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ON THE GLOBAL REGULARITY OF THE 2D CRITICAL
BOUSSINESQ SYSTEM WITH α>2/3∗

FAZEL HADADIFARD† AND ATANAS STEFANOV‡

Abstract. This paper examines the question for global regularity for the Boussinesq equation with
critical fractional dissipation (α,β) :α+β=1. The main result states that the system admits global
regular solutions for all (reasonably) smooth and decaying data, as long as α>2/3. This improves
upon some recent works [Q. Jiu, C. Miao, J. Wu and Z. Zhang, SIAM J. Math. Anal., 46:3426–3454,
2014] and [A. Stefanov and J. Wu, J. Anal. Math., 2015].

The main new idea is the introduction of a new, second generation Hmidi-Keraani-Rousset type,
change of variables, which further improves the linear derivative in temperature term in the vorticity
equation. This approach is then complemented by a new set of commutator estimates (in both negative
and positive index Sobolev spaces!), which may be of independent interest.
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1. Introduction
The two-dimensional (2D) Boussinesq equations with fractional dissipation is⎧⎪⎪⎨⎪⎪⎩

∂tu+u ·∇u+νΛαu=−∇p+θe2, x∈R2, t>0,
∇·u=0, x∈R2, t>0,
∂tθ+u ·∇θ+κΛβθ=0, x∈R2, t>0,
u(x,0)=u0(x), θ(x,0)=θ0(x), x∈R2,

(1.1)

where u=u(x,t)=(u1(x,t),u2(x,t)) denotes the velocity vector field, p=p(x,t) is the
scalar pressure, the scalar function θ=θ(x,t) is the temperature, e2 the unit vector in
the vertical direction, and ν≥0, κ≥0, 0≤α≤2 and 0≤β≤2 are real parameters. Here
Λ=

√
−Δ is the Zygmund operator defined through the Fourier transform,

Λ̂αf(ξ)= |ξ|α f̂(ξ),

where the Fourier transform and its inverse are given by

f̂(ξ)=

∫
R2

e−ix·ξ f(x)dx, f(x)=(2π)−2

∫
R2

eix·ξ f̂(ξ)dξ.

This model is of importance in a number of studies on atmospheric turbulence, [18,21].
The standard model (where both dissipations are taken to be the classical Laplacian,
α=β=2) is a primary model for atmospheric fronts and oceanic circulation as well as
in the study of Raleigh-Bernard convection, [3,8,17,21,24,25]. The fractional diffusion
operators considered herein appear naturally in the study in hydrodynamics, [7] as well
as anomalous diffusion in semiconductor growth, [20]. There are also other models
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in which the Boussinesq equations with fractional Laplacian naturally arise, namely
in models where the kinematic and thermal diffusion is attenuated by the thinning of
atmosphere, [8].

Mathematically, the problem for global regularity of ((1.1)) is an interesting and
subtle one. Intuitively, the lower the values of α,β, the harder it is to prove that solutions
emanating from sufficiently smooth and localized data persist globally. In particular,
the problem with no dissipation (i.e. ν=κ=0) remains open. This is very similar to
the Euler equation in two and three spatial dimensions and in fact numerous studies
explore the possibility of finite time blow up, [22].

Next, we take on the difficult task of reviewing the recent results regarding well-
posedness issues for equation ((1.1)). Indeed, there has been tremendous interest in this
problem in the last fifteen years. In the classical case, when the diffusion is given by the
regular Laplacian (i.e. α=β=2), the global regularity follows just as it does for the 2D
Navier–Stokes model, [6, 18]. In the works [1, 12], global regularity was proved in the
presence of one full Laplacian, that is in the cases α=2,β=0 or α=0,β=2. In more
recent years, the full two parameter range of α,β was explored in detail. Based on the
currently available results, it is natural to draw the conclusion that one expects global
regularity in the cases α+β≥1, while the case α+β<1 generally remains open1. We
thus adopt the notion of criticality - namely, we say that a pair (α,β) is subcritical if
α+β>1, critical if α+β=1 and supercritical if α+β<1.

As it was alluded above, in the supercritical regime the behavior of the solutions
remains a mystery. Apart from some numerical simulations, the only rigorous result
that we are aware of is the eventual regularity of the solutions, [27], for appropriate
supercritical regime of the diffusivity parameters. To be sure, such statement does not,
per se exclude a finite time blow up of some solutions. It remains to discuss the critical
and subcritical cases. This is probably a good place to observe that if global regularity
holds for critical pair (α0,β0) :α0+β0=1, then it must hold for all subcritical pairs in
the form2 (α,β0),α>α0 and (α0,β) :β>β0. Thus, clearly global regularity results on
the critical line are superior, in the sense described above, to subcritical ones. That
being said, the subcritical theory is far from obvious or well-understood. Many results
have been put forward in the last ten or so years. The following (very incomplete and
yet very long) list accounts for some recent accomplishments - [2, 4, 5, 15, 16,19,29–37].

Next, we give a full account of the global regularity results for diffusivity parameters
on the critical line α+β=1. First, in series of works, Hmidi-Keraani-Rousset, [10, 11]
established global regularity in the two critical and endpoint cases (α,β)=(1,0),(0,1).
In their work, they employed clever change of variables, thus introducing a new hybrid
quantity, depending on both vorticity and temperature3. In a subsequent paper, by
developing more sophisticated function spaces, Jiu-Miao-Wu-Zhang, [13] were able to
extend the global regularity results to the case α+β=1,

α>
23−

√
145

12
≈0.9132...

Subsequently, the second name author, in collaboration with J. Wu, [23] significantly

1in some numerical simulations, there was a reason to believe that finite time blow up might occur,
but this is at present still a conjecture

2We believe that this statement, while not a rigorous result, can be made an exact theorem on a
case by case basis, by just reworking a proof for (α0,β0) to cover the higher dissipation cases (in either
the u or the θ variables)

3which is better suited (and looses less derivatives than either vorticity and temperature separately)
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extended the results in [13], by covering the critical line α+β=1, up to

α>

√
1777−23

24
≈0.798103...

Quite recently4, we have learned that in [28] Wu-Xu-Xue-Ye have managed to further
lower the allowable α exponents to

α>
10

13
∼0.7692.

These results were achieved thanks to more sophisticated commutator estimates, both
in Sobolev and Besov spaces, by essentially working in the setup of Hmidi-Keraani-
Rousset (HKR for short), [10]. It was our (informal) conclusion in [23] that tightening
of the commutator estimates in the HKR variables has exhausted (or nearly exhausted)
the possible improvements. In other words, one needs to introduce better, more so-
phisticated change of variables, which in conjunction with sharp commutator estimates
yields wider range of critical indices (α,β), for which one has global regularity.

The purpose of this paper is to do just that. We aim at further improving upon
the results in [23]. In particular, we still work in the regime5 α> 1

2 >β, but in order to
obtain better range, we perform a second generation HKR change of variables, which
positions us for a better result. As we mention above, this is complemented by very
precise commutator estimates, see Section (2.2).

We note that we do not, at this point, have anything new to say in the regime
β> 1

2 >α, for which the only available global regularity result is for α=0,β=1. We
hope to be able to report on these cases in the near future.

1.1. Main result. We are ready to state our main result.
Theorem 1.1. Consider the Boussinesq equation ((1.1)) with

2

3
<α<1,α+β=1.

Suppose also that

‖u0‖H1+ρ(R2)<∞, ‖θ0‖H1+β+ρ(R2)+‖∇θ0‖L∞+‖θ0‖L1(R2)<∞,

where 0<ρ�1. Then, equation ((1.1)) has a unique global solution (u,θ) satisfying, for
any T >0 and moreover

(u,θ)∈C([0,T ];H1+ρ(R2)×H2+ρ(R2)).

1.2. Some initial reductions. It is well-known that for sufficiently smooth and
decaying data, the problem has a local solution, say in some interval [0,T ]. The global
regularity problem then reduces to showing that T =∞. One proceeds to establish that
by a contradiction argument. That is, if one assumes that T <∞, the contradiction
will arise out of impossibility of blow up at time T . Thus, one seeks to prove a priori
estimates on the solutions, which will prevent them from blowing up. Let us mention
for now, that the problem allows for some elementary a priori estimates⎧⎨⎩

‖θ(t)‖Lp ≤‖θ0‖Lp ,for p∈ [1,∞],

‖θ(t)‖2L2 +2κ
∫ t

0
‖Λ β

2 θ(τ)‖2L2dτ =‖θ0‖2L2 ,

‖u(t)‖2L2 +2ν
∫ t

0
‖Λα

2 u(τ)‖2L2dτ ≤ (‖u0‖2L2 + t‖θ0‖2L2).

(1.2)

4after major part of this paper was completed
5noting that the HKR framework takes a slightly different form in the case β> 1

2
>α
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which are valid, whenever 0<t<T . These will be used repeatedly in the argument, but
as such they will be inadequate to conclude global regularity, they are just too weak
for that. From now on, due to the fact that the precise values of the physical constants
κ,ν >0 are unimportant in the arguments, we set them to one, κ=ν=1.

1.3. Change of variables: vorticity equation and beyond. It turns out
that it is easier to work with the vorticity equation. A quick inspection shows that the
vorticity ω=∇×u, a scalar quantity, satisfies{

∂tω+u.∇ω+Λαω=∂1θ,
u=∇⊥ψ, Δψ=ω or u=∇⊥Δ−1ω.

(1.3)

Therefore the problem reduces to the problem of considering the regularity and existence
of the classical solution of the equations{

ωt+Λαω+u ·∇θ=∂1θ,
θt+Λβθ+u ·∇θ=0.

