ε>0
sup

t∈[0,T ]

uε(t)+Kb

)∫ t+s

t

∫ +∞

0

fε(σ,x)(1+x)dxdσ.

Hence, there is a constant K>0 such that∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)fε(σ,x)−bε(x)fε(σ,x)|dxdσ

≤hK

(
sup
ε>0

sup
t∈[0,T ]

∫ +∞

0

(1+x)fε(t,x)dx

)
. (4.17)

Combining both inequalities (4.16)-(4.17), it follows that for all δ>0, for all h∈ (0,T ),

sup
ε>0

sup
t∈[0,T−h]

sup
s∈[0,h]

∣∣∣∣∫ +∞

0

[fε(t+s,x)−fε(t,x)]xdx

∣∣∣∣≤ δ,

which gives the equicontinuity property for {uε}.
The next lemma is a classical fact in the scaling used.

Lemma 4.3. Let T >0. Let {εn} be a sequence converging to 0. The sequence {fεn}
is equicontinuous in Mf ((0,+∞)) equipped with the weak−∗ topology.

Proof. By equation (2.1), satisfied by fε, if ϕ∈C1((0,+∞) has support in [δ,R],
for ε<2δ/5 we have

∫
Λε

2
ϕ(x)dx=0, thus

∫ +∞

0

(fε(t+h,x)−f(t))ϕ(x)dx
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=+

∫ t+h

t

∫ +∞

0

[aε(x)uε(s)fε(s,x)Δεϕ(x)−bε(x)fε(s,x)Δ−εϕ(x)] dxds,

By bounds obtained in Lemma 4.1 we argue as in the proof of Theorem 2.3 in [9], or
see the proof of the next Lemma to conclude on the equicontinuity.

We point out that, in the above Lemma, fε is seen as a measure on the open interval
(0,+∞). The next lemma improves the equicontinuity of {fε} around x=0.

Lemma 4.4. Assume η≥ ra and T >0. Let {εn} a sequence converging to 0 such that
{uεn} converges toward u uniformly on [0,T ] satisfying inft∈[0,T ]u(t)>ρ. The sequence
{fεn} is equicontinuous in Mf ([0,+∞)) equipped with the weak−∗ topology.

Proof. Let us fix T >0. Let h≥0∈ (0,T ), t∈ [0,T −h] and s∈ [0,h] we have, for
all ψ∈C∞c ([0,+∞)) and ε>0∣∣∣∣∫ +∞

0

[fε(t+s,x)−fε(t,x)]ψ(x)dx

∣∣∣∣
≤
∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))

(
1

ε

∫
Λε

2

|ψ(x)| dx
)
dσ

+

∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)fε(σ,x)Δεψ(x)−bε(x)fε(σ,x)Δ−εψ(x)|dxdσ. (4.18)

The first integral in the right hand side can be bounded as the following:∫ t+s

t

(αεuε(σ)2+βεεηcε2(σ))

(
1

ε

∫
Λε

2

|ψ(x)| dx
)
dσ

≤h‖ψ‖∞ sup
t∈[0,T ]

[
αεuε(t)2+βεεηcε2(t)

]
.

Using equations (4.1), (4.4) and by Proposition 4.1, equation (4.11), both terms in
the supremum are uniformly bounded in time and along {εn}. Hence, there exists K
independent of T and ε such that, for all t≤T −h, s∈ [0,h],∫ t+s

t

(αεnuεn(σ)2+βεnεn
ηcεn2 (σ))

(
1

εn

∫
Λεn

2

|ψ(x)| dx
)
dσ≤K‖ψ|∞h. (4.19)

We now focus on the second integral in the right hand side of inequality (4.18). Using
upper bounds (4.2) and (4.4), we can find a constant K such that for all ε>0∫ t+s

t

∫ +∞

0

|aε(x)uε(σ)fε(σ,x)Δεψ(x)−bε(x)fε(σ,x)Δ−εψ(x)|dxdσ

≤K‖ψ′‖∞
∫ t+s

t

∫ +∞

0

fε(σ,x)(1+x)dxdσ.

By combining this last inequality with the moment estimate (4.3) and the inequality
(4.19), there exists a constant K (not depending on ψ, h and ε), such that for all
h∈ (0,T ), t∈ [0,T −h], s∈ [0,h], ψ∈C∞c ([0,+∞)) and n≥0∣∣∣∣∫ +∞

0

[fεn(t+s,x)−fεn(t,x)]ψ(x)dx

∣∣∣∣≤K(‖ψ‖∞+‖ψ′‖∞)h.
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Let {ϕi}i≥1⊂C∞c ([0,+∞)) be a dense subset of Cc([0,+∞)) for the uniform norm. The
metric d defined by, for all μ and ν belonging to Mf ([0,+∞)),

d(μ,ν)=
∑
i

2−i

‖ϕi‖∞+‖ϕ′
i‖∞

∣∣∣∣∫ ∞

0

ϕiμ−
∫ ∞

0

ϕiν

∣∣∣∣ ,
is equivalent to the weak−∗ topology (on bounded subset), see for instance similar
construction in [5, Theorem III.25]. Thus, for all h≥0∈ (0,T ), we have

sup
t∈[0,T−h]

sup
s∈[0,h]

sup
n≥0

d(fεn(t+s),fεn(t))≤Kh.

This concludes the proof.

