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EXISTENCE OF LARGE-DATA FINITE-ENERGY GLOBAL WEAK
SOLUTIONS TO A COMPRESSIBLE OLDROYD-B MODEL∗

JOHN W. BARRETT† , YONG LU‡ , AND ENDRE SÜLI§

Abstract. A compressible Oldroyd-B type model with stress diffusion is derived from a com-
pressible Navier–Stokes–Fokker–Planck system arising in the kinetic theory of dilute polymeric fluids,
where polymer chains immersed in a barotropic, compressible, isothermal, viscous Newtonian solvent,
are idealized as pairs of massless beads connected with Hookean springs. We develop a priori bounds
for the model, including a logarithmic bound, which guarantee the nonnegativity of the elastic extra
stress tensor, and we prove the existence of large data global-in-time finite-energy weak solutions in
two space dimensions.
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1. Introduction

Micro-macro models of dilute polymeric fluids that arise from statistical physics are
based on coupling the Navier–Stokes system to the Fokker–Planck equation. In these
models polymer molecules are idealized as chains of massless beads, linearly connected
with inextensible rods or elastic springs. In the simplest case of two massless beads
connected with a single Hookean spring, the elastic spring-force is assumed to be a
linear function of the conformation vector q∈Rd, d∈{2,3}, describing the orientation
of the spring, and the model is referred to as the Hookean dumbbell model. An interesting
aspect of the Hookean dumbbell model is that it has a (formal) macroscopic closure in
the sense that the macroscopic evolution equation for the elastic extra stress tensor
associated with the classical Oldroyd-B model with stress diffusion can be deduced
from it by multiplying the Fokker–Planck equation with the rank-1 matrix q⊗q := qqT,
integrating with respect to q over a ball B(0,R)⊂Rd of radius R>0, and performing
(formal) partial integrations, where contour/surface integrals over ∂B(0,R) are set to
zero in the limit ofR→∞, by postulating that the probability density function satisfying
the Fokker–Planck equation decays to 0 sufficiently rapidly as |q|→∞.

In [7] and [8], Barrett & Süli proved the existence of large data global-in-time finite-
energy weak solutions to a compressible Navier–Stokes–Fokker–Planck system, where
the solvent was assumed to be a barotropic, compressible, isothermal, viscous Newto-
nian fluid confined to a bounded domain Ω⊂Rd, d∈{2,3}, and where the elastic spring
force was, instead of a Hookean spring potential, modelled by a finitely extensible non-
linear elastic (FENE-type) spring potential. In [20] the results of [7] were extended
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to compressible Navier–Stokes–Fokker–Planck systems with viscosity coefficients that
depend on the polymer number density. The aim of the present paper is to explore
the existence of weak solutions to a fully macroscopic model, the compressible Oldroyd-
B system, which arises, upon the formal macroscopic closure described above, from a
compressible Navier–Stokes–Fokker–Planck system, with polymer chains idealized as
Hookean dumbbells. The main contribution of the paper is the proof, in the case of two
space dimensions (d=2), of the existence of large data global-in-time finite-energy weak
solutions to this model. In the case of the incompressible Oldroyd-B model with stress
diffusion in two space dimensions the existence of large data global weak solutions was
shown by Barrett & Boyaval [2], and the existence and uniqueness of a global strong
solution, again in two space dimensions, was proved by Constantin and Kliegl [13].
The question of existence of large data global weak solutions to both the incompress-
ible and the compressible Oldroyd-B model with stress diffusion remains a nontrivial
open problem in the case of d=3. We note in passing that in the incompressible case
the existence of global weak solutions to the Navier–Stokes–Fokker–Planck system with
Hookean dumbbells was recently proved in [9] for d=2, as part of the research pro-
gramme initiated in the series of papers [3–5]; for d=3 the problem is open, and the
problem is also open in the compressible case for both d=2 and d=3. The results of
the present paper may however lead one to speculate that in the case of d=2 at least
the question of existence of large data global-in-time finite-energy weak solutions to the
Hookean dumbbell model for the compressible Navier–Stokes–Fokker–Planck system
can also be answered positively.

For the moment we shall keep the presentation general, with Ω⊂Rd assumed to be
a bounded open domain with C2,β boundary (briefly, a C2,β domain), with β∈ (0,1),
and d∈{2,3}. In subsequent instances, whenever we are forced to restrict ourselves
to the case of d=2 this restriction will be clearly stated. We consider the following
compressible Oldroyd-B model, posed in the time-space cylinder (0,T ]×Ω:

∂t�+divx(�u)=0, (1.1)

∂t(�u)+divx(�u⊗u)+∇xp(�)−divxS(∇xu)=divx
(
T−(kLη+zη2)I

)
+�f , (1.2)

∂tη+divx(ηu)=εΔxη, (1.3)

∂tT+Divx(uT)−
(
∇xuT+T∇T

xu
)
=εΔxT+

k

2λ
η I− 1

2λ
T, (1.4)

where the pressure p and the density � of the solvent are supposed to be related by the
typical power law relation:

p(�)=a�γ , a>0, γ >
d

2
. (1.5)

Here, like all the mathematical literature apart from [44], who consider γ=1 in the case
d=2, we require γ > d

2 in order to avoid the possibility of �u⊗u being just a measure.
The Newtonian stress tensor S(∇xu) is defined by

S(∇xu)=μS

(∇xu+∇T
xu

2
− 1

d
(divxu)I

)
+μB(divxu)I, (1.6)

with constant shear and bulk viscosity coefficients, respectively, μS >0 and μB≥0. The
velocity gradient matrix is defined as

(∇xu)1≤i,j≤d=(∂xj
ui)1≤i,j≤d. (1.7)
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The symmetric matrix function T=(Tκ,ι), 1≤κ,ι≤d, defined on (0,T ]×Ω, is the extra
stress tensor and the notation Divx(uT) is defined by

(Divx(uT))κ,ι=divx(uTκ,ι), 1≤κ,ι≤d. (1.8)

The meaning of the various quantities and parameters appearing in equations (1.1)–
(1.4) will be introduced in the derivation of the model in Section 2. In particular, the
parameters ε, k, λ are all positive numbers, whereas L≥0 and z≥0 with L+z �=0. We
note in passing that, in contrast with the compressible Oldroyd-B model considered
here, in the case of the incompressible Oldroyd-B model the term divx

(
(kLη+zη2)I

)
appearing on the right-hand side of equation (1.2) plays no particular role in the proof
of the existence of global weak solutions and can be absorbed into the pressure term
∇xp on the left-hand side of the equation.

Equations (1.1)–(1.4) are supplemented by initial conditions for �, u, η and T, and
the following boundary conditions:

u=0 on (0,T ]×∂Ω, (1.9)

∂nη=0 on (0,T ]×∂Ω, (1.10)

∂nT=0 on (0,T ]×∂Ω. (1.11)

Here ∂n :=n ·∇x, where n is the outer unit normal vector on the boundary ∂Ω, and the
external force f is assumed to be an element of the function space L∞((0,T ]×Ω;Rd).

Our proof is based on several levels of regularization, the first of which involves
supplementing equation (1.2) by an additional term, including the regularization pa-
rameter α>0, and replacing η in equation (1.4) by η+α. The procedure results in the
following regularized compressible Oldroyd-B model, posed on (0,T ]×Ω:

∂t�+divx(�u)=0, (1.12)

∂t(�u)+divx(�u⊗u)+∇xp(�)+∇x

(
kLη+zη2

)
−divxS(∇xu)

=divxT−
α

2
∇xtr(logT)+�f , (1.13)

∂tη+divx(ηu)=εΔxη, (1.14)

∂tT+Divx(uT)−
(
∇xuT+T∇T

xu
)
=εΔxT+

k

2λ
(η+α)I− 1

2λ
T. (1.15)

Equations (1.12)–(1.15) are once again supplemented by initial conditions for �, u, η and
T, and the boundary conditions (1.9)–(1.11). The regularization term on the right-hand
side of equation (1.2) presupposes that T is symmetric positive definite, but this will
be proved rigorously below in the case of d=2, provided that T is symmetric positive
definite at t=0. In the final step of the proof, we shall pass to the limit α→0 with the
regularization parameter α.

The paper is organized as follows. In Section 2, we shall derive the compressible
Oldroyd-B model (1.1)–(1.11) from the compressible Navier–Stokes–Fokker–Planck sys-
tem in the Hookean dumbbell setting. In the cental part of the paper, between Section
3 and the first part of Section 11, we shall focus on the regularized model (1.12)–(1.15),
with α>0, z>0, and the global-in-time existence of weak solutions in two-dimensional
space will be proved in this case. In the second part of Section 11, we will show the
global-in-time existence of weak solutions in two-dimensional space to the original model
(1.1)–(1.11) when z>0, by passing to the limit α→0. Finally, the existence result in
the case of z=0 will be established in Section 12, by passing to the limit z→0. We note
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that the condition L>0 is only needed in the passage to the limit z→0; in other words,
as long as z>0, it suffices to assume that L≥0.

The mathematical analysis of compressible viscoelastic fluid flow models has been
the subject of active research in recent years. The existence and uniqueness of lo-
cal strong solutions and the existence of global solutions near equilibrium for macro-
scopic models of three-dimensional compressible viscoelastic fluids was considered in
[27–30,45,46]. Fang and Zi [17] proved the existence of a unique local strong solution to
a compressible Oldroyd-B model for all initial data satisfying a certain compatibility con-
dition, and established a blow-up criterion for strong solutions. Lei [33] proved the local
and global existence of classical solutions to a compressible Oldroyd-B system in a torus
with small initial data; he also studied the incompressible limit problem and showed
that solutions to the compressible flow model with well-prepared initial data converge to
those of the incompressible model when the Mach number converges to zero. Guillopé,
Salloum, and Talhouk [25] investigated weakly compressible viscoelastic fluids satisfy-
ing the Oldroyd constitutive law; they obtained a priori estimates that are uniform in
the Mach number, which then allowed them to prove that weakly compressible flows
with well-prepared initial data converge to incompressible flows when the Mach number
converges to zero. The existence of measure-valued solutions to non-Newtonian com-
pressible, isothermal, monopolar fluid flow models was studied by Nečasová in [40, 41];
for bipolar isothermal non-Newtonian compressible fluids related analysis was pursued
in [42]. In a series of papers (cf. [37–39]) Mamontov developed a priori estimates for two-
and three-dimensional compressible nonlinear viscoelastic flow problems and studied the
existence of solutions. There is also a substantial literature in chemical engineering on
the use of the compressible Oldroyd-B system in modelling bubble dynamics in com-
pressible viscoelastic liquids (cf., for example, [12]). Bae & Trivisa [1] have established
the existence of global weak solutions to Doi’s rod-model in three-dimensional bounded
domains; the model concerns suspensions of rod-like molecules in compressible fluids and
involves the coupling of a Fokker–Planck type equation with the compressible Navier–
Stokes system. In a related context, Jiang, Jiang & Wang [31] have studied the existence
of global weak solutions to the equations of compressible flow of nematic liquid crystals
in two dimensions. For a survey of macroscopic models of compressible viscoelastic
flow, the reader is referred to the paper by Bollada & Phillips [10]. As was noted there,
even for isothermal viscoelastic models, the transition from the incompressible to the
compressible case is nontrivial; in fact, the precise form of temperature-dependence in
compressible viscoelastic models is not yet properly understood, the development of
complete, thermodynamically consistent, models being the subject of ongoing research.
We shall therefore confine ourselves here to the isothermal setting, with the temperature
assumed to be held fixed.

2. Derivation of the compressible Oldroyd-B model
In this section we recall the compressible Navier–Stokes–Fokker–Planck system con-

sidered in [5]. We shall then (formally) derive from it the compressible Oldroyd-B model
(1.1)–(1.11) by considering the special case of the compressible Hookean dumbbell model
and formulating its (formal) macroscopic closure.

2.1. Compressible Navier–Stokes–Fokker–Planck system. The solvent
density � and the solvent velocity field u are defined in (0,T ]×Ω and (0,T ]×Ω, re-
spectively, with T >0, and satisfy the compressible Navier–Stokes equations with an
elastic extra stress-tensor K:

∂t�+divx(�u)=0 in (0,T ]×Ω, (2.1)
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∂t(�u)+divx(�u⊗u)+∇xp(�)−divxS(∇xu)=divxK+�f in (0,T ]×Ω. (2.2)

The pressure p(�) and the Newtonian shear stress tensor S are defined by the expressions
(1.5) and (1.6). We shall impose a no-slip boundary condition on the velocity field; i.e.,

u=0 on (0,T ]×∂Ω. (2.3)

In the dumbbell model consisting of two beads coupled with an elastic spring repre-
senting a polymer chain, the non-Newtonian elastic extra stress tensor K is defined by a
version of the Kramers expression (cf. equation (2.5) below), depending on the probabil-
ity density function ψ, which, in addition to t and x, also depends on the conformation
vector q∈Rd of the spring. Let D⊂Rd be the domain of admissible conformation vec-
tors. Typically D is the whole space Rd or a bounded open ball centered at the origin
0 in Rd. Here we consider the Hookean bead-spring model, where D=Rd, and the
elastic spring-force F : q∈D �→U ′( 12 |q|2)q∈Rd and the spring potential U :R≥0→R≥0

are defined by

F (q)= q for all q∈D, U(s)=s for all s≥0. (2.4)

The extra-stress tensor K is defined by the formula:

K(ψ)(t,x) :=K1(ψ)(t,x)−
(∫

D×D

γ(q,q′)ψ(t,x,q)ψ(t,x,q′)dqdq′
)
I, (2.5)

where, similarly to [7, 20], the interaction kernel γ is assumed to be a nonnegative
constant γ(q,q′)≡ z≥0. Consequently,

K(ψ) :=K1(ψ)−z

(∫
D

ψdq

)2

I. (2.6)

The first part, K1(ψ), of K(ψ) is given by the Kramers expression

K1(ψ) :=k

[
C(ψ)−L

(∫
D

ψ dq

)
I

]
, (2.7)

where k>0 is the product of the Boltzmann constant and the absolute temperature,
L=2 is the number of beads in the polymer chain in the classical Kramers expression
(in our setting L can be taken to be any nonnegative real number as long as z>0; in
order to cover the case of z=0 in the final step of our proof we pass to the limit z→0,
and this requires that L>0 in this step), and

C(ψ)(t,x) :=

∫
D

ψ(t,x,q)U ′
( |q|2

2

)
qqTdq. (2.8)

By noting the expressions (2.4), one deduces from the formulae (2.5)–(2.8) that in
the Hookean case

K(ψ)=T−
(
kLη+zη2

)
I, (2.9)

where

T(t,x) :=k

∫
D

ψ(t,x,q)qqTdq, η(t,x) :=

∫
D

ψ(t,x,q)dq, (2.10)
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with the quantity η being called the polymer number density. We thus arrive at the
momentum equation (1.2). Since ψ is a probability density function, and therefore
nonnegative a.e. on [0,T ]×Ω×D and

∫
Ω×D

ψ(t,x,q)dxdq=1 for a.e. t∈ [0,T ], it is
clear from the first equality in (2.10) that T(t,x) is symmetric and nonnegative definite
for a.e. (t,x)∈ [0,T ]×Ω.

We introduce the Maxwellian M :D→ [0,∞) by

M(q) :=
1

Z
exp

(
−U

(
1

2
|q|2

))
, where Z :=

∫
D

exp

(
−U

(
1

2
|p|2

))
dp.

Clearly,
∫
D
M(q)dq=1.

The probability density function ψ satisfies the following Fokker–Planck equation
in (0,T ]×Ω×D:

∂tψ+divx(uψ)+divq ((∇xu)qψ)=εΔxψ+
1

4λ
divq

(
M∇q

(
ψ

M

))
. (2.11)

A simple calculation reveals that in the case of Hookean springs, when U( 12 |q|2)= 1
2 |q|2,

the expression appearing in the second term on the right-hand side of equation (2.11)
can be rewritten as follows:

M∇q

(
ψ

M

)
=∇qψ+ψq. (2.12)

The centre-of-mass diffusion term εΔxψ is generally of the form εΔx

(
ψ

ζ(�)

)
, which

involves the drag coefficient ζ(·) depending on the fluid density �. Here we assume that
ζ is a constant function, which is, for simplicity, taken to be identically 1. The constant
parameter ε>0 is the centre-of-mass diffusion coefficient. The parameter λ>0 is called
the Deborah number ; it characterizes the elastic relaxation property of the fluid.

The Fokker–Planck equation needs to be supplemented by suitable boundary con-
ditions; in the Hookean case considered here, with D=Rd, these are:

ψ |q|→0, ∇qψ ·
q

|q| →0, as |q|→∞, for all (t,x)∈ (0,T ]×Ω,

∂nψ=0 on (0,T ]×∂Ω×D.
(2.13)

Finally, by (formally) integrating the partial differential equation (2.11) over D
and using the boundary conditions (2.13)1, and by integrating the boundary condition
(2.13)2 over D, we deduce the following partial differential equation and boundary
condition for the function η:

∂tη+divx(uη)=εΔxη in (0,T ]×Ω; ∂nη=0 on (0,T ]×∂Ω. (2.14)

The compressible Navier–Stokes–Fokker–Planck system in the case of Hookean
bead-spring chains consists of equations (2.1), (2.2), (2.11), (2.14), supplemented with
the boundary conditions in (2.3), (2.13), (2.14), and suitable initial conditions for �, u,
ψ and η. In the next section we use formal computations to derive the compressible
Oldroyd-B model whose analysis is thereafter pursued in the rest of the paper.
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2.2. Compressible Oldroyd-B model. This section is devoted to the deriva-
tion of the model (1.1)–(1.11) from the Navier–Stokes–Fokker–Planck system stated
in Section 2.1, consisting of equations (2.1), (2.2), (2.11), (2.14), and the boundary
conditions in (2.3), (2.13), (2.14).

The continuity equation (1.1) for the fluid density � and equation (1.3) for the
polymer number density η, as well as the boundary condition (1.10) for η, follow directly
from equations (2.1) and (2.14). From equation (2.2) and the equality (2.9), we deduce
the balance of momentum equation (1.2); the boundary condition for the velocity field
u follows from the equality (2.3).

The boundary condition (1.11) can be deduced from the boundary conditions (2.13)
and the first equality in (2.10). It remains to derive the evolution equation (1.4) for the
elastic extra stress tensor T. To this end, we note the definition of T in the first equality
in (2.10), multiply equation (2.11) by the matrix kqqT, and integrate it with respect to
q∈D. In the following we shall calculate the results, term by term. We will see that
the resulting evolution equation for the extra stress tensor T is precisely equation (1.4).

We begin by noting that for the first term in equation (2.11), associated with the
time derivative, we have that∫

D

∂tψ
(
kqqT

)
dq=∂t

∫
D

ψkqqTdq=∂tT. (2.15)

For the second term in equation (2.11), we have that∫
D

divx(uψ)
(
kqqT

)
dq=(divxu)

∫
D

ψ
(
kqqT

)
dq+(u ·∇x)

∫
D

ψ
(
kqqT

)
dq

=(divxu)T+(u ·∇x)T

=(divx(uTκ,ι))1≤κ,ι≤d=:Divx(uT). (2.16)

For the third term in equation (2.11), by (formal) integration by parts and ignoring
the “boundary” terms at |q|=∞, for any 1≤κ,ι≤d, we have, with qκ being the κth

component of q, that∫
D

divq ((∇xu)qψ)(kqκqι)dq=−k
∫
D

((∇xu)qψ) ·∇q (qκ qι)dq

=−k
∫
D

d∑
α,β=1

(
∂xβ

uα qβψ
)
∂qα(qκqι)dq

=−k
∫
D

d∑
α,β=1

(
∂xβ

uα qβψ
)
(qκδα,ι+qιδα,κ)dq

=−k
∫
D

d∑
β=1

(
∂xβ

uι qβψqκ
)
dq−k

∫
D

d∑
β=1

(
∂xβ

uκ qβψqι
)
dq

=−(∇xuT)ι,κ−(∇xuT)κ,ι=−(∇xuT)κ,ι−
(
T∇T

xu
)
κ,ι

.

For the fourth term in equation (2.11) we have that∫
D

εΔxψ
(
kqqT

)
dq=εΔx

∫
D

ψ
(
kqqT

)
dq=εΔxT. (2.17)

It remains to deal with the last term in equation (2.11). By the identity (2.12), for
any 1≤κ,ι≤d, we have by (formal) integration by parts and ignoring the “boundary”
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terms at |q|=∞,

∫
D

divq

(
M∇q

(
ψ

M

))
(kqκ qι)=

∫
D

divq (∇qψ+ψq)(kqκ qι)dq

=−k
∫
D

(∇qψ+ψq) ·∇q (qκ qι)dq. (2.18)

We compute the right-hand side in the chain of equalities (2.18), which can be decom-
posed into two terms. The first one is, after a second (formal) partial integration,

−k
∫
D

(∇qψ) ·∇q (qκ qι)dq=k

∫
D

ψΔq (qκ qι) dq=2kδκ,ι

∫
D

ψdq=2kηδκ,ι. (2.19)

The second one is

−k
∫
D

ψq ·∇q (qκ qι)dq=−k
∫
D

d∑
α=1

ψqα∂qα (qκ qι)dq

=−k
∫
D

d∑
α=1

ψqα (qκ δα,ι+qι δα,κ)dq

=−2k
∫
D

ψqκ qιdq. (2.20)

Thus, by the identities (2.18)–(2.20), we have that

1

4λ

∫
D

divq

(
M∇q

(
ψ

M

))(
kqqT

)
dq=

k

2λ
η I− 1

2λ

∫
D

ψ
(
kqqT

)
dq=

k

2λ
η I− 1

2λ
T.

(2.21)

By combining the identities (2.15)–(2.17) and (2.21), we then obtain

∂tT+Divx(uT)−
(
∇xuT+T∇T

xu
)
=εΔxT+

k

2λ
η I− 1

2λ
T,

which is precisely equation (1.4). We note that if T solves equation (1.4) for a given u,
then taking the transpose of equation (1.4) we see that TT solves equation (1.4). Hence
the symmetry of T from the definition (2.10) is encoded in the macroscopic equation
(1.4).

Having derived the model, we now focus our attention on its mathematical analysis.
We begin by establishing a priori bounds that will form the basis of the weak compact-
ness argument leading to the proof of existence of a weak solution to the system under
consideration.

3. A priori bounds

This section is devoted to the derivation of a priori bounds for the regularized com-
pressible Oldroyd-B model (1.12)–(1.15) with α, z>0 subject to the boundary conditions
(1.9)–(1.11), and given proper initial conditions.
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3.1. Initial data and a priori bound. We adopt the following hypotheses on
the initial data:

�(0, ·)=�0(·) with �0≥0 a.e. in Ω, �0∈Lγ(Ω),

u(0, ·)=u0(·)∈Lr(Ω;Rd) for some r≥2γ′ such that �0|u0|2∈L1(Ω),

η(0, ·)=η0 with η0≥0 a.e. in Ω, η0∈L2(Ω),

T(0, ·)=T0(·) with T0=TT
0 >0 a.e. in Ω,

T0∈L2(Ω;Rd×d), tr(logT0)∈L1(Ω).

