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LAYER-AVERAGED EULER AND NAVIER–STOKES EQUATIONS∗

M.-O. BRISTEAU† , C. GUICHARD‡ , B. DI MARTINO§ , AND J. SAINTE-MARIE¶

Abstract. In this paper we propose a strategy to approximate incompressible hydrostatic free
surface Euler and Navier–Stokes models. The main advantage of the proposed models is that the water
depth is a dynamical variable of the system and hence the model is formulated over a fixed domain.
The proposed strategy extends previous works approximating the Euler and Navier–Stokes systems
using a multilayer description. Here, the needed closure relations are obtained using an energy-based
optimality criterion instead of an asymptotic expansion. Moreover, the layer-averaged description is
successfully applied to the Navier–Stokes system with a general form of the Cauchy stress tensor.
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1. Introduction
Due to computational issues associated with the free surface Navier–Stokes or Eu-

ler equations, the simulations of geophysical flows are often carried out with shal-
low water type models of reduced complexity. Indeed, for vertically averaged models
such as the Saint-Venant system [7], efficient and robust numerical techniques (relax-
ation schemes [9], kinetic schemes [2, 25], . . . ) are available and avoid to deal with
moving meshes. In order to describe and simulate complex flows where the velocity
field cannot be approximated by its vertical mean, multilayer models have been devel-
oped [1,3,4,8,12,13]. Unfortunately these models are physically relevant for non-miscible
fluids. In [5,6,16,26], some authors have proposed a simpler and more general formula-
tion for multilayer model with mass exchanges between the layers. The obtained model
has the form of a conservation law with source terms, its hyperbolicity remains an
open question. Notice that in [5] the hydrostatic Navier–Stokes equations with variable
density is tackled and in [26] the approximation of the non-hydrostatic terms in the
multilayer context is studied. With respect to commonly used Navier–Stokes solvers,
the appealing features of the proposed multilayer approach are the easy handling of
the free surface, which does not require moving meshes (e.g. [14]), and the possibility
to take advantage of robust and accurate numerical techniques developed in extensive
amount for classical one-layer Saint-Venant equations. Recently, the multilayer model
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Beauvais, F-60280 Margny-Lès-Compiègne, France (Jacques.Sainte-Marie@inria.fr).

1221



1222 LAYER-AVERAGED EULER AND NAVIER–STOKES EQUATIONS

developed in [16] has been adapted in [15] in the case of the μ(I)-rheology through an
asymptotic analysis.

The objective of the paper is twofold. First we want to present another derivation
of the models proposed in [5, 6, 26], no more based on an asymptotic expansion but
on an energy-based optimality criterion. Such a strategy is widely used in the kinetic
framework to obtain kinetic descriptions, e.g. of conservations laws [20,25]. Second, we
intend to obtain a multilayer formulation of the Navier–Stokes system with a rheology
more complex than the one arising when considering Newtonian fluids.

The paper is organized as follows. In Section 2 we recall the incompressible hydro-
static Navier–Stokes equations with free surface with the associated boundary condi-
tions. In Section 3 we detail the layer averaging process for the Euler system and the
required closure relations.The proposed layer-averaged Euler system is given in Section 4
and its extension to the Navier–Stokes system with a general rheology is presented in
Section 5.

2. The Navier–Stokes system
We consider the two-dimensional hydrostatic Navier–Stokes system [21] describing

a free surface gravitational flow moving over a bottom topography zb(x). For free
surface flows, the hydrostatic assumption consists in neglecting the vertical acceleration,
see [10, 18,23] for justifications of the obtained models.

2.1. The hydrostatic Navier–Stokes system. We denote with x and z the
horizontal and vertical directions, respectively. The system has the form,

∂u

∂x
+

∂w

∂z
=0, (2.1)

∂u

∂t
+

∂u2

∂x
+

∂uw

∂z
+

∂p

∂x
=

∂Σxx

∂x
+

∂Σxz

∂z
, (2.2)

∂p

∂z
=−g+ ∂Σzx

∂x
+

∂Σzz

∂z
, (2.3)

and we consider solutions of the equations for,

t>t0, x∈R, zb(x)≤ z≤η(x,t),

where η(x,t) represents the free surface elevation, u=(u,w)T the velocity vector, p
the fluid pressure and g the gravity acceleration. The water depth is H=η−zb, see
Figure 2.1. The Cauchy stress tensor ΣT is defined by ΣT =−pId+Σ with,

Σ=

(
Σxx Σxz

Σzx Σzz

)
,

and Σ represents the fluid rheology. As in Ref. [17], we introduce the indicator function
for the fluid region,

ϕ(x,z,t)=

{
1 for (x,z)∈Ω={(x,z) |zb≤ z≤η},
0 otherwise.

(2.4)

The fluid region is advected by the flow, which can be expressed, thanks to the incom-
pressibility condition, by the relation,

∂ϕ

∂t
+

∂ϕu

∂x
+

∂ϕw

∂z
=0. (2.5)
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zb(x)

x
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Free surface
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0
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w(x,z,t)

η(x,t)

Fig. 2.1. Flow domain with water height H(x,t), free surface η(x,t) and bottom zb(x).

The solution ϕ of this equation takes the values 0 and 1 only but it needs not be of
the form (2.4) at all times. The analysis below is limited to the conditions where this
form is preserved. For a more complete presentation of the Navier–Stokes system and
its closure, the reader can refer to [21].

Remark 2.1. Notice that in the fluid domain, Equation (2.5) reduces to the divergence
free condition whereas across the upper and lower boundaries it gives the kinematic
boundary conditions defined in the following.

2.2. Boundary conditions. The system (2.1)-(2.3) is completed with boundary
conditions. We do not consider here lateral boundary conditions that can be usual inflow
and outflow boundary conditions. The outward unit normal vector to the free surface
ns and the upward unit normal vector to the bottom nb are given by,

ns=
1√

1+
(
∂η
∂x

)2
(
− ∂η

∂x
1

)
, nb=

1√
1+

(
∂zb
∂x

)2
(
−∂zb

∂x
1

)
≡
(
−sb
cb

)
,

respectively. We use here the same definition for sb(x) and cb(x) as in [9], cb(x)>0 is
the cosine of the angle between nb and the vertical.

2.2.1. Free surface conditions. At the free surface we have the kinematic
boundary condition,

∂η

∂t
+us

∂η

∂x
−ws=0, (2.6)

where the subscript s indicates the value of the considered quantity at the free surface.
Assuming negligible the air viscosity, the continuity of stresses at the free boundary
imposes,

ΣTns=−pans, (2.7)

where pa=pa(x,t) is a given function corresponding to the atmospheric pressure. Within
this paper, we consider pa=0.
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2.2.2. Bottom conditions. The kinematic boundary condition at the bottom
consists in a classical no-penetration condition,

ub ·nb=0, or ub
∂zb
∂x
−wb=0. (2.8)

For the stresses at the bottom we consider a wall law under the form,

ΣTnb−(nb ·ΣTnb)nb=κub, (2.9)

and for tb=
t(cb,sb), using condition (2.8) we have,

tb ·ΣTnb=
κ

cb
ub. (2.10)

If κ(ub,H) is constant then we recover a Navier friction condition as in [17]. Introducing
a laminar friction kl and a turbulent friction kt, we use the expression,

κ(ub,H)=kl+ktH|ub|,

corresponding to the boundary condition used in [22]. Another form of κ(ub,H) is used
in [9], and for other wall laws the reader can also refer to [24]. Due to thermo-mechanical
considerations, in the sequel we will suppose κ(ub,H)≥0, and κ(ub,H) will be often
simply denoted by κ.

2.3. Other writing. For reasons that will appear later, we rewrite Equa-
tion (2.1)-(2.3) under the form,

∂u

∂x
+

∂w

∂z
=0, (2.11)

∂u

∂t
+

∂u2

∂x
+

∂uw

∂z
+g

∂η

∂x
=

∂Σxx

∂x
+

∂Σxz

∂z
+

∂2

∂x2

∫ η

z

Σzxdz1−
∂Σzz

∂x
, (2.12)

where Equation (2.12) has been obtained as follows. Integrating Equation (2.3) from z
to η and taking into account the boundary condition (2.7) gives,

p=g(η−z)− ∂

∂x

∫ η

z

Σzxdz1+Σzz. (2.13)

Inserting the previous expression for p in Equation (2.2) gives Equation (2.12).