4.4. Compactness and limit. Here we give some technical lemmas which
prepare the proof of the main results.

Lemma 4.5. For all T >0 and all ϕ∈C1c ([0,T )× [0,+∞)), we have, for all ε>0,∫ T

0

∫ +∞

0

[∂tϕ(t,x)+aε(x)uε(s)Δεϕ(t,x)−bε(x)Δ−εϕ(t,x)]f
ε(t,x)dxdt

+

∫ +∞

0

f in,ε(x)ϕ(0,x)dx+

∫ T

0

[αεuε(t)2−βεεηcε2(t)]

(
1

ε

∫
Λε

2

ϕ(t,x)dx

)
dt=0, (4.20)

where Δhϕ(t,x)=(ϕ(t,x+h)−ϕ(t,x))/h, for h∈R, and

uε(t)+

∫ ∞

0

xfε(t,x)dx=mε. (4.21)

Proof. The proof is based on multiplying each equation of the Becker-Döring
system (1.1) by ϕi=

∫
Λε

i
ϕ(t,x)dx for ϕ∈C1c ([0,T )× [0,+∞)) and using the definition of

fε in equation (1.6). It is similar to Proposition 2.1.

Lemma 4.6. Let T >0. The family {fε} is relatively weak−∗ compact in L∞(0,T ;w−
∗−Mf ([0,+∞)). If μ is an accumulation point of {fε}, then the restriction of μ to
(0,+∞) belongs to C([0,T ],w−∗−Mf ((0,+∞), there exists a sequence {εn} converging
to 0 and a non-negative function u∈C([0,T ]) such that uεn converges to u uniformly
on [0,T ], with u(0)=uin and

u(t)+

∫ ∞

0

xμt(dx)=m.

Moreover, for all ϕ∈C1c ([0,T )× [0,+∞))∫ T

0

∫ +∞

0

[∂tϕ(t,x)+aεn(x)uεn(s)Δεnϕ(t,x)−bεn(x)Δ−εnϕ(t,x)]f
εn(t,x)dxdt

→
∫ T

0

∫ +∞

0

[∂tϕ(t,x)+(a(x)u(s)−b(x))∂xϕ(t,x)]μt(dx)dx

∫ T

0

αεnuεn(t)2

(
1

εn

∫
Λεn

2

ϕ(t,x)dx

)
dt→

∫ T

0

αu(t)2ϕ(t,0)dt,
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and ∫ +∞

0

ϕ(0,x)f in,εn(x)dx→
∫ +∞

0

ϕ(0,x)μin(dx)

as n→+∞.

Proof. First, we remark that the bound against 1 in (4.3) yields to the rela-
tive compactness in L∞([0,T ];w−∗−Mf ([0,+∞)). Let μ an accumulation point. By
Lemma 4.2 and bound (4.4) with Arzelá-Ascoli Theorem, entails there exists a sequence
{εn} and u∈C([0,T ]) such that uεn converge to u uniformly on [0,T ] and {fεn} to μ.
It remains to note that for any ψε∈Cc([0,T )× [0,+∞)) which converges uniformly to
some ψ, we have∫ T

0

∫ ∞

0

ψεn(t,x)fεn(t,x)dxdt→
∫ T

0

∫ ∞

0

ψ(t,x)μt(dx)dt,

as n→∞, to obtain the desired limit, see also [9, 20]. Moreover Lemma 4.3 improve
the regularity to the continuity in time onto the space Mf ((0,+∞)) for the weak−∗
topology (open in x=0). Such result has been obtained for instance in [9]. Finally we
obtain equation (4.21), using the bound (4.3) with Φ, and after regularization of the
identity function, we have for all t∈ [0,T ]∫ ∞

0

xfεn(t,x)dx→
∫ ∞

0

xμt(dx).

See [9, Proof of Theorem 2.3] for details.

Lemma 4.7. Assume μ∈L∞([0,T ];w−∗−Mf ([0,+∞)) is an accumulation point of
fε, as considered in Lemma 4.6, and u an accumulation point of uε. Then, the limit u
satisfies

inf
t∈[0,T ]

u(t)>ρ.

Proof. If μ is an accumulation point, there exists a sequence {εn} such that μεn

converge to μ. Then, if ϕ∈C([0,T )×(0.+∞)), by Lemma 4.5 and Lemma 4.6 we have
that the limit satisfies (without boundary term)∫ T

0

∫ ∞

0

[
∂tϕ(t,x)+(a(x)u(t)−b(x))∂xϕ(t,x)

]
μ(t,dx)dt+

∫ ∞

0

ϕ(0,x)μin(dx)ds=0,

(4.22)
By hypotheses on a and b and the control of

∫∞
0

xμt(dx) we have that

Ma(t) :=

∫ ∞

0

a(x)μt(dx) and Mb(t) :=

∫ ∞

0

b(x)μt(dx).

Both Ma and Mb belong to L∞(0,T ). Thus, we may take ϕ(t,x)=xψ(t) in equa-
tion (4.22) where ψ∈Cc([0,T )), which leads to

−
∫ T

0

ψ′(t)
∫ ∞

0

xμt(dx)dt

=ϕ(0)

∫ ∞

0

xμin(dx)+

∫ T

0

ψ(t)u(t)Ma(t)dt−
∫ T

0

ψ(t)Mb(t)dt, (4.23)
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We know u is continuous on [0,T ] and by equation (4.23) a.e. t∈ (0,T )

du(t)

dt
=−u(t)Ma(t)+Mb(t),

with u(0)=uin>ρ. It follows that

d

dt

(
[u(t)−ρ]e

∫ t
0
Ma(s)ds

)
=(Mb(t)−ρMa(t))e

∫ t
0
Ma(s)ds.

We distinguish now two cases. First, if ra<rb, then ρ=0. If there exists τ ∈ (0,T ) such
that u(τ)=0 and u(t)>0 for all t∈ [0,τ), then

−u(0)=
∫ τ

0

Mb(t)e
∫ t
0
Ma(s)dsdt.

But the integral in the r.h.s is non-negative, thus u(0)≤0 which contradicts u(0)>0.
Second, if ra= rb, then ρ>0. If there exists τ ∈ (0,T ) such that u(τ)=ρ and u(t)>ρ
for all t∈ [0,τ), then,

−(u(0)−ρ)=

∫ τ

0

(Mb(t)−ρMa(t))e
∫ t
0
Ma(s)dsdt.