(1.4)

One notices of course, that the right-hand side of the vorticity equation has a full
derivative acting on θ, which is challenging to control. The strategy (first applied by
Hmidi-Keraani-Rousset, [10]) is to consider a combined quantity of the vorticity and
(a derivative of) the temperature θ, which one would eventually be able to control via
energy estimates. More precisely, note that since we can write

Λαω−∂1θ=Λα[ω−Λ−α∂1θ],

it is worth introducing the quantity G=ω−Λ−α∂1θ. For it, we have the equation,

Gt+u ·∇G+ΛαG=Λβ−α∂1θ+[Rα,u ·∇]θ.

This is the evolution equation used in [10] and subsequent papers, [13, 23, 28]. It turns
out however that the presence of the factor Λβ−α∂1θ is still too rough in the range of
α> 2

3 , thus preventing us from getting the desired bounds. In order to remove it as is
done above in the G construction, we introduce a new variable f =G−Λβ−2α∂1θ. This
is the second generation HKR change of variables that we have alluded to above. We
have

Gt+u ·∇G+Λα(G−Λβ−2α∂1θ)= [Rα,u ·∇]θ.

Again by adding and subtracting some terms and using the equation for θ, we get

(G−Λβ−2α∂1θ)t+u.∇(G−Λβ−2α∂1θ)+Λα(G−Λβ−2α∂1θ)+Λβ−2α∂1θt

+u ·∇Λβ−2α∂1θ=[Rα,u ·∇]θ

which gives

ft+u.∇f+Λαf+(−Λ2(β−α)∂1θ−Λβ−2α∂1(u ·∇θ))+u.∇Λβ−2α∂1θ=[Rα,u ·∇]θ,

hence

ft+u ·∇f+Λαf =Λ2(β−α)∂1θ+[Rα,u ·∇]θ+[Λβ−2α∂1,u ·∇]θ. (1.5)

Note that since β−α=1−2α<0, the term [Λβ−2α∂1,u ·∇]θ=[Λβ−αRα,u ·∇]θ will al-
ways be easier to treat than the similar term [Rα,u ·∇]θ. For this reason, we will ignore
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this term in our discussion, with the understanding that a rigorous proof can always
be produced by following the corresponding proof for the (harder to treat) commutator
term [Rα,u ·∇]θ.

Based on the definition above

f =G−Λβ−2α∂1θ=G−RαΛ
β−αθ=ω−Rαθ−RαΛ

β−αθ=ω−(Rα+RαΛ
β−α)θ,

therefore

u=∇⊥Δ−1ω=∇⊥Δ−1f+∇⊥Δ−1Rα(I+Λβ−α)θ :=uf +uθ. (1.6)

With this definition it is clear that, uf ∼Λ−1f and uθ∼Λ−αθ+Λ1−3αθ.

1.4. Regularity criteria for the Boussinesq system. The question for global
regularity is reduced to a certain, so called regularity criteria, namely a quantity6,
which if controlled up to time T , will keep all higher Sobolev norms finite and non-
blowing up to time T , hence the global regularity. This is a well-known problem in
many quasilinear problems, for example in the standard Navier–Stokes posed on R1

+×
Rd, it suffices to control a priori sup0≤t≤T ‖u(t)‖Ḣd/2 or sup0≤t≤T ‖u(t)‖Ld or some

mixed norm quantities of the form ‖u‖Lp
t (0,T )Lq(Rd),

2
p +

d
q =1,2≤p≤∞. These are all

quantities, which of course scale nicely according to the natural scaling of the NLS
problem. One difficulty with equation ((1.1)) is that the problem does not have scaling
invariance, outside of the case α=β. Nevertheless, there exists a regularity result for
the Boussinesq system, namely Theorem 1.2 in [13]. Although, it is not quite stated in
the clean form that we described above for NLS, it provides for a regularity result for
the temperature equation7 in equation ((1.1)). More precisely, we have

Proposition 1.1 (Theorem 1.2 in [13]). Let β∈ (0,1), ũ :∇· ũ=0 with

M =‖ũ‖L∞(0,T )L2(R2)+‖∇ũ‖L∞(0,T )L∞(R2)<∞. (1.7)

Assume that θ :θ∈L2(R2),∇θ∈L2∩L∞ satisfies the generalized critical surface quasi-
geostrophic equation ⎧⎨⎩ θt+Λβθ+u ·∇θ=0

u= ũ+v,v=−∇⊥Λ−3+β∂1θ
θ(0,x)=θ0(x).

(1.8)

Then, the equation ((1.8)) has an unique solution θ∈C([0,T ),H1(R2)),

‖∇θ‖L∞(0,T )L∞(R2)≤C(T,M,‖∇0‖H1 ,‖∇θ0‖L∞).

for some continuous function C.

Having θ as smooth as guaranteed by Proposition (1.1) in turn allows us to conclude
the regularity of u in the full Boussinesq system ((1.1)). Thus, the regularity criteria,
which we need, is exactly

MT = sup
0≤t≤T

[‖uf‖L∞(0,t)L∞x (R2)+‖∇uf‖L∞(0,t)L∞x (R2)]<∞.

In order to extract an easy quantity to work with, we make use of the following result.

6usually a norm of the solution
7Given the form of the equation ((1.6)), the motivation for the form of u below becomes clear
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Proposition 1.2 (Lemma 2.5, p. 1969, [28]). Let α,β :α+β≤1, 12 <α<1 and

Gt+u ·∇G+ΛαG=[Rα,u·]∇+Λβ−α∂x1
θ. (1.9)

Then, if 2
1−α >q> 2

α and

sup
0≤t≤T

‖G(t, ·)‖Lq(R2)<∞,

then for any 0≥s<max(3α−2,0), one has the bound

sup
0≤t≤T

‖G(t, ·)‖Bs
r,∞ <∞,

where

2

2α−1
<r≤ 2q

2−(1−α)q
.

Let us mention that the equation G displayed in equation ((1.9)) corresponds to the
change of variables used in previous works (dubbed first generation Hmidi-Keraani-
Rousset). On the other hand, we would like to apply Proposition (1.2) to the solution
f of equation ((1.5)). Note however that the terms in (1.5) are either the same or
more regular than the corresponding terms8 in inequality ((1.10)). Thus, we can apply
Proposition (1.2) to f . Using this result, we can reduce matters to verifying

sup
0≤t≤T

‖f(t, ·)‖L6(R2)<∞. (1.10)

Indeed, assuming that we have established the bound ((1.10)), we apply Proposition
(1.2) with q=6 (which is exactly in the range ( 2

α ,
2

1−α )). We obtain the following bound
for f

sup
0≤t≤T

‖f‖B3α−2
6

3α−2
,∞

<∞.

But then, by elementary Sobolev embedding, we have for every small δ>0,

‖∇uf‖L∞x ≤Cδ‖f‖
W

3α−2−δ
3

, 6
3α−2

≤Cδ‖f‖B3α−2
6

3α−2
,∞

which would have verified the bound ((1.7)). Thus, it remains to verify ((1.10)).

Remark 1.1. Originally, our proof proceeded via a Sobolev embedding control of the
form ‖∇uf‖L∞x (R2)≤C(‖Λδ∇f‖L2(R2)+‖f‖L2) and then controlling this last Sobolev
norm. We gratefully acknowledge Professor Ye’s contribution, which lead us to this
much shorter argument.

1.5. Strategy of the proof and the organization of the paper. As we
have alluded to before, the strategy is to follow the standard approach for such models -
namely one starts with a local solution9. Such solution may of course be defined for short
time only and it may blow up at some finite time T0<∞. We henceforth do not worry
about the existence and the regularity of the solution up to time T0, but we need good a

8Thanks to Prof. Ye for pointing this out to us in a private communication
9which is immediately smooth for any time t>0
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priori estimates. More precisely, in the discussion leading to ((1.10)), we explained that
blow up is possible, only if limsupt→T0−‖f‖L∞(0,t)L6

x(R
2)=∞. Thus, a contradiction

will be reached (whence T0=∞ and the solution is global), if one can provide a priori
bound in the form sup0≤t≤T0

‖ f‖L∞(0,t)L6
x(R

2)=M0<∞. In practice, we construct
M =M(T ;‖θ0‖L1∩H2+ρ(R2),‖u0‖H1+ρ(R2)) a continuous function in all arguments, so
that sup0≤t≤T ‖f‖L∞(0,t)L6

x(R
2)≤M(T ).

Starting with the obvious a priori bounds ((1.2)), we gradually improve it to finally
obtain ((1.10)). More precisely, in Section (3), we first establish an L2 bound for f
(see Proposition (3.1)), together with some Sobolev bounds for θ. Next, using the L2

bounds from Proposition (3.1), we bootstrap Proposition (3.2), in order to establish L4

bounds for f , together with the uniform in time Sobolev bounds for f,θ and some L2

averaged in time Sobolev bounds. These are all (considerably) better than the one in
Proposition (3.1). We finish Section (3) by bootstrapping Proposition (3.2) yet again
to establish L6 bounds for f , together with even better uniform and L2 time averaged
Sobolev bounds for f,θ. The uniform Sobolev bounds in time required for the global
regularity in ((1.10)) do not come cheaply and by themselves - instead one seems to
need to cook up energy functionals involving Lp (p larger) norms of f . In other words,
for low α one faces not only the usual derivative difficulties as in previous works, but
also integrability issues for f . Having Proposition (3.3) is enough, by the discussion in
Section (1.4) below to conclude the global regularity claimed in Theorem (1.1).

2. Preliminaries
For the proof, we need a number of technical tools, which we now introduce. We

start with the Lp spaces and Littlewood-Paley theory.

2.1. Function spaces. We use standard notation for Lp spaces and Sobolev
spaces, namely for s>0,p∈ [1,∞),

‖f‖Lp =

(∫
|f(x)|pdx

)1/p

‖f‖W s,p =‖Λsf‖Lp +‖f‖Lp

We need to quickly introduce some elementary Littlewood-Paley theory. To that end, let
Υ be an even and smooth function on R1, so that supp Υ⊂ [−2,2], so that Υ(ξ)=1, |ξ|<
1. Define ζ :R2→R1 via ζ(ξ)=Υ(|ξ|)−Υ(2|ξ|), so that ζ ∈C∞(R2), with supp ζ⊂{ξ :
1
2 < |ξ|<2}. In addition,

∞∑
k=−∞

ζ(2−kξ)=1, ξ �=0.