(3.1)

Here γ′ denotes the conjugate exponent to γ >d/2, i.e., 1/γ+1/γ′=1, and T0>0 sig-
nifies that T0 is positive definite.

Because the density � is required to be a nonnegative function, we have assumed
that the initial datum �0 is nonnegative. Since the probability density function ψ is, by
definition, nonnegative, the definitions of η and T stated in the formulae (2.10) for the
Navier–Stokes–Fokker–Planck system automatically imply that η must be a nonnegative
function and T must be a symmetric nonnegative definite matrix a.e. on (0,T ]×Ω.
However, this information concerning the nonnegativity of T is not a priori encoded in
the macroscopic counterpart of this kinetic model, the compressible Oldroyd-B model
(1.1)–(1.11). Furthermore, because of the presence of the logarithmic term in the alpha-
regularised model, see equation (1.13), we require T>0 a.e. in (0,T ]×Ω. We have
therefore assumed nonnegativity/positivity of the initial data for η and T, respectively,
in the hypotheses (3.1). For the purposes of the formal energy estimates developed
in this section, we will temporarily assume that (�,u,η,T) is a smooth solution to the
problem (1.12)–(1.15), (1.9)–(1.11), (3.1) with α, z>0, and, in addition, that �≥0,
η>0 and T>0 a.e. in (0,T ]×Ω. We stress that the energy estimates below, and these
nonnegativity and positivity constraints on �, η and T, will be made rigorous in the
case of d=2 later in the paper.

We deduce from the hypotheses (3.1)1 and (3.1)2 by using Hölder’s inequality that

(�u)(0, ·)=�0u0=
√
�0
√
�0u0∈L

2γ
γ+1 (Ω;Rd).

For the fluid density �, integration of equation (1.12) over Ω with respect to the spa-
tial variable x, performing partial integration and noting the no-slip boundary condition
(1.9) for the velocity field gives

d

dt

∫
Ω

�(t,x)dx=0 =⇒
∫
Ω

�(t,x)dx=

∫
Ω

�0dx, t∈ (0,T ].

For the polymer number density η, integrating equation (1.14) over Ω with respect
to the spatial variable x, performing partial integration and noting, in addition to the
boundary condition (1.9), the homogeneous Neumann boundary condition (1.10) on η
gives

d

dt

∫
Ω

η(t,x)dx=0 =⇒
∫
Ω

η(t,x)dx=

∫
Ω

η0dx, t∈ (0,T ]. (3.2)

In order to derive a formal energy identity we take the inner product of the mo-
mentum equation (1.13) with the velocity field u, integrate over Ω with respect to the
spatial variable x, and perform partial integration noting the no-slip boundary condi-
tion (1.9) for u. In order to explain the details of the calculation, we shall perform the
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computations term by term. We begin by noting that for the first term in equation
(1.13) we have, for t∈ (0,T ],∫

Ω

∂t(�u) ·udx=
∫
Ω

(∂t�)|u|2dx+
∫
Ω

�∂t
|u|2
2

dx=
1

2

d

dt

∫
Ω

�|u|2dx+ 1

2

∫
Ω

(∂t�)|u|2dx.

For the second term in equation (1.13),∫
Ω

divx(�u⊗u) ·udx=−
∫
Ω

(�u⊗u) :∇xudx=−
d∑

i,j=1

∫
Ω

�uiuj ∂xj
uidx

=−
d∑

i,j=1

∫
Ω

�uj
1

2
∂xj
|ui|2dx=

1

2

∫
Ω

divx(�u) |u|2dx, t∈ (0,T ].

For the third term in equation (1.13),∫
Ω

∇xp(�) ·udx=−
∫
Ω

(a�γ)divxudx, t∈ (0,T ].

Multiplication of equation (1.12) by γ�γ−1 gives

∂t�
γ+divx(�

γu)+(γ−1)�γdivxu=0.

Thus, thanks to the boundary condition (1.9) and our assumption that γ >d/2, we have
that∫

Ω

∇xp(�) ·udx=
∫
Ω

a

γ−1
(∂t�

γ+divx(�
γu))dx=

a

γ−1

d

dt

∫
Ω

�γ dx, t∈ (0,T ].

For the fourth term in equation (1.13),∫
Ω

∇x

(
kLη+zη2

)
·udx=−kL

∫
Ω

ηdivxudx−z

∫
Ω

η2divxudx, t∈ (0,T ].

Let b : [0,∞)→R be a continuous function and b∈C1(0,∞). Recalling our assumption
η>0, multiplication of equation (1.14) by b′(η) yields that

∂tb(η)+divx
(
b(η)u

)
+
(
b′(η)η−b(η)

)
divxu=εb′(η)Δxη. (3.3)

By choosing b(η) :=η logη+1, we obtain from equation (3.3) that

∂t(η logη+1)+divx
(
(η logη+1)u

)
+ηdivxu−divxu=ε(1+logη)Δxη.

Thanks to the boundary conditions (1.9) and (1.10) we then have that

−kL
∫
Ω

ηdivxudx=kL
d

dt

∫
Ω

(η logη+1)dx+εkL

∫
Ω

1

η
|∇xη|2dx, t∈ (0,T ]. (3.4)

By choosing b(η) :=η2 in equation (3.3) we obtain that

∂t(η
2)+divx(η

2u)+η2divxu=2εηΔxη.

Hence, thanks again to the boundary conditions (1.9) and (1.10), we obtain

−z
∫
Ω

η2divxudx= z
d

dt

∫
Ω

η2dx+2εz

∫
Ω

|∇xη|2dx, t∈ (0,T ]. (3.5)
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By combining the identities (3.4) and (3.5), the fourth term in equation (1.13) can be
therefore rewritten, for t∈ (0,T ], as follows:∫

Ω

∇x

(
kLη+zη2

)
·udx= d

dt

∫
Ω

(
kL(η logη+1)+zη2

)
dx+

∫
Ω

(
kL

η
+2z

)
ε |∇xη|2dx.

For the fifth term in equation (1.13) we have

−
∫
Ω

divxS(∇xu) ·udx=
∫
Ω

(
μS

(∇xu+∇T
xu

2
− 1

d
(divxu)I

)
+μB(divxu)I

)
:∇xudx

=

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2+μB |divxu|2dx, t∈ (0,T ].

For the sixth term in equation (1.13) we have∫
Ω

divxT ·udx=−
∫
Ω

T :∇xudx, t∈ (0,T ].

For the seventh term in equation (1.13) we have

−α

2

∫
Ω

∇xtr(logT) ·udx=
α

2

∫
Ω

tr(logT)(divxu)dx, t∈ (0,T ].

Therefore, by summing up the above identities, we deduce, on noting equation (1.12),
that

d

dt

∫
Ω

[
1

2
�|u|2+ a

γ−1
�γ+

(
kL(η logη+1)+zη2

)]
dx+

∫
Ω

(
kL

η
+2z

)
ε |∇xη|2dx

+

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2+μB |divxu|2dx

=−
∫
Ω

T :∇xudx+
α

2

∫
Ω

tr(logT)divxudx+

∫
Ω

�f ·udx, t∈ (0,T ]. (3.6)

In order to complete the derivation of a (formal) energy identity for the system, we
need to deal with the first two terms on the right-hand side of the identity (3.6). As far
as the first term on the right-hand side of the identity (3.6) is concerned, by taking the
trace of equation (1.15), integrating over Ω with respect to the spatial variable x, and
using the boundary conditions (1.9) and (1.11), we deduce that

d

dt

∫
Ω

tr(T) dx+
1

2λ

∫
Ω

tr(T) dx=
kd

2λ

∫
Ω

(η+α)dx+2

∫
Ω

T :∇xudx, t∈ (0,T ]. (3.7)

Here, we have also noted that tr(PQT)=P :Q for all P,Q∈Rn×n. Therefore, summing
the equality (3.6) and 1

2 times equality (3.7) gives

d

dt

∫
Ω

[
1

2
�|u|2+ a

γ−1
�γ+

(
kL(η logη+1)+zη2

)
+

1

2
tr(T)

]
dx

+

∫
Ω

(
kL

η
+2z

)
ε |∇xη|2dx+

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2
+μB |divxu|2dx+

1

4λ

∫
Ω

tr(T) dx
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=

∫
Ω

�f ·udx+ kd

4λ

∫
Ω

(η+α)dx+
α

2

∫
Ω

tr(logT)divxudx, t∈ (0,T ]. (3.8)

We are left to deal with the final term on the right-hand side of the identity (3.8) (which
is the same as the second term on the right-hand side of the identity (3.6)); this requires
some nontrivial calculations, which we shall next discuss.

3.2. A logarithmic bound. In this section, inspired by the study of the in-
compressible Oldroyd-B model in [2,26,34], we derive a logarithmic bound on the extra
stress tensor T and a bound on T−1 . These are needed both to complete the derivation
of the (formal) energy identity for the system, as well as in the construction of the
sequence of approximating solutions. As we shall see below, the computations aimed at
dealing with the final term on the right-hand side of the identity (3.8) will yield a term
in the (formal) energy identity for the system (1.12)–(1.15), (1.9)–(1.11), (3.1), which
will ultimately ensure the positivity of T a.e. on Ω×(0,T ]. For the purposes of the
formal calculations that will now follow, we temporarily assume that T is a symmetric
positive definite matrix.

Let T−1=(T−1)1≤κ,ι≤d be the inverse of T. We compute the inner product of
equation (1.15) and T−1. We recall the following formula, usually referred to as Jacobi’s
formula:

∂(detT)=(detT)tr(T−1∂T); hence ∂ (logdetT)=tr(T−1∂T)=∂T :T−1, (3.9)

where, in the present context, ∂ is a derivative in space or time. Since T is symmetric
positive definite, we can define its real logarithm, logT, which is a symmetric matrix
such that elogT=T. Indeed, upon diagonalization of T, using the orthogonal d×dmatrix
O, we have that

T=Odiag{λ1,λ2, . . . ,λd}OT and therefore logT=Odiag{logλ1, logλ2, . . . , logλd}OT,

where λκ>0, κ=1, . . . ,d, are the eigenvalues of T. Thus, we have the following identity:

tr(logT)= logdetT. (3.10)

By the identities (3.9) and (3.10), we have for the first term in equation (1.15) that

∂tT :T−1=∂t (logdetT)=∂ttr(logT) . (3.11)

For the second term in equation (1.15) we have that

Divx(uT) :T
−1=((u ·∇x)T+(divxu)T) :T

−1=(u ·∇x)tr(logT)+ddivxu. (3.12)

For the third term in equation (1.15) we have

−
(
∇xuT+T∇T

xu
)
:T−1=−tr

((
∇xuT+T∇T

xu
)
T−1

)
=−2tr(∇xu)=−2divxu.

Thus, by taking the inner product of equation (1.15) with T−1, we obtain

∂ttr(logT)+(u ·∇x)tr(logT)+(d−2)divxu

=εΔxT :T−1+
k

2λ
(η+α)tr

(
T−1

)
− d

2λ
. (3.13)

After integrating equation (3.13) over Ω, performing partial integration and noting the
boundary condition (1.9) on u, we have that, for t∈ (0,T ],
d

dt

∫
Ω

tr(logT)dx
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=

∫
Ω

(divxu)tr(logT)dx+ε

∫
Ω

ΔxT :T−1dx+
k

2λ

∫
Ω

(η+α)tr
(
T−1

)
dx− d

2λ
|Ω|. (3.14)

To proceed, we require the following lemma whose proof is elementary but rather lengthy
and has been therefore relegated to Appendix A.

Lemma 3.1. Let P∈W 2,2(Ω;Rd×d)∩C1(Ω;Rd×d) be a symmetric matrix function,
which is positive definite, uniformly on Ω, and satisfies ∂nP=0 on ∂Ω; then,∫

Ω

ΔxP :P
−1dx=

d∑
j=1

∫
Ω

tr
((

(∂xj
P)(P−1)

)2)
dx≥ 1

d

∫
Ω

|∇xtr(logP)|2dx. (3.15)

We continue our formal calculations under the assumption that T(t, ·) satisfies the
hypotheses of Lemma 3.1 for t∈ (0,T ]. By subtracting α

2 times the equality (3.14) from
the a priori bound (3.8) and using the equality in (3.15), we finally obtain the following
(formal) energy identity:

d

dt

∫
Ω

[
1

2
�|u|2+ a

γ−1
�γ+

(
kL(η logη+1)+zη2

)
+

1

2
tr(T−α logT)

]
dx

+

∫
Ω

(
kL

η
+2z

)
ε |∇xη|2dx+

αε

2

d∑
j=1

∫
Ω

tr
((

(∂xj
T)(T−1)

)2)
dx

+

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2+μB |divxu|2dx

+
1

4λ

∫
Ω

tr(T) dx+
αk

4λ

∫
Ω

(η+α)tr
(
T−1

)
dx

=

∫
Ω

�f ·udx+ kd

4λ

∫
Ω

(η+α)dx+
αd

4λ
|Ω|, t∈ (0,T ]. (3.16)

This (formal) energy identity will be the starting point for the development of the weak
compactness argument leading to the proof of existence of a global-in-time large data
finite-energy weak solution to the compressible Oldroyd-B system under consideration.

To this end, we make some preliminary observations. Let us denote by λκ, κ=
1, . . . ,d, the eigenvalues of the symmetric positive definite matrix T. Then,

tr(T−α logT)=
d∑

κ=1

(λκ−α logλκ)≥
d∑

κ=1

(α−α logα)=d(α−α logα) .

Hence, for any α>0, we have that

tr(T−α logT)+d(α logα−α)≥0. (3.17)

Motivated by the identity (3.16) and the inequality (3.17), for t∈ [0,T ] we consider
the following nonnegative energy functional:

E(t) :=

∫
Ω

[
1

2
�|u|2+ a

γ−1
�γ+

(
kL(η logη+1)+zη2

)
+
1

2
(tr(T−α logT)+d(α logα−α))

]
dx. (3.18)
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Hölder’s inequality then gives∫
Ω

�f ·udx≤‖f‖L∞((0,T ]×Ω;Rd)‖
√
�|u|‖L2(Ω;Rd)‖

√
�‖L2(Ω)≤CE(t), t∈ (0,T ],

for some positive constant C=C(f ,a,γ). Also, as η(logη−1)+1≥0 for η≥0, we have
that∫

Ω

(η(t,x)+α)dx≤ max{1,α|Ω|}
min{1,kL} (E(t)+1), t∈ (0,T ], when L>0 and z≥0; (3.19)

similarly, as η+α≤ ( 12 +α)+ 1
2z zη

2, by integrating this inequality over Ω we deduce that∫
Ω

(η(t,x)+α)dx≤max

{(
1

2
+α

)
|Ω|, 1

2z

}
(E(t)+1), t∈ (0,T ], when L≥0 and z>0,

(3.20)

Thus, integrating the identity (3.16) over the time interval [0,t] with respect to the
temporal variable and noting the inequality (3.15) implies that

E(t)+

∫ t

0

∫
Ω

(
kL

η
+2z

)
ε |∇xη|2dxdt′+

αε

2d

∫ t

0

∫
Ω

|∇xtr(logT)|2dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2+μB |divxu|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(T) dxdt′+
αk

4λ

∫ t

0

∫
Ω

(η+α)tr
(
T−1

)
dxdt′

≤ E0+C

∫ t

0

E(t′)dt′+Ct, t∈ (0,T ], (3.21)

where, if L>0, the positive constant C depends only on ‖f‖L∞((0,T ]×Ω;Rd) and
the parameters a,γ,k,d,L,λ,α, |Ω|, but it is independent of z≥0; whereas if z>0,
then the positive constant C depends only on ‖f‖L∞((0,T ]×Ω;Rd) and the parameters
a,γ,k,d,z,λ,α, |Ω|, but it is independent of L≥0. The initial energy

E0 :=

∫
Ω

[
1

2
�0|u0|2+

a

γ−1
�γ0 +

(
kL(η0 logη0+1)+zη20

)
+
1

2
(tr(T0−α logT0)+d(α logα−α))

]
dx (3.22)

is finite thanks to the initial data assumptions (3.1). Thus, Gronwall’s inequality implies
that

E(t)+

∫ t

0

∫
Ω

(
kL

η
+2z

)
ε |∇xη|2dxdt′+

αε

2d

∫ t

0

∫
Ω

|∇xtr(logT)|2 dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2+μB |divxu|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(T) dxdt′+
αk

4λ

∫ t

0

∫
Ω

(η+α)tr
(
T−1

)
dxdt′

≤ (E0+Ct)eCt, t∈ (0,T ], (3.23)
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where, if L>0, the positive constant C depends only on ‖f‖L∞((0,T ]×Ω;Rd) and
the parameters a,γ,k,d,L,λ,α, |Ω|, but it is independent of z≥0; whereas if z>0,
then the positive constant C depends only on ‖f‖L∞((0,T ]×Ω;Rd) and the parameters
a,γ,k,d,z,λ,α, |Ω|, but it is independent of L≥0.

Next we recall Korn’s inequality (see, for example, [14]): there exists a positive
constant C=C(d,Ω) such that

‖∇xv‖L2(Ω;Rd×d)≤C

∥∥∥∥∇xv+∇T
xv

2
− 1

d
(divxv)I

∥∥∥∥
L2(Ω;Rd×d)

∀v∈W 1,2
0 (Ω,Rd). (3.24)

Thus we deduce the following (formal) inclusions from the a priori inequality (3.23):

�∈L∞(0,T ;Lγ(Ω)), u∈L2(0,T ;W 1,2
0 (Ω;Rd)), �|u|2∈L∞(0,T ;L1(Ω)),

η∈L∞(0,T ;L2(Ω))∩L2(0,T ;W 1,2(Ω)), (η+α)tr
(
T−1

)
∈L1(0,T ;L1(Ω)),

tr(T−α logT)∈L∞(0,T ;L1(Ω)), ∇xtr(logT)∈L2(0,T ;L2(Ω;Rd)).

(3.25)

Unfortunately, these bounds on T are not strong enough in order to establish the exis-
tence of a solution to the regularized compressible Oldroyd-B model (1.12)–(1.15) with
α, z>0 subject to the boundary conditions (1.9)–(1.11), and initial conditions (3.1).

3.3. A further bound in two space dimensions. In this section we will show
that when d=2 one can establish stronger bounds on T than those stated in the estimate
(3.23) and the inclusions (3.25). The key step is to take the inner product of equation
(1.15) with T and integrate over Ω with respect to x. Direct calculations imply that

1

2

d

dt

∫
Ω

|T|2dx+ε

∫
Ω

|∇xT|2dx+
1

2λ

∫
Ω

|T|2dx

=−
∫
Ω

Divx(uT) :Tdx+

∫
Ω

(
∇xuT+T∇T

xu
)
:Tdx+

k

2λ

∫
Ω

(η+α)I :Tdx

≤ 1

2

∫
Ω

(divxu) |T|2dx+2

∫
Ω

|∇xu| |T|2dx+
1

4λ

∫
Ω

|T|2dx+ k2

2λ

∫
Ω

(η+α)2dx

≤3

∫
Ω

|∇xu| |T|2dx+
1

4λ

∫
Ω

|T|2dx+ k2

2λ

∫
Ω

(η+α)2dx, t∈ (0,T ].

Thus, for t∈ (0,T ],
1

2

d

dt

∫
Ω

|T|2dx+ε

∫
Ω

|∇xT|2dx+
1

4λ

∫
Ω

|T|2dx

≤3‖∇xu‖L2(Ω;R2×2)‖T‖2L4(Ω;R2×2)+
k2

2λ

∫
Ω

(η+α)2dx. (3.26)

We recall the following Gagliardo–Nirenberg inequality: let G⊂Rd be a bounded Lip-
schitz domain; then, for any r∈ [2,∞) if d=2, and r∈ [2,6] if d=3, one has, for any
v∈W 1,2(G), that:

‖v‖Lr(G)≤C(r,d,Ω)‖v‖1−θ
L2(G)‖v‖θW 1,2(G), θ :=d

(
1

2
− 1

r

)
. (3.27)

Hence, in the case of d=2 and G=Ω⊂R2, we have, for t∈ (0,T ], that

‖T‖2L4(Ω;R2×2)≤C ‖T‖L2(Ω;R2×2)‖T‖W 1,2(Ω;R2×2)
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≤C ‖T‖L2(Ω;R2×2)

(
‖T‖L2(Ω;R2×2)+‖∇xT‖L2(Ω;R2×2×2)

)
. (3.28)

This implies, for t∈ (0,T ], that

3‖∇xu‖L2(Ω;R2×2)‖T‖2L4(Ω;R2×2)

≤C ‖∇xu‖2L2(Ω;R2×2)‖T‖2L2(Ω;R2×2)+
1

8λ
‖T‖2L2(Ω;R2×2)+

ε

2
‖∇xT‖2L2(Ω;R2×2×2). (3.29)

As z>0, we have from the a priori bound (3.23) that ‖η‖2L∞(0,t;L2(Ω))≤C(t,E0,z
−1).

We thus deduce from the estimates (3.26) and (3.29) that, for t∈ (0,T ],

d

dt

∫
Ω

|T|2dx+ε

∫
Ω

|∇xT|2dx+
1

4λ

∫
Ω

|T|2dx≤C ‖∇xu‖2L2(Ω)‖T‖2L2(Ω)+C(t,E0,z
−1).

Now, Gronwall’s inequality implies that, for t∈ (0,T ],

‖T(t, ·)‖2L2(Ω;R2×2)≤ e
C
∫ t
0
‖∇xu(t

′,·)‖2
L2(Ω;R2×2)

dt′
(
‖T0‖2L2(Ω;R2×2)+C(t,E0,z

−1)
)
. (3.30)

Finally, by invoking the a priori bound (3.23) again we deduce that, for t∈ (0,T ],∫
Ω

|T(t)|2dx+ε

∫ t

0

∫
Ω

|∇xT|2dxdt′+
1

4λ

∫ t

0

∫
Ω

|T|2dxdt′

≤C(t,E0,z
−1,‖T0‖2L2(Ω;R2×2)). (3.31)

Thus, in the case of d=2 and z>0, we can supplement the inclusions (3.25) with the
following stronger inclusion for T:

T∈L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;W 1,2(Ω;R2×2)).

Finally, we will also consider the case of d=2 and z=0 in the final step of our
existence proof. To this end we require bounds on ‖∇xu‖L2(0,T ;L2(Ω;R2×2)) and the
second term on the right-hand side of the estimate (3.26) that are uniform in z as z→0.
The derivation of the required z-uniform bounds is the subject of the following remark.