But, a.e t∈ (0,T ) ∫ ∞

0

(b(x)−ρa(x))μt(dx)≥0,

since we assumed in this case that a(x)ρ−b(x)≤0, see equation (2.4) in Assumption 3.
This contradicts again that u(0)>ρ.

Lemma 4.8. Let T >0. Assume η≥ ra. The family {fε} is relatively compact in
C([0,T ];w−∗−Mf ([0,+∞)). Moreover, for any sequence {εn}, we can extract a sub-

sequence {ε′n} such that {fε′n} converges to μ with inft∈[0,T ]u(t)>ρ.

Proof. Let {εn} be a sequence converging to 0. By Lemmas 4.6 and 4.7, it exists
a sub-sequence {ε′n} such that uε′n converges uniformly on [0,T ] to u∈C([0,T ]) such
that inft∈[0,T ]u(t)>ρ. We may apply Lemma 4.4 so that {fε′n} is equicontinuous in
Mf ([0,+∞)). By the bound (4.3) (against 1), we have for each t∈ [0,T ] that {fεn(t) :
ε′n>0} belongs to a weak−∗ compact set of Mf ([0,+∞)). Thus, by Arzelá-Ascoli

theorem, the sequence {fε′n} is relatively compact in C([0,T ];w−∗−Mf ([0,+∞)).
Up to a second extraction the sequence {fεn} admits a sub-sequence converging in
C([0,T ];w−∗−Mf ([0,+∞)).

5. Identification of the boundary term
This section is committed to the proof of Theorems 3.1 to 3.3. In view of Lemmas

4.5 to 4.8 it remains to identify the limit of εηcε2 so that we can pass to the limit in the
term ∫ T

0

βεεηcε2(t)

(
1

ε

∫
Λε

2

ϕ(t,x)dx

)
dt

arising in equation (4.20).
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We have separated the following in three subsections corresponding to three theo-
rems. Thanks to Proposition 4.1, the compactness of the term εηcε2 has been already
obtained in w−∗−L∞(0,T ) for the first two cases, that are η>ra and η= ra, and in
Mf ([0,T ]) by equation (4.5) for η<ra. The identification of the limit relies on ar-
guments similar to the Fenichel-Tikhonov theory on singularly perturbed dynamical
systems [17]. Multiplying the re-scaled BD equations (1.1) by ε, at least formally, we
have for all t>0 and i≥2,

lim
ε→0

ε
d

dt
cεi = lim

ε→0
(Jε

i−1(t)−Jε
i (t))=0.

Hence, at each time t>0, the underlying BD model for the discrete sizes i≥2 has
to reach instantaneously the equilibrium of the BD model with a constant monomer
concentration u=u(t). Such version of the BD model has been well studied in [26,33].

5.1. Proof of Theorem 3.1 – The slow de-nucleation case. Let T >0
and {εn} a sequence converging to 0. By Lemma 4.8, there exists a sub-sequence, still
denoted by {εn} for simplicity, μ∈C([0,T ];w−∗−Mf ([0,+∞))) and u∈C([0,T ]) with
inft∈[0,T ]u(t)>ρ such that {fεn} converges to μ in C([0,T ];w−∗−Mf ([0,+∞))) and
uεn converges to u uniformly on [0,T ]. Now, applying Proposition 4.1, we get

sup
t∈[0,T ]

εηnc
εn
2 (t)=εη−ra

n sup
t∈[0,T ]

εracεn2 (t)→0,

since η>ra. Thus, combining this result with Lemma 4.6 we can pass to the limit in
equation (4.20) to obtain equation (3.2) with N(u)=αu2, and Theorem 3.1 is proved.

5.2. Proof of Theorem 3.2 – The compensated nucleation case. Let T >0
and {εn} a sequence converging to 0. We proceed similarly as above with Lemma 4.8
and Proposition 4.1. As for all i≥2, dεni =εran cεni satisfies dεni e−iz≤F εn(t,z), thanks to
the estimate (4.10), there exists z>0 such that

sup
n≥0

sup
t∈[0,T ]

sup
i≥2

dεni e−iz <+∞.

Hence, by a Cantor diagonal process, we can extract another sub-sequence, still denoted
by {εn}, such that for all i≥2,

dεni ⇀di, w−∗−L∞(0,T ),

and

0≤ sup
t∈[0,T ]

sup
i≥2

di(t)e
−iz <Kz. (5.1)

We recall, from the re-scaled BD system (1.1), that the sequence (dεni )i≥2 satisfies for
each n≥0 equation (4.9). Hence, for all ϕ∈C1([0,T ]),

εn
1−radεni (t)ϕ(t)−εn

1−radin,εni ϕ(0)−εn
1−ra

∫ t

0

dεni (s)ϕ′(s)ds

=

∫ t

0

ϕ(s)
[
Hεn

i−1(s)−Hεn
i (s)

]
ds. (5.2)
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As ra<1, passing to the limit εn→0, the left hand side in equation (5.2) vanishes, and,
with Assumption 3 on the kinetic rates, we have, for all ϕ∈C1([0,T ]),∫ T

0

ϕ(t)[Hi−1(t)−Hi(t)] ds=0,

where H1=αu(t)2−βd2, and for each i≥2,

Hi=

⎧⎨⎩āiηudi, if η= ra<rb,

āiηudi− b̄(i+1)ηdi+1, if η= ra= rb.

Thus, for all i≥2, we have a.e. t∈ (0,T ) that Hi(t)=H1(t). In the sequel, we will
distinguish two cases, ra<rb and ra= rb.

5.2.1. The case η= ra<rb. In this case, H1=H2 for a.e. t∈ (0,T ) yields

d2(t)=
αu2(t)

a2ηu(t)+β
.

Hence, the limit d2 is uniquely identified (and by recurrence, all di, i≥2, using Hi=H1)
as a function of the limit u. Thus, combining this result with Lemma 4.6 we can pass
to the limit in (4.20) to obtain equation (3.2) with N(u)=αu2 u

u+β/(ā2η) , and the case

ra<rb in Theorem 3.2 is proved.