2.4. Energy balance.
Lemma 2.1. We recall the fundamental stability property related to the fact that the
hydrostatic Navier–Stokes system admits an energy that can be written under the form

∂

∂t

∫ η

zb

E dz+
∂

∂x

∫ η

zb

[
u
(
E+g(η−z)−(Σxx−Σzz)−

∂

∂x

∫ η

z

Σzxdz1

)
−wΣzx

]
dz

=−
∫ η

zb

(∂u
∂x

(Σxx−Σzz)+
∂u

∂z
Σxz+

∂w

∂x
Σzx

)
dz− κ

c3b
u2
b , (2.14)

with

E=
u2

2
+gz. (2.15)
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Proof. The way the energy balance (2.14) is obtained is classical. Considering
smooth solutions, first we multiply Equation (2.2) by u and Equation (2.3) by w then we
sum the two obtained equations. After simple manipulations and using the kinematic
and dynamic boundary conditions (2.6)-(2.9), we obtain the relation,

∂

∂t

∫ η

zb

E dz+
∂

∂x

∫ η

zb

[
u
(
E+p

)
−uΣxx−wΣzx

]
dz

=−
∫ η

zb

Σxx
∂u

∂x
dz−

∫ η

zb

Σxz
∂u

∂z
dz−

∫ η

zb

∂w

∂x
Σzxdz−

∫ η

zb

Σzz
∂w

∂z
dz− κ

c3b
u2
b .

By using Equation (2.1) and replacing p by its expression given by Equation (2.13) in
the previous relation gives the result.

3. Depth-averaged solutions of the Euler system
In this section, neglecting the viscous effects in Equations (2.1)-(2.3), we consider

the free surface hydrostatic Euler equations written in a conservative form,

∂ϕ

∂t
+

∂ϕu

∂x
+

∂ϕw

∂z
=0, (3.1)

∂ϕu

∂t
+

∂ϕu2

∂x
+

∂ϕuw

∂z
+

∂p

∂x
=0, (3.2)

∂p

∂z
=−ϕg, (3.3)

with ϕ defined by (2.4). This system is completed with the boundary conditions (2.6),
(2.8) and (2.7) that reduces to,

ps=0. (3.4)

From Equations (3.3), (3.4), we get,

p=ϕg(η−z). (3.5)

The energy balance associated with the hydrostatic Euler system is given by,

∂

∂t

∫ η

zb

E dz+
∂

∂x

∫ η

zb

u
(
E+p

)
dz=0, (3.6)

with E defined by (2.15).

3.1. Vertical discretization of the fluid domain. The interval [zb,η] is
divided into N layers {Lα}α∈{1,...,N} of thickness lαH(x,t) where each layer Lα corre-
sponds to the points satisfying z∈Lα(x,t)=]zα−1/2,zα+1/2[ with,{

zα+1/2(x,t)= zb(x)+
∑α

j=1 ljH(x,t),

hα(x,t)=zα+1/2(x,t)−zα−1/2(x,t)= lαH(x,t), α∈{1, . . . ,N}, (3.7)

with lj >0,
∑N

j=1 lj =1, see Figure 3.1. We also define,

zα=
zα+1/2+zα−1/2

2
= zα−1/2+

hα

2
, α={1, . . . ,N}. (3.8)

We finally introduced the distance between the midpoints of the layers,

hα+1/2= zα+1−zα=
hα+1+hα

2
, α={1, . . . ,N−1}. (3.9)
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u1(x,t)

x

z

η(x,t)

Free surface

zb(x)

h3(x,t)

h2(x,t)

h1(x,t)

H(x,t)

u4(x,t)

u2(x,t)

0
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h4(x,t)

z1/2= zb(x,t)

Bottom

u3(x,t)

Fig. 3.1. Notations for the multilayer approach.

3.2. Layer-averaging of the Euler solution. In this section we take the
vertical average of the Euler system and study the necessary closure relations for this
system. Let us denote 〈f〉α the integral along the vertical axis in the layer α of the
quantity f =f(z) i.e.

〈f〉α(x,t)=
∫
R

f(x,z,t)1z∈Lα(x,t)dz, (3.10)

where 1z∈Lα(x,t)(z) is the characteristic function of the layer α. The goal is to propose
a new derivation of the so-called multilayer model with mass exchanges [5, 6] using the
entropy-based moment closures proposed by Levermore in [19] for kinetic equations.
This method has already been successfully used by some of the authors in [11]. Taking
into account the kinematic boundary conditions (2.6) and (2.8), the layer-averaged form
of the Euler system (3.1)–(3.3) writes,

∂

∂t
〈ϕ〉α+

∂

∂x
〈ϕu〉α=Gα+1/2−Gα−1/2, (3.11)

∂

∂t
〈ϕu〉α+

∂

∂x
〈ϕu2〉α+〈

∂p

∂x
〉α=uα+1/2Gα+1/2−uα−1/2Gα−1/2, (3.12)

〈∂p
∂z
〉α=−〈ϕg〉α, (3.13)

∂

∂t
〈ϕz〉α+

∂

∂x
〈ϕzu〉α= 〈ϕw〉α+zα+1/2Gα+1/2−zα−1/2Gα−1/2, (3.14)

for α∈{1, . . . ,N} and where p is defined by Equation (3.5). The quantity Gα+1/2 is
defined by,

Gα+1/2=ϕα+1/2

(
∂zα+1/2

∂t
+uα+1/2

∂zα+1/2

∂x
−wα+1/2

)
, (3.15)

and corresponds to the mass flux leaving/entering the layer α through the interface
zα+1/2. The value of ϕα+1/2 is equal to 1 for every α. Notice that the kinematic
boundary conditions (2.6) and (2.8) can be written,

G1/2=0, GN+1/2=0. (3.16)
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These equations just express that there is no loss/supply of mass through the bottom
and the free surface. Taking into account the condition (3.16), the sum for j=1, . . .α of
the relations (3.11) gives,

Gα+1/2=
∂

∂t

α∑
j=1

〈ϕ〉j+
∂

∂x

α∑
j=1

〈ϕu〉j . (3.17)

The quantities,

uα+1/2=u(x,zα+1/2,t), (3.18)

corresponding to the velocities values on the interfaces will be defined later. Notice
that when using the expression (3.17), the velocities wα+1/2 no more appear in Equa-
tions (3.11)-(3.14) and thus need not be defined. Equation (3.14) is a rewriting of,

〈
∫ z

zα−1/2

(
∂ϕ

∂t
+

∂ϕu

∂x
+

∂ϕw

∂z

)
dz〉α= 〈z

(
∂ϕ

∂t
+

∂ϕu

∂x
+

∂ϕw

∂z

)
〉α=0,

using again the kinematic boundary conditions. Notice also that because of the hy-
drostatic assumption, Equation (3.14) is not a kinematic constraint over the velocity
field but the definition of the vertical velocity 〈ϕw〉α. The form of Equation (3.14) is
useful to derive energy balances but other equivalent writings can be used, see para-
graph 4.2. Simple manipulations allow to obtain the system (3.11)-(3.15) from the Euler
system (3.1)-(3.3) with (2.6) and (2.8) e.g. for Equation (3.11), starting from (3.1) we
write,

〈∂ϕ
∂t

+
∂ϕu

∂x
+

∂ϕw

∂z
〉α=0,

and using the Leibniz rule to permute the derivative and the integral directly
gives (3.11). Likewise, the Leibniz rule written for the pressure p gives,

〈∂p
∂x
〉α=

∫ zα+1/2

zα−1/2

∂p

∂x
dz=

∂

∂x
〈p〉α−pα+1/2

∂zα+1/2

∂x
+pα−1/2

∂zα−1/2

∂x
,

and from (3.13), (3.4), we get,

pα+1/2=p(x,zα+1/2,t)=

N∑
j=α+1

〈ϕg〉j . (3.19)

From Equation (3.5), we also have,

〈∂p
∂x
〉α=

∫ zα+1/2

zα−1/2

g
∂

∂x

(
ϕ(η−z)

)
dz=

∂

∂x

(g
2
〈ϕ〉αH

)
+g〈ϕ〉α

∂zb
∂x

.