This allows us to define the Littlewood-Paley operators Δ̂jf(ξ) := ζ(2−jξ)f̂(ξ), restrict-
ing the Fourier transform of f to the annulus {ξ : |ξ|∼2j}. We will often denote

fk=Δkf , f∼k=
∑k+10

j=k−10Δjf and f<k=
∑

j<kΔjf .

2.2. Commutator estimates. In this section, we present some commutator
estimates, which will be useful in our arguments. Some of them, Lemma (2.2) and
Lemma (2.3) appear to be new. We start with a lemma developed in [23] (see Lemma
2.5 there and Corollary 2.6).

Lemma 2.1. Let ∇·g=0, 0<S<1 and 1<p2<∞, 1<p1,p3≤∞, so that 1
p1

+
1
p2

+ 1
p3

=1. For every 0≤S1,S2,S3≤1 that satisfy S1+S2+S3>1+S, there exists a
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C=C(p1,p2,p3,S1,S2), so that

|
∫
Rd

h[ΛS ,g ·∇]ψdx|≤C‖ΛS1ψ‖Lp1 ‖ΛS2h‖Lp2 ‖ΛS3g‖p3
. (2.1)

In particular if p3<∞ then

• for S1=s1, S2=s2 and S3=1 where s1+s2>1−α

|
∫
Rd

h[Rα,V ·∇]ψdx|≤C‖Λs1ψ‖Lp1 ‖Λs2h‖Lp2 ‖∇V ‖Lp3 , (2.2)

• similarly, for every 0≤s2,s3<1, so that s2+s3>1+S we have

|
∫
Rd

h[ΛS ,V ·∇]ψdx|≤C‖ψ‖Lp1 ‖Λs2h‖Lp2 ‖Λs3V ‖Lp3 . (2.3)

Note that in all statements, one could have replaced Rα=∂1Λ
−α by any multiplier,

which acts as differentiation of order 1−α, for example Λ1−α.

Note that in this lemma, one has to always allow for small derivative loss. Lemma
(2.1) will be adequate for many terms, except when we need to account for all deriva-
tives. In other words, we need a variant which is lossless in the derivative count (and/or
endpoint estimates). We have two versions - Lemma (2.2) is for estimates in (homo-
geneous) Sobolev spaces of negative index, and the other one, Lemma (2.3), for esti-
mates in (homogeneous) Sobolev spaces of positive index. We mostly need Lemma (2.2)
throughout the paper, the need for Lemma (2.3) arises at the very end of our argument.
Interestingly, in the proof (presented in the Appendix), we do not distinguish much
between these two cases. Note that the results in Lemmas (2.2) and Lemma (2.3) hold
under somewhat more general assumptions than the one that we displayed below, but
we prefer to keep it simple and convenient for the applications.

Lemma 2.2. Let s1,s2 be two real numbers so that 0≤s1 and 0≤s2−s1≤1. Let
p,q,r be related via the Hölder’s 1

p =
1
q +

1
r , where 2<q<∞, 1<p,r<∞. Finally, let

∇·V =0.
Then for any a∈ [s2−s1,1]

‖Λ−s1 [Λs2 ,V ·∇]ϕ‖Lp ≤C‖ΛaV ‖Lq‖Λs2−s1+1−aϕ‖Lr . (2.4)

In addition, we have the following end-point estimate. For s1>0,s2>0,s3>0 and s1<
1,s3<1,s2<s1+s3, there is10

‖Λ−s1 [Λs2 ,Λ−s3V ·∇]ϕ‖L2 ≤C‖V ‖L∞‖Λs2−s1+1−s3ϕ‖L2 . (2.5)

We have the following useful corollary of inequality ((2.4)).

Corollary 2.1. Let p1,p2,p3 :
1
p1

+ 1
p2

+ 1
p3

=1 and p1>2. Assume that 0≤s≤1.
Then,

|〈[Λs,V ·∇]ϕ,ψ〉|≤C‖∇V ‖Lp1 ‖Λsϕ‖Lp2 ‖ψ‖Lp3 (2.6)

|〈[Λs,V ·∇]ϕ,ψ〉|≤C‖ΛaV ‖Lp1 ‖Λs+1−aϕ‖Lp2 ‖ψ‖Lp3 (2.7)

10Note that in the statement of inequality ((2.5)), one does not necessarily need precisely the form
Λ−s3V . In fact, the estimate applies for any Fourier multiplier Q, with the property that ‖QVk‖L∞ ∼
2−ks3‖Vk‖L∞
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whenever a∈ [s,1].
The next lemma is basically identical to Lemma (2.2), except that s1 has the op-

posite sign.

Lemma 2.3. Let 0≤s1, 0<s2, 0≤s1+s2<1, s2+s1<a≤1, 2<q<∞,1<r<∞ and
1
p =

1
q +

1
r . Then

‖Λs1 [Λs2 ,V ·∇]ϕ‖Lp ≤C‖ΛaV ‖Lq‖Λ1+s2+s1−aϕ‖Lr . (2.8)

The following corollary is a direct result of the above lemma.

Corollary 2.2. Let 0≤s<α, β+s<a≤1, 2<q,r<∞ and 1
2 =

1
q +

1
r . Then

‖Λs[Rα,V ·∇]ϕ‖L2 ≤C‖ΛaV ‖Lq‖Λ1+β+s−aϕ‖Lr . (2.9)

Next, we need to prepare a technical point, which will be useful in the sequel.

2.3. The scaled variables. For technical reasons, we use the following scaled
variables {

θ(t,x)=Θ(εβ0 t,ε0x), u(t,x)=U(εβ0 t,ε0x)

f(t,x)=F (εβ0 t,ε0x), U =UF +UΘ,
(2.10)

where ε0 is a small parameter to be determined in each energy estimate later on sepa-
rately. Clearly

Θt+εα0U ·∇Θ+ΛβΘ=0.

The corresponding equation for F is

εβ0Ft+ε0U ·∇F +εα0Λ
αF = ε

1+2(β−α)
0 Λ2(β−α)∂1Θ+ε3β0 [Λβ−2α∂1,U ·∇]Θ

+ε1+β
0 [Rα,U ·∇]Θ.

Thus, our new system now is in the form of{
Ft+εα0U ·∇F +εα−β

0 ΛαF =N(U,F,Θ),
Θt+εα0U ·∇Θ+ΛβΘ=0.

(2.11)

with N(U,F,Θ)= ε2−3α
0 Λ2(β−α)∂1Θ+ε0[Rα,U ·∇]Θ+ε2β0 [Λβ−2α∂1,U.∇]Θ. Note that in

this case ‖θ‖Lp = ε
−2/p
0 ‖Θ‖Lp , in particular ‖Θ‖L∞ =‖θ‖L∞ and similar for f,F .

2.4. Some basic energy inequalities. Now suppose κ,s≥0 , and take Λs and
Λκ derivatives, and then dot product with ΛsF and ΛκΘ in system ((2.11)), respectively,
to get

1

2
∂t‖ΛsF‖2L2 +εα−β

0 ‖Λs+α
2 F‖2L2 ≤ εα0 |

∫
(Λs[U ·∇F ])ΛsFdx|

+ε2−3α
0 |〈Λ2(β−α)+s∂1Θ,ΛsF 〉|+ε0|〈Λs[Rα,U ·∇]Θ,ΛsF 〉|

+ε2β0 |〈Λs[Λβ−2α∂1,U ·∇]Θ,ΛsF 〉|= I1+I2+I3+I4 (2.12)

and,

1

2
∂t‖ΛκΘ‖2L2 +‖Λκ+ β

2 Θ‖2L2 ≤ εα0 |〈Λκ(U ·∇Θ),ΛκΘ〉| := I5. (2.13)
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In the case that s<1 or κ<1 we can easily rewrite I1 and I5 in the commutator forms:

I1= εα0 |〈[Λs,U ·∇]F,ΛsF 〉|, I5= εα0 |〈[Λκ,U ·∇]Θ,ΛκΘ〉|.

Now, take dot product with F |F |p−2 in ((2.11)), and get

1

p
∂t‖F‖pLp +εα−β

0 |
∫

F |F |p−2ΛαFdx|≤ ε2−3α
0

∫
F |F |p−2Λ2(β−α)∂1Θdx

+ε0|〈[Rα,U ·∇]Θ,F |F |p−2〉|+ε2β0 |〈[Λβ−2α∂1,U ·∇]Θ,F |F |p−2〉|
:=K1+K2+K3.

By maximum principle

εα−β
0 |

∫
F |F |p−2ΛαFdx|≥C0ε

2α−1
0

∫
|Λα

2 (F
p
2 )|2dx≥C0ε

2α−1
0 ‖F p

2 ‖2
L

4
2−α

=C0ε
2α−1
0 ‖F‖p

L
2p

2−α

.

Therefore

1

p
∂t‖F‖pLp +C0ε

α−β
0 ‖F‖p2p

2−α

≤ ε2−3α
0

∫
F 3Λ2(β−α)∂1Θdx=K1+K2+K3. (2.14)

In our proofs, we usually combine two or three relations of ((2.12)), ((2.13)) and ((2.14)),
with different κ, s, and p, and try to find the proper estimate for the right hand side, and
then use the Gronwall’s inequality to close the arguments. In our discussion, we shall
ignore the estimates for I4 andK3, as they are easier to deal with than the corresponding
terms I3 and K2.

3. Lp bounds on f
In this section we prove L2, L4 and L6 bound for f . We start with L2 bound and

then proceed with L4 bound and finally we get the L6 bound. During the discussion we
also raise the derivative on both θ and f . This allows us to jump to higher derivatives
in the next section.