Remark 3.1. The z-uniform bound on ‖∇xu‖L2(0,T ;L2(Ω;R2×2)) is a direct consequence
of the estimate (3.23), with L>0, and the estimate (3.24). To show that the constant on
the right-hand side of the inequality (3.31) is uniform as z→0, by the estimate (3.26)
it suffices to show that the norm ‖η‖L2(0,T ;L2(Ω)) is uniformly bounded as z→0. As
|η logη|≤η logη+1 for all η≥0, it follows from the estimate (3.23), considered in the
case when L>0 and z≥0, that

‖η logη‖L∞(0,T ;L1(Ω))+‖∇xη
1
2 ‖L2(0,T ;L2(Ω;R2))≤C(T,E0,L

−1), (3.32)

where, for any (fixed) L>0, the constant C(T,E0,L
−1) is bounded as z→0. By direct

computation, for t∈ (0,T ],∫
Ω

|∇xη|dx=
∫
Ω

|2η 1
2∇xη

1
2 |dx≤2‖η 1

2 ‖L2(Ω)‖∇xη
1
2 ‖L2(Ω)=2‖η‖

1
2

L1(Ω)‖∇xη
1
2 ‖L2(Ω),

and by the estimate (3.32) we therefore have that

‖η‖L2(0,T ;W 1,1(Ω))≤C(T,E0,L
−1).
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As d=2, the Sobolev embedding of W 1,1(Ω) into L2(Ω) then gives that

‖η‖L2(0,T ;L2(Ω))≤C(T,E0,L
−1),

as required. Consequently the constant appearing on the right-hand side of the inequal-
ity (3.31) is independent of z, and the inequality (3.31) therefore provides a uniform
bound on T in L∞(0,T ;L2(Ω;R2×2)∩L2(0,T ;W 1,2(Ω;R2×2)) as z→0, for any (fixed)
L>0.

Motivated by these formal calculations, we shall now embark on a rigorous argument
aimed at proving the existence of global-in-time large data finite-energy weak solutions
to the compressible Oldroyd-B model for the case d=2.

4. Weak solutions, main results and the construction of approximating
solutions

The rest of the paper is devoted to the proof of the existence of global-in-time
large data finite-energy weak solutions to the regularized compressible Oldroyd-B model
(1.12)–(1.15), (1.9)–(1.11), (3.1) in the case d=2, followed by passage to the limit α→0
with the regularization parameter α>0 under the assumption that z>0. Finally, we
cover the entire range of z≥0 by passing to the limit z→0 assuming that L>0.

4.1. Weak solutions and main results. Our main result is the proof of the
existence of global-in-time large data finite-energy weak solutions to the compressible
Oldroyd-B model in the two-dimensional setting. First of all, we give the definition of
a finite-energy weak solution to the α-regularized problem (1.12)–(1.15), (1.9)–(1.11),
(3.1).

Definition 4.1. Let T >0 and let Ω⊂Rd be a bounded C2,β domain, with 0<β<1.
Let f ∈L∞((0,T ]×Ω;Rd). We say that (�,u,η,T) is a finite-energy weak solution in
(0,T ]×Ω to the system of equations (1.12)–(1.15), (1.9)–(1.11), with z>0 fixed and
α>0, supplemented by the initial data (3.1), if:

• �≥0 a.e. in (0,T ]×Ω, �∈Cw([0,T ];L
γ(Ω)), u∈L2(0,T ;W 1,2

0 (Ω;Rd)),
T is symmetric;

�u∈Cw([0,T ];L
2γ

γ+1 (Ω;Rd)), �|u|2∈L∞(0,T ;L1(Ω)),

η≥0 a.e. in (0,T ]×Ω, η∈Cw([0,T ];L
2(Ω))∩L2(0,T ;W 1,2(Ω)),

T>0 a.e. in (0,T ]×Ω,

T∈Cw([0,T ];L
2(Ω;Rd×d))∩L2(0,T ;W 1,2(Ω;Rd×d)),

tr(logT)∈L∞(0,T ;L1(Ω))∩L2(0,T ;W 1,2(Ω)),

(η+α)tr
(
T−1

)
∈L1(0,T ;L1(Ω)),

(4.1)

• For any t∈ (0,T ] and any test function φ∈C∞([0,T ]×Ω), one has

∫ t

0

∫
Ω

[
�∂tφ+�u ·∇xφ

]
dxdt′=

∫
Ω

�(t, ·)φ(t, ·)dx−
∫
Ω

�0φ(0, ·)dx, (4.2)

∫ t

0

∫
Ω

[
η∂tφ+ηu ·∇xφ−ε∇xη ·∇xφ

]
dxdt′

=

∫
Ω

η(t, ·)φ(t, ·)dx−
∫
Ω

η0φ(0, ·)dx. (4.3)
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• For any t∈ (0,T ] and any test function ϕ∈C∞([0,T ];C∞
c (Ω;Rd)), one has∫ t

0

∫
Ω

[
�u ·∂tϕ+(�u⊗u) :∇xϕ+p(�)divxϕ

+
(
kLη+zη2

)
divxϕ−S(∇xu) :∇xϕ

]
dxdt′

=

∫ t

0

∫
Ω

T :∇xϕ−
α

2
tr(logT) divxϕ−�f ·ϕdxdt′

+

∫
Ω

�u(t, ·) ·ϕ(t, ·)dx−
∫
Ω

�0u0 ·ϕ(0, ·)dx. (4.4)

• For any t∈ (0,T ] and any test function Y∈C∞([0,T ]×Ω;Rd×d), one has∫ t

0

∫
Ω

[
T :∂tY+(uT) ::∇xY+

(
∇xuT+T∇T

xu
)
:Y−ε∇xT ::∇xY

]
dxdt′

=

∫ t

0

∫
Ω

[
− k

2λ
(η+α)tr(Y)+

1

2λ
T :Y

]
dxdt′

+

∫
Ω

T(t, ·) :Y(t, ·)dx−
∫
Ω

T0 :Y(0, ·)dx, (4.5)

where the terms involving the notation :: are

(uT) ::∇xY=

d∑
κ=1

uκY :∂xκ
Y, ∇xT ::∇xY=

d∑
κ=1

∂xκ
T :∂xκ

Y. (4.6)

• The continuity equation holds in the sense of renormalized solutions:

∂tb(�)+divx(b(�)u)+(b′(�)�−b(�))divxu=0 in D′((0,T )×Ω), (4.7)

for any b∈C[0,∞)∩C1(0,∞) such that

|b′(s)|<Cs−λ0 ∀s∈ (0,1] and |b′(s)|<Csλ1 ∀s≥1, (4.8)

where λ0<1 and λ1∈ (−1,∞); see (6.2.9) and (6.2.10) in [43].

• For a.e. t∈ (0,T ] the following energy inequality holds:

E(t)+2ε

∫ t

0

∫
Ω

2kL |∇xη
1
2 |2+z|∇xη|2dxdt′+

αε

2d

∫ t

0

∫
Ω

|∇xtr(logT)|2 dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2+μB |divxu|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(T) dxdt′+
αk

4λ

∫ t

0

∫
Ω

(η+α)tr
(
T−1

)
dxdt′

≤E0+

∫ t

0

[∫
Ω

�f ·udx+ kd

4λ

∫
Ω

(η+α)dx+
αd

4λ
|Ω|
]
dt′, (4.9)

where E(t) and E0 are defined by the equalities (3.18) and (3.22).

Remark 4.1. Definition 4.1 is fairly standard. The energy inequality (4.9) identifies
an important class of weak solutions, usually termed dissipative or finite-energy weak
solutions. We note that, given a smooth solution, the energy inequality (4.9) can be
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derived by integrating the a priori bound (3.16) over [0,t] with respect to the temporal
variable and using Lemma 3.1.

Remark 4.2. In Definition 4.1, we assume sufficient regularity for T in the conditions
(4.1). This allows us to choose T as a test function in the weak formulation (4.5) and
to derive the following inequality in the two-dimensional setting: for a.e. t∈ (0,T ],

1

2

∫
Ω

|T(t)|2dx+ε

∫ t

0

∫
Ω

|∇xT|2dxdt′+
1

4λ

∫ t

0

∫
Ω

|T|2dxdt′

≤1

2

∫
Ω

|T0|2dx+3

∫ t

0

∫
Ω

|∇xu| |T|2dxdt′+
k2

2λ

∫ t

0

∫
Ω

(η+α)2dxdt′. (4.10)

Given a symmetric positive definite matrix function T satisfying the conditions (4.1),
all of the terms appearing in the inequality (4.10) are meaningful. Moreover, by the
argument presented in Section 3.3, we can derive the uniform bounds stated in the
inequality (3.31).

We are now ready to state our first main theorem, which asserts the global-in-time
existence of large data finite-energy weak solutions to the α-regularized compressible
Oldroyd-B model in the two-dimensional setting when z>0.

Theorem 4.1. Let d=2 and suppose that γ >1, z>0 and α>0. Then, there ex-
ists a finite-energy weak solution (�,u,η,T) to the α-regularized compressible Oldroyd-B
model (1.12)–(1.15), (1.9)–(1.11) with initial data (3.1), in the sense of Definition 4.1.
Moreover, the extra stress tensor T appearing as the fourth component of such a weak
solution (�,u,η,T) satisfies the inequality (3.31), and the constant on the right-hand
side of the inequality (3.31) is independent of z as long as L>0.

The proof of Theorem 4.1 involves four levels of approximation, which are described
in Section 6; the respective passages to the limits with the four levels of approximation
are carried out in Sections 7–11.

Our second main result is stated in Theorem 11.1, and concerns passing to the
limit α→0 with the regularisation parameter α>0 in the sequence of solutions whose
existence is asserted by Theorem 4.1, thus proving the existence of large data finite-
energy global weak solutions, in the sense of Definition 11.1, to the system (1.1)–(1.11),
with L≥0 and z>0. Finally, in Theorem 12.1 we pass to the limit z→0, assuming that
L>0, to deduce the existence of large data finite-energy global weak solutions to the
compressible Oldroyd-B model with stress diffusion in two space dimensions, for the
entire range of parameters z∈ [0,∞), including z=0. We conclude with a further result,
which shows that if the initial polymer number density has stronger integrability than
L logL(Ω), say η0∈Lq(Ω), q>1, then the regularity and the integrability properties of
η(t, ·) for t∈ (0,T ] are also improved.

Before embarking on the technical part of the paper, we recall, in Section 5, a
number of preliminary results, which will be required in the proofs.

5. Preliminaries

In this section we recall some technical tools that will be required in the analysis
pursued in the rest of the paper.

5.1. Classical mollifiers. Let ζ ∈C∞
c (Rd) be a nonnegative, radially symmetric

function such that suppζ⊂B(0,1) and
∫
Rd ζ(x)dx=1. We define the mollification kernel

ζθ(·)= 1
θd ζ(

·
θ ) for any θ>0. Then for any locally integrable function v defined on Rd
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with values in a Banach space X, we define the classical (Friedrichs) mollifier Sθ as the
following convolution operator:

Sθ[v] := ζθ ∗v=
∫
Rd

ζθ(x−y) v(y)dy.

Some of the key properties of Sθ are summarized in the next lemma.

Lemma 5.1 (Theorem 10.1 in [22]). Let X be a Banach space. If v∈L1
loc(R

d;X), we
have that Sθ[v]∈C∞(Rd;X). In addition, the following hold:

(i) If v∈Lp
loc(R

d;X), 1≤p<∞, then Sθ[v]∈Lp
loc(R

d;X); furthermore, Sθ[v]→v
in Lp

loc(R
d;X), as θ→0.

(ii) If v∈Lp(Rd;X), 1≤p<∞, then ‖Sθ[v]‖Lp(Rd;X)≤‖v‖Lp(Rd;X); furthermore,

Sθ[v]→v in Lp(Rd;X), as θ→0.

(iii) If v∈L∞(Rd;X), then ‖Sθ[v]‖L∞(Rd;X)≤‖v‖L∞(Rd;X).

5.2. The Bogovskĭı operator. We recall the Bogovskĭı operator, whose con-
struction can be found in [11] and in Chapter III of Galdi’s book [23]; see also Lemma
3.17 in [43].

Lemma 5.2. Let 1<p<∞ and suppose that G⊂Rd is a bounded Lipschitz domain.
Let Lp

0(G) be the space of all Lp(G) functions with zero mean value. Then, there exists
a linear operator BG from Lp

0(G) to W 1,p
0 (G;Rd) such that for any ρ∈Lp

0(G) one has

divxBG(ρ)=ρ in G; ‖BG(ρ)‖W 1,p
0 (G;Rd)≤ c(p,d,G)‖ρ‖Lp(G).

If, in addition, ρ=divxg for some g∈Lq(G;Rd), 1<q<∞, g ·n=0 on ∂G, then
the following inequality holds:

‖BG(ρ)‖Lq(G;Rd)≤ c(d,q,G)‖g‖Lq(G;Rd).

5.3. Compactness theorems. We begin by recalling the following result,
usually referred to as the Aubin–Lions–Simon compactness theorem (see Simon [47]).

Lemma 5.3. Let X0, X and X1 be three Banach spaces with X0⊂X⊂X1. Suppose
that X0 ↪→↪→X, i.e. X0 is compactly embedded in X, and that X ↪→X1, i.e. X is
continuously embedded in X1. For 1≤p,q≤∞, let

Y ={v∈Lp(0,T ;X0) :∂tv∈Lq(0,T ;X1)}.

Then, the following properties hold:

(i) If p<∞, then the embedding of Y into Lp(0,T ;X) is compact;

(ii) If p=∞ and q>1, then the embedding of Y into C([0,T ];X) is compact.

We shall also require the following generalization of the Aubin–Lions–Simon com-
pactness theorem due to Dubinskĭı [15] (see also Barrett & Süli [6]). Before stating the
result, we recall the concept of seminormed set (in the sense of Dubinskĭı). A subset
X0 of a linear space X over the field of real numbers is said to be a seminormed set if

λv∈X0, for any λ∈ [0,∞) and any v∈X0,

and there exists a functional on X0 (namely the seminorm of X0), denoted by [·]X0
,

satisfying the following two properties:
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(i) [v]X0 ≥0 for any v∈X0, and [v]X0 =0 if and only if v=0;

(ii) [λv]X0
=λ [v]X0

for any λ∈ [0,∞) and any v∈X0.

A subset B of a seminormed set X0 is said to be bounded if there exists a positive
constant c>0 such that [v]X0

≤ c for any v∈B. A seminormed set X0 contained in a
normed linear space X with norm ‖·‖X is said to be continuously embedded in X, and
we write X0 ↪→X, if there exists a constant c>0 such that

‖v‖X ≤ c [v]X0
, for any v∈X0.

The embedding of a seminormed set X0 into a normed linear space X is said to be
compact if from any bounded infinite set of elements ofX0 one can extract a subsequence
that converges in X.

We remark here that, for the sake of simplicity of the exposition and our mathe-
matical notations, the extraction of subsequences from sequences (e.g. the extraction of
weakly or weakly-* convergent subsequences from bounded sequences, or the extraction
of almost everywhere convergent subsequences from strongly convergent sequences) will
not be explicitly indicated.

Lemma 5.4 (Dubinskĭı’s compactness theorem). Suppose that X0 is a seminormed set
that is compactly embedded into a Banach space X, which is continuously embedded into
another Banach space X1. Then, for any 1≤p,q<∞, the embedding

{v∈Lp(0,T ;X0) :∂tv∈Lq(0,T ;X1)} ↪→Lp(0,T ;X)

is compact.

5.4. On Cw([0,T ];X) type spaces. Let X be a Banach space. We denote by
Cw([0,T ];X) the set of all functions v∈L∞(0,T ;X) such that the mapping t∈ [0,T ] �→
〈φ,v(t)〉X ∈R is continuous on [0,T ] for all φ∈X ′. Here and throughout the paper, we
use X ′ to denote the dual space of X, and 〈·, ·〉X to denote the duality pairing between
X ′ and X.

Whenever X has a predual E, in the sense that E′=X, we denote by Cw∗([0,T ];X)
the set of all functions v∈L∞(0,T ;X) such that the mapping t∈ [0,T ] �→ 〈v(t),φ〉E ∈R
is continuous on [0,T ] for all φ∈E. We reproduce Lemma 3.1 from [7].

Lemma 5.5. Suppose that X and Y are Banach spaces.
(i) Assume that the space X is reflexive and is continuously embedded in the space

Y ; then,

L∞(0,T ;X)∩Cw([0,T ];Y )=Cw([0,T ];X).

(ii) Assume that X has a separable predual E and Y has a predual F such that F
is continuously embedded in E; then,

L∞(0,T ;X)∩Cw∗([0,T ];Y )=Cw∗([0,T ];X).

Part (i) is due to Strauss [48] (cf. Lions & Magenes [36], Lemma 8.1, Ch. 3, Sec.
8.4); part (ii) is proved analogously, via the sequential Banach–Alaoglu theorem.

We recall the following Arzelà–Ascoli type result, and refer to Lemma 6.2 in [43]
for its proof.

Lemma 5.6. Let r,s∈ (1,∞) and let G be a bounded Lipschitz domain in Rd, d≥2.
Suppose that (gn)n∈N is a sequence of functions in Cw([0,T ];L

s(G)) such that (gn)n∈N

is bounded in C([0,T ];W−1,r(G))∩L∞(0,T ;Ls(G)). Then, there exists a subsequence
(not indicated) such that the following hold:
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(i) gn→g in Cw([0,T ];L
s(G));

(ii) If, in addition, r≤ d
d−1 , or r> d

d−1 and s> dr
d+r , then gn→g strongly in

C([0,T ];W−1,r(G)).

5.5. Regularity of the parabolic Neumann problem. We first introduce
fractional-order Sobolev spaces. Let G be the whole space Rd or a bounded Lipschitz
domain in Rd. For any k∈N, β∈ (0,1) and s∈ [1,∞), we define

W k+β,s(G) :=
{
v∈W k,s(G) :‖v‖Wk+β,s(G)<∞

}
,

where

‖v‖Wk+β,s(G) :=‖v‖Wk,s(G)+
∑
|α|=k

(∫
G

∫
G

|∂αv(x)−∂αv(y)|s
|x−y|d+βs

dxdy

) 1
s

.

The following classical results are taken from Section 7.6.1 in [43]. Let G be a
bounded domain in Rd and consider the parabolic initial-boundary-value problem:

∂tρ−εΔxρ=h in (0,T ]×G, ρ(0, ·)=ρ0 in G, ∂nρ=0 in (0,T ]×∂G. (5.1)

Here ε>0, ρ0 and h are known functions, and ρ is the unknown solution. The first
regularity result of relevance to us here is encapsulated in the following lemma.

Lemma 5.7. Let 0<β<1, 1<p,q<∞ and suppose that G is a bounded domain in
Rd,

G∈C2,β , ρ0∈W
2− 2

p ,q
n , h∈Lp(0,T ;Lq(G)),

where W
2− 2

p ,q
n is the completion of the linear space {v∈C∞(G) : ∂nv|G=0} in the norm

of W 2− 2
p ,q(G). Then, there exists a unique function ρ satisfying

ρ∈Lp(0,T ;W 2,q(G))∩C([0,T ];W 2− 2
p ,q(G)), ∂tρ∈Lp(0,T ;Lq(G))

and solving equation (5.1)1 a.e. in (0,T ]×G, together with the initial condition (5.1)2
a.e. in G; in addition, ρ satisfies the boundary condition (5.1)3 in the sense of the
normal trace, which is well defined since Δxρ∈Lp(0,T ;Lq(G)). Moreover, we have that

ε1−
1
p ‖ρ‖

L∞(0,T ;W
2− 2

p
,q
(G))

+‖∂tρ‖Lp(0,T ;Lq(G))+ε‖ρ‖Lp(0,T ;W 2,q(G))

≤C(p,q,G)
[
ε1−

1
p ‖ρ0‖

W
2− 2

p
,q
(G)

+‖h‖Lp(0,T ;Lq(G))

]
.

The second result that we state concerns parabolic problems with a divergence-form
source term, h=divxg.

Lemma 5.8. Let 0<β<1, 1<p,q<∞ and suppose that G is a bounded domain in
Rd,

G∈C2,β , ρ0∈Lq(G), g∈Lp(0,T ;Lq(G;Rd)).

Then, there exists a unique function ρ∈Lp(0,T ;W 1,q(G))∩C([0,T ];Lq(G)) satisfying
the initial condition (5.1)2 a.e. in G and

d

dt

∫
G

ρφdx+ε

∫
G

∇xρ ·∇xφdx=−
∫
G

g ·∇xφdx in D′(0,T ).
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Moreover, we have that

ε1−
1
p ‖ρ‖L∞(0,T ;Lq(G))+ε‖∇xρ‖Lp(0,T ;Lq(G;Rd))

≤C(p,q,G)
[
ε1−

1
p ‖ρ0‖Lq(G)+‖g‖Lp(0,T ;Lq(G;Rd))

]
.

6. Definition of the sequence of approximating solutions

We will prove Theorem 4.1 by means of a four-level approximation, inspired by the
construction of approximate solutions in [18, 21, 22] for the study of the compressible
Navier–Stokes equations and in [2] for the study of the incompressible Oldroyd-B model.
In this section we will describe our four-level approximation scheme. In subsequent
sections we will prove the existence of solutions to each of the approximation levels,
the convergence of the approximating solution sequence at each level, and will complete
the proof of Theorem 4.1. Finally, upon passing to the limits α→0 and z→0, we will
deduce the existence of a global-in-time large data finite-energy weak solution to the
original compressible Oldroyd-B model, (1.1)–(1.11), for the entire range of z∈ [0,∞),
including z=0.

In the sequel, we shall occasionally retain the symbol d in certain (in)equalities in
order to emphasize the role of the number of space dimensions in the (in)equality con-
cerned, but it will be understood throughout that the analysis that follows is restricted
to the case of d=2.

6.1. Mollification of the initial data. First of all, we consider a mollification
of the initial data by using the mollifier introduced in Section 5.1.