Relation (3.5) also leads to,

p=pα+1/2+gϕ(zα+1/2−z)=pα−1/2+gϕ(zα−1/2−z),

and hence,

〈p〉α= 〈ϕ〉α
pα+1/2+pα−1/2

2
= 〈ϕ〉αpα+1/2+

g

2
〈ϕ〉2α. (3.20)
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Therefore, the system (3.11)-(3.15) can be rewritten under the form,

∂

∂t
〈ϕ〉α+

∂

∂x
〈ϕu〉α=Gα+1/2−Gα−1/2, (3.21)

∂

∂t
〈ϕu〉α+

∂

∂x

(
〈ϕu2〉α+〈p〉α

)
=uα+1/2Gα+1/2−uα−1/2Gα−1/2+pα+1/2

∂zα+1/2

∂x
−pα−1/2

∂zα−1/2

∂x
, (3.22)

∂

∂t
〈ϕz〉α+

∂

∂x
〈ϕzu〉α= 〈ϕw〉α+zα+1/2Gα+1/2−zα−1/2Gα−1/2, (3.23)

with (3.19), (3.20) and completed with relations (3.17).
Considering smooth solutions, multiplying (3.2) by u and integrating it over the

layer α gives, after simple manipulations, the energy balance,

∂

∂t
〈E〉α+

∂

∂x
〈u(E+p)〉α=

(
u2
α+1/2

2
+pα+1/2+gzα+1/2

)
Gα+1/2

−
(
u2
α−1/2

2
+pα−1/2+gzα−1/2

)
Gα−1/2−pα+1/2

∂zα+1/2

∂t
+pα−1/2

∂zα−1/2

∂t
, (3.24)

where E=E(z;u) is defined by (2.15). The sum for α=1, . . . ,N of the relations (3.24)
gives,

∂

∂t

N∑
α=1

〈E〉α+
∂

∂x

N∑
α=1

〈u(E+p)〉α=0.

Therefore the system (3.21)-(3.23) completed (3.17), (3.19) and (3.20) has three equa-
tions with three unknowns, namely 〈ϕ〉α, 〈ϕu〉α and 〈ϕw〉α and closure relations are
needed to define 〈ϕu2〉α, 〈ϕzu〉α and u(x,zα+1/2,t).

3.3. Closure relations. If u′
α is defined as the deviation of u with respect to

its layer-average over the layer α, then it comes for z∈Lα,

ϕu=
〈ϕu〉α
〈ϕ〉α

+ϕu′
α, (3.25)

with 〈ϕu′
α〉=0. Following the moment closure proposed by Levermore [19], we study

the minimization problem,

min
u′α
〈{ϕE(z;u)}〉α. (3.26)

The energy E(z;u) being quadratic with respect to u we notice that,

〈ϕu2〉α=
〈ϕu〉2α
〈ϕ〉α

+
2〈ϕuu′〉α
〈ϕ〉α

+〈ϕ(u′
α)

2〉α,

=
〈ϕu〉2α
〈ϕ〉α

+〈ϕ(u′
α)

2〉α,

≥ 〈ϕu〉
2
α

〈ϕ〉α
. (3.27)
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Equation (3.27) means that the solution of the minimization problem (3.26) is given by

〈ϕE
(
z;
〈ϕu〉α
〈ϕ〉α

)
〉α=min

u′α
〈{ϕE(z;u)}〉α, (3.28)

and

〈ϕE
(
z;
〈ϕu〉α
〈ϕ〉α

)
〉α=

〈ϕu〉2α
2〈ϕ〉α

+g〈ϕz〉α. (3.29)

Since the only choice leading to an equality in relation (3.27) corresponds to,

ϕu=
〈ϕu〉α
〈ϕ〉α

, for z∈Lα, (3.30)

this allows to precise the closure relation associated to a minimal energy, namely,

〈ϕu2〉α=
〈ϕu〉2α
〈ϕ〉α

, (3.31)

〈ϕzu〉α= 〈ϕz〉α
〈ϕu〉α
〈ϕ〉α

. (3.32)

It remains to define the quantities uα+1/2. We adopt the definition,

uα+1/2=

{ 〈ϕu〉α
〈ϕ〉α if Gα+1/2≤0,
〈ϕu〉α+1

〈ϕ〉α+1
if Gα+1/2>0,

(3.33)

corresponding to an upwind definition, depending on the mass exchange sign between
the layers α and α+1. This choice is justified by the form of energy balance in the
following proposition.

Proposition 3.1. The solutions of the Euler system (3.1)-(3.3) with (2.6), (2.8)
satisfying the closure relations (3.31)-(3.33) are also solutions of the system,

∂

∂t
〈ϕ〉α+

∂

∂x
〈ϕu〉α=Gα+1/2−Gα−1/2, (3.34)

∂

∂t
〈ϕu〉α+

∂

∂x

( 〈ϕu〉2α
〈ϕ〉α

+〈p〉α
)

=uα+1/2Gα+1/2−uα−1/2Gα−1/2+pα+1/2

∂zα+1/2

∂x
−pα−1/2

∂zα−1/2

∂x
, (3.35)

∂

∂t
〈ϕz〉α+

∂

∂x

(
〈ϕz〉α

〈ϕu〉α
〈ϕ〉α

)
= 〈ϕw〉α+zα+1/2Gα+1/2−zα−1/2Gα−1/2, (3.36)

completed with relation (3.17). The quantities 〈p〉α and pα+1/2 are defined by (3.19)
and (3.20). This system is a layer-averaged approximation of the Euler system and
admits – for smooth solutions – an energy equality under the form

∂

∂t

N∑
α=1

〈E
(
z;
〈ϕu〉α
〈ϕ〉α

)
〉α+

∂

∂x

N∑
α=1

〈 〈ϕu〉α〈ϕ〉α

(
E

(
z;
〈ϕu〉α
〈ϕ〉α

)
+〈p〉α

)
〉α

=−1

2

N∑
α=1

( 〈ϕu〉α+1

〈ϕ〉α+1
− 〈ϕu〉α〈ϕ〉α

)2

|Gα+1/2|. (3.37)
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A detailled proof of this proposition in given in Appendix A.1.

Remark 3.1. Instead of definition (3.33), we can use a more general definition on the
form

uα+1/2=

(
1

2
+Ψ(Gα+1/2)

) 〈ϕu〉α
〈ϕ〉α

+

(
1

2
−Ψ(Gα+1/2)

) 〈ϕu〉α+1

〈ϕ〉α+1
, (3.38)

for a given function Ψ such that xΨ(x)≤0. For example, with

Ψ(x)=

⎧⎨⎩
1
2 if x≤0,

− 1
2 if x>0,

(3.39)

we obtain (3.33) and for Ψ(x)=0∀x, we obtain

uα+1/2=
1

2

( 〈ϕu〉α+1

〈ϕ〉α+1
+
〈ϕu〉α
〈ϕ〉α

)
. (3.40)

With the definition (3.38) we obtain also a negative R.H.S. in (3.37) (and a vanishing
term with (3.40)). But another choice than (3.39) does not allow to obtain an energy
balance in the variable density case and does not give a maximum principle, at the
discrete level, see [5]. Notice that any other choice than (3.38) lead to a non-negative
R.H.S. in Equation (3.37).

Remark 3.2. It is important to notice that whereas the solution H,u,w,p of the
Euler system (3.1)-(3.4), (2.6), (2.8) also satisfies the system (3.21)-(3.23), only the
solutions H,u,w,p of the Euler system (3.1)-(3.4), (2.6), (2.8) satisfying the closure
relations (3.31)-(3.32), (3.33) are also solutions of the system (3.34)-(3.37). On the
contrary, any solutions 〈ϕ〉α, 〈ϕu〉α, 〈ϕw〉α and 〈p〉α of (3.34)-(3.36) with (3.33) are
also solutions of (3.21)-(3.24).