5.2.2. The case η= ra= rb. In this case, the limit (di)i≥2 must satisfy Hi≡H,
i≥1, for a given constant H. We classically (in the study of the equilibrium states of
BD equations [1]) define Q1=1 and for all i≥2,

Qi=
α

β

i−1∏
k=2

akra

b(k+1)ra
, i≥2.

The solutions that satisfy Hi≡H for all i≥1, are given by, after some algebraic manip-
ulation (see [26, lemma 1]),

di=Qiu
i
(
1−H

1

αu2
−H

i−1∑
k=2

1

akraQkuk+1

)
, i≥2.

Thus, for all i≥2,

di=
αu2

β

2ra

ira

(au
b

)i−2
[
1− H

αu2

(
1+

β

2ra
1

au−b

)
+

Hβ

αu22ra

(
b/(au)

)i−2

au−b

]
.

However, for u(t)>ρ= b/a, there exists a uniqueH such that the bound (5.1) is satisfied,
given by

H=
αu2(

1+ β
2η

1
au−b

) =
αu2(au−b)

au+ β
2η −b

.

For this value, we have a.e. t∈ [0,T ]

d2(t)=
αu(t)2

2η(au−b)+β
=

αu(t)2

β

[
1− au−b

au−b+β/2η

]
.

Hence, proceeding as before we recover the second part of Theorem 3.2.
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5.3. Proof of Theorem 3.3 – The fast de-nucleation. In the case
η<ra we have no L∞ bound over εηcε2, and no equicontinuity property on {fε}
in Mf ([0,+∞)). Nevertheless, we can apply Lemma 4.6 and 4.7. Thus, let T >0
and {εn} a sequence converging to 0, there exists a sub-sequence of {εn} (not re-
labeled), μ∈L∞([0,T ];w−∗−Mf ([0,+∞))) and u∈C([0,T ]) such that fεn ⇀μ in
w−∗−L∞([0,T ];w−∗−Mf ([0,+∞))) and uεn converges uniformly to u on [0,T ] such
that inft∈[0,T ]u(t)>ρ. Note, Lemma 4.7 also provides the regularity in time of the re-
striction to (0,+∞) of the limit. Moreover, by the bound (4.5) we can extract another
sub-sequence of {εn} (not re-labeled) such that dεn2 :=εηnc

ε
2 converges to a non-negative

finite measure Γ2 on [0,T ], where the convergence holds inMf ([0,T ]) endowed with the
weak−∗ topology. Also, for all ϕ∈C1([0,T ]), the equation (1.1) for i=2 yields

εn
1−raεn

racεn2 (T )ϕ(T )−εn
1−raεn

racin,εn2 ϕ(0)−εn
1−ra

∫ T

0

ϕ′(t)εnracεn2 (t)dt

=

∫ T

0

ϕ(t)[αεnuεn(t)2−βεndεn2 (t)]dt

−
∫ T

0

ϕ(t)[aεn2 εn
ra−ηuεn(t)dεn2 (t)−b

εn
3 εn

rbcεn3 (t)]dt. (5.3)

By Proposition 4.1, εn
racεn2 (t) is uniformly bounded with respect to both time t∈ [0,T ]

and n, so that the left hand side of equation (5.3) goes to 0 as εn→0. Hence, with the
bound (4.5) and since η<ra, we have

lim
εn→0

∫ T

0

ϕ(t)εn
rbcεn3 (t)dt=

1

b3

(∫ T

0

ϕ(t)βΓ2(dt)−
∫ T

0

ϕ(t)αu(t)2dt

)
. (5.4)

Here again, two cases have to be considered, ra<rb and ra= rb.

5.3.1. The case ra<rb. In this case, we use again Proposition 4.1 for the left
hand side of equation (5.4), and use that εrb−ra→0 as εn→0. Thus, we are led with
the following equality in measure

Γ2(dt)=
α

β
u(t)2dt.

Thus, combining this result with Lemma 4.6 we can pass to the limit in equation (4.20)
and we obtain the first case of Theorem 3.3.

5.3.2. The case ra= rb. In this case, we use again the fact that by Propo-
sition 4.1, up to a sub-sequence of {εn} (not relabeled), for all i≥2, there exists
di∈L∞(0,T ) and z0>0 such that

εn
rbcεni ⇀di w−∗−L∞(0,T ),

and for all z<z0, there exists Kz >0 such that

0≤ sup
t∈[0,T ]

sup
i≥2

di(t)e
−iz <Kz. (5.5)

From equation (5.4), we obtain the equality in measure

b3d3dt=βΓ2(dt)−αu(t)2dt.
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Then, iterating the procedure, from equation (1.1), we get that, for all i≥3 and ϕ∈
C1([0,T ])

εn
1−raεn

racεni (T )ϕ(T )−εn
1−raεn

racin,εni ϕ(0)−εn
1−ra

∫ T

0

ϕ′(t)εnracεni (t)dt

=

∫ T

0

ϕ(t)[aεni−1u
εn(t)εn

racεni−1(t)−b
εn
i εn

racεni (t)]dt

−
∫ T

0

ϕ(t)[aεni uεn(t)εn
racεni (t)−b

εn
i+1εn

racεni+1(t)]dt.

Hence, for i=3, writing εn
racεn2 (t)=εra−η

n dεn2 (t)→0 (in Mf ([0,T ])), we obtain

0=

∫ T

0

ϕ(t)[−b3d3(t)−a3u(t)d3(t)+b4d4(t)]dt.

And for all i≥4,

0=

∫ T

0

ϕ(t)[ai−1u(t)di−1(t)−bidi(t)−aiu(t)di(t)+bi+1di+1(t)]dt.