3.1. L2 Estimate.
Proposition 3.1. Let 0<ρ�1, γ= β

2 −2ρ, f0∈H
α
2 and θ0∈L∞∩Hγ then

‖f‖L2 +‖Λγθ‖L2 ≤CT (3.1)∫ T

0

(‖Λα
2 f(.,t)‖2L2 +‖Λ

β
2 +γθ(.,t)‖2L2)dt≤CT (3.2)

where CT =C(T,‖θ0‖L∞ ,‖f‖
H

α
2
,‖θ‖

H
α
2
).

Proof. We start with the scaled variables. In each case, we specify how small ε
needs to be in order to close the estimates. In the end, we choose and fix one such ε,
say the half of the smallest upper bound. This argument will then imply the estimates
((3.1)) and ((3.2)).

In ((2.12)) and ((2.13)) take κ=0 and s=γ, then we want to bound the right hand
side of the following relation

1

2
∂t(‖F‖2L2 +‖ΛγΘ‖2L2)+εα−β

0 ‖Λα
2 F‖2L2 +‖Λγ+ β

2 Θ‖2L2 ≤ I1+I2+I3+I4+I5. (3.3)

Since 〈U ·∇F,F 〉=− 1
2 〈∇·U,F 2〉=0, we have I1=0.
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3.1.1. Estimate for I2.

Case 1,α> 3
4 :

I2≤ ε2−3α
0 ‖Λ3−4αΘ‖L2‖F‖L2 ≤ ε2−3α

0 ‖Θ‖
L

1
2α−1

‖F‖L2 ≤ 1

100
‖F‖2L2 +Cε0 .

Case 2,α≤ 3
4 :

we have by Hölder’s and Gagliardo-Nirenberg,

I2≤ ε2−3α
0 ‖Λ3−4αF‖L2‖Θ‖L2 ≤Cε2−3α

0 ‖θ0‖L2‖Λα
2 F‖δL2‖F‖1−δ

L2 .

for δ= 3−4α
α/2 . Note that δ∈ (0,1), since α>2/3. Applying Young’s inequality gives us

I2≤
ε2α−1
0

100
‖Λα

2 F‖2L2 +Cε0,‖θ0‖L2
(1+‖F‖L2)2.

3.1.2. Estimate for I3. In this case we are seeking bounds for two terms If3
and Iθ3

I3≤ ε0|
∫

F [Rα,UΘ.∇]Θdx|+ε0|
∫

F [Rα,UF .∇]Θdx| := Iθ3 +If3 .

Now, for Iθ3 , we apply inequality ((2.3)), with p1=∞,p2=p3=2 and s3=
β
2 +γ+α=

1−2ρ and s2=
α
2 . Note that this is within the range of applicability of inequality ((2.3)),

since s2+s3=1+ α
2 −2ρ>2−α, whenever α> 2

3 and 0<ρ�α− 2
3 . We get

Iθ3 ≤Cε0‖Θ‖L∞‖Λ
α
2 F‖L2‖Λ β

2 +γ+αUΘ‖L2 ≤Cε0‖θ0‖L∞‖Λ
α
2 F‖L2‖Λ β

2 +γΘ‖L2 .

Thus,

Iθ3 ≤
ε2α−1
0

100
‖Λα

2 F‖2L2 +Cε3−2α
0 ‖θ0‖2L∞‖Λ

β
2 +γΘ‖2L2 .

Taking ε0 :Cε3−2α
0 ‖θ0‖2L∞ ≤ 1

100 will ensure that we can absorb the second term above

behind ‖Λ β
2 +γΘ‖2L2 on the left-hand side.

Regarding If3 , we have by inequality ((2.2)) with p3=2, s1=0, s2=1−α+ρ, 2
p1

=
3α
2 −1−ρ, 2

p2
=2− 3α

2 +ρ,

If3 ≤ ε0‖∇UF ‖L2‖Λ1−α+ρF‖Lp2 ‖Θ‖Lp1 ≤ ε0C‖F‖L2‖Λα/2F‖L2‖θ0‖Lp1 .

where we have used the Sobolev embedding estimate ‖Λ1−α+ρF‖Lp2 ≤C‖Λα/2F‖L2 .
Applying Cauchy-Schwarz yields

If3 ≤
εα−β
0

100
‖Λα/2F‖2L2 +ε1+2βC‖θ0‖2Lp1 ‖F‖2L2

≤ εα−β
0

100
‖Λα/2F‖2L2 +

1

100
‖θ0‖2Lp1 ‖F‖2L2 ,

where we took ε so that ε1+2βC≤ 1
100 .
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3.1.3. Estimate for I5. For If5 , take s3=1−ρ,s2=γ+2ρ, p : 1p =
1
2−

ρ
2 , q :

1
q =

ρ
2 , then we have by inequality ((2.3)),

|〈[Λγ ,UF .∇]Θ,ΛγΘ〉|≤C‖Θ‖Lq‖Λ2γ+2ρΘ‖L2‖Λ1−ρUF ‖Lp .

Also, by Sobolev embedding ‖Λ1−ρUF ‖Lp ≤C‖Λ−ρF‖Lp ≤C‖F‖L2 . All in all, noting
that 2(γ+ρ)=γ+β/2,

If5 = εα0 |〈[Λγ ,UF .∇]Θ,ΛγΘ〉|≤ 1

100
‖F‖2L2 +ε2α0 C‖Θ0‖2Lq‖Λβ/2+γΘ‖2L2

≤ 1

100
‖F‖2L2 +

εα−β
0

100
‖Λβ/2+γΘ‖2L2 .

where we took ε0 so that ε0C‖θ0‖Lq ≤ 1
100 .

For the term containing UΘ, we have by inequality ((2.5)), with s1=β/2,s2=γ,s3=α,

Iθ5 = εα0 |〈[Λγ ,UΘ ·∇]Θ,ΛγΘ〉|≤Cεα0 ‖θ0‖L∞‖Λγ+β/2Θ‖2L2 ≤ 1

100
‖Λγ+β/2Θ‖2L2 (3.4)

where we take Cεα0 ‖θ0‖L∞ ≤ 1
100 . Introducing

J(t)=‖ΛγΘ‖2L2 +‖F‖2L2 ,

and putting all the estimates together, we obtain the bound

J ′(t)+‖Λα
2 f‖2L2 +‖Λ

β
2 +γθ‖2L2 ≤Cε0,‖θ0‖L2∩L∞J(t).

An application of the Gronwall’s inequality yields the bounds for the right hand side of
((3.3)).

Now that we have the estimate for sup0≤t≤T ‖f‖L2 , we use it to obtain the estimates
for sup0≤t≤T ‖f‖L4 .

3.2. L4 Estimate. The precise result that we prove is the following.

Proposition 3.2. Let 1>α> 2
3 , (u,θ) be the solution of equation ((1.1)) and (u0,θ0)

be as specified in Theorem (1.1). Assume f satisfies equation ((1.5)), then for any T >0
there exists CT =C(T ), such that

sup
0≤t≤T

‖f‖L4 +

∫ T

0

‖f‖4
L

8
2−α

<CT

sup
0≤t≤T

‖Λα
2 f‖L2 +

∫ T

0

‖Λαf‖2L2
x
dt<CT

sup
0≤t≤T

‖Λ 3β
2 θ‖L2 +

∫ T

0

‖Λ2βθ‖2L2
x
dt<CT

Proof. We again use the scaled variables. In inequalities ((2.12)), ((2.13)) and
((2.14)) take κ= α

2 , s=
3β
2 and p=4 to get

∂t(
1

4
‖F‖4L4 +

1

2
‖Λ 3β

2 Θ‖2L2 +
1

2
‖Λα

2 F‖2L2)+C0ε
α−β
0 ‖F‖4

L
8

2−α

+εα−β
0 ‖ΛαF‖2L2 +‖Λ2βΘ‖2L2 ≤K1+K2+K3+I1+I2+I3+I4+I5.

We now proceed to establish proper bounds for each term in the right hand side.



FAZEL HADADIFARD AND ATANAS STEFANOV 1337

3.2.1. Estimate for K1.
Case 3−4α<0:
In this case we have,

|
∫

F 3Λ3−4αΘ dx|≤‖F‖3L4‖Λ3−4αΘ‖L4 ,

and by Sobolev embedding

‖Λ3−4αΘ‖L4 ≤‖Θ‖
L

1
2α− 5

4

≤Cε‖θ0‖
L

1
2α− 5

4

hence

K1≤‖F‖4L4 +Cε.

Case 3−4α>0: We have

|
∫

F 3Λ3−4αΘ dx|≤‖F‖3
L

8
2−α

‖Λ3−4αΘ‖
L

8
2+3α

.

Furthermore,

‖Λ3−4αΘ‖ 8
2+3α

≤‖Λ2βΘ‖aL2‖Θ‖1−a
Lq0 ≤Cε0‖Λ2βΘ‖aL2‖θ0‖1−a

Lq0

where a= 3−4α
2β and q0=

4(2α−1)
3αβ+6α−4 . Note that for α>2/3, q0≥1, therefore

K1≤Cε2−3α
0 ‖F‖3

L
8

2−α
‖Λ2βΘ‖aL2 ≤ εα−β

0

100
‖F‖4

L
8

2−α
+ε

9−14α
2

0 C‖Λ2βΘ‖4aL2 .

Clearly 4a<2, hence

K1≤
εα−β
0

100
‖F‖4

L
8

2−α
+

1

100
‖Λ2βΘ‖2L2 +Cε0 .

3.2.2. Estimate for K2.
Estimate for Kf

2 :
For 0<δ�1, to be determined later, by inequality ((2.6)) with s=1−α, then

Kf
2 = ε0|〈[Rα,UF .∇]Θ,F 3〉|≤ ε0C‖Θ‖

L
8

3α−2
‖Λ1−α(F 3)‖

L
4

4−α
‖∇UF ‖

L
8

2−α

≤ ε0C‖Λ1−αF‖L2‖F‖3
L

8
2−α

‖Θ‖
L

8
3α−2

.