4. The proposed layer-averaged Euler system

4.1. Formulation. The closure relations (3.31)-(3.32) motivate the definition
of piecewise constant approximation of the variables u and w. Let us consider the space
PN,t
0,H of piecewise constant functions defined by,

PN,t
0,H =

{
1z∈Lα(x,t)(z), α∈{1, . . . ,N}

}
.

Using this formalism, the projection of u and w on PN,t
0,H is a piecewise constant function

defined by,

XN (x,z,{zα},t)=
N∑

α=1

1]zα−1/2,zα+1/2[(z)Xα(x,t), (4.1)

for X ∈ (u,w). In the following, we no more handle variables corresponding to vertical
means of the solution of the Euler equations (3.1)-(3.3) and we adopt notations inherited
from (4.1).

By analogy with (3.34)-(3.36) we consider the following model,

N∑
α=1

∂hα

∂t
+

N∑
α=1

∂(hαuα)

∂x
=0, (4.2)
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∂hαuα

∂t
+

∂

∂x

(
hαu

2
α+hαpα

)
=uα+1/2Gα+1/2−uα−1/2Gα−1/2+

∂zα+1/2

∂x
pα+1/2−

∂zα−1/2

∂x
pα−1/2, (4.3)

∂

∂t

(
z2α+1/2−z2α−1/2

2

)
+

∂

∂x

(
z2α+1/2−z2α−1/2

2
uα

)
=hαwα+zα+1/2Gα+1/2−zα−1/2Gα−1/2, (4.4)

by analogy with (3.17),

Gα+1/2=
∂

∂t

α∑
j=1

hj+
∂

∂x

α∑
j=1

(hjuj) , (4.5)

and we have pα, pα+1/2 given by,

pα=g

⎛⎝hα

2
+

N∑
j=α+1

hj

⎞⎠ and pα+1/2=g

N∑
j=α+1

hj . (4.6)

The definition of uα+1/2 is equivalent to (3.33) i.e.

uα+1/2=

{
uα if Gα+1/2≤0,
uα+1 if Gα+1/2>0.

The smooth solutions of (4.2)-(4.4) satisfy the energy balance,

∂

∂t
Eα+

∂

∂x
(uα (Eα+hαpα))=

(
uα+1/2uα−

u2
α

2
+pα+1/2+gzα+1/2

)
Gα+1/2

−
(
uα−1/2uα−

u2
α

2
+pα−1/2+gzα−1/2

)
Gα−1/2

−pα+1/2

∂zα+1/2

∂t
+pα−1/2

∂zα−1/2

∂t
, (4.7)

with,

Eα=
hαu

2
α

2
+

g

2
(z2α+1/2−z2α−1/2)=hα

(
u2
α

2
+gzα

)
.

Adding the preceding relations for α=1, . . . ,N , we obtain the global equality,

∂

∂t

(
N∑

α=1

Eα

)
+

∂

∂x

(
N∑

α=1

uα (Eα+hαpα)

)
=−

N∑
α=1

1

2
(uα+1/2−uα)

2|Gα+1/2|. (4.8)

Using (4.6), the pressure terms in (4.3) can be rewritten under the form,

∂

∂x
(hαpα)−

∂zα+1/2

∂x
pα+1/2+

∂zα−1/2

∂x
pα−1/2=

∂

∂x

(g
2
Hhα

)
+ghα

∂zb
∂x

. (4.9)
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4.2. The vertical velocity. The Equation (4.4) is a definition of the vertical
velocity wN given by (4.1). The quantities wα are not unknowns of the problem but
only output variables. Indeed, once H and uN have been calculated solving (4.2),
(4.3) with (4.5), the vertical velocities wα can be determined using (4.4). Using simple
manipulations, Equation (4.4) can be rewritten under several forms. In particular, the
following proposition holds.

Proposition 4.1. Let us introduce ŵ= ŵ(x,z,t) defined by

∂uN

∂x
+

∂ŵ

∂z
=0, (4.10)

The quantity ŵ is affine in z and discontinuous at each interface zα+1/2, ŵ can be
written,

ŵ=kα−z
∂uα

∂x
, (4.11)

with kα=kα(x,t) recursively defined by,

k1=
∂(zbu1)

∂x
,

kα+1=kα+
∂

∂x

(
zα+1/2(uα+1−uα)

)
.

Therefore we have, ∫ zα+1/2

zα−1/2

ŵdz=hαwα, (4.12)

meaning the quantities ŵ is a natural and consistent affine extension of the layer-
averaged quantities wα defined by (4.4). Using (4.12), an integration along the layer α
of (4.11) gives,

hαwα=hαkα−
z2α+1/2−z2α−1/2

2

∂uα

∂x
=hα

(
kα−zα

∂uα

∂x

)
, (4.13)

or,

wα=kα−zα
∂uα

∂x
= ŵ(zα). (4.14)

A detailed proof of this proposition in given in Appendix A.2.

Using also (4.9), we are able to rewrite the system (4.2)-(4.4) under the form,

N∑
α=1

∂hα

∂t
+

N∑
α=1

∂(hαuα)

∂x
=0, (4.15)

∂hαuα

∂t
+

∂

∂x

(
hαu

2
α+

g

2
hαH

)
=−ghα

∂zb
∂x

+uα+1/2Gα+1/2−uα−1/2Gα−1/2, (4.16)

wα=−
1

2

∂(hαuα)

∂x
−

α−1∑
j=1

∂(hjuj)

∂x
+uα

∂zα
∂x

. (4.17)
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5. The Navier–Stokes system
Instead of considering the Euler system, we can also depart from the Navier–Stokes

equations to derive a layer-averaged model. The model derivation is similar to what has
been done in Section 3 for the Euler system.

5.1. Layer averaging of the viscous terms. In this paragraph and the both
following, the components of the Cauchy stress tensor Σ are not specified. It remains
to find a layer-averaged formulation for the R.H.S. of Equation (2.12), i.e.

Vα=

∫ zα+1/2

zα−1/2

(
∂Σxx

∂x
+

∂Σxz

∂z
+

∂2

∂x2

∫ η

z

Σzxdz1−
∂Σzz

∂x

)
dz.

We have,

Vα=
∂

∂x

∫ zα+1/2

zα−1/2

(
Σxx+

∂

∂x

∫ η

z

Σzxdz1−Σzz

)
dz

+Σxz|α+1/2−
∂zα+1/2

∂x

(
Σxx+

∂

∂x

∫ η

z

Σzxdz1−Σzz

)∣∣∣∣
zα+1/2

−Σxz|α−1/2+
∂zα−1/2

∂x

(
Σxx+

∂

∂x

∫ η

z

Σzxdz1−Σzz

)∣∣∣∣
zα−1/2

.

In the expression Vα we have the term,

∂

∂x

∫ zα+1/2

zα−1/2

(
∂

∂x

∫ η

z

Σzxdz1

)
dz

=
∂

∂x

(
∂

∂x

∫ zα+1/2

zα−1/2

∫ η

z

Σzxdz1dz−
∂zα+1/2

∂x

∫ η

zα+1/2

Σzxdz+
∂zα−1/2

∂x

∫ η

zα−1/2

Σzxdz

)
,

=
∂

∂x

(
∂

∂x

∫ zα+1/2

zα−1/2

zΣzxdz+zα+1/2
∂

∂x

∫ η

zα+1/2

Σzxdz−zα−1/2
∂

∂x

∫ η

zα−1/2

Σzxdz

)
,

and,

∂zα+1/2

∂x

(
∂

∂x

∫ η

z

Σzxdz1

)∣∣∣∣
zα+1/2

=
∂zα+1/2

∂x

∂

∂x

∫ η

zα+1/2

Σzxdz+

(
∂zα+1/2

∂x

)2

Σzx|α+1/2
,

∂zα−1/2

∂x

(
∂

∂x

∫ η

z

Σzxdz1

)∣∣∣∣
zα−1/2

=
∂zα−1/2

∂x

∂

∂x

∫ η

zα−1/2

Σzxdz+

(
∂zα−1/2

∂x

)2

Σzx|α−1/2
.