With H2=−b3d3, Hi=aiu
εdi(t)−bi+1di+1, i≥3, then we must have a.e. Hi=H2=:H,

for all i≥2. Then we get, for all i≥3,

di(t)=−
H

bi

i∑
j=3

⎛⎝i−1∏
k=j

ak

bk

⎞⎠u(i−j)=−H

bi

i∑
j=3

(
au

b

)i−j

.

In order to fulfill the bound (5.5), we must get H=0, so that d3=0 and the following
equality in measure holds

Γ2(dt)=
α

β
u(t)2dt.

This ends the proof of Theorem 3.3.

6. Extension to a density
In this section, we make an extra-assumption in order to obtain a convergence

result in L1 functional space, so that the limit measure has a density with respect to
the Lebesgue measure:

Assumption 5. There is δ∈ (0,1/ra−1) such that, for the function Ψ(y)=y1+δ,

sup
ε>0

∫ ∞

0

Ψ(f in,ε(x))dx<∞. (H8)

Moreover, the kinetic rates are given by exact power law functions, i.e.,

aεi =a(εi)ra , i≥2,

bεi = b(εi)rb , i≥3.
(H9)

Remark 6.1. The first hypothesis (H8) is slightly stronger than a compactness hy-
pothesis in L1(dx), where a more general (and not explicit) Ψ can be obtained, see [7].
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However, having an explicit power law function for Ψ will simplify the following calcu-
lus. The same is valid for the extra hypothesis (H9) on the kinetic rates, which is in
agreement with hypothesis (H5).

Assuming assumptions 1-5 hold true, we can now prove the last result.

Theorem 6.1. Assume η≥ ra and ra= rb. Let {εn} be a sequence converging to 0.
There exists T >0, a sub-sequence {εn′} of {εn}, and f ∈C([0,T ],w−L1(R+,x

raδdx))∩
L∞([0,T ];L1(R+,(1+x)dx)) such that the measure f(t,x)dx is a N -solution of LS with
mass m and

fεn′ −−−−−⇀
n′→+∞

f

in C([0,T ];w−L1(R+,x
raδdx)). N is given in Theorem 3.1-3.2 according to the value

of η.

The proof of this theorem is based on the following lemma which proof is postponed
below

Lemma 6.1. Assume η≥ ra and ra= rb. Let a sequence {εn} converging to 0. There
exist T >0 and a sub-sequence {εn′} of {εn} such that

sup
n′≥0

sup
t∈[0,T ]

∫ ∞

0

min(1,xraδ)Ψ(fεn′ (t,x))dx<+∞.

Proof. (Proof of Theorem 6.1.) Using the same proof as for Theorem 3.1 and
3.2, we obtain a sub-sequence fεn′ that converges in measure. We now remark that,
combining the estimates (4.3) in Lemma 4.1 and the last Lemma 6.1 we can apply
the Dunford-Pettis theorem, and we have a weak compact subset K of L1(R+,x

rδdx)
such that for all t∈ [0,T ] and n′≥0, fεn′ (t)∈K. We are now in position to prove that
along another subsequence, still denoted by {εn′}, the sequence converges to some f in
C([0,T ],w−L1(R+,x

rδdx)). Moreover, f belongs to L∞([0,T ],L1(R+,(1+x)dx). The
proof follows similar arguments as in [20, Proof of Theorem 2.2, p. 981] which consists
in proving the equicontinuity of

t→
∫ R

0

fε(t,x)ϕ(x)xrδdx,

for all ϕ∈L∞(0,R) and R>0. Indeed, by equation (4.3) we have for any ϕ∈C1 with
compact support in (0,R) that (see also the proof of Lemma 4.4)

lim
h→0

sup
t∈[0,T−h]

sup
s∈(0,h)

∣∣∣∣∫ ∞

0

(fε(t+s,x)−fε(t,x))ϕ(x)xrδdx

∣∣∣∣=0.

Then taking a pointwise convergent sequence {ϕn} in Cc([0,R]) of ϕ∈L∞(0,R) and using
Egorov’s theorem we get the desire result. Finally, we apply a variant of Arzela-Ascoli
theorem for weak topology, see [31, Theorem 1.3.2], so that for each R>0, the sequence
is relatively compact in C([0,T ],w−L1((0,R),rrδdx). By the compact containment we
improve this results on R+.

6.1. Technical results. Before proving Lemma 6.1, we start by some technical
lemmas.



JULIEN DESCHAMPS, ERWAN HINGANT, AND ROMAIN YVINEC 1377

Lemma 6.2. Let ϕ∈Cb ([0,∞)) non-negative. Then, for any I≥3,∫ ∞

0

ϕ(x)
[
Ψ(fε(t,x))−Ψ(f in,ε(x))

]
dx

≤ε

I−1∑
i=2

ϕε
iΨ(cεi (t))+

∫ t

0

[
ϕε
Ia

ε
I−1u

ε(s)Ψ(cεI−1(s))−ϕε
I−1b

ε
IΨ(cεI(s))

]
ds

+

∫ t

0

∫ ∞

(I−1/2)ε

[
aε(x)uε(s)Δεϕ(x)−bε(x)Δ−εϕ(x)

−δ (uε(s)Δ−εa
ε(x)−Δεb

ε(x)ϕ(x))
]
Ψ(fε(x,s))dxds. (6.1)

where ϕε
i =1/ε

∫
Λε

i
ϕ(x)dx.

Proof. The proof follows similar lines as in [20, Lemma 4.1], but we take profit of
the explicit form of Ψ to obtain a necessary finer estimate. We sketch it briefly below.
From the BD system (1.1), it comes∫ ∞

0

ϕ(x)
[
Ψ(fε(t,x))−Ψ(f in,ε(x))

]
dx=

∑
i≥2

∫
Λε

i

ϕ(x)[Ψ(cεi (t))−Ψ(cεi (0))] dx

=ε
∑

2≤i≤I−1

ϕε
i [Ψ(cεi (t))−Ψ(cεi (0))]+

∑
i≥I

ϕε
i

∫ t

0

[Jε
i−1(s)−Jε

i (s)]Ψ
′(cεi (s))ds.