Let d=2, let Ω⊂R2 be a bounded C2,β domain, with β∈ (0,1), and let the initial
data �0,u0,η0,T0 be given, as in the hypotheses (3.1). We consider the zero-extension
of (�0,u0,η0,T0) to the whole of R2, still denoted by the same symbols, outside of the
domain Ω. We then define for θ>0 the following mollified initial data:

�0,θ=θ+Sθ[�0]; u0,θ=Sθ[u0]; η0,θ :=θ+Sθ[η0]; T0,θ :=θI+Sθ[T0]. (6.1)

Thanks to the properties of the classical Friedrichs mollifier listed in Lemma 5.1, we
have the following bounds and convergence results, as θ→0:

�0,θ ∈C∞(R2), θ≤�0,θ≤C(θ), �0,θ→�0 in Lγ(Ω);

u0,θ ∈C∞(R2;R2), u0,θ→u0 in Lr(Ω;R2) for r∈ [1,∞);

�0,θ|u0,θ|2→�0|u0|2 in L1(Ω);

�0,θu0,θ ∈C∞(R2;R2), �0,θu0,θ→�0u0 in L
2γ

γ+1 (Ω;R2);

η0,θ ∈C∞(R2), θ≤η0,θ≤C(θ), η0,θ→η0 in L2(Ω);

T0,θ ∈C∞(R2;R2×2), θ≤T0,θ=TT
0,θ≤C(θ), T0,θ→T0 in L2(Ω;R2×2),

(6.2)

where C(θ) signifies a constant depending only on θ. By Sobolev embedding,

‖�0,θ‖L∞(R2)≤θ+‖Sθ[�]‖L∞(R2)≤θ+C‖Sθ[�]‖W 2,γ(R2)≤θ+Cθ−2,

and we can therefore take C(θ)≈θ−2 as θ→0.



1288 GLOBAL WEAK SOLUTIONS TO A COMPRESSIBLE OLDROYD-B MODEL

6.2. First level: artificial pressure approximation. Let σ1>0 be small and
Γ≥4. We consider the following system of equations, which results from a modification
of the pressure in the system (1.12)–(1.15):

∂t�+divx(�u)=0,

∂t(�u)+divx(�u⊗u)+∇xp(�)+ σ1∇x�
Γ +∇x

(
kLη+zη2

)
−divxS(∇xu)

=divxT−
α

2
∇xtr(logT)+�f ,

∂tη+divx(ηu)=εΔxη,

∂tT+Divx(uT)−
(
∇xuT+T∇T

xu
)
=εΔxT+

k

2λ
(η+α)I− 1

2λ
T.

We impose the same boundary conditions as in the equalities (1.9)–(1.11) and we con-
sider the mollified initial data defined in the equalities (6.1), satisfying the conditions
(6.2).

6.3. Second level: dissipative approximation. Let σ2>0 be small. We
consider the following system of equations, where a dissipative term is added to the
continuity equation and, in order to maintain an energy bound, a term is added to the
momentum equation:

∂t�+divx(�u)= σ2Δx� , (6.3)

∂t(�u)+divx(�u⊗u)+∇xp(�)+ σ1∇x�
Γ + σ2∇xu∇x�

+∇x

(
kLη+zη2

)
−divxS(∇xu)

=divxT−
α

2
∇xtr(logT)+�f ,

∂tη+divx(ηu)=εΔxη,

∂tT+Divx(uT)−
(
∇xuT+T∇T

xu
)
=εΔxT+

k

2λ
(η+α)I− 1

2λ
T.

We consider the mollified initial data defined in the equalities (6.1), satisfying the con-
ditions (6.2). Since the σ2-regularized equation (6.3) is now parabolic, in addition to
the boundary conditions (1.9)–(1.11) we shall also require that

∂n�=0 on (0,T ]×∂Ω. (6.4)

6.4. Third level: Galerkin approximation. By the classical theory of eigen-
value problems for symmetric linear elliptic operators (see, for example, Theorem 1 in
Section 6.5 in [16]), one deduces the existence of an infinite sequence of eigenvalues
0<λ1≤λ2≤··· with λn→∞, n→∞, and an associated orthogonal eigenfunction basis
in L2(Ω;R2), denoted by (ψψψn)n∈N, such that

−Δxψψψn=λnψψψn in Ω; ψψψn=000 on ∂Ω.

Moreover, ψψψn∈W 1,2
0 (Ω;R2)∩W 2,2(Ω;R2)∩C∞(Ω;R2) and ψψψn∈C2,β(Ω;R2) since Ω is

a C2,β domain, with 0<β<1; by a classical Schauder type elliptic regularity estimate
and Sobolev embedding, one also has that

‖ψψψn‖C2,β(Ω;R2)≤C(λn)‖ψψψn‖L2(Ω;R2), with C(λn)≤Cλ2
n, for n=1,2, . . . . (6.5)
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We define the n-dimensional Hilbert space Xn, with inner product 〈·, ·〉, by

Xn := span{ψψψ1, . . . ,ψψψn}, 〈v,w〉=
∫
Ω

v ·wdx, v,w∈Xn.

We denote by Pn the orthogonal projection in L2(Ω;R2) onto the linear subspace Xn,
and we consider the following problem:

un∈C([0,T ],Xn), un(0)=u0,n=Pnu0,θ; for any ϕ∈Xn:∫
Ω

∂t(�nun) ·ϕdx

+

∫
Ω

[
divx(�nun⊗un)+∇xp(�n)+ σ1∇x�

Γ
n + σ2∇xun∇x�n

+∇x

(
kLηn+zη2n

)
−divxS(∇xun)

]
·ϕdx

=

∫
Ω

[
divxTn−

α

2
∇xtr(logTn)+�n f

]
·ϕdx, (6.6)

where u0,θ is the mollified initial datum for u0 defined in the second equality in (6.1),
and �n,ηn,Tn are determined by the parabolic equations

∂t�n+divx(�nun)= σ2Δx�n , (6.7)

∂tηn+divx(ηnun)=εΔxηn, (6.8)

∂tTn+Divx(unTn)−
(
∇xunTn+Tn∇T

xun

)
=εΔxTn+

k

2λ
(ηn+α)I− 1

2λ
Tn, (6.9)

subject to the boundary conditions (1.9)–(1.11) and (6.4), and the mollified initial data
defined in the equalities (6.1), satisfying the conditions (6.2), for �n, un, ηn and Tn.

6.5. Fourth level: regularization of the extra stress tensor. As pointed
out in Section 3.2, the a priori bounds are obtained by assuming the that T is symmetric
positive definite, which we do not have a priori. Thus, inspired by the work of Barrett
& Boyaval [2], we will employ a regularization for T to construct a family of symmetric
positive definite approximations of T, which satisfy bounds on their logarithm and
inverse similar to the ones in Section 3.2. The regularization of the extra stress tensor
T in [2] needs to be modified slightly to remain valid in our context.

Let σ3>0 be small, in the sense that σ3<min{α,θ}, and define χσ3
(s) :=

max{σ3,s}, s∈R. We introduce the following generalization of scalar functions to sym-
metric matrix functions: let g :R→R be a scalar function and let P∈Rd×d be a real
symmetric matrix; then, one has the following diagonalization:

P=ODOT, O is an orthogonal matrix, D=diag{λ1, . . . ,λd},

where λj , j=1, . . . ,d, are the eigenvalues of P.
We define g(P) and g′(P) by the following formulae

g(P)=O(g(D))OT, g′(P)=O(g′(D))OT, (6.10)

where

g(D) :=diag{g(λ1), . . . ,g(λd)}, g′(D) :=diag{g′(λ1), . . . ,g
′(λd)}. (6.11)
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With these definitions, we have the following lemma, whose proof is given in Ap-
pendix B.

Lemma 6.1. Let g∈C1,γ(R), with 0<γ≤1, be concave or convex, and let P∈
W 1,2(0,T ;Rd×d) be symmetric. Then, the matrix function t∈ (0,T ) �→g(P(t))∈Rd×d,
defined by the first equality in (6.10), is differentiable a.e. on (0,T ) and satisfies the
identity

∂ttr(g(P))=tr(g′(P)∂tP)=∂tP :g′(P) a.e. on (0,T ).

We now fix d=2, and state the fourth level of approximation as follows:

un,σ3
∈C([0,Tn],Xn), un,σ3

(0)=u0,n=Pnu0,θ; for any ϕ∈Xn:∫
Ω

[∂t(�n,σ3
un,σ3

)+divx(�n,σ3
un,σ3

⊗un,σ3
)] ·ϕdx

+

∫
Ω

[
∇xp(�n,σ3)+ σ1∇x�

Γ
n,σ3

+ σ2∇xun,σ3∇x�n,σ3

+∇x

(
kLηn,σ3 +zη2n,σ3

)
−divxS(∇xun,σ3)

]
·ϕdx

=

∫
Ω

[
divxχσ3

(TS
n,σ3

) − α

2
∇xtr

(
logχσ3

(TS
n,σ3

)
)
+�n,σ3

f

]
·ϕdx, (6.12)

where u0,θ is the mollified initial datum for u0 defined in the second equality in (6.1),

TS
n,σ3

:= 1
2

(
Tn,σ3

+(Tn,σ3
)T
)
, (6.13)

and �n,σ3 ,ηn,σ3 ,Tn,σ3 are determined by the parabolic equations

∂t�n,σ3
+divx(�n,σ3

un,σ3
)= σ2Δx�n,σ3

, (6.14)

∂tηn,σ3
+divx(ηn,σ3

un,σ3
)=εΔxηn,σ3

, (6.15)

and

∂tTn,σ3
+Divx(un,σ3

χσ3
(TS

n,σ3
) )

−
(
∇xun,σ3 χσ3(T

S
n,σ3

) + χσ3(T
S
n,σ3

) ∇T
xun,σ3

)
=εΔxTn,σ3

+
k

2λ
(ηn,σ3

+α)I− 1

2λ
χσ3

(TS
n,σ3

) , (6.16)

and the boundary conditions (1.9)–(1.11) and (6.4). Equations (6.14)–(6.16) will be
considered subject to the initial data defined in the equalities (6.1), satisfying the con-
ditions (6.2) for �n,σ3

,ηn,σ3
,Tn,σ3

.
Compared to the regularization of the extra tensor performed in [2] in the incom-

pressible case, in the compressible case considered here we require the additional reg-
ularization 1

2λχσ3
(TS

n,σ3
) featuring in equation (6.16) in order derive sufficiently strong

bounds on log(Tn,σ3
) and T−1

n,σ3
(see Section 7.2 below).

7. The fourth level of approximation
For any σ3>0, sufficiently small, and any n∈N, the problem (6.12) is a system

of ordinary differential equations in un,σ3 with respect to t because Xn is a finite-
dimensional space; equations (6.14)–(6.16) are all of parabolic type and are all well-
posed given any smooth un,σ3

. Thus, locally in time, over a time interval [0,Tn,σ3
], for
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some Tn,σ3 >0, the existence of a unique solution, denoted by (�n,σ3 ,un,σ3 ,ηn,σ3 ,Tn,σ3),
to the problem at the fourth level of approximation, posed in Section 6.5, is classical,
see [19, 21,35,43].

Since un,σ3
∈C([0,Tn,σ3

],Xn), by the definition of Xn in Section 6.4, we have, for
all t∈ [0,Tn,σ3

],

un,σ3
∈C([0,Tn,σ3

],C2,β(Ω;R2)), ‖un,σ3
(t)‖C2,β(Ω;R2)≤C(n)‖un,σ3

(t)‖L2(Ω;R2). (7.1)

By similar arguments as in Section 2.1 in [21] concerning well-posedness and uniform
bounds for parabolic equations, we have, for all t∈ (0,Tn,σ3

], that

(�n,σ3 , ηn,σ3 , Tn,σ3)∈C([0,Tn,σ3 ];W
1,2(Ω)×W 1,2(Ω)×W 1,2(Ω;R2×2)),

(�n,σ3
, ηn,σ3

, Tn,σ3
)∈L2(0,Tn,σ3

;W 2,2(Ω)×W 2,2(Ω)×W 2,2(Ω;R2×2)),

Tn,σ3
is symmetric,

θexp

(
−
∫ t

0

‖divxun,σ3(t
′)‖L∞(Ω)dt

′
)
≤�n,σ3(t,x)≤C(θ)exp

(∫ t

0

‖divxun,σ3(t
′)‖L∞(Ω)dt

′
)
,

θexp

(
−
∫ t

0

‖divxun,σ3(t
′)‖L∞(Ω)dt

′
)
≤ηn,σ3(t,x)≤C(θ)exp

(∫ t

0

‖divxun,σ3(t
′)‖L∞(Ω)dt

′
)
,

‖�n,σ3(t)‖2W1,2(Ω)+

∫ t

0

‖�n,σ3(t
′)‖2W2,2(Ω)dt

′≤C
(
t,θ,σ2,‖∇xun,σ3‖L∞((0,Tn,σ3 )×Ω;R2×2)

)
,

‖ηn,σ3(t)‖2W1,2(Ω)+

∫ t

0

‖ηn,σ3(t
′)‖2W2,2(Ω)dt

′≤C
(
t,θ,‖∇xun,σ3‖L∞((0,Tn,σ3

)×Ω;R2×2)

)
,

‖Tn,σ3(t)‖2W1,2(Ω;R2×2)+

∫ t

0

‖Tn,σ3(t
′)‖2W2,2(Ω;R2×2)dt

′

≤C
(
t,θ,‖∇xun,σ3‖L∞((0,Tn,σ3

)×Ω;R2×2)

)
. (7.2)

The symmetry of Tn,σ3 can be deduced by using the symmetry of equation (6.16), the
symmetry of TS

n,σ3
, the symmetry of the initial datum Tn,σ3(0)=T0,θ≥θ, the symme-

try of the trace operator appearing on the right-hand side of equation (6.12), and the
uniqueness of the solution to equation (6.16). The latter is a consequence of the inequal-
ity (7.1) and the Lipschitz continuity of χσ3

defined over the space of real symmetric
matrices, which follows from the Lipschitz continuity of χσ3 considered as a mapping
from R into R (cf. Theorem 1.1 in [49]).

The bound on Tn,σ3
stated in the last estimate in the set of inequalities (7.2) can

be derived similarly to those on the scalar functions �n,σ3
and ηn,σ3

, by observing that,
for any real symmetric matrix P∈Rd×d, one has |χσ3

(P)|≤σ3+ |P|. In the rest of this
section we shall derive uniform bounds on the solution sequence, which guarantee that
the existence time Tn.σ3 identified above can be extended to T .

7.1. Uniform bounds. We shall now develop some bounds that are uniform
in σ3 in the limit of σ3→0. Similarly to the a priori bound (3.6), we deduce by taking
ϕ=un,σ3

in equation (6.12), noting equation (6.14) and that

1

2

∫
Ω

Δx�n,σ3 |un,σ3 |2dx=−
∫
Ω

(∇xun,σ3∇x�n,σ3) ·un,σ3 dx,

and combining with equation (6.14) tested with b′1(�n,σ3
) and equation (6.15) tested

with b′2(ηn,σ3), where b1(r)=
a

γ−1r
γ+ σ1

Γ−1r
Γ and b2(r)=kL(r logr+1)+zr2, that

d

dt

∫
Ω

[
1

2
�n,σ3 |un,σ3 |2+

a

γ−1
�γn,σ3

+
σ1

Γ−1
�Γn,σ3

+kL(ηn,σ3 logηn,σ3 +1)+zη2n,σ3

]
dx
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+σ2

∫
Ω

(aγ�γ−2
n,σ3

+σ1Γ�
Γ−2
n,σ3

)|∇x�n,σ3
|2dx+ε

∫
Ω

(
kL

ηn,σ3

+2z

)
|∇xηn,σ3

|2dx

+

∫
Ω

μS

∣∣∣∣∇xun,σ3
+∇T

xun,σ3

2
− 1

d
(divxun,σ3

)I

∣∣∣∣2+μB |divxun,σ3
|2dx

=−
∫
Ω

χσ3
(Tn,σ3

) :∇xun,σ3
dx

+
α

2

∫
Ω

tr(logχσ3(Tn,σ3))divxun,σ3 dx+

∫
Ω

�n,σ3 f ·un,σ3 dx, (7.3)

for a.e. t∈ (0,Tn,σ3
], where we have used that TS

n,σ3
=Tn,σ3

(cf. the paragraph following
the inequalities (7.2)).

Similarly as in the identity (3.7), on taking the trace of equation (6.16) and inte-
grating over Ω, we have that, for a.e. t∈ (0,Tn,σ3 ],

d

dt

∫
Ω

tr(Tn,σ3
) dx+

1

2λ

∫
Ω

tr(χσ3
(Tn,σ3

))dx

=
kd

2λ

∫
Ω

(ηn,σ3
+α)dx+2

∫
Ω

χσ3
(Tn,σ3

) :∇xun,σ3
dx. (7.4)

7.2. A logarithmic bound. Following [2], we introduce the logarithmic cut-off
function Gσ3 :R→R, defined by

Gσ3
(s)=

{
logs if s≥σ3,

σ3
−1s+logσ3−1 if s≤σ3.

Since G′
σ3
(s)=χσ3(s)

−1 for all s∈R, we have, for any real symmetric matrix T, that
G′

σ3
(T)=χσ3(T)

−1. It follows from equation (6.16) and the inequalities (7.1) and (7.2)6
that Tn,σ3

∈W 1,2(0,Tn,σ3
;L2(Ω,Rd×d)). Hence, by Lemma 6.1, we have, as TS

n,σ3
=Tn,σ3

and Gσ3
∈C1,1(R) is concave, that

∂tTn,σ3
:G′

σ3
(Tn,σ3

)=∂ttr(Gσ3
(Tn,σ3

)) a.e. on (0,Tn,σ3
]×Ω.

Further, by the identities (3.12) and (3.11) we deduce that

Divx(un,σ3
χσ3

(Tn,σ3
)) :G′

σ3
(Tn,σ3

)

=[(un,σ3
·∇x)χσ3

(Tn,σ3
)+(divxun,σ3

)χσ3
(Tn,σ3

)] :G′
σ3
(Tn,σ3

)

=((un,σ3 ·∇x)χσ3(Tn,σ3)) :χσ3(Tn,σ3)
−1+(divxun,σ3)χσ3(Tn,σ3) :χσ3(Tn,σ3)

−1

=(un,σ3 ·∇x)tr(logχσ3(Tn,σ3))+ddivxun,σ3 a.e. on (0,Tn,σ3 ]×Ω

and

−
(
∇xun,σ3χσ3(Tn,σ3)+χσ3(Tn,σ3)∇T

xun,σ3

)
:G′

σ3
(Tn,σ3)

=−
(
∇xun,σ3

χσ3
(Tn,σ3

)+χσ3
(Tn,σ3

)∇T
xun,σ3

)
:χσ3

(Tn,σ3
)−1

=−2divxun,σ3
a.e. on (0,Tn,σ3

]×Ω.

Thus, by taking the Frobenius inner product of equation (6.16) with G′
σ3
(Tn,σ3

) we get
that

∂ttr(Gσ3(Tn,σ3))+(un,σ3 ·∇x)tr(logχσ3(Tn,σ3))+(d−2)divxun,σ3
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=εΔxTn,σ3
:χσ3

(Tn,σ3
)−1+

k

2λ
(ηn,σ3

+α)tr
(
χσ3

(Tn,σ3
)−1

)
− d

2λ
(7.5)

a.e. on (0,Tn,σ3
]×Ω. Integrating equation (7.5) over Ω implies, for a.e. t∈ (0,Tn,σ3

],
that

d

dt

∫
Ω

tr(Gσ3
(Tn,σ3

)dx

=

∫
Ω

tr(logχσ3(Tn,σ3))divxun,σ3dx+ε

∫
Ω

ΔxTn,σ3 :χσ3(Tn,σ3)
−1dx

+
k

2λ

∫
Ω

(ηn,σ3
+α)tr

(
χσ3

(Tn,σ3
)−1

)
dx− d

2λ
|Ω|. (7.6)

To proceed, we require the following generalization of Lemma 3.1, whose proof is
elementary but rather lengthy and has been therefore relegated to Appendix C.

Lemma 7.1. For σ3>0, let Tσ3
>0, and suppose that P∈C([0,Tσ3

];W 1,2(Ω;Rd×d)) is
a symmetric matrix function, with ΔxP∈L2(0,Tσ3

;L2(Ω;Rd×d)), satisfying a homoge-
neous Neumann boundary condition on ∂Ω; then, χσ3

(P)−1∈L∞(0,Tσ3
;W 1,2(Ω;Rd×d)),

and ∫
Ω

ΔxP :χσ3
(P)−1dx=−

∫
Ω

∇xP ::∇xχσ3
(P)−1dx

≥ 1

d

∫
Ω

|∇xtr(logχσ3(P))|2 dx (7.7)

a.e. on (0,Tσ3
].

Thanks to the identities (7.3), (7.4), (7.6) and the inequality (7.7) we then obtain,
for a.e. t∈ (0,Tn,σ3 ], that

d

dt

∫
Ω

[
1

2
�n,σ3

|un,σ3
|2+ a

γ−1
�γn,σ3

+
σ1

Γ−1
�Γn,σ3

+kL(ηn,σ3
logηn,σ3

+1)+zη2n,σ3

]
dx

+
1

2

d

dt

∫
Ω

tr(Tn,σ3
−αGσ3

(Tn,σ3
))dx

+σ2

∫
Ω

(aγ�γ−2
n,σ3

+σ1Γ�
Γ−2
n,σ3

)|∇x�n,σ3 |2dx+ε

∫
Ω

(
kL

ηn,σ3

+2z

)
|∇xηn,σ3

|2dx

+

∫
Ω

μS

∣∣∣∣∇xun,σ3
+∇T

xun,σ3

2
− 1

d
(divxun,σ3)I

∣∣∣∣2
+μB |divxun,σ3 |2dx+

1

4λ

∫
Ω

tr(χσ3(Tn,σ3)) dx

+
αk

4λ

∫
Ω

(ηn,σ3
+α)tr

(
χσ3

(Tn,σ3
)−1

)
dx+

αε

2d

∫
Ω

|∇xtr(logχσ3
(Tn,σ3

))|2 dx

≤
∫
Ω

�n,σ3
f ·un,σ3

dx+
kd

4λ

∫
Ω

(ηn,σ3
+α)dx+

αd

4λ
|Ω|. (7.8)

Since we can take σ3<α, it is straightforward to see that, for any s∈R, one has s−
αGσ3

(s)≥α−α logα. Thus,

tr(Tn,σ3−αGσ3(Tn,σ3))=

d∑
j=1

(
λ(j)
n,σ3

−αGσ3(λ
(j)
n,σ3

)
)
≥d(α−α logα),
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where λ
(j)
n,σ3 , j=1, . . . ,d, are the eigenvalues of the symmetric matrix Tn,σ3

. Then,
similarly as in the equality (3.18), we define the following nonnegative functional:

En,σ3(t) :=

∫
Ω

[
1

2
�n,σ3 |un,σ3 |2+

a

γ−1
�γn,σ3

+
σ1

Γ−1
�Γn,σ3

+kL(ηn,σ3 logηn,σ3 +1)+zη2
n,σ3

]
dx

+
1

2

∫
Ω

[tr(Tn,σ3−αGσ3(Tn,σ3))+d(α logα−α)]dx.