5.2. Definitions and closure relation. The expression of the viscous terms
generally involving second order derivatives, their discretization requires quadrature
formula that are not inherited from the layer-averaged discretization. In particular, at
this step of the paper, we adopt the following notations,

Σab|α+1/2
≈Σab,α+1/2, (5.1)

and,

Σab|α ≈Σab,α, (5.2)



1234 LAYER-AVERAGED EULER AND NAVIER–STOKES EQUATIONS

and the following definitions, ∫ zα+1/2

zα−1/2

Σabdz≈hαΣab,α, (5.3)

with (a,b)∈ (x,z)2. We can notice that, in the case of a Newtonian fluid, the dissipation
is a quadratic expression of Σab, see (5.23) below. Hence, by using the same arguments
as the ones leading to (3.30) for minimizing the energy, we can show that (5.3) is the
only choice to minimize this dissipation. This choice allows to define the approximation
of the terms having the form, ∫ zα+1/2

zα−1/2

zΣabdz,

by the following closure relation, which mimics (3.32),∫ zα+1/2

zα−1/2

zΣabdz ≈ Σab,α

∫ zα+1/2

zα−1/2

zdz =
z2α+1/2−z2α−1/2

2
Σab,α = hαzαΣab,α. (5.4)

For each interface zα+1/2 we introduce the unit normal vector nα+1/2 and the unit
tangent vector tα+1/2 given by,

nα+1/2=
1√

1+
(∂zα+1/2

∂x

)2
(
−∂zα+1/2

∂x
1

)
≡
(
−sα+1/2

cα+1/2

)
, tα+1/2=

(
cα+1/2

sα+1/2

)
.

Then, for 0�α�N , we have the following expression,

tα+1/2 ·Σα+1/2nα+1/2=
1

1+
(∂zα+1/2

∂x

)2
(
Σxz,α+1/2

− ∂zα+1/2

∂x

(
Σxx,α+1/2+

∂zα+1/2

∂x
Σzx,α+1/2−Σzz,α+1/2

))
, (5.5)

which can be rewritten as,

tα+1/2 ·Σα+1/2nα+1/2= c2α+1/2σα+1/2, (5.6)

by introducing the following notation,

σα+1/2=Σxz,α+1/2−
∂zα+1/2

∂x

(
Σxx,α+1/2+

∂zα+1/2

∂x
Σzx,α+1/2−Σzz,α+1/2

)
. (5.7)

Remark that, for 0�α�N , the quantity tα+1/2 ·Σα+1/2nα+1/2 represents the tangen-
tial component of the stress tensors at the interface zα+1/2. And for α={0,N}, the
quantities (5.5) coincide with the boundary conditions and hence are given. More pre-
cisely (since c1/2= cb) the Navier friction at bottom gives,

t1/2 ·Σ1/2n1/2=
κ

cb
u1=σ1/2c

2
1/2. (5.8)

Compared to Equation (2.10), velocity in the first layer u1 is used since ub is not a
variable of our system. It is consistent with the convention (5.13) and definition (3.33).
At the surface we have,

tN+1/2 ·ΣN+1/2nN+1/2=σN+1/2c
2
N+1/2=0.
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Remark 5.1. In Equation (5.8) as in section 2 , we use the expression tb ·Σnb to
consider a Navier friction at the bottom since on an impermeable boundary (2.10) is
equivalent to (2.9). For 1<α<N−1, the flow can move across the interface zα+1/2 and
we cannot give a formulation directly comparable to (2.9).

5.3. Layer-averaged Navier–Stokes system. We have the following propo-
sition.

Proposition 5.1. Using formulas (5.3), (5.4) and (5.7), the layer-averaging applied
to the Navier–Stokes system (2.11)-(2.12) completed with the boundary conditions (2.6)-
(2.9) leads to the system,

∂

∂t

N∑
j=1

hj+
∂

∂x

N∑
j=1

hjuj =0, (5.9)

∂

∂t
(hαuα)+

∂

∂x

(
hαu

2
α+

g

2
hαH

)
=−ghα

∂zb
∂x

+uα+1/2Gα+1/2−uα−1/2Gα−1/2

+
∂

∂x

(
hαΣxx,α−hαΣzz,α+

∂

∂x

(
hαzαΣzx,α

))
+zα+1/2

∂2

∂x2

N∑
j=α+1

hjΣzx,j−zα−1/2
∂2

∂x2

N∑
j=α

hjΣzx,j+σα+1/2−σα−1/2, (5.10)

wα=−
1

2

∂(hαuα)

∂x
−

α−1∑
j=1

∂(hjuj)

∂x
+uα

∂zα
∂x

, α=1, . . . ,N, (5.11)

with the exchange terms Gα±1/2 given by (4.5) and the interface terms σα±1/2 given by
(5.7).

For smooth solutions, we obtain the balance,

∂

∂t

(
N∑

α=1

Eα

)
+

∂

∂x

(
N∑

α=1

uα

(
Eα+

g

2
hαH−hα

(
Σxx,α−Σzz,α

)
−
(∂zα
∂x

hαΣzx,α+hα
∂

∂x

(1
2
hαΣzx,α+

N∑
j=α+1

hjΣzx,j

)))
−

N∑
α=1

wαhαΣzx,α

)

=−
N∑

α=1

(
∂uα

∂x
hα (Σxx,α−Σzz,α)

+
(∂wα

∂x
+

∂zα
∂x

∂uα

∂x

)
hαΣzx,α+σα+1/2

(
uα+1−uα

))
− κ

c3b
u2
1, (5.12)

with Eα=
hαu2

α

2 +
g(z2

α+1/2−z2
α−1/2)

2 =hα(
u2
α

2 +gzα).
In (5.12), we use the convention

u0=u1, uN+1=uN . (5.13)

A detailed proof of this proposition in given in Appendix A.3. We make few com-
ments concerning the layer-averaging of the Cauchy stress tensor components.

Remark 5.2. Since the expression of the components of the Cauchy stress tensor are
not specified, we are not able to specify all the terms in Equation (5.12) and we only
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intend to demonstrate that the energy balance (5.12) is consistent with (2.14). The
nonnegativity of the right hand side of (5.12) has then to be verified when specifying
the rheological model (as it is done below in the Newtonian case).

Remark 5.3. After plugging the definition (5.7) of σα+1/2 into (5.12), it appears that
the following terms in the right hand side of (5.12),

−
N∑

α=1

(
∂uα

∂x
hα (Σxx,α−Σzz,α)−

∂zα+1/2

∂x

(
Σxx,α+1/2−Σzz,α+1/2

)(
uα+1−uα

))
,

account for a layer-averaging of,

−
∫ η

zb

∂u

∂x
(Σxx−Σzz)dz,

appearing in the right hand side of Equation (2.14). Likewise, the term,

−
∫ η

zb

(
∂u

∂z
Σxz+

∂w

∂x
Σzx

)
dz, (5.14)

in the right hand side of Equation (2.14) is discretized by,

−
N∑

α=1

(
Σxz,α+1/2

(
uα+1−uα

)
+hαΣzx,α

(
∂wα

∂x
+

∂zα
∂x

∂uα

∂x

)
−
(
∂zα+1/2

∂x

)2

Σzx,α+1/2

)
,

(5.15)
in the layer-average context of Equation (5.12). A similar comparison can be done for
the viscous terms involved in the left hand side of the two energy balances (2.14) and
(5.12).