We can decompose the latter in three parts,∫ ∞

0

ϕ(x)
[
Ψ(fε(t,x))−Ψ(f in,ε(x))

]
dx = Nε(t)+

∫ t

0

[Aε(s)+Bε(s)]ds,

where

Nε(t) := ε
∑

2≤i≤I−1

ϕε
i [Ψ(cεi (t))−Ψ(cεi (0))] ,

Aε(t) :=
∑
i≥I

ϕε
iu

ε(t)[aεi−1c
ε
i−1(t)−aεi c

ε
i (t)]Ψ

′(cεi (t)),

Bε(t) :=
∑
i≥I

ϕε
i [b

ε
i+1c

ε
i+1(t)−bεi c

ε
i (t)]Ψ

′(cεi (t)).

Then, in Aε we can rewrite, using the convexity of Ψ, for all i≥ I,

[aεi−1c
ε
i−1(t)−aεi c

ε
i (t)]Ψ

′(cεi (t))
=aεi−1[c

ε
i−1(t)−cεi (t)]Ψ

′(cεi (t))+(aεi−1−aεi )ciΨ
′(cεi (t))

≤aεi−1

(
Ψ(cεi−1(t))−Ψ(cεi (t))

)
+(aεi−1−aεi )c

ε
i (t)Ψ

′(cεi (t)).

Then, reordering the term in the last inequality and then using that xΨ′(x)−Ψ(x)=
δΨ(x),

[aεi−1c
ε
i−1(t)−aεi c

ε
i (t)]Ψ

′(cεi (t))
≤aεi−1Ψ(cεi−1(t))−aεiΨ(cεi (t))+(aεi−1−aεi )[c

ε
i (t)Ψ

′(cεi (t))−Ψ(cεi (t))]

=aεi−1Ψ(cεi−1(t))−aεiΨ(cεi (t))−δ(aεi −aεi−1)Ψ(cεi (t)).
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Thus, we obtain for A the following estimate,

Aε(t)≤
∑
i≥I

aεiu
ε(ϕε

i+1−ϕε
i )Ψ(cεi (t))+ϕε

Ia
ε
I−1u

ε(t)Ψ(cεI−1(t))

−δuε
∑
i≥I

ϕε
i (a

ε
i −aεi−1)Ψ(cεi ).

We estimate B, by similar argument, to get,

Bε(t)≤
∑
i≥I

ϕε
i [b

ε
i+1Ψ(cεi+1)−bεiΨ(cεi )]+δ

∑
i≥I

ϕε
i (b

ε
i+1−bεi )Ψ(cεi )

≤
∑
i≥I

(ϕε
i−1−ϕε

i )b
ε
iΨ(cεi )−ϕε

I−1b
ε
IΨ(cεI)+δ

∑
i≥I

ϕε
i (b

ε
i+1−bεi )Ψ(cεi ).

Both estimates on Aε and Bε directly give estimate (6.1).

Lemma 6.3. For all 0≤ r<1, and for all 0<δ< 1
r −1, there exists I0 such that for

all i≥ I0, and all x∈ [0,1],[
ir
(
(i+1/2+x)rδ−(i−1/2+x)rδ

)
−δ(ir−(i−1)r)(i−1/2+x)rδ

]
≤0,

Proof. Doing an expansion as i→∞, we easily obtain[
ir
(
(i+1/2+x)rδ−(i−1/2+x)rδ

)
−δ(ir−(i−1)r)(i−1/2+x)rδ

]
= rδ

ir(i− 1
2 +x)rδ

i2

[r(1+δ)−1

2
−x+O(

1

i
)
]
.

We conclude straightforwardly as r(1+δ)−1<0.

6.2. Proof of Lemma 6.1. In the following, let r= ra= rb and I= I0 given
by Lemma 6.3. We want to bound each term of equation (6.1) with ϕ(x)=min(1,xrδ).
Remark the term −ϕε

I0−1b
ε
I0
Ψ(cεI0(t)) can be easily dropped in equation (6.1) since it is

non-positive. Also, note that, for 2≤ i≤ I0,

εϕε
iΨ(cεi (t))≤ε1−r(1+δ)ϕε

i (ε
rcεi (t))

1+δ
.

Thus, since ϕε
i is bounded and δ≤1/r−1, we apply Lemma 4.8 and Proposition 4.1 to

obtain T >0 and a sub-sequence, still denoted by {εn}, to get:

sup
n≥0

sup
t∈[0,T ]

(εnϕ
εn
i Ψ(cεni (t)))<∞. (6.2)

Similarly, using that uε(t)≤Km, we have

ϕε
I0a

ε
I0−1u

ε(t)Ψ(cεI0−1(t))=a(I0−1)ruε(t)

(∫ I0+1/2

I0−1/2

yrδdy

)(
εrcεI0−1(t)

)1+δ

≤Kma(I0−1)r

(∫ I0+1/2

I0−1/2

yrδdy

)
sup
ε>0

sup
t∈[0,T ]

(
εrcεI0−1(t)

)1+δ
<∞, (6.3)
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By these estimates, the boundary terms in equation (6.1) are uniformly bounded. We
are led with the remaining integral term on ((I0−1/2)ε,∞). Denote, for all ε>0 and
x>0,

Dε(x)=aε(x)uε(t)Δεϕ(x)−bε(x)Δ−εϕ(x)−δ (uεΔ−εa
ε(x)−Δεb

ε(x))ϕ(x).

Thus,∫ 1

(I0−1/2)ε

Dε(x)Ψ(fε(x,t))dx

=

1/ε∑
i=I0

1

ε

∫
Λε

i

[
(aεiu

ε(t)(ϕ(x+ε)−ϕ(x))−bεi (ϕ(x)−ϕ(x−ε)))

−δ
(
uε(aεi −aεi−1)−(bεi+1−bεi )

)
ϕ(x)

]
Ψ(cεi (t))dx.