Similarly to the estimate (3.21), integrating the inequality (7.8) over [0,t] for any
t∈ (0,Tn,σ3

] then gives

En,σ3
(t)+σ2

∫ t

0

∫
Ω

(aγ�γ−2
n,σ3

+σ1Γ�
Γ−2
n,σ3

)|∇x�n,σ3
|2dxdt′

+ε

∫ t

0

∫
Ω

(
kL

ηn,σ3

+2z

)
|∇xηn,σ3 |2dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xun,σ3
+∇T

xun,σ3

2
− 1

d
(divxun,σ3

)I

∣∣∣∣2+μB |divxun,σ3
|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(χσ3
(Tn,σ3

)) dxdt′

+
αk

4λ

∫ t

0

∫
Ω

(ηn,σ3 +α)tr
(
χσ3(Tn,σ3)

−1
)
dxdt′

+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logχσ3(Tn,σ3))|2 dxdt′

≤ E0,θ+

∫ t

0

∫
Ω

�n,σ3 f ·un,σ3 dxdt
′+

kd

4λ

∫ t

0

∫
Ω

(ηn,σ3 +α)dxdt′+
αd

4λ
|Ω|t,

≤ E0,θ+C

∫ t

0

En,σ3
(t′)dt′+Ct, (7.9)

where the initial energy E0,θ is defined as

E0,θ :=

∫
Ω

[
1

2
�0,θ|u0,θ|2+

a

γ−1
�γ0,θ++

σ1

Γ−1
�Γ0,θ+

(
kL(η0,θ logη0,θ+1)+zη20,θ

)]
dx

+
1

2

∫
Ω

[tr(T0,θ−α logT0,θ)+d(α logα−α)]dx. (7.10)

Here we have used the fact that T0,θ≥θ>σ3, which implies that Gσ3(T0,θ)≡ logT0,θ.
Then, Gronwall’s inequality implies, for any t∈ (0,Tn,σ3 ], that

En,σ3
(t)+σ2

∫ t

0

∫
Ω

(aγ�γ−2
n,σ3

+σ1Γ�
Γ−2
n,σ3

)|∇x�n,σ3
|2dxdt′

+ε

∫ t

0

∫
Ω

(
kL

ηn,σ3

+2z

)
|∇xηn,σ3

|2dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xun,σ3 +∇T
xun,σ3

2
− 1

d
(divxun,σ3)I

∣∣∣∣2+μB |divxun,σ3 |2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(χσ3
(Tn,σ3

)) dxdt′+
αk

4λ

∫ t

0

∫
Ω

(ηn,σ3
+α)tr

(
χσ3

(Tn,σ3
)−1

)
dxdt′
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+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logχσ3
(Tn,σ3

))|2 dxdt′

≤ (E0,θ+Ct)eCt, t∈ (0,Tn,σ3
], (7.11)

where C is a positive constant, independent of t and of the approximation parameters
(Γ,σ1,σ2,σ3,n).

7.3. Maximal existence time. In this section, we shall use the uniform bound
(7.11) to show that Tn,σ3

, the maximal time of existence for solutions to the fourth level
of approximation, is in fact equal to the final time T .

By Korn’s inequality (3.24), a partial result from the bound (7.11) is that∫ Tn,σ3

0

‖∇xun,σ3(t)‖2L2(Ω;R2×2)dt≤ (E0,θ+CTn,σ3)e
CTn,σ3 ≤C(E0,θ,T ). (7.12)

Thanks to Friedrichs’ inequality, the estimate (7.12) implies that∫ Tn,σ3

0

‖un,σ3(t)‖2W 1,2(Ω;R2)dt≤C(E0,θ,T ). (7.13)

By the equivalence of the W 1,2(Ω) and W 1,∞(Ω) norms in the finite-dimensional linear
space Xn (see the estimate (6.5)), and the Cauchy–Schwarz inequality over (0,Tn,σ3

],
we then have from the estimate (7.13) that∫ Tn,σ3

0

‖∇xun,σ3(t)‖L∞(Ω;R2×2)dt≤C(n,E0,θ,T ). (7.14)

Using the estimate (7.14) it follows from the third line of the inequalities (7.2) that we
have the following lower and upper bounds on �n,σ3

in terms of positive constants:

C(θ,n,E0,θ,T )
−1≤�n,σ3

≤C(θ,n,E0,θ,T ).

Together with the following partial result from the estimate (7.11):

sup
t∈(0,Tn,σ3 ]

‖�n,σ3 |un,σ3 |2(t)‖L1(Ω)≤C(E0,θ,T ),

we obtain

sup
t∈(0,Tn,σ3

]

‖un,σ3
(t)‖L2(Ω;R2)≤C(θ,n,E0,θ,T ).

Again by the properties (6.5) of functions in Xn, we have

sup
t∈(0,Tn,σ3 ]

‖un,σ3(t)‖C2,β(Ω;R2)≤C(θ,n,E0,θ,T ). (7.15)

Hence, by a continuity argument, the existence time can exceed Tn,σ3
. Since the bound

(7.11) is independent of n,σ3, this process can be repeated a finite number of times, as
long as the existence time Tn,σ3 <T , until the final time T is reached, and therefore the
maximal existence time Tn,σ3

=T . Moreover, by the inequalities (7.2) and (7.15), we
have the following bounds that are uniform with respect to σ3:

sup
t∈(0,T ]

‖un,σ3(t)‖C2,β(Ω;R2)≤C(θ,n,E0,θ,T ),
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C(θ,n,E0,θ,T )
−1≤�n,σ3(t,x)≤C(θ,n,E0,θ,T ) for all (t,x)∈ (0,T ]×Ω,

C(θ,n,E0,θ,T )
−1≤ηn,σ3

(t,x)≤C(θ,n,E0,θ,T ) for all (t,x)∈ (0,T ]×Ω,

sup
t∈(0,T ]

‖�n,σ3
(t)‖W 1,2(Ω)+‖�n,σ3

‖L2(0,T ;W 2,2(Ω))≤C(σ2,θ,n,E0,θ,T ),

sup
t∈(0,T ]

‖ηn,σ3
(t)‖W 1,2(Ω)+‖ηn,σ3

‖L2(0,T ;W 2,2(Ω))≤C(θ,n,E0,θ,T ),

sup
t∈(0,T ]

‖Tn,σ3(t)‖W 1,2(Ω;R2×2)+‖Tn,σ3‖L2(0,T ;W 2,2(Ω;R2×2))≤C(θ,n,E0,θ,T ) (7.16)

and

sup
t∈(0,T ]

∫
Ω

[tr(Tn,σ3
−αGσ3

(Tn,σ3
))+d(α logα−α)]dx≤C(E0,θ,T ),∫ T

0

∫
Ω

tr
(
χσ3

(Tn,σ3
)−1

)
dxdt≤C(θ,n,E0,θ,T ).

(7.17)

After these preparatory considerations, we are now ready to pass to the limit σ3→0
in the fourth level of approximation, so as to deduce the existence of solutions to the
third level of approximation. This will be the subject of the next section.

8. The third level of approximation
This section is devoted to studying the limit of the solution sequence

(�n,σ3
,un,σ3

,ηn,σ3
,Tn,σ3

) as σ3→0, and to showing that the resulting limit is a so-
lution to the third level of approximation formulated in Section 6.4. We will also derive
bounds on this solution limit that are uniform with respect to n, in preparation for
passage to the limit n→∞ in the next section.

8.1. Time derivative bounds and strong convergence. The bounds (7.16)
imply the following weak convergence results, as σ3→0:

�n,σ3→�n, weakly-* in L∞(0,T ;W 1,2(Ω))∩L2(0,T ;W 2,2(Ω)),

ηn,σ3
→ηn, weakly-* in L∞(0,T ;W 1,2(Ω))∩L2(0,T ;W 2,2(Ω)),

Tn,σ3
→Tn, weakly-* in L∞(0,T ;W 1,2(Ω;R2×2))∩L2(0,T ;W 2,2(Ω;R2×2)).

From equations (6.14)–(6.16) and the bounds (7.16) we then have that

∥∥(∂t�n,σ3
,∂tηn,σ3

,∂tTn,σ3
)
∥∥
L2(0,T ;L2(Ω)×L2(Ω)×L2(Ω;R2×2))

≤C(σ2,θ,n,E0,θ,T ). (8.1)

We can therefore use the Aubin–Lions–Simon compactness theorem (cf. Lemma
5.3) to deduce, for all q∈ [1,∞), the following strong convergence results, on noting
that d=2, as σ3→0:

�n,σ3→�n, strongly in L2(0,T ;W 1,q(Ω))∩C([0,T ];Lq(Ω)),

ηn,σ3
→ηn, strongly in L2(0,T ;W 1,q(Ω))∩C([0,T ];Lq(Ω)),

Tn,σ3
→Tn, strongly in L2(0,T ;W 1,q(Ω;R2×2))∩C([0,T ];Lq(Ω;R2×2)),

χσ3(Tn,σ3
)→ [Tn]+, strongly in L2(0,T ;W 1,q(Ω;R2×2))∩C([0,T ];Lq(Ω;R2×2)),

(8.2)

where the limit Tn is also real symmetric as Tσ3,n is real symmetric for all σ3>0, n∈N.
In addition, it follows from the estimates (7.16)2,3 that

�n, ηn≥0 a.e. in (0,T ]×Ω. (8.3)
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Thanks to the estimates (7.16), (7.11) and equation (6.12) it follows that∥∥∂tun,σ3

∥∥
L2(0,T ;L2(Ω;R2))

≤C(σ2,θ,n,E0,θ,T ). (8.4)

Thus, thanks to the embedding C2,β(Ω;R2) ↪→W 2+β,2(Ω;R2), the compact embedding
W 2+β,2(Ω;R2) ↪→↪→W 2,2(Ω;R2), the estimates (7.16), and the Aubin–Lions–Simon the-
orem, we have the following strong convergence result, as σ3→0, for each fixed n∈N:

un,σ3→un strongly in C([0,T ];W 2,2(Ω;R2)). (8.5)

8.2. Positivity of the extra tress tensor. Employing a technique from [2], we
will now show by using the bound (7.17)2 that the limit Tn obtained in the collection
of limits (8.2) is, almost everywhere, a real symmetric positive definite matrix.

Assume that Tn is not symmetric positive definite a.e. inDn⊂ (0,T ]×Ω; then, there
exists a q∈L∞((0,T ]×Ω;Rd) such that

[Tn]+q=0 a.e. in (0,T ]×Ω

with |q|=1 a.e. in Dn and q=0 a.e. in ((0,T ]×Ω)\Dn.
(8.6)

On noting the estimate (7.17)2 and using the Cauchy–Schwarz inequality, we then have
that

|Dn|=
∫ T

0

∫
Ω

|q|2dxdt=
∫ T

0

∫
Ω

(
[χσ3

(Tn,σ3
)]−

1
2 q
)
·
(
[χσ3

(Tn,σ3
)]

1
2 q
)
dxdt

≤
(∫ T

0

∫
Ω

|χσ3
(Tn,σ3

)−1|dxdt
) 1

2
(∫ T

0

∫
Ω

qTχσ3(Tn,σ3)qdxdt

) 1
2

≤C
(∫ T

0

∫
Ω

qTχσ3
(Tn,σ3

)qdxdt

) 1
2

, (8.7)

where C is independent of σ3. Passing to the limit σ3→0 in the estimate (8.7), and
noting the limit (8.2)4 and the statement (8.6), yields that |Dn|=0. Hence, Tn is
symmetric positive definite a.e. in (0,T ]×Ω. Finally, it follows from the estimates
(7.11) and (8.2)4 that, as σ3→0:

∇xtr(logχσ3
(Tn,σ3

))→∇xtr(logTn) weakly in L2(0,T ;L2(Ω;Rd)). (8.8)

8.3. Convergence to the third level of approximation. By the estimates
(8.1) and (8.4), we have weak convergence of the time derivatives. By the strong con-
vergence results established in Section 8.1 and the positivity of Tn shown in Section
8.2, letting σ3→0 in the fourth level of approximation (6.12)–(6.16) implies that the
limit (�n,un,ηn,Tn) is a solution to the third level of approximation, (6.6)–(6.9). The
attainment of the boundary conditions (1.9)–(1.11) and (6.4) for (�n,un,ηn,Tn) follows
from the attainment of the boundary conditions for (�n,σ3

,un,σ3
,ηn,σ3

,Tn,σ3
). The ini-

tial data for �n, ηn, Tn are attained in the sense of the Lq(Ω) norm for any q<∞ by
the first three statements in the collection of limits (8.2), and the initial datum for un

is attained in the sense of the W 2,2(Ω;R2×2) norm by the limit (8.5).
Moreover, by the convergence results established in Section 8.1, weak lower-

semicontinuity of the norm in Lp spaces and Fatou’s lemma, letting σ3→0 in the bounds
(7.9) and (7.11) gives, for a.e. t∈ (0,T ], the following inequalities:

En(t)+4σ2

∫ t

0

∫
Ω

(
a

γ
|∇x�

γ
2
n |2+

σ1

Γ
|∇x�

Γ
2
n |2

)
dxdt′
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+2ε

∫ t

0

∫
Ω

(
2kL|∇xη

1
2
n |2+z|∇xηn|2

)
dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xun+∇T
xun

2
− 1

d
(divxun)I

∣∣∣∣2+μB |divxun|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(Tn)dxdt
′

+
αk

4λ

∫ t

0

∫
Ω

(ηn+α)tr(T−1
n )dxdt′+

αε

2d

∫ t

0

∫
Ω

|∇xtr(logTn)|2dxdt′

≤E0,θ+

∫ t

0

∫
Ω

�n f ·undxdt
′+

kd

4λ

∫ t

0

∫
Ω

(ηn+α)dxdt′+
αd

4λ
|Ω|t, (8.9)

with d=2 and

En(t)+4σ2

∫ t

0

∫
Ω

(
a

γ
|∇x�

γ
2
n |2+

σ1

Γ
|∇x�

Γ
2
n |2

)
dxdt′

+2ε

∫ t

0

∫
Ω

(
2kL|∇xη

1
2
n |2+z|∇xηn|2

)
dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xun+∇T
xun

2
− 1

d
(divxun)I

∣∣∣∣2+μB |divxun|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(Tn)dxdt
′+

αk

4λ

∫ t

0

∫
Ω

(ηn+α)tr
(
T−1
n

)
dxdt′

+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logTn)|2dxdt′

≤(E0,θ+Ct)eCt, (8.10)

with d=2, where the energy En is defined by

En(t) :=

∫
Ω

[
1

2
�n|un|2+

a

γ−1
�γn+

σ1

Γ−1
�Γn+kL(ηn logηn+1)+zη2n

]
dx

+
1

2

∫
Ω

[tr(Tn−α logTn)+d(α logα−α)]dx,

with d=2, and the initial energy E0,θ is the same as in equality (7.10).

9. The second level of approximation
Our objective in this section is to study the limit of the solution sequence

(�n,un,ηn,Tn) as n→∞, in order to deduce the existence of a solution to the sec-
ond level of approximation, stated in Section 6.3. To this end, we need to derive bounds
on (�n,un,ηn,Tn) that are uniform in n. We note here that while the steps performed
hitherto can be extended to the case of d=3, with some restrictions on q in the con-
vergence results (8.2), in what follows we shall have to restrict ourselves to the case of
d=2.

9.1. Uniform bounds and convergence. We summarize the n-uniform bounds
that follow from the estimate (8.10) as z>0:

‖�n‖L∞(0,T ;Lγ(Ω))+σ1‖�n‖L∞(0,T ;LΓ(Ω))≤C(E0,θ,T ),

‖∇x(�
γ
2
n )‖L2((0,T )×Ω;R2)+σ1‖∇x(�

Γ
2
n )‖L2((0,T )×Ω;R2)≤C(σ2,E0,θ,T ),
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‖ηn‖L∞(0,T ;L2(Ω))+‖ηn‖L2(0,T ;W 1,2(Ω))+‖η
1
2
n ‖L2(0,T ;W 1,2(Ω))≤C(E0,θ,T ),

‖�n|un|2‖L∞(0,T ;L1(Ω))+‖un‖L2(0,T ;W 1,2
0 (Ω;R2))≤C(E0,θ,T ),

‖tr(Tn−α logTn)‖L∞(0,T ;L1(Ω))+‖(ηn+α)tr(T−1
n )‖L1(0,T ;L1(Ω))≤C(E0,θ,T ),

‖∇xtr(logTn)‖L2(0,T ;L2(Ω;R2))≤C(E0,θ,T ). (9.1)

Multiplying equation (6.7) by �n and integrating the result over Ω implies that

1

2

d

dt

∫
Ω

�2ndx+σ2

∫
Ω

|∇x�n|2dx=−
∫
Ω

divx(�nun)�ndx=−
1

2

∫
Ω

(divxun)�
2
ndx

≤ 1

4

(∫
Ω

|divxun|2dx+
∫
Ω

�4ndx

)
. (9.2)

Combining this with the estimates (9.1) and recalling from Section 6.2 that Γ≥4, we
deduce that

‖�n‖L2(0,T ;W 1,2(Ω))≤C(σ1,σ2,E0,θ,T ).

For d=2, as is assumed to be the case here, taking the inner product of equation
(6.16) with Tn, integrating the result over Ω and applying the same argument as in
Section 3.3 additionally gives∫

Ω

|Tn(t)|2dx+ε

∫ t

0

∫
Ω

|∇xTn|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

|Tn|2dxdt′≤C
(
t,E0,θ,‖T0,θ‖2L2(Ω;R2×2)

)
, (9.3)

and furthermore

‖Tn‖L∞(0,T ;L2(Ω;R2×2))+‖Tn‖L2(0,T ;W 1,2(Ω;R2×2))≤C
(
T,E0,θ,‖T0,θ‖2L2(Ω;R2×2)

)
.

Therefore, we have the following weak convergence results, as n→∞:

�n→�σ2
weakly-* in L∞(0,T ;LΓ(Ω))∩L2(0,T ;W 1,2(Ω)),

ηn→ησ2 weakly-* in L∞(0,T ;L2(Ω))∩L2(0,T ;W 1,2(Ω)),

un→uσ2
weakly in L2(0,T ;W 1,2

0 (Ω;R2)),

Tn→Tσ2 weakly-* in L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;W 1,2(Ω;R2×2)),

tr logTn→ tr logTσ2
weakly in L2(0,T ;W 1,2(Ω)). (9.4)

The time derivative bounds obtained from equations (6.7)–(6.9) enable us to use the
Aubin–Lions–Simon compactness theorem to obtain the following strong convergence
results, as n→∞:

�n→�σ2
strongly in L2(0,T ;Lq(Ω)) ∀q∈ [1,∞),

ηn→ησ2
strongly in L2(0,T ;Lq(Ω)) ∀q∈ [1,∞),

Tn→Tσ2 strongly in L2(0,T ;Lq(Ω;R2×2)) ∀q∈ [1,∞).

(9.5)

It follows from the inequalities (8.3) that

�σ2
, ησ2

≥0 a.e. in (0,T ]×Ω. (9.6)
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By Sobolev embedding we have that

‖�
Γ
2
n ‖L2(0,T ;Lq(Ω))≤C‖�

Γ
2
n ‖L2(0,T ;W 1,2(Ω)) ∀q∈ [1,∞),

and therefore ‖�Γn‖L1(0,T ;Lq(Ω))≤C(σ1,σ2,E0,θ,T ) for all q∈ [1,∞). Hence, by the esti-
mate (9.1)1 and interpolation between Lebesgue spaces, we deduce that

‖�n‖L(2−δ)Γ((0,T )×Ω)≤C(σ1,σ2,E0,θ,T ) ∀δ∈ (0,1).

Together with the convergence results (9.5), we obtain the strong convergence result, as
n→∞:

�n→�σ2
strongly in LΓ((0,T )×Ω). (9.7)

Thus, we have the following convergence results, as n→∞:

�nun→ �σ2uσ2 weakly-* in L∞(0,T ;L
2γ

γ+1 (Ω;R2)),

�γn→�γσ2
, �Γn→�Γσ2

strongly in L1((0,T )×Ω).

Next we shall deal with the nonlinear term �nun⊗un. From equation (6.6), by the
same argument as in Section 7.8.2 in [43], we have that

‖∂tPn(�nun)‖Lr1 (0,T ;W̃−2,2(Ω;R2))
≤C(σ1,E0,θ,T ), for some r1>1,

where Pn is the orthogonal projection from L2(Ω;R2) onto Xn and W̃−2,2(Ω;R2) is the
dual space of W 1,2

0 (Ω;R2)∩W 2,2(Ω;R2). On the other hand, since Γ≥4, we deduce
from the estimates (9.1) and Sobolev embedding that

‖Pn(�nun)‖L2(0,T ;L2(Ω;R2))≤‖�nun‖L2(0,T ;L2(Ω;R2))

≤C‖�n‖L∞(0,T ;LΓ(Ω))‖∇xun‖L2(0,T ;L2(Ω;;R2×2))

≤C(σ1,E0,θ,T ).

Thus, the Aubin–Lions–Simon compactness theorem gives

Pn(�nun)→�σ2
uσ2

strongly in L2(0,T ;W−1,2(Ω;R2)).

By writing �nun=Pn(�nun)+(1−Pn)(�nun) we deduce that

�nun→�σ2
uσ2

strongly in L2(0,T ;W−1,2(Ω;R2)).

Thus we have the following convergence result for the convective term:

�nun⊗un→�σ2uσ2⊗uσ2 in D′((0,T )×Ω;R2×2).

Finally, we shall study the limit of the extra term ∇xun∇x�n. To this end, we will
employ Lemma 5.7 and Lemma 5.8 to show that the limit (�σ2 ,uσ2) fulfills the parabolic
equation (6.3) a.e. in (0,T ]×Ω. By function space interpolation, we have that

(�nun)n∈N is bounded in L∞(0,T ;L
2Γ

Γ+1 (Ω;R2))∩L2(0,T ;LΓ−(Ω;R2)) ↪→Lr((0,T )×Ω;R2),
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for some r>2, where Γ− denotes any number in the interval [1,Γ). We then apply
Lemma 5.8 to the problem (6.4), (6.7) to deduce that

(∇x�n)n∈N is bounded in Lr((0,T )×Ω;R2) for some r>2.

Consequently,

divx(�nun)=�ndivxun+∇x�n ·un is bounded in Ls((0,T )×Ω) for some s>1.

The application of Lemma 5.7 gives

‖∂t�n‖Ls((0,T )×Ω)+‖�n‖Ls(0,T ;W 2,s(Ω))≤C, for some C>0 independent of n.