Hence we conclude

Kf
2 ≤

εα−β
0

100
‖F‖4

L
8

2−α
+Cε0‖Λ1−αF‖4L2 .

But

‖Λ1−αF‖4L2 ≤‖ΛαF‖
4(1−α)

α

L2 ‖F‖
2α−1

α

L2 .

Note however that 4(1−α)
α <2, since α> 2

3 , therefore

Kf
2 ≤

εα−β
0

100
‖F‖4

L
8

2−α
+

εα−β
0

100
‖ΛαF‖2L2 +Cε0 .
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Estimate for Kθ
2 :

Again for 0<δ�1, apply inequality ((2.3)) with s3=α+δ and s2=2(1−α)

Kθ
2 = ε0|〈[Rα,UΘ.∇]Θ,F 3〉|≤ ε0‖Λα+δUΘ‖

L
8
α
‖Λ2(1−α)(F 3)‖

L
4

4−α
‖Θ‖

L
8
α

≤ ε0C‖ΛδΘ‖
L

8
α
‖F‖2

L
8

2−α
‖Λ2(1−α)F‖L2‖θ0‖

L
8
α
.

Note

‖ΛδΘ‖
L

8
α
≤‖Λ β

2 −2ρΘ‖aL2‖θ‖1−a
Lq

where a= δ
β
2 −2ρ

and q : 1−a
q + a

2 =
α
8 . Clearly q∈ (1,∞), provided δ�1. We have ob-

tained

Kθ
2 ≤

εα−β
0

100
‖F‖4

L
8

2−α
+ε1+2β

0 C‖Λ2(1−α)F‖2L2

and

‖Λ2(1−α)F‖L2 ≤‖ΛαF‖aL2‖F‖1−a
L2

where a= 2(1−α)
α <1. Thus,

Kθ
2 ≤

εα−β
0

100
‖F‖4

L
8

2−α
+

εα−β
0

100
‖ΛαF‖2L2 +Cε

hence

K2≤
εα−β1
0

50
‖F‖4

L
8

2−α
+

εα−β
0

50
‖ΛαF‖2L2 +Cε.

3.2.3. Estimate for I1.
Estimate for If1 :

If1 = εα0 |〈[Λ
α
2 ,UF .∇]F,Λ

α
2 F 〉|≤ εα0 ‖ΛαF‖L2‖Λ−α

2 [Λ
α
2 ,UF .∇]F‖L2

now in inequality ((2.4)) take s1=s2=
α
2 , V =Λ−1F , ϕ=F , a=1 and q= r=4 to get

‖Λ−α
2 [Λ

α
2 ,UF .∇]F‖L2 ≤‖F‖2L4

then

If1 ≤ εα0C‖ΛαF‖L2‖F‖2L4 ≤ 1

100
‖F‖4L4 +C

ε2α0
100

‖ΛαF‖2L2

≤ 1

100
‖F‖4L4 +

εα−β
0

100
‖ΛαF‖2L2

where we took ε0≤ 1
100C .

Estimate for Iθ1 :

Iθ1 = εα0 |〈[Λ
α
2 ,UΘ.∇]F,Λ

α
2 F 〉|≤ εα0 ‖ΛαF‖L2‖Λ−α

2 [Λ
α
2 ,UΘ.∇]F‖L2

if in inequality ((2.5)) we take s1=s2=
α
2 , s3=α, V =Θ, ϕ=F , a=1 then

‖Λ−α
2 [Λ

α
2 ,UΘ.∇]F‖L2 ≤‖Θ‖L∞‖ΛβF‖L2

≤‖Θ‖L∞‖ΛαF‖
β
α

L2‖F‖
α−β
α

L2

therefore

Iθ1 ≤ εα0C‖ΛαF‖1+
β
α

L2 ≤ εα−β
o

100
‖ΛαF‖2L2 +Cε0 .
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3.2.4. Estimate for I2. If 3−4α<0, then we have 3(1−α)<α and

|〈Λ2(β−α)+α
2 ∂1Θ,Λ

α
2 F 〉|≤‖Λ3(1−α)F‖L2‖Θ‖L2

and

‖Λ3(1−α)F‖L2 ≤‖ΛαF‖aL2‖F‖1−a
L2

where a= 3(1−α)
α <1, therefore

I2≤Cε2−3α
0 ‖ΛαF‖aL2 ≤ εα−β

0

100
‖ΛαF‖2L2 +Cε0 .

If 3−4α>0, then by Hölder

|〈Λ2(β−α)+α
2 ∂1Θ,Λ

α
2 F 〉|≤‖ΛαF‖L2‖Λ3−4αΘ‖L2 .

But

‖Λ3−4αΘ‖L2 ≤‖Λ2βΘ‖aL2‖Θ‖1−a
L2 ,

where a= 3−4α
2β and therefore

I2≤
εα−β
0

100
‖ΛαF‖2L2 +Cε0‖Λ2βΘ‖2aL2 .

Since a<1,

I2≤
εα−β
0

100
‖ΛαF‖2L2 +

1

100
‖Λ2βΘ‖2L2 +Cε0 .

Considering the two sub-cases above, the last inequality is the proper estimate for I2.

3.2.5. Estimate for I3.
Estimate for Iθ3 :

Iθ3 = ε0|〈Λ
α
2 [Rα,UΘ.∇]Θ,Λ

α
2 F 〉|≤ ε0‖ΛαF‖L2‖[Rα,UΘ.∇]Θ‖L2 .

Now if in inequality ((2.4)) we take s1=0, s2=β, V =Λ−αΘ, a=1, p=2 and q= r=4
then

‖[Rα,UΘ.∇]Θ‖L2 ≤‖ΛβΘ‖2L4 ≤ (‖Λ2βΘ‖
1
2

L2‖Θ‖
1
2

L∞)2

therefore

Iθ3 ≤ ε0‖Θ‖
3
2

L∞‖ΛαF‖L2‖Λ2βΘ‖L2 ≤ εα−β
0

100
‖ΛαF‖2L2 +

1

100
‖Λ2βΘ‖2L2

where we took ε0≤ ( 1
104‖θ0‖L∞

)
1

3−2α .

Estimate for If3 :

If3 = ε0|〈Λ
α
2 [Rα,UF .∇]Θ,Λ

α
2 F 〉|≤ ε0‖ΛαF‖L2‖[Rα,UF .∇]Θ‖L2

≤ εα−β
0

100
‖ΛαF‖2L2 +Cε3−2α

0 ‖[Rα,UF .∇]Θ‖2L2 .
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Now by applying inequality ((2.4)) with s1=0,p=2,q= r=4, s2=1−α, a=1, we have

ε3−2α
0 ‖[Rα,UF .∇]Θ‖2L2 ≤ ε3−2α

0 ‖F‖2L4‖Λ1−αΘ‖2L4 ≤ 1

100
‖F‖4L4 +Cε6−4α

0 ‖ΛβΘ‖4L4 .

If we take ε0 so that ε0≤ ( 1
100C‖θ0‖L∞

)
1

6−4α then

ε3−2α
0 ‖[Rα,Uf .∇]Θ‖2L2 ≤ 1

100
‖F‖4L4 +

1

100
‖Λ2βΘ‖2L2 ,

therefore

If3 ≤
εα−β
0

100
‖ΛαF‖2L2 +

1

100
‖F‖4L4 +

1

100
‖Λ2βΘ‖2L2 .

3.2.6. Estimate for I5.
Estimate for Iθ5 : Apply ((2.5)) with s1=β/2,s2=3β/2 and s3=α,

Iθ5 = εα0 |〈[Λ
3β
2 ,UΘ ·∇]Θ,Λ

3β
2 Θ〉|≤ εα0C‖θ0‖L∞‖Λ2βΘ‖2L2 ≤ 1

100
‖Λ2βΘ‖2L2 (3.5)

where we took ε0≤ ( 1
100C‖Θ0‖L∞

)
1
α .

Estimate for If5 :

If5 = εα0 |〈[Λ
3β
2 ,UF ·∇]Θ,Λ

3β
2 Θ〉|= εα0 |〈Λ

−β
2 [Λ

3β
2 ,UF ·∇]Θ,Λ2βΘ〉|

≤ 1

100
‖Λ2βΘ‖2L2 +Cε2α0 ‖Λ

−β
2 [Λ

3β
2 ,UF ·∇]Θ‖2L2 .

We apply ((2.4)) with s1=
β
2 , s2=

3β
2 , V =UF , φ=Θ and q= r=4 then

ε2α0 C‖Λ−β
2 [Λ

3β
2 ,UF .∇]Θ‖2L2 ≤ ε2α0 C‖F‖2L4‖ΛβΘ‖2L4 ≤ 1

100
‖F‖4L4 +ε4α0 CC‖ΛβΘ‖4L4 .

Applying again the Gagliardo-Nirenberg inequality ‖ΛβΘ‖L4 ≤‖Λ2βΘ‖
1
2

L2‖Θ‖
1
2

L∞ , we
obtain

ε2α0 ‖Λ− β
2 [Λ

3β
2 ,UF .∇]Θ‖2L2 ≤ 1

100
‖F‖4L4 +Cε2α0 ‖Θ0‖2L∞‖Λ2βΘ‖2L2 .

From here we take ε0 so small that ε0≤ ( 1
100C‖Θ0‖2

L∞
)

1
4α . We get

If5 ≤
1

100
‖F‖4L4 +

1

50
‖Λ2βΘ‖2L2 .

Now putting all the above estimates together along with a using of Gronwall’s inequality
finishes the proof for L4.