5.4. Newtonian fluids. When considering a Newtonian fluid, the chosen form
of the viscosity tensor is

Σxx=2μ
∂u

∂x
,Σxz =μ

(∂u
∂z

+
∂w

∂x

)
, (5.16)

Σzz =2μ
∂w

∂z
,Σzx=μ

(∂u
∂z

+
∂w

∂x

)
, (5.17)

where μ is a dynamic viscosity coefficient. When considering the fluid rheology is given
by (5.16)-(5.17), thus leading to Σzz =−Σxx and Σxz =Σzx, Prop. 5.1 becomes,

Lemma 5.1. The layer-averaging applied to the Navier–Stokes system for a Newtonian
fluid gives,

∂

∂t

N∑
j=1

hj+
∂

∂x

N∑
j=1

hjuj =0, (5.18)

∂

∂t
(hαuα)+

∂

∂x

(
hαu

2
α+

g

2
hαH

)
=−ghα

∂zb
∂x

+uα+1/2Gα+1/2−uα−1/2Gα−1/2

+
∂

∂x

(
2hαΣxx,α+

∂

∂x

(
hαzαΣzx,α

))
+zα+1/2

∂2

∂x2

N∑
j=α+1

hjΣzx,j−zα−1/2
∂2

∂x2

N∑
j=α

hjΣzx,j
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+σα+1/2−σα−1/2, (5.19)

wα=−
1

2

∂(hαuα)

∂x
−

α−1∑
j=1

∂(hjuj)

∂x
+uα

∂zα
∂x

, α=1, . . . ,N, (5.20)

where exchange terms Gα±1/2 are still given by (4.5) and the interface terms σα±1/2

defined by (5.7) are here reduced to,

σα+1/2=−2Σxx,α+1/2

∂zα+1/2

∂x
+Σzx,α+1/2

(
1−

(∂zα+1/2

∂x

)2)
. (5.21)

For smooth solutions, we obtain the balance,

∂

∂t

(
N∑

α=1

Eα

)
+

∂

∂x

(
N∑

α=1

uα

(
Eα+

g

2
hαH−2hαΣxx,α

−
(∂zα
∂x

hαΣzx,α+hα
∂

∂x

(1
2
hαΣzx,α+

N∑
j=α+1

hjΣzx,j

)))
−

N∑
α=1

wαhαΣzx,α

)

=−
N∑

α=1

(
∂uα

∂x
2hαΣxx,α+

(∂wα

∂x
+

∂zα
∂x

∂uα

∂x

)
hαΣzx,α+σα+1/2

(
uα+1−uα

))
− κ

c3b
u2
1,

(5.22)

If we look at the energy balance for the continuous setting (2.14), we have, by using
(5.16)-(5.17), the following non-positive right hand side,

−
∫ η

zb

1

μ

(
Σ2

xx+Σ2
zx

)
dz− κ

c3b
u2
b , (5.23)

whereas, after including (5.21) in (5.22), the right hand side of the discrete energy
balance of the layer-averaged model leads to,

RE =−
N∑

α=1

(
2
∂uα

∂x
hαΣxx,α−2Σxx,α+1/2(uα+1−uα)

∂zα+1/2

∂x

+
(∂wα

∂x
+

∂zα
∂x

∂uα

∂x

)
hαΣzx,α

+Σzx,α+1/2(uα+1−uα)

(
1−

(∂zα+1/2

∂x

)2) )
− κ

c3b
u2
1. (5.24)

The aim of the next proposition is to mimic (5.28).

Proposition 5.2. The layer-averaging, given in Lemma 5.1, is applied to the Navier–
Stokes system for a Newtonian fluid with the following consistent expressions of the
rheology terms at the interface α+1/2,

hα+1/2Σxx,α+1/2=−hα+1/2Σzz,α+1/2,

=2μ

(
1

2

(
hα

∂uα

∂x
+hα+1

∂uα+1

∂x

)
− ∂zα+1/2

∂x
(uα+1−uα)

)
, (5.25)

hα+1/2Σzx,α+1/2=hα+1/2Σxz,α+1/2,
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=μ

(
1

2

(
hα(

∂wα

∂x
+

∂zα
∂x

∂uα

∂x
)+hα+1(

∂wα+1

∂x
+

∂zα+1

∂x

∂uα+1

∂x
)

)

+(uα+1−uα)

(
1−

(∂zα+1/2

∂x

)2) )
, (5.26)

and, since the rheology terms are more related to elliptic than hyperbolic type behaviour,
we used the centred approximation for the rheology terms at the layers α,

Σab,α=
Σab,α+1/2+Σab,α−1/2

2
, (5.27)

with (a,b)∈ (x,z)2. Then we obtain an energy inequality since the right hand side of the
discrete energy balance of the layer-averaged model, defined by (5.24), leads here to,

RE =−
N∑

α=0

hα+1/2

μ

(
Σ2

xx,α+1/2+Σ2
zx,α+1/2

)
− κ

c3b
u2
1. (5.28)

Proof. The expression (5.28) clearly mimics the continuous one given by (5.23).
Moreover it is possible to exhibit a kind of consistency of the definitions (5.28)-(5.25).
Indeed if we express the derivatives of the Newtonian stress terms along the interface
α+1/2, on one hand, we have,

Σxx|z=zα+1/2(x,t)=2μ ∂xu(x,z,t)|z=zα+1/2(x,t),

=2μ

(
∂u(x,zα+1/2(x,t),t)

∂x
− ∂zα+1/2(x,t)

∂x
∂zu(x,z,t)|z=zα+1/2(x,t)

)
,

which is consistent with (5.25). And, on the other hand, we have,

Σzx|z=zα+1/2(x,t)=μ
(
∂zu(x,z,t)|z=zα+1/2(x,t)+∂xw(x,z,t)|z=zα+1/2(x,t)

)
.

Additionally, we can write,

∂xw(x,z,t)|z=zα+1/2(x,t)=
∂w(x,zα+1/2(x,t),t)

∂x
− ∂zα+1/2(x,t)

∂x
∂zw(x,z,t)|z=zα+1/2(x,t),

and, using the incompressibility condition, we get,

∂zw(x,z,t)|z=zα+1/2(x,t)=−∂xu(x,z,t)|z=zα+1/2(x,t).

Therefore we have,

∂xw(x,z,t)|z=zα+1/2(x,t)=
∂w(x,zα+1/2(x,t),t)

∂x
+

∂zα+1/2(x,t)

∂x

(
∂u(x,zα+1/2(x,t),t)

∂x
− ∂zα+1/2(x,t)

∂x
∂zu(x,z,t)|z=zα+1/2(x,t)

)
.

Finally, this leads to the following expression,

Σzx|z=zα+1/2(x,t)=μ
(∂w(x,zα+1/2(x,t),t)

∂x
+

∂zα+1/2(x,t)

∂x

∂u(x,zα+1/2(x,t),t)

∂x
+
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(
1− ∂zα+1/2(x,t)

∂x

2)
∂zu(x,z,t)|z=zα+1/2(x,t)

)
,

which is consistent with (5.26).
The energy inequality is obtain by injecting (5.25), (5.26) and (5.27) in (5.24).

Remark 5.4. We can remark in the Lemma 5.1 that the rheology terms are both at
the interface and in the layers. Thus an other strategy could be to defined them at the
layer, and to average the terms at the interface. In this case, we have,

hαΣxx,α=−hαΣzz,α,

=2μ

(
hα

∂uα

∂x
−
(∂zα+1/2

∂x

uα+1−uα

2
+

∂zα−1/2

∂x

uα−uα−1

2

) )
, (5.29)

hαΣzx,α=hαΣxz,α,

=μ

(
hα

∂wα

∂x
+hα

∂zα
∂x

∂uα

∂x
+

uα+1−uα

2

(
1−

(∂zα+1/2

∂x

)2)

+
uα−uα−1

2

(
1−

(∂zα−1/2

∂x

)2) )
, (5.30)

which are also consistent expressions of the tensor, and the following averaging is intro-
duced,

Σab,α+1/2=
Σab,α+1+Σab,α

2
, (5.31)

and leads to an energy inequality, since the right hand side of the discrete energy balance
of the layer-averaged model, defined by (5.24), leads here to,

RE =−
N∑

α=1

hα

μ

(
Σ2

xx,α+Σ2
zx,α

)
− κ

c3b
u2
1. (5.32)

This strategy seems to be more natural since, in the spirit of the layer-averaged model,
the unknowns are mainly localised in the layers. However the main drawback is the
stencil of the interface rheology terms which are not compact. For instance, the term
Σxx,α+1/2 will be expressed in function of uα+2,uα+1 and uα−1.

5.5. An extended Saint-Venant system. In the simplified case of a single
layer, the model given in Prop. 5.1 corresponds to the classical Saint-Venant system
but completed with rheology terms.

Proposition 5.3. The classical Saint-Venant corresponds to the single-layer version
of the layer-averaged Navier–Stokes system. With obvious notations, it is given by,

∂H

∂t
+

∂

∂x
(Hu)=0,

∂(Hu)

∂t
+

∂

∂x

(
Hu2+

g

2
H2

)
=−gH ∂zb

∂x
+

∂

∂x

(
HΣxx−HΣzz+

∂

∂x

( (H+zb)
2−z2b

2
Σzx

))
−zb

∂2

∂x2
(HΣzx)−

κ

c3b
u,
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w=−1

2

∂(Hu)

∂x
+u

∂

∂x

(
H+2zb

2

)
.