Letting n→∞ gives

∂t�σ2 ∈Ls((0,T )×Ω), �σ2 ∈Ls(0,T ;W 2,s(Ω))∩Lr(0,T ;W 1,r(Ω)),

for some r>2 and s>1. Moreover, �σ2
and uσ2

satisfy equation (6.3) a.e. in (0,T ]×Ω,
∂n�σ2 =0 on (0,T ]×∂Ω and �σ2(0)=�0,θ. Therefore, similarly as in the estimate (9.2),
we have, for every t∈ (0,T ], that

‖�n(t)‖2L2(Ω)+2σ2‖∇x�n‖2L2((0,t)×Ω;R2)=‖�0,θ‖2L2(Ω)−
∫ t

0

∫
Ω

(divxun)�
2
ndx,

‖�σ2
(t)‖2L2(Ω)+2σ2‖∇x�σ2

‖2L2((0,t)×Ω;R2)=‖�0,θ‖2L2(Ω)−
∫ t

0

∫
Ω

(divxuσ2
)�2σ2

dx.

Letting n→∞, noting the convergence results (9.7), (9.4)3 and by the weak lower-
semicontinuity of the Lp norm we deduce, for any t∈ (0,T ], that

‖�n(t)‖2L2(Ω)→‖�σ2
(t)‖2L2(Ω), ‖∇x�n‖2L2((0,t)×Ω;R2)→‖∇x�σ2

‖2L2((0,t)×Ω;R2).

This implies the strong convergence of ∇x�n and, in addition,

∇xun∇x�n→∇xuσ2
∇x�σ2

in D′((0,T )×Ω;R2).

We shall combine the convergence results established in this section to show that the
limit (�σ2

,uσ2
,ησ2

,Tσ2
) solves the second level of approximation; this will be done in

Section 9.3. Before doing so however we need to prove the positive definiteness of the
limiting symmetric extra stress tensor Tσ2

.

9.2. Positivity of the extra stress tensor. As Tn is symmetric positive definite
a.e. in (0,T ]×Ω, we have from the convergence (9.5)3 that Tσ2

is symmetric nonnegative
definite a.e. in (0,T ]×Ω. It follows from the bound (9.1)5 and the inequality on ηn in
(8.3) that

‖tr
(
T−1
n

)
‖L1(0,T ;L1(Ω))≤C(E0,θ,T,α). (9.8)

We now adapt the argument in Section 8.2 to show that Tσ2
is in fact symmetric positive

definite on (0,T ]×Ω. Assume that Tσ2
is not positive definite a.e. in Dσ2

⊂ (0,T ]×Ω.
Then there exists a q∈L∞((0,T ]×Ω;Rd) such that

Tσ2q=0 a.e. in (0,T ]×Ω

with |q|=1 a.e. in Dσ2 and q=0 a.e. in ((0,T ]×Ω)\Dσ2 .
(9.9)
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On noting the estimate (9.8), we then have that

|Dσ2 |=
∫ T

0

∫
Ω

|q|2dxdt=
∫ T

0

∫
Ω

(
(Tn)

− 1
2 q
)
·
(
(Tn)

1
2 q
)
dxdt

≤C

(∫ T

0

∫
Ω

qTTnqdxdt

) 1
2

,

(9.10)

where C is independent of n. Passing to the limit n→∞ in the estimate (9.10), and
noting the convergence (9.5)3 and the result (9.9), yields that |Dσ2

|=0. Hence, Tσ2
is

symmetric positive definite a.e. in (0,T ]×Ω. Finally, by the convergence results (9.4)5
and (9.5)3 we deduce, as n→∞, that

tr(logTn)→ tr(logTσ2
) weakly in L2(0,T ;W 1,2(Ω)).

9.3. Convergence to the second level of approximation. We have already
shown that �σ2 and uσ2 satisfy equation (6.3) a.e. in (0,T ]×Ω, ∂n�σ2 =0 on (0,T ]×∂Ω
and �σ2(0)=�0,θ.

By the convergence results obtained in Section 9.1 and a compactness argument,
letting n→∞ in equation (6.6) implies that, for any ϕ∈C∞([0,T ];C∞

c (Ω;Rd)), we have∫ t

0

∫
Ω

[
�σ2

uσ2
·∂tϕ+(�σ2

uσ2
⊗uσ2

) :∇xϕ+(p(�σ2
)+σ1�

Γ
σ2
)divxϕ

]
dxdt′

+

∫ t

0

∫
Ω

[(
kLησ2

+zη2σ2

)
divxϕ−S(∇xuσ2

) :∇xϕ−σ2∇xuσ2
∇x�σ2

·ϕ
]
dxdt′

=

∫ t

0

∫
Ω

Tσ2 :∇xϕ+
α

2
(tr logTσ2

)divxϕ−�σ2
f ·ϕdxdt′

+

∫
Ω

�σ2
uσ2

(t, ·) ·ϕ(t, ·)dx−
∫
Ω

�0,θu0,θ ·ϕ(0, ·)dx.

Again by the convergence results obtained in Section 9.1, we deduce that the weak
formulations (4.3) and (4.5) are satisfied by the limit (�σ2

,uσ2
,ησ2

,Tσ2
).

Moreover, by the convergence results established in Section 9.1, weak lower-
semicontinuity of the norm in Lp spaces and Fatou’s lemma, letting n→∞ in the
inequalities (8.9) and (8.10) gives, for a.e. t∈ (0,T ]:

Eσ2(t)+4σ2

∫ t

0

∫
Ω

(
a

γ
|∇x�

γ
2
σ2 |2+

σ1

Γ
|∇x�

Γ
2
σ2 |2

)
dxdt′

+2ε

∫ t

0

∫
Ω

(
2kL|∇xη

1
2
σ2 |2+z|∇xησ2

|2
)
dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xuσ2 +∇T
xuσ2

2
− 1

d
(divxuσ2

)I

∣∣∣∣2+μB |divxuσ2
|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(Tσ2
)dxdt′+

αk

4λ

∫ t

0

∫
Ω

(ησ2
+α)tr

(
T−1
σ2

)
dxdt′

+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logTσ2
)|2dxdt′

≤ E0,θ+

∫ t

0

∫
Ω

�σ2
f ·uσ2

dxdt′+
kd

4λ

∫ t

0

∫
Ω

(ησ2
+α)dxdt′+

αd

4λ
|Ω|t, (9.11)
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with d=2, and

Eσ2
(t)+4σ2

∫ t

0

∫
Ω

(
a

γ
|∇x�

γ
2
σ2 |2+

σ1

Γ
|∇x�

Γ
2
σ2 |2

)
dxdt′

+2ε

∫ t

0

∫
Ω

(
2kL|∇xη

1
2
σ2 |2+z|∇xησ2

|2
)
dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xuσ2
+∇T

xuσ2

2
− 1

d
(divxuσ2)I

∣∣∣∣2+μB |divxuσ2 |2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(Tσ2
)dxdt′+

αk

4λ

∫ t

0

∫
Ω

(ησ2
+α)tr

(
T−1
σ2

)
dxdt′

+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logTσ2
)|2dxdt′

≤ (E0,θ+Ct)eCt, (9.12)

with d=2, where the energy Eσ2 is defined as

Eσ2
(t) :=

∫
Ω

[
1

2
�σ2
|uσ2

|2+ a

γ−1
�γσ2

+
σ1

Γ−1
�Γσ2

+kL(ησ2
logησ2

+1)+zη2σ2

]
dx

+
1

2

∫
Ω

[tr(Tσ2
−α logTσ2

)+d(α logα−α)]dx,

with d=2, and the initial energy E0,θ is the same as in the equality (7.10).
Moreover, letting n→∞ in the estimate (9.3) implies, for a.e. t∈ (0,T ], that∫

Ω

|Tσ2(t)|2dx+ε

∫ t

0

∫
Ω

|∇xTσ2 |2dxdt′+
1

4λ

∫ t

0

∫
Ω

|Tσ2 |2dxdt′

≤C
(
T,E0,θ,‖T0,θ‖2L2(Ω)

)
. (9.13)

10. The first level of approximation
Now we let σ2→0 in the solution sequence (�σ2

,uσ2
,ησ2

,Tσ2
), in order to deduce

the existence of a solution to the first level of approximation, formulated in Section 6.2.
First, we derive uniform bounds on (�σ2

,uσ2
,ησ2

,Tσ2
) as σ2→0. It follows directly from

the estimates (9.12) and (9.13), as z>0, that

‖�σ2
‖L∞(0,T ;Lγ(Ω))+σ

1
Γ
1 ‖�σ2‖L∞(0,T ;LΓ(Ω))≤C(E0,θ,T ),

√
σ2‖∇x(�

γ
2
σ2)‖L2((0,T )×Ω;R2)+

√
σ1
√
σ2‖∇x(�

Γ
2
σ2)‖L2((0,T )×Ω;R2)≤C(E0,θ,T ),

‖ησ2
‖L∞(0,T ;L2(Ω))+‖ησ2

‖L2(0,T ;W 1,2(Ω))+‖η
1
2
σ2‖L2(0,T ;W 1,2(Ω))≤C(E0,θ,T ),

‖�σ2
|uσ2

|2‖L∞(0,T ;L1(Ω))+‖uσ2
‖L2(0,T ;W 1,2

0 (Ω;R2))≤C(E0,θ,T ),

‖tr(Tσ2
−α logTσ2

)‖L∞(0,T ;L1(Ω))+‖(ησ2
+α)tr(T−1

σ2
)‖L1(0,T ;L1(Ω))≤C(E0,θ,T ),

‖∇xtr(logTσ2
)‖L2(0,T ;L2(Ω;R2))≤C(E0,θ,T ),

‖Tσ2
‖L∞(0,T ;L2(Ω;R2×2))+‖Tσ2

‖L2(0,T ;W 1,2(Ω;R2×2))

≤C
(
E0,θ,T,‖T0,θ‖2L2(Ω;R2×2)

)
.

(10.1)

The process of letting σ2→0 can be performed similarly as in the study of the com-
pressible Navier–Stokes system (see for example Section 3 in [21], where the Bogovskĭı
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operator (Lemma 5.2) is needed to show the higher integrability of the density, and
Lemma 5.6 is used to pass to the limit in the nonlinear terms �σ2uσ2 and �σ2uσ2⊗uσ2),
by observing the strong convergence of the additional unknowns ησ2

and Tσ2
. A key

step in passing to the limit in a sequence of approximations to the compressible Navier–
Stokes system is the proof of strong convergence of the approximations to the density,
based on weak convergence of the, so called, effective viscous flux. A helpful tool in the
proof of this is Lemma 7.36 in [43]; see also Lemma 5.6 in [7] and Lemma 2.3 in [8],
which are the appropriate extensions of Lemma 7.36 in [43], required for deducing weak
convergence of the effective viscous flux in the presence of the extra stress tensor, in
a compressible Navier–Stokes–Fokker–Planck system. Unlike the compressible FENE
models in [7] and [8], where only strong convergence of the approximations to the extra

stress tensor in Lr((0,T )×Ω), with r∈ [1, 4(d+2)
3d+4 ), was available, for the compressible

Oldroyd-B model considered here these extensions are not needed: Lemma 7.36 from [43]
(suitably adapted to the case of d=2; cf. Lemma 2.3 in [8]) directly applies, as in the
case of the compressible Navier–Stokes system, thanks to the bounds (10.1)6,7, yielding
the limits (10.3)3,5 below, thus ensuring fulfillment of condition (7.5.4) of Lemma 7.36
in [43]. From the uniform estimates (10.1) and the equations for ησ2

and Tσ2
we deduce,

for any r∈ (1,2) as d=2, that

‖∂tησ2
‖L2(0,T ;W−1,r(Ω))+‖∂tTσ2

‖L2(0,T ;W−1,r(Ω;R2×2))≤C(E0,θ,T ), (10.2)

where W−1,r(Ω) is the dual of W 1,r′
0 (Ω), with 1/r+1/r′=1. These time derivative

bounds, the estimates (10.1) and the application of the Aubin–Lions–Simon compactness
theorem implies, as σ2→0, that

ησ2
→ησ1

weakly-* in L∞(0,T ;L2(Ω))∩L2(0,T ;W 1,2(Ω)),

ησ2
→ησ1

strongly in L2(0,T ;Lq(Ω)) ∀q∈ [1,∞),

Tσ2→Tσ1 weakly-* in L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;W 1,2(Ω;R2×2)),

Tσ2
→Tσ1

strongly in L2(0,T ;Lq(Ω;R2×2)) ∀q∈ [1,∞),

tr(logTσ2)→ tr(logTσ1) weakly in L2(0,T ;W 1,2(Ω)).

(10.3)

Then, by Lemmas 5.5 and 5.6, the estimate (10.2) and the convergence results (10.3),

ησ1
∈Cw([0,T ];L

2(Ω)), Tσ1
∈Cw([0,T ];L

2(Ω;R2×2)).

The nonnegativity of �σ1 and ησ1 a.e. in (0,T ]×Ω follows from the inequality (8.3).
We note that since Tσ2

is symmetric and positive definite a.e. in (0,T ]×Ω, it follows
from the convergence (10.3)4 that Tσ1

is symmetric and positive semidefinite a.e. in
(0,T ]×Ω. The positive definiteness of Tσ1

>0 a.e. in (0,T ]×Ω can be deduced by an
argument that is identical to the one in Section 9.2; we therefore omit the details and
only state the conclusion. The limit (�σ1 ,uσ1 ,ησ1 ,Tσ1) is a weak solution to the first
level of approximation stated in Section 6.2. Passing to the limit σ2→0 in the estimates
(9.11)–(9.13), one has the following bounds, for a.e. t∈ (0,T ]:

Eσ1
(t)+2ε

∫ t

0

∫
Ω

(
2kL|∇xη

1
2
σ1 |2+z|∇xησ1 |2

)
dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xuσ1
+∇T

xuσ1

2
− 1

d
(divxuσ1)I

∣∣∣∣2+μB |divxuσ1 |2dxdt′
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+
1

4λ

∫ t

0

∫
Ω

tr(Tσ1
)dxdt′+

αk

4λ

∫ t

0

∫
Ω

(ησ1
+α)tr

(
T−1
σ1

)
dxdt′

+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logTσ1
)|2dxdt′

≤ E0,θ+

∫ t

0

∫
Ω

�σ1
f ·uσ1

dxdt′+
kd

4λ

∫ t

0

∫
Ω

(ησ1
+α)dxdt′+

αd

4λ
|Ω|t, (10.4)

with d=2, and

Eσ1
(t)+2ε

∫ t

0

∫
Ω

ε
(
2kL|∇xη

1
2
σ1 |2+z|∇xησ1

|2
)
dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xuσ1
+∇T

xuσ1

2
− 1

d
(divxuσ1)I

∣∣∣∣2+μB |divxuσ1 |2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(Tσ1
)dxdt′+

αk

4λ

∫ t

0

∫
Ω

(ησ1
+α)tr

(
T−1
σ1

)
dxdt′

+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logTσ1
)|2dxdt′

≤ (E0,θ+Ct)eCt, (10.5)

with d=2, and∫
Ω

|Tσ1
(t)|2dx+ε

∫ t

0

∫
Ω

|∇xTσ1
|2dxdt′+ 1

4λ

∫ t

0

∫
Ω

|Tσ1
|2(t′,x)dxdt′

≤C
(
T,E0,θ,‖T0,θ‖2L2(Ω;R2×2)

)
, (10.6)

where the energy Eσ1
is defined by

Eσ1
(t) :=

∫
Ω

[
1

2
�σ1
|uσ1

|2+ a

γ−1
�γσ1

+
σ1

Γ−1
�Γσ1

+kL(ησ1
logησ1

+1)+zη2σ1

]
dx

+
1

2

∫
Ω

[tr(Tσ1
−α logTσ1

)+d(α logα−α)]dx,

with d=2, and the initial energy E0,θ is the same as in the equality (7.10).

11. Completion of the proof

11.1. Passage to the limits σ1→0 and θ→0. The next step is to show that
the limit (�,u,η,T) of the sequence (�σ1

,uσ1
,ησ1

,Tσ1
), as σ1→0, is a weak solution to

the problem (1.12)–(1.15), (1.9)–(1.11), in the sense of Definition 4.1 with regularized
initial data (6.1), satisfying the conditions (6.2). We choose θ=σ1 and simultaneously
pass to the limits σ1→0 and θ→0. Having done so, in the next section we shall also
pass to the limit α→0 with the regularization parameter α, with z>0 held fixed, and
in the final section we shall let z→0, with L>0 kept fixed, in order to cover the entire
range of the parameter z∈ [0,∞). We begin our considerations by noting that, thanks
to the estimates (10.4)–(10.6), we have the following uniform bounds as z>0:

‖�σ1‖L∞(0,T ;Lγ(Ω))+σ
1
Γ
1 ‖�σ1‖L∞(0,T ;LΓ(Ω))≤C(E0,θ,T ),

‖ησ1‖L∞(0,T ;L2(Ω))+‖ησ1‖L2(0,T ;W 1,2(Ω))+‖η
1
2
σ1‖L2(0,T ;W 1,2(Ω))≤C(E0,θ,T ),

‖�σ1
|uσ1

|2‖L∞(0,T ;L1(Ω))+‖uσ1
‖L2(0,T ;W 1,2

0 (Ω;R2))≤C(E0,θ,T ),
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‖tr(Tσ1−α log(Tσ1))‖L∞(0,T ;L1(Ω))+‖(ησ1 +α)tr(T−1
σ1

)‖L1(0,T ;L1(Ω))≤C(E0,θ,T ),√
α‖∇xtr(logTσ1

)‖L2(0,T ;L2(Ω;R2))≤C(E0,θ,T ),

‖Tσ1
‖L∞(0,T ;L2(Ω;R2×2))+‖Tσ1

‖L2(0,T ;W 1,2(Ω;R2×2))

≤C
(
E0,θ,T,‖T0,θ‖2L2(Ω;R2×2)

)
.

(11.1)

Similarly to the estimate (10.2), the uniform estimates (11.1) and the equations for ησ1

and Tσ1
imply, for any r∈ (1,2), that

‖∂tησ1
‖L2(0,T ;W−1,r(Ω))+‖∂tTσ1

‖L2(0,T ;W−1,r(Ω;R2×2))≤C(E0,θ,T ). (11.2)

Similarly as in the convergence results (10.3), we have the following convergence results
for ησ1 and Tσ1 , as σ1→0:

ησ1
→η weakly-* in L∞(0,T ;L2(Ω))∩L2(0,T ;W 1,2(Ω)),

ησ1
→η strongly in L2(0,T ;Lq(Ω)) ∀q∈ [1,∞),

Tσ1→T weakly-* in L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;W 1,2(Ω;R2×2)),

Tσ1
→T strongly in L2(0,T ;Lq(Ω;R2×2)) ∀q∈ [1,∞),

tr(logTσ1)→ tr(logT) weakly in L2(0,T ;W 1,2(Ω)). (11.3)

We note that since Tσ1 is symmetric and positive definite a.e. on (0,T ]×Ω, it follows
from the convergence result (11.3)4 that T is symmetric and positive semidefinite a.e. on
(0,T ]×Ω, and we have η≥0 and T>0 a.e. in (0,T ]×Ω by employing the argument from
Section 9.2. The other limit processes, associated with �σ1

and uσ1
, can be performed

similarly as in the study of the compressible Navier–Stokes equations, and we refer to
Section 4 in [21] for details (see also the paragraph following the bounds (10.1) above).
Thus, by observing the strong convergence of the initial data in the conditions (6.2), we
deduce that the limit (�,u,η,T) is a weak solution to the problem (1.12)–(1.15), (1.9)–
(1.11), in the sense of Definition 4.1, with the initial data satisfying the conditions
(3.1). The bounds (3.31) and (4.9) follow by letting σ1=θ→0 in the estimates (10.6)
and (10.4), respectively. Moreover, thanks to the definition of Eσ1(t), following the
estimate (10.6) above, and by noting that the expression appearing on the right-hand
side of the estimate (10.5) is independent of z, the argument contained in Remark 3.1
implies that the constant on the right-hand side of the estimate (3.31) is independent
of z, as long as L>0. Finally, by Lemmas 5.5 and 5.6, the convergence results (11.3)
and the estimate (11.2), we have

η∈Cw([0,T ];L
2(Ω)), T∈Cw([0,T ];L

2(Ω;R2×2)).

The proof of Theorem 4.1 is complete.

11.2. The vanishing logarithmic term limit: passage to the limit α→0.
In this section, we study the process of letting α→0 in the problem (1.12)–(1.15),

(1.9)–(1.11). We will show that letting α→0, with z>0 held fixed, yields the existence
of a global-in-time weak solution to the corresponding problem without the logarithmic
term α

2∇xtr(logT) in equation (1.13) and with no α term in equation (1.15), which is
our original model (1.1)–(1.11) in the case of z>0.
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11.2.1. Weak solutions and main theorem. We re-iterate our hypotheses
on the initial data, but this time we do so without requiring the positivity of the initial
extra stress tensor (only its symmetry and nonnegativity are assumed):

�(0, ·)=�0(·) with �0≥0 a.e. in Ω, �0∈Lγ(Ω),

u(0, ·)=u0(·)∈Lr(Ω;Rd) for some r≥2γ′ such that �0|u0|2∈L1(Ω),

η(0, ·)=η0 with η0≥0 a.e. in Ω, η0∈L2(Ω),

T(0, ·)=T0(·) with T0=TT
0 ≥0 a.e. in Ω, T0∈L2(Ω;Rd×d).

(11.4)

The corresponding weak solution is defined similarly as in Definition 4.1.

Definition 11.1. Let T >0 and suppose that Ω⊂Rd is a bounded C2,β domain, with
0<β<1. Assume further that f ∈L∞((0,T ]×Ω;Rd). We say that (�,u,η,T) is a finite-
energy weak solution in (0,T ]×Ω to the system of equations (1.1)–(1.11), supplemented
by the initial data (11.4), if:

• �≥0 a.e. in (0,T ]×Ω, �∈Cw([0,T ];L
γ(Ω)), u∈L2(0,T ;W 1,2

0 (Ω;Rd)),
T is symmetric,

�u∈Cw([0,T ];L
2γ

γ+1 (Ω;Rd)), �|u|2∈L∞(0,T ;L1(Ω)),

η≥0 a.e. in (0,T ]×Ω, η∈Cw([0,T ];L
2(Ω))∩L2(0,T ;W 1,2(Ω)),

T≥0 a.e. in (0,T ]×Ω, T∈Cw([0,T ];L
2(Ω;Rd×d))∩L2(0,T ;W 1,2(Ω;Rd×d)).