3.3. L6 Estimate. Now we have enough information of θ and f to get the L6

estimate

Proposition 3.3. Let α> 2
3 , then for any T >0 there exists a CT such that

sup
0≤t≤T

‖F‖6L6 +

∫ T

0

‖F‖6
L

12
2−α

dt≤CT ,
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sup
0≤t≤T

‖Λ 1+β
2 F‖2L2 +

∫ T

0

‖∂F‖2L2dt≤CT ,

and

sup
0≤t≤T

‖Λ 5β
2 Θ‖2L2 +

∫ T

0

‖Λ3βΘ‖2L2dt≤CT .

Proof. In inequalities ((2.14)), ((2.12)) and ((2.13)) take p=6, s= 1+β
2 and κ= 5β

2
to get

∂t(
1

6
‖F‖6L6 +

1

2
‖Λ 1+β

2 F‖2L2 +
1

2
‖Λ 5β

2 Θ‖2L2)

+εα−β
0 ‖F‖6

L
12

2−α
+εα−β

0 ‖∂F‖2L2 +‖Λ3βΘ‖2L2

≤K1+K2+K3+I1+I2+I3+I4+I5.

3.3.1. Estimate for K1. If 3−4α≥0, by Hölder inequality

K1≤ ε2−3α
0 |

∫
F 5Λ3−4αΘdx|≤ ε2−3α

0 ‖F‖5
L

12
2−α

‖Λ3−4αΘ‖
L

12
5α+2

.

By Sobolev inequality

‖Λ3−4αΘ‖
L

12
5α+2

≤‖Λ 22−29α
6 Θ‖L2 .

Now since for 2
3 <α≤ 3

4 , 0<
22−29α

6 < 3β
2 , there is a 0<γ<1 such that

‖Λ 22−29α
6 Θ‖L2 ≤‖Λ 3β

2 Θ‖γL2‖Θ‖1−γ
L2 =C,

therefore

K1≤ ε2−3α
0 C‖F‖5

L
12

2−α
≤ εα−β

0

100
‖F‖6

L
12

2−α
+Cε0 .

If 3−4α<0, then we use Hölder and Sobolev inequalities to get

K1≤ ε2−3α
0 ‖F‖5L6‖Λ3−4αΘ‖L6 ≤ ε2−3α

0 ‖F‖5L6‖Θ‖
L

6
12α−8

≤ 1

100
‖F‖6L6 +Cε0 .

Now we put both cases together to get

K1≤
εα−β
0

100
‖F‖6

L
12

2−α
+

1

100
‖F‖6L6 +Cε0 .

3.3.2. Estimate for K2.
Estimate for Kf

2 :
In inequality ((2.4)) take s1=0, s2=β, a=1, V =Λ−1F , φ=Θ, q= 12

2−α and r= 2
α to

get

Kf
2 = ε0|〈[Rα,UF ·∇]Θ,F 5〉|≤ ε0‖F‖5

L
12

2−α
‖[Rα,UF .∇]Θ‖

L
12

5α+2

≤ ε0‖F‖6
L

12
2−α

‖ΛβΘ‖
L

2
α
,
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then

‖ΛβΘ‖
L

2
α
≤‖Λ 3β

2 Θ‖
2
3

L2‖Θ‖
1
3

L
2

3α−2
=C,

therefore

Kf
2 ≤ ε0C‖F‖6

L
12

2−α
≤ εα−β

0

100
‖F‖6

L
12

2−α
,

where we took ε0 such that ε0≤ [ 1
100C ]

1
2β .

Estimate for Kθ
2 :

Kθ
2 = ε0|〈[Rα,UΘ.∇]Θ,F 5〉|≤ ε0‖Λβ(F 5)‖

L
12

7(2−α)
‖Λ−β [Rα,UΘ.∇]Θ‖

L
12

7α−2
,

whence by Kato-Ponce,

‖Λβ(F 5)‖
L

12
7(2−α)

≤C‖ΛβF‖
L

4
2−α

‖F‖4
L

12
2−α

then

‖ΛβF‖
L

4
2−α

≤C‖∇F‖βL2‖F‖αL4 ,

and if inequality ((2.4)) we take s1=s2=β, V =Λ−αΘ, φ=Θ, a=α+ β
2 and q= r=

24
7α−2 we have

‖Λ−β [Rα,UΘ.∇]Θ‖
L

12
7α−2

≤C‖Λ β
2 Θ‖2

L
24

7α−2
≤C(‖Λ3βΘ‖

1
6

L2‖Θ‖
5
6

L
20

7α−4
)2,

therefore

Kθ
2 ≤ ε0C‖F‖4

L
12

2−α
‖∇F‖βL2‖Λ3βΘ‖

1
3

L2

≤ εα−β
0

100
‖F‖6

L
12

2−α
+(ε

1+4β
3

0 C‖∇F‖βL2‖Λ3βΘ‖
1
3

L2)
3,

now since 3(β+ 1
3 )<2,

Kθ
2 ≤

εα−β
0

100
‖F‖6

L
12

2−α
+

εα−β
0

100
‖∇F‖2L2 +

1

100
‖Λ3βΘ‖2L2 +Cε0 .

3.3.3. Estimate for I1.
Estimate for If1 :

If1 = εα0 |〈[Λ
1+β
2 ,UF .∇]F,Λ

1+β
2 F 〉|≤ εα0 ‖∇F‖L2‖Λ−α

2 [Λ
1+β
2 ,UF .∇]F‖L2

≤ εα−β
0

100
‖∇F‖2L2 +ε0C‖Λ−α

2 [Λ
1+β
2 ,UF .∇]F‖2L2 ,

then if in inequality ((2.4)) we take s1=
α
2 , s2=

1+β
2 , V =Λ−1F , φ=F , a=1 and q=

r=4, then a using of ((2.4)), Sobolev inequality and Gagliardo-Nirenberg gives

‖Λ−α
2 [Λ

1+β
2 ,UF .∇]F‖L2 ≤‖F‖L4‖ΛβF‖L4 =C‖ΛβF‖L4

≤C‖Λ 1+2β
2 F‖L2 ≤C‖∇F‖

1+2β
2

L2 ‖F‖
1−2β

2

L2 .
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Therefore

If1 ≤
εα−β
0

100
‖∇F‖2L2 +ε0C‖∇F‖1+β

L2 ≤ εα−β
0

50
‖∇F‖2L2 +Cε0 .

Estimate for Iθ1 :

Iθ1 = εα0 |〈[Λ
1+β
2 ,UΘ.∇]F,Λ

1+β
2 F 〉|≤ εα0 ‖∇F‖L2‖Λ−α

2 [Λ
1+β
2 ,UΘ.∇]F‖L2

≤ εα−β
0

100
‖∇F‖2L2 +ε0C‖Λ−α

2 [Λ
1+β
2 ,UΘ.∇]F‖2L2 ,

now if in inequality ((2.5)) we take s1=
α
2 , s2=

1+β
2 , s3=α, V =Θ, φ=F then

Gagliardo-Nirenberg yields

‖Λ−α
2 [Λ

1+β
2 ,UΘ.∇]F‖L2 ≤C‖Θ‖L∞‖Λ2βF‖L2 =C‖Λ2βF‖L2

≤C‖∇F‖2βL2‖F‖1−2β
L2 .

therefore

Iθ1 ≤
εα−β
0

50
‖∇F‖2L2 +Cε0 .

3.3.4. Estimate for I2.

I2= ε2−3α
0 |〈Λ2(β−α)+ 1+β

2 ∂1Θ,Λ
1+β
2 F 〉|≤Cε2−3α

0 ‖∇F‖L2‖Λ4−5αΘ‖L2 .

To find the bound for the right hand side,we consider two cases.
If 4−5α≥0, we have that 4−5α≤3β, whence there is a 0<γ<1, such that

‖Λ4−5αΘ‖L2 ≤C‖Λ3βΘ‖γL2‖Θ‖1−γ
L2 ,

therefore in this case

I2≤ ε2−3α
0 C‖∇F‖L2‖Λ3βΘ‖γL2 ≤

εα−β
0

100
‖∇F‖2L2 +

1

100
‖Λ3βΘ‖2L2 +Cε0 .

If 4−5α<0, then by Sobolev inequality we have ‖Λ4−5αΘ‖L2 ≤C‖Θ‖
L

2
5α−3

. Note that
2

5α−3 ≥1, whence

I2≤ ε2−3α
0 C‖∇F‖L2 ≤ εα−β

0

100
‖∇F‖2L2 +Cε0 .

3.3.5. Estimate for I3.
Estimate for If3 :

If3 = ε0|〈Λ
1+β
2 [Rα,UF .∇]Θ,Λ

1+β
2 F 〉|≤ ε0‖∇F‖L2‖Λβ [Rα,UF .∇]Θ‖L2

≤C
εα−β
0

100
‖∇F‖2L2 +Cε1+2β

0 ‖Λβ [Rα,UF .∇]Θ‖2L2 .

Now in inequality ((2.9)) take s=β, V =UF , ϕ=Θ, a=1, q=6, and r=3 to get

‖Λβ [Rα,UF .∇]Θ‖L2 ≤C‖F‖L6‖Λ2βΘ‖L3 .
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So

ε1+2β
0 C‖Λβ [Rα,UF .∇]Θ‖2L2 ≤ 1

100
‖F‖6L6 +ε

3(1+2β)
2

0 ‖Λ2βΘ‖3L3 .

Now ‖Λ2βΘ‖L3 ≤‖Λ3βΘ‖
2
3

L2‖Θ‖
1
3

L∞ , so we take ε0≤ ( 1
100C‖Θ0‖L∞

)
2

3(1+2β) to get

If3 ≤
1

100
‖F‖6L6 +

εα−β
0

100
‖∇F‖2L2 +

1

100
‖Λ3βΘ‖2L2 .

Estimate for Iθ3 :

Iθ3 = ε0|〈Λ
1+β
2 [Rα,UΘ.∇]Θ,Λ

1+β
2 F 〉|≤ ε0‖∇F‖L2‖Λβ [Rα,UΘ.∇]Θ‖L2

≤ εα−β
0

100
‖∇F‖2L2 +Cε1+2β

0 ‖Λβ [Rα,UΘ.∇]Θ‖2L2 .