Then, on x∈ (0,1), we have that ϕ(x)=xrδ, and letting Γi=[i−1/2,i+1/2) and chang-
ing variable εy=x, we obtain∫ 1

(I0−1/2)ε

Dε(x)Ψ(fε(x,t))dx

=

1/ε∑
i=I0

εr(1+δ)

∫
Γi

[(
airuε(t)((y+1)rδ−yrδ)−bir(yrδ−(y−1)rδ)

)
−δ

(
uεa(ir−(i−1)r)−b((i+1)r− ir)

)
yrδ

]
Ψ(cεi (t))dy.

Finally, rearranging the term we have∫ 1

(I0−1/2)ε

Dε(x)Ψ(fε(x,t))dx

=

1/ε∑
i=I0

εr(1+δ)

∫
Γi

[(
auε(t)−b

)(
ir((y+1)rδ−yrδ)−δ(ir−(i−1)r)yrδ

)
+bir

(
(y+1)rδ−2yrδ+(y−1)rδ

)
+δb((i+1)r−2ir+(i−1)r)yrδ

]
Ψ(cεi (t))dy.

Then, as the second discrete derivative are negative, that is, for all s<1 and all x>1,

((x+1)s−2xs+(x−1)s)≤0,

we obtain∫ 1

(I0−1/2)ε

Dε(x)Ψ(fε(x,t))dx

≤εr(1+δ)
(
auε(t)−b

) 1/ε∑
i=I0

∫
Λi

[
ir((y+1)rδ−yrδ)−δ(ir−(i−1)r)yrδ

]
Ψ(cεi (t))dy.

The term under the integral is negative by Lemma 6.3. We now fix T >0 and extract a
sub-sequence {εn′} given by Lemma 4.8 such that auε(t)−b>0 on [0,T ]. Thus,∫ 1

(I0−1/2)ε

Dε(x)Ψ(fε(x,t))dx≤0. (6.4)
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On the other hand we have, since Δεϕ=0 on (1,+∞),∫ ∞

1

[
Dε(x)Ψ(fε(x,t))dx≤ δ(Km sup

x≥1
|a′(x) |+sup

x≥1
| b′(x) |)

∫ ∞

1

ϕ(x)Ψ(fε(x,t))dx,

(6.5)
and we conclude by estimates (6.2) to (6.5) that, for some constant K>0 and all
t∈ [0,T ],∫ ∞

0

ϕ(x)Ψ(fεn(t,x))≤K+

∫ ∞

0

Ψ(f in,εn(x))dx+K

∫ t

0

∫ ∞

0

ϕ(x)Ψ(fεn(t,x)).

We conclude the proof with the Gronwall Lemma.

6.3. The general case. The main difficulty to face the case ra<rb is to find
a test function ϕ in equation (6.1) which make the term under the integral negative
around 0, but which also keep the boundary terms bounded. We believe that a good
function would be

ϕ(x)=min(xrδe−Kxrb−ra
,c),

for some c>0 small and K>0 large enough. It recovers the case ra= rb (with c=1).
Computations are not presented here because they are too fastidious. Just let us show
that, at the limit ε→0,

[axrau(t)−bxrb ]ϕ′(x)−δ
[
raax

ra−1u(t)−rbbx
rb−1

]
ϕ(x)

=
ϕ(x)

x
(rb−ra)

[
δbxrb−Kxrb−ra(axrau(t)−bxrb)

]
.

But since u(t)>ρ, it exists x0>0 small and γ >0 such that the flux is bounded from
below by axrau(t)−bxrb ≥γaxra on [0,x0], thus

[axrau(t)−bxrb ]ϕ′(x)−δ
[
raax

ra−1u(t)−rbbx
rb−1

]
ϕ(x)≤ ϕ(x)

x
(rb−ra)

[
δb−Kγ

]
xrb .

Hence, for K large enough the term is negative around 0, which was the essential
ingredient of the proof of Theorem 6.1.

7. Discussion
In this work, we obtained limit theorems to derive rigorously the link between a

discrete-size coagulation-fragmentation model, the Becker-Döring (BD) model, and a
continuous-size model, the Lifshitz-Slyozov (LS) model. We used a weak-convergence
in measure, to prove that a sequence of discrete stepwise functions associated to the
BD model converges towards a measure solution of the LS model. The originality of
our work, compared to previous works in [9, 20], consists of being able to rigorously
define a boundary flux condition, for the limit non-linear transport partial differential
equation of the LS model. This boundary condition has been obtained thanks to an
averaging procedure for the smaller-sized cluster, namely the one of size i=2. It is
classical when passing from a discrete to a continuous model (think of a random walk
converging to a Brownian motion) to accelerate the rates (or equivalently, the time)
between each discrete transition. Hence, each individual discrete-size cluster evolves in
the re-scaled BD model (1.1) at a faster time scale than the continuous density function
fε in equation (2.1). Although the fast-motion involves a dynamical system of infinite
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dimension, we could obtain appropriate L∞-bounds on the time trajectories of each
discrete-sized cluster, and prove that, in the limit when the scaling parameter ε→0,
each discrete-sized cluster is the unique solution of an algebraic equation, which appears
to be the same as the steady-state condition of a constant monomer BD model.

Let us now discuss in more details what were the scaling assumptions that led to
the study of the system (1.1) (for the mathematical derivation, see the Appendix A).
Roughly, the system (1.1) is obtained when we consider that the clusters have very large
sizes but are present in a small quantity compared to a large excess of free particles.
The re-scaled equations are obtained in a large volume hypothesis, and the scaling of
the macroscopic reaction rates accounts for the volume-dependence of the aggregation
(so that aggregation and fragmentation occur at the same time scale).