• For any t∈ (0,T ] and any test function φ∈C∞([0,T ]×Ω), one has∫ t

0

∫
Ω

[
�∂tφ+�u ·∇xφ

]
dxdt′=

∫
Ω

�(t, ·)φ(t, ·)dx−
∫
Ω

�0φ(0, ·)dx, (11.5)

∫ t

0

∫
Ω

[
η∂tφ+ηu ·∇xφ−ε∇xη ·∇xφ

]
dxdt′=

∫
Ω

η(t, ·)φ(t, ·)dx−
∫
Ω

η0φ(0, ·)dx.
(11.6)

• For any t∈ (0,T ] and any test function ϕ∈C∞([0,T ];C∞
c (Ω;Rd)), one has∫ t

0

∫
Ω

[
�u ·∂tϕ+(�u⊗u) :∇xϕ+p(�)divxϕ

+
(
kLη+zη2

)
divxϕ−S(∇xu) :∇xϕ

]
dxdt′

=

∫ t

0

∫
Ω

T :∇xϕ−�f ·ϕdxdt′+
∫
Ω

�u(t, ·) ·ϕ(t, ·)dx−
∫
Ω

�0u0 ·ϕ(0, ·)dx.
(11.7)

• For any t∈ (0,T ] and any test function Y∈C∞([0,T ]×Ω;Rd×d), one has∫ t

0

∫
Ω

[
T :∂tY+(uT) ::∇xY+

(
∇xuT+T∇T

xu
)
:Y−ε∇xT ::∇xY

]
dxdt′

=

∫ t

0

∫
Ω

[
− k

2λ
η tr(Y)+

1

2λ
T :Y

]
dxdt′+

∫
Ω

T(t, ·) :Y(t, ·)dx−
∫
Ω

T0 :Y(0, ·)dx.
(11.8)

• The continuity equation holds in the sense of renormalized solutions:

∂tb(�)+divx(b(�)u)+(b′(�)�−b(�))divxu=0 in D′((0,T )×Ω), (11.9)

for any b∈C0[0,∞)∩C1(0,∞) satisfying the conditions (4.8).
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• For a.e. t∈ (0,T ], the following energy inequality holds:∫
Ω

[
1

2
�|u|2+ a

γ−1
�γ+

(
kL(η logη+1)+zη2

)
+

1

2
tr(T)

]
dx

+2ε

∫ t

0

∫
Ω

2kL|∇xη
1
2 |2+z|∇xη|2dxdt′+

1

4λ

∫ t

0

∫
Ω

tr(T)dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xu+∇T
xu

2
− 1

d
(divxu)I

∣∣∣∣2+μB |divxu|2dxdt′

≤
∫
Ω

[
1

2
�0|u0|2+

a

γ−1
�γ0 +

(
kL(η0 logη0+1)+zη20

)
+

1

2
tr(T0)

]
dx

+

∫
Ω

�f ·udx+ kd

4λ

∫
Ω

ηdx. (11.10)

We state the associated result concerning the existence of large data global-in-time
finite-energy weak solutions.

Theorem 11.1. Let d=2, γ >1 and z>0. Then, there exists a finite-energy global-
in-time weak solution (�,u,η,T) to the compressible Oldroyd-B model (1.1)–(1.11) in
the sense of Definition 11.1 with initial data (11.4). Moreover, the extra stress tensor
T in such a weak solution satisfies the bound (3.31).

In the rest of this section we briefly prove Theorem 11.1. The first step is the
regularization of the initial stress tensor in order to make it strictly positive definite.
This allows us to apply Theorem 4.1 to construct a family of approximating solutions.

11.2.2. Proof of Theorem 11.1. Let T0 be as in the hypotheses (11.4) and
α∈ (0,1). We define:

T0,α=T0+αI. (11.11)

Direct calculations give

T0,α≥αI>0, a.e. in Ω,

|tr(logT0,α) |≤d | logα|+tr(T0)+dα∈L1(Ω) (with d=2 in our case here).
(11.12)

We consider the problem (1.12)–(1.15), (1.9)–(1.11), where α is chosen to be the
same as in the equality (11.11). The initial data are as in the hypotheses (11.4) except
that the initial stress tensor is taken to be the regularized one in the equality (11.11).
When d=2, as is assumed to be the case here, by Theorem 4.1 and its proof, for any
α∈ (0,1), there exists a weak solution (�α,uα,ηα,Tα) in the sense of Definition 4.1
satisfying the bound (3.31).

By the energy inequality (4.9) and Gronwall’s inequality we deduce, for a.e. t∈
(0,T ], that, with d=2,

Eα(t)+2ε

∫ t

0

∫
Ω

(
2kL|∇xη

1
2
α |2+z|∇xηα|2

)
dxdt′

+

∫ t

0

∫
Ω

μS

∣∣∣∣∇xuα+∇T
xuα

2
− 1

d
(divxuα)I

∣∣∣∣2+μB |divxuα|2dxdt′

+
1

4λ

∫ t

0

∫
Ω

tr(Tα)dxdt
′+

αk

4λ

∫ t

0

∫
Ω

(ηα+α)tr
(
T−1
α

)
dxdt′
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+
αε

2d

∫ t

0

∫
Ω

|∇xtr(logTα)|2dxdt′

≤(E0,α+Ct)eCt. (11.13)

Here Eα(t) is the same as E(t), as defined in the equality (3.18), but with (�,u,η,T)
replaced by (�α,uα,ηα,Tα). Similarly, E0,α is the same as E0, as defined in the equal-
ity (3.22), but with T0 replaced by T0,α. We explore the behavior of E0,α as α→0.
Thanks to the property registered in the estimate (11.12), the quantity E0,α is uniformly
bounded as α→0, and we have the following convergence result, as α→0:

E0,α→
∫
Ω

[
1

2
�0|u0|2+

a

γ−1
�γ0 +

(
kL(η0 logη0+1)+zη20

)
+

1

2
tr(T0)

]
dx.

Thus, from the estimates (11.13) and (3.31), we derive analogous uniform bounds to
those in the estimates (11.1). Time derivative bounds, similar to the bound (11.2),
obtained from the equations for ηα and Tα, and the application of the Aubin–Lions–
Simon compactness theorem then yield (strong) convergence of the sequences (ηα)α>0

and (Tα)α>0.
Letting α→0 in the conditions (4.2)–(4.9) we deduce the results (11.5)–(11.10);

here we only deal with the terms associated with α, as all other terms can be handled
similarly as in [21] in the case of the compressible Navier–Stokes equations, together
with the strong convergence we have obtained for the sequences (ηα)α>0 and (Tα)α>0.

A partial result of the estimate (11.13) is the following uniform bound:
√
α‖∇xtr(logTα)‖L2(0,T ;L2(Ω;R2))≤C(E0,α,T ).

Then, for any ϕ∈C∞([0,T ];C∞
c (Ω;Rd), as α→0,∣∣∣∣α2

∫ t

0

∫
Ω

tr(logTα) divxϕdxdt′
∣∣∣∣

≤
√
α
√
α‖∇xtr(logTα)‖L2(0,T ;L2(Ω;R2))‖ϕ‖L2(0,T ;L2(Ω;R2))→0.

The energy inequality (11.10) can be deduced by letting α→0 in the estimate (4.9).
Indeed, thanks to the fact that s− logs−1≥0 for any s>0, we have − logs≥−s+1.
Thus,

tr(Tα−α logTα)+d(α logα−α)≥ tr(Tα)+α(−tr(Tα)+d)+d(α logα−α)→ tr(T).

All of the other terms can be handled directly. The additional bound (3.31) follows
similarly. The proof of Theorem 11.1 is thereby complete.

12. Passing to the limit z→0
Inspired by the conclusions of [8], in this section we shall study the limit process for

the problem in Section 11.2 as z→0, so as to be able to cover the entire parameter range
z∈ [0,∞). We will show that the limiting problem is one that arises by formally setting
z=0. To this end we shall assume henceforth that L>0 is kept fixed. The initial data
are as follows (note, in particular, that the initial polymer number density η0 is now
only assumed to have L logL(Ω) integrability instead of the stronger L2(Ω) integrability
assumed hitherto (cf. the hypotheses (11.4)):

�(0, ·)=�0(·) with �0≥0 a.e. in Ω, �0∈Lγ(Ω),

u(0, ·)=u0(·)∈Lr(Ω;Rd) for some r≥2γ′ such that �0|u0|2∈L1(Ω),

η(0, ·)=η0 with η0≥0 a.e. in Ω, η0 logη0∈L1(Ω),

T(0, ·)=T0(·) with T0=TT
0 ≥0 a.e. in Ω, T0∈L2(Ω;Rd×d).

(12.1)
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We first regularize the initial polymer number density η0 given in the hypothesis
(12.1)3 to obtain a square-integrable function:

η0,z=
η0

1+z
1
4 η

1
2
0

. (12.2)

Hence,

z

∫
Ω

η20,zdx≤ z
1
2

∫
Ω

η0dx→0, as z→0. (12.3)

Furthermore, by direct computations and the Dominated Convergence Theorem we
deduce that∫

Ω

η0,z logη0,zdx=

∫
Ω

η0

1+z
1
4 η

1
2
0

(
logη0− log

(
1+z

1
4 η

1
2
0

))
dx

=

∫
Ω

(
η0 logη0−

z
1
4 η

3
2
0

1+z
1
4 η

1
2
0

logη0−
η0

1+z
1
4 η

1
2
0

log(1+z
1
4 η

1
2
0 )

)
dx

→
∫
Ω

(η0 logη0)dx, as z→0. (12.4)

The convergence results (12.3) and (12.4) then allow us to pass to the limit z→0 on the
right-hand side of the energy inequality (11.10). We are now ready to state our third
main theorem.

Theorem 12.1. Suppose that L>0 is held fixed. For any z>0, let (�z,uz,ηz,Tz) be
a weak solution in the sense of Definition 11.1 with initial data as in the hypotheses
(12.1), except that the initial polymer number density is taken as the regularized one,
as in the equality (12.2), satisfying the convergence results (12.3) and (12.4). We then
have that

(�z,uz,ηz,Tz)→ (�,u,η,T) in D′((0,T )×Ω), as z→0,

and the limit (�,u,η,T) is a weak solution to the problem (1.1)–(1.11), with initial data
(12.1), in the same sense as in Definition 11.1 except that z is taken to be 0 and η is
taken in the set of all η such that

η≥0 a.e. in (0,T ]×Ω, η∈Cw([0,T ];L
1(Ω)),

η logη∈L∞(0,T ;L1(Ω)), η
1
2 ∈L2(0,T ;W 1,2(Ω)).

Proof. By the energy inequality (11.10) and Gronwall’s inequality we deduce the
following uniform bounds:

‖�z‖L∞(0,T ;Lγ(Ω))≤C,

‖ηz logηz‖L∞(0,T ;L1(Ω))+‖η
1
2
z ‖L2(0,T ;W 1,2(Ω))≤C,

z‖ηz‖2L∞(0,T ;L2(Ω))+z‖ηz‖2L2(0,T ;W 1,2(Ω))≤C,

‖�z|uz|2‖L∞(0,T ;L1(Ω))+‖uz‖L2(0,T ;W 1,2
0 (Ω;R2))≤C,

‖Tz‖L∞(0,T ;L2(Ω;R2×2))+‖Tz‖L2(0,T ;W 1,2(Ω;R2×2))≤C,

(12.5)
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where C only depends on T and the initial data; in particular it is independent of z
as z→0. We draw the reader’s attention here to the alternatives (3.19) and (3.20),
corresponding to L>0, z≥0 and L≥0 and z>0, respectively, and emphasize that we
are now operating in the first of these two regimes, corresponding to the estimate (3.19),
which guarantees the independence of the constant in the energy inequality (11.10) on z,
provided that L>0 is held fixed (as has been assumed in the statement of the theorem).
The independence of the constant on z, as z→0, in the bounds (12.5)2 and (12.5)5 on
ηz and Tz, respectively, can be shown by the same argument as in Remark 3.1, thanks
to L>0 being held fixed.

The uniform bounds for �z, uz, Tz are the same as in the previous section, Section
11.2. To understand the limit as z→0, we only focus on ηz and the terms in the
equations related to ηz. The passage to the limit for the other terms can be dealt with
similarly as in the previous sections.

We apply Dubinskĭı’s compactness theorem (Lemma 5.4) to show strong conver-
gence of ηz. Let

X :=L1(Ω), X0 :={ϕ∈X :ϕ≥0,
√
ϕ∈W 1,2(Ω)}, X1 :=W−2,2(Ω)= [W 2,2

0 (Ω)]′,

where X0 is a seminomed space in the sense of Dubinskĭı, with seminorm defined by

[ϕ]X0
:=‖ϕ‖L1(Ω)+

∫
Ω

|∇x
√
ϕ|2dx.

We shall now verify that X, X0 and X1 thus defined do indeed satisfy the require-
ments of Lemma 5.4. By the bounds (12.5)2 and Sobolev embedding we obtain

‖ηz logηz‖L∞(0,T ;L1(Ω))+‖ηz‖L1(0,T ;L
1
δ (Ω))

≤C, for any δ∈ (0,1). (12.6)

From function space interpolation, we deduce that

‖ηz‖L2−δ(0,T ;L2(Ω))+‖ηz‖
L2+ δ2

2 (0,T ;L2−δ(Ω))
≤C, for any δ∈ (0,1). (12.7)

Together with the bounds (12.5)2,4 and equation (1.3), we have that

(ηz)z>0 is bounded in L1(0,T ;X0) and (∂tηz)z>0 is bounded in L1(0,T ;X1). (12.8)

The continuity of the embedding X ↪→X1 is immediate by Sobolev embedding. We
now verify the compactness of the embedding X0 ↪→X. Let (ϕn)n∈N be a bounded se-
quence inX0. Thus, the sequence

(√
ϕn

)
n∈N

is bounded inW 1,2(Ω), which is compactly

embedded into L2(Ω). This means that

√
ϕn→ρ strongly in L2(Ω), as n→∞.

Define ϕ :=ρ2. Then,

‖ϕn−ϕ‖L1(Ω)=‖(
√
ϕn+

√
ϕ)(
√
ϕn−

√
ϕ)‖L1(Ω)

≤‖√ϕn+
√
ϕ‖L2(Ω)‖

√
ϕn−

√
ϕ‖L2(Ω)→0, as n→∞.

This implies that the embedding X0 ↪→X is compact.
By the conclusion (12.8) and Dubinskĭı’s compactness theorem, we obtain

ηz→η strongly in L1((0,T )×Ω), as z→0.
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This implies that

ηz→η a.e. in (0,T )×Ω, as z→0. (12.9)

Again by the argument in Remark 3.1, we have the following uniform bound on the
L2 norm of ηz:

‖ηz‖L2(0,T ;L2(Ω))≤C, (12.10)

where C is independent of z. Thus, by the almost everywhere convergence (12.9) and
Vitali’s theorem, we have, for any δ∈ (0,1), that

ηz→η strongly in L2−δ((0,T )×Ω), as z→0. (12.11)

By the bound (12.10) and the convergence result (12.11), and writing ∇xηz as

2η
1
2
z ∇xη

1
2
z , we can pass to the limit z→0 in the nonlinear terms associated with ηz in

the weak formulations (11.5)–(11.8) to deduce that the equations are satisfied by the
limiting quadruple of functions, (�,u,η,T).

The energy inequality for (�,u,η,T) can be obtained by letting z→0 in the inequality
(11.10), using the convergence results (12.3)–(12.4), and omitting the nonnegative terms
zη2z and z|∇xηz|2 on the left-hand side of the inequality (11.10).

It is immediate to deduce that the solution η satisfies η≥0 a.e. in (0,T ]×Ω and

η logη∈L∞(0,T ;L1(Ω)), η
1
2 ∈L2(0,T ;W 1,2(Ω)),

η∈L2(0,T ;L2(Ω)), ∂tη∈L1(0,T ;W−2,2(Ω)).

Thus, by using Lemma 5.5 (ii), we have that

η∈Cw([0,T ];L
1(Ω)).

The proof of this assertion proceeds as follows. Let F(s) :=s(logs−1)+1 for s>0,
and define F(0) :=1. Clearly, F(s)≥0 for all s∈ [0,∞), F(1)=0, F is strictly convex
with superlinear growth as s→∞. We take X :=LΦ(Ω), the Orlicz space with Young’s
function Φ(s)=F(1+ |s|) (cf. Kufner, John & Fuč́ık [32], Sec. 3.6) whose separable
predual E :=EΨ(Ω) has Young’s function, Ψ(s)=exp |s|−|s|−1, the Fenchel conjugate
of Φ (see, Section 3.12 in [32] for the definition of EΨ(Ω), Theorem 3.12.9 in [32] for
the separability of EΨ(Ω), and Section 3.13.8, eq. (1) in [32] for the duality [Eψ(Ω)]′=
LΦ(Ω)). Further, we choose Y :=W−2,2(Ω), whose predual F =W 2,2

0 (Ω) is, clearly,
continuously embedded in L∞(Ω) by the Sobolev embedding theorem, and L∞(Ω) is, in
turn, continuously embedded in E=EΨ(Ω) thanks to Theorem 3.17.7 in [32]. It then
follows from Lemma 5.5 (ii) that η∈Cw∗([0,T ];LΦ(Ω)). However, as L∞(Ω)= [L1(Ω)]′,
Cw∗([0,T ];LΦ(Ω)) is contained in Cw([0,T ];L

1(Ω)), whereby η∈Cw([0,T ];L
1(Ω)), as

has been asserted.

We conclude with a further result, which shows that if the initial polymer number
density has stronger integrability than L logL(Ω), say η0∈Lq(Ω), q>1, then the regu-
larity and the integrability properties of η(t, ·) for t∈ (0,T ] are also improved; the proof
is based on function space interpolation and repeated application of Lemma 5.8.

Proposition 12.1. Suppose that L>0 is held fixed. Assume further that η0∈Lq(Ω),
q>1; then, for any δ∈ (0,1) such that δ<q−1, we have that

η∈L∞(0,T ;Lq(Ω))∩L2−δ(0,T ;W 1,q(Ω))∩L2(0,T ;W 1,q−δ(Ω)). (12.12)
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Proof. By the bounds (12.5), we have that the limit u∈L2(0,T ;W 1,2(Ω,R2)) and

η∈L∞(0,T ;L1(Ω))∩L2(0,T ;L2(Ω)). By Sobolev embedding W 1,2(Ω) ↪→L
1
δ (Ω), for any

δ∈ (0,1), we have that

ηu∈L2− δ
2 (0,T ;L1(Ω;R2))∩L1(0,T ;L2− δ

2 (Ω;R2)) ↪→L1+c(δ)(0,T ;L2−δ(Ω;R2)), (12.13)

for any δ∈ (0,1) and some c(δ)>0.
We first consider the case 1<q<2. Using the embedding (12.13), we can apply

Lemma 5.8 to deduce that

η∈L∞(0,T ;Lq(Ω))∩L1+c(δ)(0,T ;W 1,q(Ω)) ↪→L2+2c(δ)(0,T ;L
4q

4−q (Ω)),

where we have used the Sobolev embedding

W 1,q(Ω) ↪→L
2q

2−q (Ω), if 1≤ q<2.

Again by Sobolev embedding and function space interpolation, with δ∈ (0,1) such that
δ<q−1, we deduce that

ηu∈L2(0,T ;Lq−δ(Ω;R2))∩L1+c(δ)(0,T ;L
4q

4−q (Ω;R2)), for some c(δ)>0.

This implies that ηu∈L2−δ(0,T ;Lq(Ω;R2)), for any δ∈ (0,1) such that δ<q−1 and
some c(δ)>0. By using Lemma 5.8 again we arrive at the result (12.12).

Let us now consider the case q≥2. By the embedding (12.13) and Lemma 5.8 we
deduce that

η∈L∞(0,T ;L2−δ(Ω))∩L1+c(δ)(0,T ;W 1,2−δ(Ω)), for any δ∈ (0,1) and some c(δ)>0.

This implies furthermore that

ηu∈L2−δ(0,T ;L2(Ω;R2))∩L2(0,T ;L2−δ(Ω;R2)), for any δ∈ (0,1).

By applying Lemma 5.8 again we deduce that

η∈L∞(0,T ;L2(Ω))∩L2−δ(0,T ;W 1,2(Ω))∩L2(0,T ;W 1,2−δ(Ω)), for any δ∈ (0,1),
(12.14)

which proves the result (12.12) with q=2. It remains to consider the case when q>2.
By the result (12.14) we have that

ηu∈L2(0,T ;L2−δ(Ω;R2))∩L1+c(δ)(0,T ;L
1
δ (Ω;R2)), for any δ∈ (0,1) and some c(δ)>0.

Together with Lemma 5.8 we then deduce that

η∈L∞(0,T ;Lq(Ω))∩L1+c(q)(0,T ;W 1,q(Ω)), for some c(q)>0.

Again by the bound on u and Sobolev embedding we have that

ηu∈L2(0,T ;Lq−δ(Ω;R2))∩L1+c(δ)(0,T ;L2q−δ(Ω;R2)),

for any δ∈ (0,1) and some c(δ)>0. This gives ηu∈L2−δ(0,T ;Lq(Ω;R2)) for any δ∈
(0,1). Hence, the application of Lemma 5.8 implies the result (12.12). That completes
the proof of the proposition.
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Appendix A. Proof of Lemma 3.1. We complete our analysis of the compress-
ible Oldroyd-B model by providing the proofs of Lemmas 3.1, 6.1 and 7.1. Here, we give
the proof of Lemma 3.1; the proofs of Lemmas 6.1 and 7.1 are contained in Appendices
B and C, respectively.