For smooth solutions, we obtain the balance,

∂E

∂t
+

∂

∂x

(
u

(
E+

g

2
H2−H

(
Σxx−Σzz

)
− ∂

∂x

(∂(H+2zb)

∂x
Σxz+

H

2

∂

∂x
(HΣxz)

))

−HwΣzx

)
=−H∂u

∂x

(
Σxx−Σzz

)
−H

(∂w
∂x

+
1

2

∂(H+2zb)

∂x

∂u

∂x

)
Σzx−

κ

c3b
u2,

with E= Hu2

2 + g
2

(
(H+zb)

2−z2b

)
. In the particular case of a Newtonian fluid, the

Saint-Venant system given in Prop. 5.3 reduces to,

∂H

∂t
+

∂

∂x
(Hu)=0, (5.33)

∂(Hu)

∂t
+

∂

∂x

(
Hu2+

g

2
H2

)
=−gH ∂zb

∂x

+
∂

∂x

(
4μH

∂u

∂x
+

∂

∂x
μ
( (H+zb)

2−z2b
2

∂w

∂x

))
−zbμ

∂2

∂x2

(
H

∂w

∂x

)
− κ

c3b
u, (5.34)

w=−1

2

∂(Hu)

∂x
+u

∂

∂x

(
H+2zb

2

)
. (5.35)

For smooth solutions, we obtain the energy balance,

∂E

∂t
+

∂

∂x

(
u

(
E+

g

2
H2−4μH

∂u

∂x

)
− ∂

∂x

(
μ
(∂(H+2zb)

∂x

∂w

∂x
+

H

2

∂

∂x
(H

∂w

∂x
)
)))

−μ
H

2

∂w2

∂x

)
=−4μH

(
∂u

∂x

)2

−μH

(
∂w

∂x
+

1

2

∂(H+2zb)

∂x

∂u

∂x

)2

− κ

c3b
u2. (5.36)

Remark 5.5. Notice that, compared to the classical viscous Saint-Venant system [17],
the model (5.33)-(5.36) has complementary terms.

6. Conclusion
We have proposed a layer-averaged discretization for the approximation of the in-

compressible free surface Euler and Navier–Stokes equations. The obtained models do
not rely on any asymptotic expansion but on a criterion of minimal kinetic energy. No-
tice also that the layer averaging for the Navier–Stokes system has been carried out for
a fluid with a general rheology.

Since these models are formulated over a fixed domain, it is possible to derive
efficient numerical techniques for their approximation. For the approximation of the
proposed models, a finite volume strategy – relying on a kinetic interpretation and sat-
isfying stability properties such as a fully discrete entropy inequality – will be published
in a forthcoming paper.



M.-O. BRISTEAU, C. GUICHARD, B. DI MARTINO, AND J. SAINTE-MARIE 1241

Appendix A.

A.1. Proof of Proposition 3.1. Only the manipulations allowing to ob-

tain (3.37) have to be detailed. For that purpose, we multiply Equation (3.35) by 〈ϕu〉α
〈ϕ〉α

giving,(
∂

∂t

〈ϕu〉α
〈ϕ〉α

+
∂

∂x

( 〈ϕu〉2α
〈ϕ〉α

+〈p〉α
)) 〈ϕu〉α

〈ϕ〉α
=

(
uα+1/2Gα+1/2−uα−1/2Gα−1/2

+
∂zα+1/2

∂x
pα+1/2−

∂zα−1/2

∂x
pα−1/2

) 〈ϕu〉α
〈ϕ〉α

,

and we rewrite each of the obtained terms. Considering first the left hand side of the
preceding equation excluding the pressure terms, we denote,

Iu,α=

(
∂

∂t

〈ϕu〉α
〈ϕ〉α

+
∂

∂x

( 〈ϕu〉2α
〈ϕ〉α

)) 〈ϕu〉α
〈ϕ〉α

,

and using Equation (3.11) we have,

Iu,α=
∂

∂t

( 〈ϕu〉2α
2〈ϕ〉α

)
+

∂

∂x

( 〈ϕu〉α
〈ϕ〉α

〈ϕu〉2α
2〈ϕ〉α

)
+
〈ϕu〉2α
2〈ϕ〉2α

(
Gα+1/2−Gα−1/2

)
.

Now we consider the contribution of the pressure terms over the energy balance i.e.

Ip,α=

(
∂〈p〉α
∂x

−pα+1/2

∂zα+1/2

∂x
+pα−1/2

∂zα−1/2

∂x

) 〈ϕu〉α
〈ϕ〉α

.

Using Equation (3.20) we get the equality,

pα+1/2

∂zα+1/2

∂x
−pα−1/2

∂zα−1/2

∂x
=
〈p〉α
〈ϕ〉α

∂hα

∂x
−〈gϕ〉α

∂zα
∂x

,

holds, it comes,

Ip,α=
∂

∂x

(
〈p〉α

〈ϕu〉α
〈ϕ〉α

)
−〈p〉α

∂

∂x

( 〈ϕu〉α
〈ϕ〉α

)
− 〈p〉α〈ϕ〉α

〈ϕu〉α
〈ϕ〉α

∂〈ϕ〉α
∂x

+g〈ϕu〉α
∂zα
∂x

,

=
∂

∂x

(
〈p〉α

〈ϕu〉α
〈ϕ〉α

)
− 〈p〉α〈ϕ〉α

∂〈ϕu〉α
∂x

+
∂

∂x

(
ghαzα

〈ϕu〉α
〈ϕ〉α

)
−zα

∂

∂x
(g〈ϕu〉α) ,

=
∂

∂x

(
〈p〉α

〈ϕu〉α
〈ϕ〉α

)
− 〈p〉α〈ϕ〉α

∂〈ϕu〉α
∂x

+
∂

∂x

(
ghαzα

〈ϕu〉α
〈ϕ〉α

)
+zα

∂

∂t
(〈gϕ〉α)

−gzα
(
Gα+1/2−Gα−1/2

)
,

=
∂

∂x

(
〈p〉α

〈ϕu〉α
〈ϕ〉α

)
− 〈p〉α〈ϕ〉α

∂〈ϕu〉α
∂x

+
∂

∂x

(
ghαzα

〈ϕu〉α
〈ϕ〉α

)
+

∂

∂t
(ghαzα)

−ghα
∂zα
∂t
−gzα

(
Gα+1/2−Gα−1/2

)
.

Let us rewrite Ip,α under the form,

Ip,α=
∂

∂x

(
〈p〉α

〈ϕu〉α
〈ϕ〉α

)
+

∂

∂t
(ghαzα)+g

∂

∂x

(
hαzα

〈u〉α
hα

)
−g

(
zα+1/2Gα+1/2−zα−1/2Gα−1/2

)
+Jp,α,
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with,

Jp,α=−
〈p〉α
〈ϕ〉α

∂〈ϕu〉α
∂x

−ghα
∂zα
∂t

+g
hα

2

(
Gα+1/2+Gα−1/2

)
.

Since we have,

〈p〉α
〈ϕ〉α

∂〈ϕu〉α
∂x

=
〈ϕ〉α
〈ϕ〉α

(
Gα+1/2−Gα−1/2−

∂hα

∂t

)
,

we obtain,

Jp,α=pα+1/2

∂zα+1/2

∂t
−pα−1/2

∂zα−1/2

∂t
−pα+1/2Gα+1/2+pα−1/2Gα−1/2.

Then summing Iu,α and Ip,α gives,

∂

∂t
〈E
(
z;
〈ϕu〉α
〈ϕ〉α

)
〉α+

∂

∂x
〈 〈ϕu〉α〈ϕ〉α

(
E

(
z;
〈ϕu〉α
〈ϕ〉α

)
+〈p〉α

)
〉α

=

(
uα+1/2

〈ϕu〉α
〈ϕ〉α

− 1

2

( 〈ϕu〉α
〈ϕ〉α

)2
)
Gα+1/2−

(
uα−1/2

〈ϕu〉α
〈ϕ〉α

− 1

2

( 〈ϕu〉α
〈ϕ〉α

)2
)
Gα−1/2.