Now in inequality ((2.9)) take s=β, V =UΘ, ϕ=Θ, a=1, q=6, and r=3 to get

‖Λβ [Rα,UΘ.∇]Θ‖L2 ≤C‖ΛβΘ‖L6‖Λ2βΘ‖L3

≤C(‖Λ3βΘ‖
1
3

L2‖Θ‖
2
3

L∞) (‖Λ3βΘ‖
2
3

L2‖Θ‖
1
3

L∞)

=C‖Λ3βΘ‖L2‖Θ‖L∞ .

Therefore, if we choose ε0≤ ( 1
100C‖Θ0‖2

L∞
)

1
1+2β , we get

Iθ3 ≤
εα−β
0

100
‖∇F‖2L2 +

1

100
‖Λ3βΘ‖2L2 .

3.3.6. Estimate for I5.
Estimate for If5 :

If5 = εα0 |〈[Λ
5β
2 ,UF .∇]Θ,Λ

5β
2 Θ〉|≤ εα0 ‖Λ3βΘ‖L2‖Λ− β

2 [Λ
5β
2 ,UF .∇]Θ‖L2

≤ 1

100
‖Λ3βΘ‖2L2 +Cε2α0 ‖Λ− β

2 [Λ
5β
2 ,UF .∇]Θ‖2L2

≤ 1

100
‖Λ3βΘ‖2L2 +Cε2α0 ‖F‖2L6‖Λ2βΘ‖2L3

≤ 1

100
‖Λ3βΘ‖2L2 +

εα−β
0

100
‖F‖6L6 +Cε

1+4α
2

0 ‖Λ2βΘ‖3L2

≤ 1

100
‖Λ3βΘ‖2L2 +

εα−β
0

100
‖F‖6L6 +Cε

1+4α
2

0 ‖Λ3βΘ‖2L2‖Θ‖L∞

≤ 1

100
‖Λ3βΘ‖2L2 +

εα−β
0

100
‖F‖6L6 +

1

100
‖Λ3βΘ‖2L2

where we took ε0≤ ( 1
100C‖Θ0‖L∞

)
2

1+4α .

Estimate for Iθ5 : a using of inequality ((2.5)) and Gagliardo-Nirenberg gives

If5 = εα0 |〈[Λ
5β
2 ,UΘ.∇]Θ,Λ

β
2 Θ〉|≤ εα0 ‖Λ3βΘ‖L2‖Λ− β

2 [Λ
5β
2 ,UΘ.∇]Θ‖L2

≤ εα0 ‖Λ3βΘ‖2L2‖Θ‖L∞ ≤
1

100
‖Λ3βΘ‖2L2 ,

where we took ε0≤ ( 1
100C‖Θ0‖L∞

)
1
α . This completes the proof.
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Appendix A. Commutator estimates. Before we proceed with the proofs of
Lemma (2.2) and Lemma (2.3), we would like to present some classical estimates for
maximal functions, which will be used frequently in this section. First, there is the
point-wise control of Littlewood-Paley operators by the maximal function, namely

(Δkf)(x)+(Δ<k−10f)(x)≤CM[f ](x).

Another useful result is the Fefferman-Stein estimate for the maximal function (see
Theorem 4.6.6, p. 331, [9]), which states that M is a bounded operator from Lp(lr)
into itself. More explicitly, for every r,p∈ (1,∞), there is Cp,r, so that

‖(
∑
k

(Mgk)
r)1/r‖Lp ≤Cp,r‖(

∑
k

|gk|r)1/r‖Lp .

Another basic tool is the following standard para product decomposition

Δk(fg)=Δk(f<k−10g∼k)+Δk(f∼kg<k+10)+Δk(

∞∑
l=k+10

flg∼l),

available for say every pair of Schwartz functions f,g. We refer to the corresponding
terms as low-high, high-low and high-high interaction terms.

In what follows, we present the proof of bounds ((2.4)) and ((2.8)). The difference
between the two estimates is only in the dependence on the derivatives ±s1 taken on
the commutators. Below, we take Λ−s1 (matching the setup in ((2.4))), but we assume
s1∈ (−1,1) as to cover both ((2.4)) and ((2.8)). A crucial condition that needs to be
met though is that s2−s1≤1. As far as (2.5) is concerned, note that it is an endpoint
result of ((2.4)) (as sup norm is allowed on the right-hand side) and as such, only minor
modifications are needed, details are provided in Appendix (A.2).

A.1. Proof of ((2.4)) and ((2.8)). We first present the proof for the hardest
case a=1. We then discuss the necessary adjustments for the general case a∈ [s2−s1,1).
Start with

Λ−s1 [Λs2 ,V ·∇]ϕ]=
∑
k

Δk[Λ
−s1 [Λs2 ,V ·∇]ϕ]].

Each one of these terms generates a separate entry for the estimate ((2.4)).

A.1.1. Low-high terms. For the low-high term, which is usually the hardest
one in commutator estimates theory, we need to estimate ‖Ilow,high‖Lp , where

Ilow,high(x)=
∑
k

Δk[Λ
−s1 [Λs2 ,V<k−10 ·∇]ϕ∼k]].

In fact, we will show the estimate only under the restriction 2<q≤∞ and no re-
strictions on s2,s1. More precisely, q=∞ and any s1,s2 are allowed for the low-high
interaction terms. Below, we tacitly assume q<∞, the proof for q=∞ requires minor
modifications, which are left to the reader. By Littlewood-Paley theory, it suffices to
control ‖S‖Lp , where the Littlewood-Paley square function S is given by

S2(x)=
∑
k

|Δk[Λ
−s1 [Λs2 ,V<k−10 ·∇]ϕ∼k]](x)|2

=
∑
k

22k(s2−s1)|Δ1
k[[Δ

2
k,V<k−10 ·∇]ϕ∼k]](x)|2,
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where Δj
k,j=1,2 are modified Littlewood-Paley operators similar to Δk. We will show

that for p1,q1∈ (1,∞) : 1
p1

+ 1
q1

=1, we have the pointwise bound

|[Δ2
k,g ·∇]f ](x)|≤CM[|∇g|q1 ](x)1/q1M[|f |p1 ](x)1/p1 . (A.1)

where ∇·g=0 and M is the Hardy-Littlewood maximal function.

Assuming (A.1), let us show the estimate for the low-high piece of ((2.4)). We have
for all p1,q1∈ (1,∞) : 1

p1
+ 1

q1
=1

S2(x)≤
∑
k

22k(s2−s1)|Δ1
k[[Δ

2
k,V<k−10 ·∇]ϕ∼k]](x)|2

≤
∑
k

22k(s2−s1)M[[Δ2
k,V<k−10 ·∇]ϕ∼k]

2

≤C
∑
k

22k(s2−s1)|M[M[|∇V<k−10|q1 ]1/q1M[|ϕ∼k|p1 ]1/p1 ]2.

Clearly, M[|∇V<k−10|q1 ]≤CM[[M(∇V )]q1 ]. Thus, by the Fefferman-Stein estimates
and by the Hölder’s inequality

‖S‖Lp ≤C‖(
∑
k

22k(s2−s1)|M[M[|∇V<k−10|q1 ]1/q1M[|ϕ∼k|p1 ]1/p1 |2)1/2‖Lp

≤C‖M[M(∇V )]q1 ])1/q1(
∑
k

22k(s2−s1)M[|ϕ∼k|p1 ]2/p1)1/2‖Lp

≤‖M[[M(∇V )]q1 ]1/q1‖Lq‖(
∑
k

22k(s2−s1)M[|ϕ∼k|p1 ]2/p1 ])1/2‖Lr .

Here, we need to select q1<q, so that we can estimate (by the boundedness of M on
Lq/q1)

‖M[[M(∇V )]q1 ]1/q1‖Lq =‖M[[M(∇V )]q1 ]‖1/q1
Lq/q1

≤C‖M(∇V )q1‖1/q1
Lq/q1

≤C‖|∇V |q1‖1/q1
Lq/q1

=C‖∇V ‖Lq .

For the other term, let p1 :p1<2,p1<r. Upon introducing gk := [2k(s2−s1)|ϕ∼k|]p1 , we
have by Fefferman-Stein and Littlewood-Paley theory that

‖(
∑
k

22k(s2−s1)M[|ϕ∼k|p1 ]2/p1 ])1/2‖Lr =‖(
∑
k

|Mgk|2/p1)1/2‖Lr

≤‖(
∑
k

|Mgk|2/p1)p1/2‖1/p1

Lr/p1
≤C‖(

∑
k

|gk|2/p1)p1/2‖1/p1

Lr/p1

=C‖(
∑
k

22k(s2−s1)|ϕ∼k|2)p1/2‖1/p1

Lr/p1
=C‖(

∑
k

22k(s2−s1)|ϕ∼k|2)1/2‖Lr ≤C‖Λs2−s1ϕ‖Lr .

Analyzing the inequalities p1<2,p1<r and q1<q shows that as long as q>2, we
can always select p1,q1 :

1
p1

+ 1
q1

=1 with the required properties. This is easily seen by

selecting q1= q−ε,p1=
q1

q1−1 =
q−ε

q−1−ε for some small ε. Thus, we have shown

‖Ilow,high‖Lp ≤C‖∇V ‖Lq‖Λs2−s1ϕ‖Lr . (A.2)
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To finish the proof in this case, we need to prove ((A.1)). But this is a simple application
of the following representation formula for commutators

[Δ2
k,g ·∇]f(x)=2k[Δ3

k,g·]f(x)=23k
∫
R2

χ3(2
k(x−y))[g(x)−g(y)]f(y)dy

=23k
∫
R2

χ3(2
k(x−y))(

∫ 1

0

〈∇g(y+z(x−y)),x−y〉dz)f(y)dy.