Proof. (Proof of Lemma 3.1.) We begin by proving the inequality stated in
Lemma 3.1. As s∈ [1,∞) �→g(s) :=s2−2s logs−1∈R≥0 is a convex function, with a
unique stationary point located at s=1, where g attains its minimum value on [1,∞), it
follows that g(s)≥g(1)=0 for all s∈ [1,∞). Assuming that a,b∈R>0, and rearranging

the expression g(s∗)≥0, where s∗ :=
√

max{a,b}
min{a,b} , we deduce that

−(a−b)

(
1

a
− 1

b

)
≥ (loga− logb)2 ∀a,b∈R>0. (A.1)

In order to extend this inequality to symmetric positive definite matrices, we
adapt an argument from [2]. Suppose that A,B∈Rd×d are symmetric positive defi-
nite matrices, with respective diagonalizations A=OADAOT

A
and B=OBDBOT

B
, where

DA,DB∈Rd×d are diagonal, with positive diagonal entries, and OA and OB are orthogo-
nal. By defining the matrix C := logA− logB, applying the Cauchy–Schwarz inequality,
and noting that C=CT, we have that

|tr(logA)−tr(logB)|2= |tr(C)|2

≤d
d∑

i=1

(Cii)
2≤d

d∑
i,k=1

(Cik)
2=d

d∑
i,k=1

CikCki=d

d∑
i=1

(C2)ii=dtr(C2)

=dtr((logA− logB)2)=dtr((logA− logB)(logA− logB))

=dtr((OA(logDA)O
T
A−OB(logDB)O

T
B )(OA(logDA)O

T
A−OB(logDB)O

T
B )). (A.2)

Since OA is orthogonal and the trace of a product of matrices is invariant under cyclic
permutations of the factors appearing in the product, we have, with O :=OT

A
OB, that

tr((OA(logDA)O
T
A−OB(logDB)O

T
B )(OA(logDA)O

T
A))

=tr(OA(logDA)
2OT

A)−tr(OT
AOB(logDB)(O

T
AOB)

T(logDA))

=tr((logDA)
2)−tr(O(logDB)O

T(logDA))

=tr((logDA)
2)−

d∑
i,j=1

(Oij)(logDB)jj(O
T)ji(logDA)ii

=

d∑
i,j=1

(Oij)
2 [(logDA)ii− logDB)jj)(logDA)ii, (A.3)

where in the transition to the last line we have used that
∑d

j=1(Oij)
2=1 for all i∈

{1, . . . ,d}, which is a direct consequence of the fact that OOT= I, because OA and OB

are orthogonal matrices. By swapping A and B in this identity, and noting that the
matrix OT

B
OA, resulting from swapping A and B in the definition of O=OT

A
OB, is equal

to the transpose of O, we have that

tr((OB(logDB)O
T
B −OA(logDA)O

T
A)(OB(logDB)O

T
B ))

=
d∑

i,j=1

(Oji)
2[(logDB)ii−(logDA)jj ](logDB)ii.
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After renaming i into j and j into i under the double summation sign appearing on the
right-hand side, we have that

−tr((OA(logDA)O
T
A−OB(logDB)O

T
B )(OB(logDB)O

T
B ))

=−
d∑

i,j=1

(Oij)
2[(logDA)ii−(logDB)jj ](logDB)jj . (A.4)

By summing the identities (A.3) and (A.4) and recalling the inequality (A.1), we deduce
that

tr((OA(logDA)O
T
A−OB(logDB)O

T
B )(OA(logDA)O

T
A−OB(logDB)O

T
B ))

=
d∑

i,j=1

(Oij)
2[(logDA)ii−(logDB)jj ][(logDA)ii−(logDB)jj ]

=

d∑
i,j=1

(Oij)
2[(logDA)ii−(logDB)jj ]

2

≤−
d∑

i,j=1

(Oij)
2

[
((DA)ii−(DB)jj)

(
1

(DA)ii
− 1

(DB)jj

)]

=−
d∑

i,j=1

(Oij)
2
[
((DA)ii−(DB)jj)

(
(D−1

A
)ii−(D−1

B
)jj
)]
. (A.5)

Now, by an analogous calculation to the one that led to the first equality in the chain
(A.5) above, we have that

tr
((
OADAO

T
A−OBDBO

T
B

)(
OA(DA)

−1OT
A−OB(DB)

−1OT
B

))
=

d∑
i,j=1

(Oij)
2
[
((DA)ii−(DB)jj)

(
(D−1

A
)ii−(D−1

B
)jj
)]
. (A.6)

By comparing the right-hand sides of the inequality (A.5) and the identity (A.6), we
deduce that

tr((OA(logDA)O
T
A−OB(logDB)O

T
B )(OA(logDA)O

T
A−OB(logDB)O

T
B ))

≤−tr
((
OADAO

T
A−OBDBO

T
B

)(
OA(DA)

−1OT
A−OB(DB)

−1OT
B

))
;

equivalently,

tr((logA− logB)(logA− logB))≤−tr
(
(A−B)

(
A−1−B−1

))
. (A.7)

Substitution of the inequality (A.7) into the penultimate line of the inequality (A.2)
then implies that, for any two symmetric positive definite matrices A, B∈Rd×d, the
following inequality holds:

|tr(logA)−tr(logB)|2≤−dtr
(
(A−B)

(
A−1−B−1

))
. (A.8)

Let ej denote the unit vector pointing in the positive Oxj direction, j=1, . . . ,d.
Then, for each x∈Ω and each j∈{1, . . . ,d}, there exists a bounded closed interval Ix,j⊂
R, with 0 contained in the interior of Ix,j , such that x+hej ∈Ω for all h∈ Ix,j . As, by
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hypothesis, P is symmetric and positive definite, uniformly on Ω, there exists a c0∈R>0

such that P(x)≥ c0I for all x∈Ω. Thus, A=P(x+hej) and B=P(x) are legitimate
choices in the inequality (A.8) for all h∈ Ix,j and j∈{1, . . . ,d}. Dividing the resulting
inequality by h2d, and passing to the limit h→0, thanks to the assumed regularity
P∈C1(Ω;Rd×d), we deduce that

1

d
|∂xj

tr(logP(x))|2≤−tr
(
(∂xj

P(x))(∂xj
(P−1(x)))

)
∀x∈Ω, ∀j∈{1, . . . ,d}. (A.9)

Here, to obtain the expression on the left-hand side of the last inequality, we have
made use of the fact that by Jacobi’s identity, tr(logP(x))= logdetP(x), and x∈Ω �→
logdetP(x)∈R is a C1 function, whereby the same is true of x∈Ω �→ tr(logP(x))∈R.

As PP−1= I, it follows from the product rule that ∂xj
(P−1)=−P−1(∂xj

P)P−1, and
therefore the inequality (A.9) yields

1

d
|∂xj

tr(logP(x))|2≤ tr
(
((∂xj

P(x))P−1(x))2
)

∀x∈Ω, ∀j∈{1, . . . ,d}.

Because P∈C1(Ω;Rd×d), the expression x∈Ω �→ tr
(
((∂xj

P(x))P−1(x))2
)
appearing on

the right-hand side of this inequality is a bounded continuous function on Ω. Also,
thanks to the discussion in the previous paragraph, the expression appearing on the left-
hand side of this inequality is a continuous (and therefore, thanks to the upper bound
furnished by the inequality, a bounded continuous) function on Ω. By integrating the
inequality over Ω and summing over j=1, . . . ,d we thereby deduce that

1

d

∫
Ω

|∇xtr(logP)|2dx≤
d∑

j=1

∫
Ω

tr
((

(∂xj
P)P−1

)2)
dx,

thus completing the proof of the inequality stated in the lemma.
It remains to prove the equality stated in Lemma 3.1. By partial integration (cf.

Corollary 2.6 in Ch.1 of [24]), recalling that, by hypothesis, the symmetric and uni-
formly positive definite matrix function P∈W 2,2(Ω;Rd×d)∩C1(Ω;Rd×d) satisfies a ho-
mogeneous Neumann boundary condition on ∂Ω, and noting that P−1∈C1(Ω;Rd×d)⊂
W 1,2(Ω;Rd×d), we have that∫

Ω

ΔxP :P
−1dx=−

d∑
j=1

∫
Ω

∂xjP :∂xj (P
−1)dx

=−
d∑

j=1

∫
Ω

tr
(
(∂xj

P)(∂xj
(P−1))

)
dx=

d∑
j=1

∫
Ω

tr
((

(∂xj
P)(P−1)

)2)
dx,

where we have, once again, made use of the identity ∂xj (P
−1)=−P−1(∂xjP)P

−1.

Appendix B. Proof of Lemma 6.1.
Proof. (Proof of Lemma 6.1.) According to (2.15) in [2], for any concave function

g∈C1(R), and any pair of symmetric matrices A,B∈Rd×d, one has that

(A−B) :g′(B)≥ tr(g(A)−g(B))≥ (A−B) :g′(A). (B.1)

For a convex function g∈C1(R), the inequalities (B.1) are reversed, yielding

(A−B) :g′(B)≤ tr(g(A)−g(B))≤ (A−B) :g′(A) (B.2)
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for any pair of symmetric matrices A,B∈Rd×d.
Let us suppose that g∈C1,γ(R), with 0<γ≤1, is concave. As the univariate sym-

metric matrix function P∈W 1,2((0,T );Rd×d) is absolutely continuous on [0,T ], it is
differentiable a.e. on (0,T ). Let t∗∈ (0,T ) be such that P is differentiable at t∗. Hence,
by choosing A=P(t∗+h) and B=P(t∗) in (B.1), where 0< |h|<min(t∗,T − t∗), we have
that

P(t∗+h)−P(t∗)
h

:g′(P(t∗))≥
tr(g(P(t∗+h))−g(P(t∗)))

h

≥ P(t∗+h)−P(t∗)
h

:g′(P(t∗+h)), (B.3)

for h>0, and with the ≥ signs replaced by ≤ for h<0.
Now, the function t∈ [0,T ] �→g′(P(t)) is continuous on [0,T ]. Indeed, as g′∈C0,γ(R),

the matrix function Q �→g′(Q), defined on the space of symmetric matrices Q∈Rd×d,
is also Hölder continuous, with the same Hölder exponent γ (cf. Theorem 1.1 in [49]),
and

|g′(P(t∗+h))−g′(P(t∗))|≤‖g′‖C0,γ(R)d
1−γ
2 |P(t∗+h)−P(t∗)|γ .

Thanks to the (absolute) continuity of t∈ [0,T ] �→P(t)∈Rd×d, the right-hand side of
this inequality converges to 0 as h→0; therefore the same is true of the left-hand side
of the inequality. Hence,

lim
h→0

g′(P(t∗+h))=g′(P(t∗)).

Since P is differentiable at t∗∈ (0,T ), we can now pass to the limit h→0+ in the in-
equality (B.3) to deduce that

∂tP(t∗) :g′(P(t∗))≥ lim
h→0+

tr(g(P(t∗+h))−g(P(t∗)))
h

≥∂tP(t∗) :g′(P(t∗)),

for h>0, with the ≥ signs replaced by ≤ and limh→0+ replaced by limh→0− for h<0.
Hence, and thanks to the linearity of the trace operator tr,

lim
h→0

tr(g(P(t∗+h)))−tr(g(P(t∗)))
h

=∂tP(t∗) :g′(P(t∗)).

Consequently, for a concave function g∈C1,γ(R), 0<γ≤1,

∂ttr(g(P(t∗)))=g′(P(t∗)) : (∂tP(t∗))=tr(g′(P(t∗))(∂tP(t∗)))

at each point t∗∈ (0,T ) at which P is differentiable. In the case when g∈C1,γ(R),
0<γ≤1, is a convex function the same pair of equalities is arrived at by an analogous
argument, but now starting from the inequalities (B.2).

Thus we have shown that, for any symmetric matrix P∈W 1,2(0,T ;Rd×d),

∂ttr(g(P(t)))=g′(P(t)) : (∂tP(t))=tr(g′(P(t))(∂tP(t))) for a.e. t∈ (0,T ), (B.4)

under the assumption that g∈C1,γ(R), with 0<γ≤1, is concave or convex.

Appendix C. Proof of Lemma 7.1.
Proof. (Proof of Lemma 7.1). By hypothesis, the symmetric matrix function

P∈C([0,Tσ3
];W 1,2(Ω;Rd×d)) and ΔxP∈L2(0,Tσ3

;L2(Ω;Rd×d)). We shall first show
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that this implies that χσ3(P)
−1∈L∞(0,Tσ3 ;W

1,2(Ω;Rd×d)). To this end, we first note
that, as P∈C([0,Tσ3 ];W

1,2(Ω;Rd×d)), it follows that, for any Ω′�Ω and any h �=0 such
that dist(Ω′,∂Ω)> |h|, we have a bounded difference quotient∫

Ω′

∣∣∣∣P(t,x+hej)−P(t,x)

h

∣∣∣∣2dx≤∫
Ω

|∂xj
P(t,x)|2dx, j=1, . . . ,d, ∀t∈ (0,Tσ3

].

On the other hand, as s∈R �→χσ3
(s)∈R>0 is globally Lipschitz continuous with Lips-

chitz constant equal to 1, by Theorem 1.1 in [49], P∈Rd×d �→χσ3
(P)∈Rd×d is globally

Lipschitz with Lipschitz constant equal to 1; hence,

|χσ3(P(t,x+hej))−χσ3(P(t,x))|≤ |P(t,x+hej)−P(t,x)|,

which then implies that∫
Ω′

∣∣∣∣χσ3
(P(t,x+hej))−χσ3

(P(t,x))

h

∣∣∣∣2dx≤∫
Ω

|∂xjP(t,x)|2dx, j=1, . . . ,d, ∀t∈ (0,Tσ3 ],

for any Ω′�Ω and any h �=0 such that dist(Ω′,∂Ω)> |h|. Hence x∈Ω �→χσ3
(P(t,x))∈

Rd×d is weakly differentiable on Ω for all t∈ (0,Tσ3 ], with ∂xjχσ3(P(t, ·))∈L2(Ω;Rd×d)
for all j∈{1, . . . ,d} and all t∈ (0,Tσ3 ]; furthermore,

ess.supt∈(0,Tσ3
]

∫
Ω

|∂xj
(χσ3

(P(t,x)))|2dx≤ ess.supt∈(0,Tσ3 ]

∫
Ω

|∂xj
P(t,x)|2dx. (C.1)

Now,

ess.supt∈(0,Tσ3
]

∫
Ω

|χσ3
(P(t,x))−1|2dx=ess.supt∈(0,Tσ3

]

∫
Ω

|G′
σ3
(P(t,x))|2dx≤ |Ω|d

σ2
3

,

and, similarly, for any j∈{1, . . . ,d},

ess.supt∈(0,Tσ3
]

∫
Ω

|∂xj
(χσ3

(P(t,x))−1)|2dx

=ess.supt∈(0,Tσ3
]

∫
Ω

|(χσ3(P(t,x))
−1)(∂xj (χσ3(P(t,x))))(χσ3(P(t,x))

−1)|2dx

≤ess.supt∈(0,Tσ3 ]

∫
Ω

|χσ3
(P(t,x))−1|2 |∂xj

(χσ3
(P(t,x)))|2 |χσ3

(P(t,x))−1|2dx

≤ d2

σ4
3

ess.supt∈(0,Tσ3
]

∫
Ω

|∂xj
(χσ3

(P(t,x)))|2dx,

whereby, thanks to the inequality (C.1),

ess.supt∈(0,Tσ3
]

∫
Ω

|∂xj
(χσ3

(P(t,x))−1)|2dx≤ d2

σ4
3

ess.supt∈(0,Tσ3
]

∫
Ω

|∂xj
P(t,x)|2dx.

Thus we have shown that χσ3
(P)−1∈L∞(0,Tσ3

;W 1,2(Ω;Rd×d)), as has been asserted
above.

As P∈C([0,Tσ3
];W 1,2(Ω;Rd×d)), with ΔxP∈L2(0,Tσ3

;L2(Ω;Rd×d)), satisfies a ho-
mogeneous Neumann boundary condition on ∂Ω, and, as was shown above, χσ3

(P)−1∈
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L∞(0,Tσ3 ;W
1,2(Ω;Rd×d)), we can apply Corollary 2.6 in Ch.1 of [24] to integrate by

parts:∫
Ω

ΔxP :χσ3(P)
−1dx=−

d∑
j=1

∫
Ω

∂xjP :∂xj (χσ3(P)
−1)dx=−

∫
Ω

∇xP ::∇x(χσ3(P)
−1)dx,

a.e. on (0,Tσ3
], thus proving the equality stated in Lemma 7.1.

Next we will show that, for any j∈{1, . . . ,d}, the following inequality holds for a.e.
t∈ (0,Tσ3

]:

−
∫
Ω

∂xj
P(t,x) :∂xj

(χσ3
(P(t,x))−1)dx≥ 1

d

∫
Ω

∣∣∂xj
tr(logχσ3

(P(t,x)))
∣∣2 dx. (C.2)

As χσ3
is nondecreasing and globally Lipschitz continuous with Lipschitz constant equal

to 1, it follows that

−(a−b)

(
1

χσ3
(a)
− 1

χσ3
(b)

)
≥−(χσ3

(a)−χσ3
(b))

(
1

χσ3
(a)
− 1

χσ3
(b)

)
,

{
∀a,b∈R,
∀σ3∈R>0.

In conjunction with the inequality (A.1), with a and b there replaced by χσ3
(a) and

χσ3
(b), respectively, this then yields that

−(a−b)

(
1

χσ3
(a)
− 1

χσ3
(b)

)
≥ (logχσ3

(a)− logχσ3(b))
2 ∀a,b∈R, ∀σ3∈R>0. (C.3)

By an identical argument to the one above that resulted in the inequality (A.8), we
then have, for all symmetric A,B∈Rd×d, that

|tr(logχσ3
(A))−tr(logχσ3

(B))|2≤−dtr
(
(A−B)

(
χσ3

(A)−1−χσ3
(B)−1

))
. (C.4)

Let, again, ej denote the unit vector pointing in the positive Oxj direction, j=1, . . . ,d.
Thus, for any Ω′�Ω and any h �=0 such that 0< |h|<dist(Ω′,∂Ω), and any j∈{1, . . . ,d},
we deduce from the inequality (C.4) that, for all t∈ (0,Tσ3

],

1

d

∫
Ω′

∣∣∣∣ tr(logχσ3
(P(t,x+hej)))−tr(logχσ3

(P(t,x)))

h

∣∣∣∣2dx
≤−

∫
Ω′
tr

(
P(t,x+hej)−P(t,x)

h

χσ3
(P(t,x+hej))

−1−χσ3
(P(t,x))−1

h

)
dx. (C.5)

By the Cauchy–Schwarz inequality, the right-hand side of the inequality (C.5) can be
bounded, for each t∈ (0,Tσ3

], as follows:

0≤−
∫
Ω′
tr

(
P(t,x+hej)−P(t,x)

h

χσ3
(P(t,x+hej))

−1−χσ3
(P(t,x))−1

h

)
dx

≤ ess.supt∈(0,Tσ3 ]

∥∥∥∥P(t, ·+hej)−P(t, ·)
h

∥∥∥∥
L2(Ω′)

×ess.supt∈(0,Tσ3
]

∥∥∥∥χσ3
(P(t, ·+hej))

−1−χσ3
(P(t, ·))−1

h

∥∥∥∥
L2(Ω′)

≤ ess.supt∈(0,Tσ3
]‖∂xj

P(t, ·)‖L2(Ω) ess.supt∈(0,Tσ3
]‖∂xj

(χσ3
(P(t, ·))−1)‖L2(Ω).
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Thus we deduce from the inequality (C.5) that ∂xj tr(logχσ3(P(t, ·))∈L2(Ω;Rd×d), for
all j∈{1, . . . ,d} and all t∈ (0,Tσ3 ], and by letting h→0,

1

d
‖∂xj

tr(logχσ3
(P(t, ·)))‖2L2(Ω)

=
1

d
lim
h→0

∫
Ωh,j

∣∣∣∣ tr(logχσ3
(P(t,x+hej)))−tr(logχσ3

(P(t,x)))

h

∣∣∣∣2dx
≤− lim

h→0

∫
Ωh,j

tr

(
P(x+hej)−P(x)

h

χσ3
(P(x+hej))

−1−χσ3
(P(x))−1

h

)
dx, (C.6)

for all t∈ (0,Tσ3 ], where Ωh,j :={x∈Ω : x+hej ∈Ω}, j=1, . . . ,d. The limit of the se-
quence of integrals appearing in the second line of the inequality (C.6) exists, possibly
upon extraction of a subsequence, thanks to the boundedness of the sequence. Hence,
for all t∈ (0,Tσ3

], we have

1

d
‖∂xj

tr(logχσ3
(P(t, ·)))‖2L2(Ω)

≤− lim
h→0

∫
Ω

χΩh,j
(x)

P(t,x+hej)−P(x)

h
:
χσ3

(P(t,x+hej))
−1−χσ3

(P(t,x))−1

h
dx, (C.7)

for j=1, . . . ,d. Here χΩh,j
denotes the characteristic function of the set Ωh,j (not

to be confused with the cut-off function χσ3
). As P∈C([0,Tσ3

];W 1,2(Ω;Rd×d)) and
χσ3

(P)−1∈L∞(0,Tσ3
;W 1,2(Ω;Rd×d)), it follows that, as h→0,

P(t, ·+hej)−P(t, ·)
h

→∂xj
P(t, ·) weakly in L2(Ω;Rd×d),

for j=1, . . . ,d, and for a.e. t∈ (0,Tσ3
], and

χσ3
(P(t, ·+hej))

−1−χσ3
(P(t, ·))−1

h
→∂xj

χσ3
(P(t, ·))−1weakly in L2(Ω;Rd×d),

for j=1, . . . ,d, and for a.e. t∈ (0,Tσ3 ].
Furthermore, since ΔxP(t, ·)∈L2(Ω;Rd×d) for a.e. t∈ (0,Tσ3

], P satisfies a homoge-
neous Neumann boundary condition on ∂Ω, and Ω is a C2,β domain, with β∈ (0,1), it
follows by elliptic regularity theory (cf. Lemma 4.27 in [43]) that P(t, ·)∈W 2,2(Ω;Rd×d)
for a.e. t∈ (0,Tσ3

]. Hence,

∂xi
P(t, ·+hej)−∂xi

P(t, ·)
h

→∂xi∂xjP(t, ·) weakly in L2(Ω;Rd×d),

for i,j=1, . . . ,d, and for a.e. t∈ (0,Tσ3
]. Consequently,

P(t, ·+hej)−P(t, ·)
h

→∂xjP(t, ·) weakly in W 1,2(Ω;Rd×d),

for j=1, . . . ,d, and for a.e. t∈ (0,Tσ3
], and therefore

P(t, ·+hej)−P(t, ·)
h

→∂xjP(t, ·) strongly in Lr(Ω;Rd×d),

for j=1, . . . ,d, and for a.e. t∈ (0,Tσ3
], where r∈ [1,∞) when d=2 and r∈ [1,6) when

d=3; also, χΩh,j
→1, strongly in Ls(Ω), as h→0, for all s∈ [1,∞). Thus we deduce,

with r=s=4, that

χΩh,j

P(t, ·+hej)−P(t, ·)
h

→∂xj
P(t, ·) strongly in L2(Ω;Rd×d),
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for j=1, . . . ,d, and for a.e. t∈ (0,Tσ3 ], as h→0. Hence, as h→0,

χΩh,j
(·) P(t, ·+hej)−P(t, ·)

h
:
χσ3

(P(t, ·+hej))
−1−χσ3

(P(t, ·))−1

h

→ (∂xj
P) : (∂xj

χσ3
(P(t, ·))−1) weakly in L1(Ω), j=1, . . . ,d, for a.e. t∈ (0,Tσ3

].

Hence, by passing to the limit in the inequality (C.5), we have that

1

d
‖∂xj tr(logχσ3(P(t, ·)))‖2L2(Ω)≤−

∫
Ω

(∂xjP(t,x)) : (∂xjχσ3(P(t,x))
−1)dx,

for j=1, . . . ,d, and for a.e. t∈ (0,Tσ3
]. Finally, by summing over j=1, . . . ,d, we deduce

that

1

d
‖∇xtr(logχσ3

(P(t, ·)))‖2L2(Ω)≤−
∫
Ω

∇xP(t,x) ::∇xχσ3
(P(t,x))−1dx

for a.e. t∈ (0,Tσ3
]. That completes the proof of Lemma 7.1.
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