However, importantly enough, the first aggregation (nucleation) rate is scaled differently
from the other aggregation rates (see Appendix A) and this comes from the special role
played by the free particles. Despite the large excess of free particles, in this framework,
the nucleation occurs at the same time scale than the aggregation of large-sized clusters,
and consequently prevents the formation of too many clusters. A different choice at this
step would lead to a rapid depletion of free particles, and would result in different mass
conservation where free particles are not present as a distinct entity any more — see
the work [20] on the Lifshitz-Slyozov-Wagner equation.

Finally, we allowed a flexibility in the scaling of the first fragmentation (de-nucleation),
quantified by the exponent η. We found (see Theorems 3.1-3.2-3.3) that different values
of η give rise to distinct boundary conditions at the limit when ε goes to 0. The
most natural case, η= rb, corresponds to the case where the clusters of size 2 dissociate
at the same speed than the small-sized clusters of size i, i≥3. Then, the case η>rb
corresponds to an asymptotically irreversible nucleation (and leads to a macroscopic flux
N(t)=αu(t)2, which corresponds to the microscopic nucleation rate – this conclusion
actually holds for all η>ra). And the case η≤ ra<rb corresponds to a strongly reversible
de-nucleation (and leads to 0≤N(t)<αu(t)2 according to the value ra).

We emphasize what this scaling means in terms of application, and in particular
for the amyloid formation literature described in the introduction [2, 12, 14, 15, 21, 29]
. First, the pre-equilibrium hypothesis for the small clusters was found to be valid in
our framework, meaning that if each discrete-size cluster evolves at a fast time scale,
their behavior can be nicely summed up by an appropriate boundary condition in a
continuous-size PDE. However, due to the specific form of the BD reactions, to recover
a LS equation with boundary condition, as used in [2, 15, 29], it is important to realize
that the first aggregation rate, leading to the formation of clusters of size 2, cannot be
too fast, and needs (in our framework) actually to be one order of magnitude slower
than subsequent aggregation rates. Interestingly, we were able to find both a positive
boundary condition, similar as used in fibrils formation models [2,15,29], and a zero flux
boundary condition, as used in the prion equation [12,14,21], according to the order of
the fragmentation rate magnitude for the cluster of size 2, compared to the other rates.
Indeed, consistently with the literature, we found that if clusters of size 2 degrade very
fast into free particles (η≤ ra<rb), the appropriate boundary condition is a zero-flux
boundary condition.

Hence, our work shed lights on which appropriate boundary conditions should be
used for the LS equation (or similar continuous coagulation models) according to specific
microscopic hypotheses (unfavorable, balanced or irreversible nucleation). We believe
that our procedure could be applied to several related models (for instance, the Lifshitz-
Slyozov-Wagner equation, previously mentioned, or the prion equation [12]) and should
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help to build reduced structured population models while taking into account of their
intrinsic multi-scale nature (see [34, 35] for applications).

Appendix A. From the original to the dimensionless BD system. The
original BD model gives the evolution of (ci)i≥1 by

d

dt
c1 = −J1−

∞∑
i=1

Ji, t≥0,

d

dt
ci = Ji−1−Ji, t≥0, i≥2,

where Ji is the flux between clusters of size i and i+1, given by

Ji=aic1ci−bi+1ci+1, i≥1.

Here, coefficients ai and bi+1 denote respectively the rate of aggregation and the rate of
fragmentation. Observe that such model (at least formally) preserves the total number
of particles (no source nor sink), that is

∞∑
i=1

ici(t)=

∞∑
i=1

ici(0)=:m, t≥0.

The classical approach to operate a scaling is to write the equations in a dimensionless
form. We follow [9] and introduce the following characteristic values:

T : characteristic time,

C1 : characteristic value for the free particle concentration c1,

C : characteristic value for the cluster concentration ci, for i≥2,

A1 : characteristic value for the first aggregation coefficient a1,
B2 : characteristic value for the first fragmentation coefficient b2,

A : characteristic value for the aggregation coefficients ai, i≥2,

B : characteristic value for the fragmentation coefficients bi, i≥3,

M c : characteristic value for the total mass m.

Thus, the dimensionless quantities are

t̃= t/T , m̃=m/M c, ũ(t̃)= c1(t̃T )/C1, c̃i(t̃)= ci(t̃T )/C,

and for all i≥2,

ãi=ai/A, b̃i+1= bi+1/B,

and the particular scaling at the boundary (we use different letters to emphasize this
point):

α̃ :=a1/A1, β̃ := b2/B2.

Then, the quantities ũ(t̃), c̃i(t̃) satisfy the equation

d

dt̃
ũ=

C

C1

[
−AC1T

(
2
A1C1

AC
α̃ũ2+

∑
i≥2

ãiũc̃i

)
+BT

(
2
B2

B
β̃c̃2−

∑
i≥3

b̃ic̃i

)]
,

d

dt̃
c̃2=AC1T (

A1C1

AC
α̃ũ2− ã2ũc̃2)−BT (

B2

B
β̃c̃2− b̃3c̃3),

d

dt̃
c̃i=AC1T (ãi−1ũc̃i−1− ãiũc̃i)−BT (b̃ic̃i− b̃i+1c̃i+1), i≥3 .
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The mass conservation reads

ũ(t̃)+
C

C1

∑
i≥2

ic̃i(t̃)=
M c

C1

m̃.

We introduce the scaling parameter ε>0 for the size of the clusters. Namely, a cluster
of size i is now seen as a cluster of size roughly εi so that we can define the density
(1.6). Then, the scaling obtained in equation (1.1) corresponds to the following choice
of relations between the characteristic values

C/C1=ε2, AC1T =BT =
1

ε
, M c/C1=1,

and, at the boundary,

A1=ε2A,

and

B2=εηB,

with η≥0. The reader interested in a physical justification of this scaling can refer to
the discussion in Section 7 and to [9].
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