Clearly, after estimating this last expression,

|[Δ2
k,V<k−10 ·∇]ϕ∼k](x)|

≤C22k
∫ 1

0

∫
R2

|χ4(2
k(x−y))||∇g(y+z(x−y)||f(y)|dydz

≤C

∫ 1

0

(

∫
R2

22k|χ4(2
k(x−y))||f(y)|p1dy)1/p1

×(
∫
R2

22k|χ4(2
k(x−y))||∇g(y+z(x−y)|q1dy)1/q1 ,

where χ4(w)=χ3(w)wi,i=1,2. Clearly,∫
R2

22k|χ4(2
k(x−y))||f(y)|p1dy≤CM[|f |p1 ](x),

Also,∫
R2

22k|χ4(2
k(x−y))||∇g(y+z(x−y)|q1dy=

∫
R2

22k|χ4(2
kl)||∇g(x−(1−z)l)|q1dl

=

∫
R2

22k

(1−z)2
|χ4(

2k

1−z
m)||∇g(x−m)|q1dm≤CM[|∇g|q1 ](x).

This establishes ((A.1)).

A.1.2. High-low term. Here, we need the assumption s2−s1≤1, but q,r may
be arbitrary (i.e. one does not have 2<q), as long as 1

p =
1
q +

1
r .

In this case, the commutator structure does not play much role, so we just deal
with the two terms separately. In fact, the term Λ−s1Δk[V∼k ·∇Λs2ϕ<k+10] is simpler,
so we omit its analysis. For the other term, we have by Littlewood-Paley theory (and
its vector-valued version) and Hölder’s

‖
∑
k

Λs2−s1Δk[V∼k ·∇ϕ<k+10]‖Lp ∼‖(
∑
k

22k(s2−s1)|Δk[V∼k ·∇ϕ<k+10]|2)1/2‖Lp

≤C‖(
∑
k

22k(s2−s1)|V∼k · |∇ϕ<k+10|2)1/2‖Lp

≤C‖(
∑
k

22k|V∼k|2)1/2‖Lq‖sup
k

2k(s2−s1−1)|∇ϕ<k+10|‖Lr .

Clearly, ‖(∑k 2
2k|V∼k|2)1/2‖Lq ∼‖∇V ‖Lq . For s2−s1=1, we have

‖supk 2k(s2−s1−1)|∇ϕ<k+10|‖Lr ≤C‖M[∇ϕ]‖Lr ≤C‖Λϕ‖Lr .
For s2−s1<1, we can estimate point-wise

2k(s2−s1−1)|∇ϕ<k+10|≤2k(s2−s1−1)
∑

l<k+10

|∇ϕl|
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≤C
∑

l<k+10

2(l−k)(1−(s2−s1))2l(s2−s1)2−l|∇ϕl|≤CM[Λs2−s1ϕ].

From these estimate, we conclude

‖sup
k

2k(s2−s1−1)|∇ϕ<k+10|‖Lr ≤C‖M[Λs2−s1ϕ]‖Lr ≤C‖Λs2−s1ϕ‖Lr .

A.1.3. High-high interactions. For this term, we need s1<1 and q>2.
Again that the commutator structure is not important and one term is simpler. So,

we concentrate on

Λ−s1
∑
k

Δk[

∞∑
l=k+10

Vl ·∇Λs2ϕ∼l]=Λ−s1
∑
k

∇Δk[

∞∑
l=k+10

Vl ·Λs2ϕ∼l].

The contribution of these terms is bounded by

‖(
∑
k

22k(1−s1)|Δk[

∞∑
l=k+10

Vl ·Λs2ϕ∼l]|2)1/2‖Lp .

By Littlewood-Paley theory the last expression is bounded by

I=‖(
∑
k

22k(1−s1)|
∞∑

l=k+10

Vl ·Λs2ϕ∼l|2)1/2‖Lp .

But for s1<1, we have

∑
k

22k(1−s1)|
∞∑

l=k+10

Vl ·Λs2ϕ∼l|2

=
∑
l1

Vl1 ·Λs2ϕ∼l1

∑
l2

Vl2 ·Λs2ϕ∼l2

∑
k<min(l1,l2)−10

22k(1−s1)

≤C
∑
l1

Vl1 ·Λs2ϕ∼l1

∑
l2

Vl2 ·Λs2ϕ∼l22
2min(l1,l2)(1−s1)

≤C
∑
l

|Vl|222l
∑
l

|Λs2−s1ϕ∼l|2.

By Hölder’s

I≤‖(
∑
l

|Vl|222l)1/2‖Lq‖(
∑
l

|Λs2−s1ϕ∼l|2)1/2‖Lr ≤C‖∇V ‖Lq‖Λs2−s1ϕ‖Lr .

In order to extend the results to the case a∈ [s2−s1,1), it suffice to go over the
different terms. For the low-high interaction term, we have, by our previous estimates

S2(x)≤C
∑
k

22k(s2−s1)|M[M[|∇V<k−10|q1 ]1/q1M[|ϕ∼k|p1 ]1/p1 ]2

=C
∑
k

|M[M[2k(s2−s1)2−k|∇V<k−10|q1 ]1/q1M[2k|ϕ∼k|p1 ]1/p1 ]2

≤C
∑
k

|M[M[M|Λs2−s1V |q1 ]1/q1M[2k|ϕ∼k|p1 ]1/p1 ]|2.
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Applying the Fefferman-Stein estimates yields (assuming p1<2,p1<r,q1<q)

‖Ilow,high‖Lp ∼‖S‖Lp ≤C‖M[M|Λs2−s1V |q1 ]1/q1‖Lq‖(
∑
k

M[2k|ϕ∼k|p1 ]1/p1)1/2‖Lr

≤C‖Λs2−s1V ‖Lq‖Λϕ‖Lr .

An interpolation between the last estimate and ((A.2)) yields the required estimate

‖Ilow,high‖Lp ≤‖ΛaV ‖Lq‖Λs2−s1+1−aϕ‖Lr .

Next, for the high-low terms, we clearly have the following bound

2k(s2−s1)|Δk[V∼k ·∇ϕ<k+10]|(x)≤CM[M[Λs2−s1V∼k
]M[Λ1ϕ]],

Applying the same arguments as above yields the bound
‖Ihigh,low‖Lp ≤C‖Λs2−s1V ‖Lq‖Λ1ϕ‖Lr , which by interpolation results in

‖Ihigh,low‖Lp ≤C‖ΛaV ‖Lq‖Λs2−s1+1−aϕ‖Lr

for all a∈ [s2−s1,1].

Finally in the high-high case, one may move all the derivatives between V , ϕ (since
they are both localized at the same frequency l), so in particular

‖Ihigh,high‖Lp ≤C‖ΛaV ‖Lq‖Λs2−s1+1−aϕ‖Lr .

A.2. Proof of ((2.5)). We start again with the low-high term. In this case, the
estimate for ‖Ilow,high‖L2 is actually already contained in the estimates for Ilow,high,
since we have already remarked that in there, one can take q=∞.

Next, we verify the contribution of the high-low terms interactions. We have by
Littlewood-Paley theory that

‖Ihigh,low‖2L2 ≤C
∑
k

22k(s2−s1−s3)‖V∼k ·∇ϕ<k+10‖2L2

≤C‖V ‖2L∞
∑
k

22k(s2−s1−s3)‖∇ϕ<k+10‖2L2

≤C‖V ‖2L∞
∑
k

22k(s2−s1−s3)
∑

l<k+10

22l‖ϕl‖2L2

≤C‖V ‖2L∞
∑
l

22l(1+s2−s1−s3)‖ϕl‖2L2 ≤C‖V ‖2L∞‖Λs2−s1+1−s3ϕ‖2L2 .

where in the derivation, we have used that
∑

k>l−102
2k(s2−s1−s3)≤C22l(s2−s1−s3), which

requires that s2−s1−s3<0.

Finally, we turn our attention to the high-high terms. Again, the commutator
structure is unimportant here and we might as well consider the two terms separately.
One of them is actually simpler (where Λs2 is acting on the low frequency outside), so
we consider the other term only, namely

Λ−s1
∑
k

Δk[

∞∑
l=k+10

Λ−s3Vl ·∇Λs2ϕ∼l]=Λ−s1
∑
k

∇Δk[

∞∑
l=k+10

Λ−s3Vl ·Λs2ϕ∼l].
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Note that here again, we have moved ∇ outside, because ∇·V =0. Taking L2 norms
yields

‖Ihigh,high‖2L2 ≤C
∑
k

22k(1−s1)‖
∞∑

l=k+10

Λ−s3Vl ·Λs2ϕ∼l‖2L2

≤C‖V ‖2L∞
∑
k

22k(1−s1)(

∞∑
l=k+10

2l(s2−s3)‖ϕ∼l‖L2)2

=C‖V ‖2L∞
∑
l1

2l1(s2−s3)‖ϕ∼l1‖L2

∑
l2

2l2(s2−s3)‖ϕ∼l2‖L2

∑
k<min(l1,l2)−10

22k(1−s1).

Now, since 1−s1>0, we have∑
k<min(l1,l2)−10

22k(1−s1)≤C22min(l1,l2)(1−s1)=C2l1(1−s1)2l2(1−s1)2−|l1−l2|(1−s1).

Plugging this inside our estimate for ‖Ihigh,high‖2L2 and applying Cauchy-Schwartz we
obtain

‖Ihigh,high‖2L2 ≤C‖V ‖2L∞
∑
l1,l2

2(l1+l2)(1−s1+s2−s3)‖ϕ∼l1‖L2‖ϕ∼l2‖L22−|l1−l2|(1−s1)

≤C‖V ‖2L∞
∑
l1,l2

22l1(1−s1+s2−s3)‖ϕ∼l1‖2L22−|l1−l2|(1−s1)≤

≤C‖V ‖2L∞‖Λ1−s1+s2−s3ϕ‖2L2 .

This concludes the proof of inequality ((2.5)) and thus of Lemma (2.2).
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