Finally, the sum of the preceding relations for α=1, . . . ,N

∂

∂t

N∑
α=1

〈E
(
z;
〈ϕu〉α
〈ϕ〉α

)
〉α+

∂

∂x

N∑
α=1

〈 〈ϕu〉α〈ϕ〉α

(
E

(
z;
〈ϕu〉α
〈ϕ〉α

)
+〈p〉α

)
〉α

=

N∑
α=1

(
uα+1/2

( 〈ϕu〉α
〈ϕ〉α

− 〈ϕu〉α+1

〈ϕ〉α+1

)
− 1

2

( 〈ϕu〉α
〈ϕ〉α

)2

+
1

2

( 〈ϕu〉α+1

〈ϕ〉α+1

)2
)
Gα+1/2, (A.1)

and the Definition (3.33) gives relation (3.37) that completes the proof. Notice that any
other choice than (3.38) leads to a non negative R.H.S. in (A.1), see Remark 3.1.

A.2. Proof of Proposition 4.1. A simple integration along z of Equation
(4.10) using (2.8) gives,

ŵ=− ∂

∂x

∫ z

zb

uN dz, (A.2)

and therefore, for z∈L1 we get,

ŵ=− ∂

∂x

∫ z

zb

u1 dz=− ∂

∂x

(
(z−zb)u1

)
,

i.e.

ŵ=
∂

∂x
(zbu1)−z

∂u1

∂x
.

For z∈Lα, relation (A.2) gives,

ŵ=−
α−1∑
j=1

∂

∂x
(hjuj)−

∂

∂x

(
(z−zα−1/2)uα

)
, (A.3)
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and we easily obtain,

ŵ=kα−z
∂uα

∂x
.

Now we intend to prove (4.12). Using the definition (3.8), relation (4.4) also writes,

hαwα=
∂

∂x
(zαhαuα)−zα+1/2

α∑
j=1

∂(hjuj)

∂x
+zα−1/2

α−1∑
j=1

∂(hjuj)

∂x
,

leading to a new expression governing wα under the form,

hαwα=−
hα

2

∂(hαuα)

∂x
−hα

α−1∑
j=1

∂(hjuj)

∂x
+hαuα

∂zα
∂x

. (A.4)

And from (A.3), we get,∫ zα+1/2

zα−1/2

ŵdz=−hα

α−1∑
j=1

∂

∂x
(hjuj)+hα

∂

∂x

(
zα−1/2uα

)
−hαzα

∂uα

∂x
,

=−hα

α−1∑
j=1

∂

∂x
(hjuj)−

hα

2

∂

∂x
(hαuα)+hαuα

∂zα
∂x

,

corresponding to (A.4) and proving the result.

A.3. Proof of Proposition 5.1. The derivation of Equations (5.9) and (5.11)
is similar to what has been done to obtain the layer-averaged Euler system (4.15)-(4.17).
Only the treatment of the viscous terms Vα has to be specified.

Using the definitions (5.3), (5.4), (5.7), for α={1,N} using the mimic of the bound-
ary conditions it comes,

Vα≈
∂

∂x

(
hαΣxx,α−hαΣzz,α+

∂

∂x

∫ zα+1/2

zα−1/2

zΣzxdz

)

+zα+1/2
∂2

∂x2

N∑
j=α+1

hjΣzx,j−zα−1/2
∂2

∂x2

N∑
j=α

hjΣzx,j

+σα+1/2−σα−1/2.

The approximation (5.4) gives,

Vα≈Rα+σα+1/2−σα−1/2

=
∂

∂x

(
hαΣxx,α−hαΣzz,α+

∂

∂x

(z2α+1/2−z2α−1/2

2
Σzx,α

))

+zα+1/2
∂2

∂x2

N∑
j=α+1

hjΣzx,j−zα−1/2
∂2

∂x2

N∑
j=α

hjΣzx,j

+σα+1/2−σα−1/2.

For the energy balance we write,

Rαuα=
∂

∂x

(
uαhα

(
Σxx,α−Σzz,α

)
+uα

∂

∂x

(z2α+1/2−z2α−1/2

2
Σzx,α

)
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+zα+1/2uα
∂

∂x

N∑
j=α+1

hjΣzx,j−zα−1/2uα
∂

∂x

N∑
j=α

hjΣzx,j

)

−hα

(
Σxx,α−Σzz,α

)∂uα

∂x
− ∂uα

∂x

∂

∂x

(z2α+1/2−z2α−1/2

2
Σzx,α

)
− ∂

∂x
(zα+1/2uα)

∂

∂x

N∑
j=α+1

hjΣzx,j+
∂

∂x
(zα−1/2uα)

∂

∂x

N∑
j=α

hjΣzx,j . (A.5)

Notice that, using an integration by part, it comes that the three terms,

∂

∂x

(
uα

∂

∂x

(z2α+1/2−z2α−1/2

2
Σzx,α

)
+zα+1/2uα

∂

∂x

N∑
j=α+1

hjΣzx,j

−zα−1/2uα
∂

∂x

N∑
j=α

hjΣzx,j

)
,

appearing in Equation (A.5) are a discretization of the quantity,

∂

∂x

(
uα

∫ zα+1/2

zα−1/2

∂

∂x

∫ η

z

Σzxdz1dz

)
,

in the energy balance Equation (5.12).
We can see that

∂

∂x

(
uα

(
zα+1/2

∂

∂x

N∑
j=α+1

hjΣzx,j−zα−1/2
∂

∂x

N∑
j=α

hjΣzx,j

))

=
∂

∂x

(
uα

(
(hα+zα−1/2)

∂

∂x

N∑
j=α+1

hjΣzx,j−zα−1/2
∂

∂x

N∑
j=α+1

hjΣzx,j

−zα−1/2
∂

∂x
(hαΣzx,α)

))
=

∂

∂x

(
uα

(
hα

∂

∂x

N∑
j=α+1

hjΣzx,j−zα−1/2
∂

∂x
(hαΣzx,α)

))

=
∂

∂x

(
uα

(
hα

∂

∂x

( N∑
j=α+1

hjΣzx,j+
hα

2
Σzx,α

)
−zα

∂

∂x
(hαΣzx,α)

))
, (A.6)

and,

∂

∂x

(
uα

∂

∂x

(z2α+1/2−z2α−1/2

2
Σzx,α

))
=

∂

∂x

(
uαzα

∂

∂x

(
hαΣzx,α

)
+uαhαΣzx,α

∂zα
∂x

)
.

(A.7)
Denoting R̃αuα the last three terms in Equation (A.5), we write,

R̃αuα=−
∂

∂x

(
z2α+1/2−z2α−1/2

2

∂uα

∂x
Σzx,α

)
+

z2α+1/2−z2α−1/2

2

∂2uα

∂x2
Σzx,α

− ∂

∂x
(zα+1/2uα)

∂

∂x

N∑
j=α+1

hjΣzx,j+
∂

∂x
(zα−1/2uα)

∂

∂x

N∑
j=α

hjΣzx,j ,
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=
∂

∂x

((
hαwα−hαkα

)
Σzx,α

)
+

z2α+1/2−z2α−1/2

2

∂2uα

∂x2
Σzx,α

− ∂

∂x
(zα+1/2uα)

∂

∂x

N∑
j=α+1

hjΣzx,j+
∂

∂x
(zα−1/2uα)

∂

∂x

N∑
j=α

hjΣzx,j ,

where (4.13) has been used. And simple manipulations give,

R̃αuα=
∂

∂x

(
wαhαΣzx,α

)
−
(
∂wα

∂x
+

∂zα
∂x

∂uα

∂x

)
hαΣzx,α−kα

∂

∂x
(hαΣzx,α)

− ∂

∂x
(zα+1/2uα)

∂

∂x

N∑
j=α+1

hjΣzx,j+
∂

∂x
(zα−1/2uα)

∂

∂x

N∑
j=α

hjΣzx,j ,

=
∂

∂x

(
wαhαΣzx,α

)
−
(∂wα

∂x
+

∂zα
∂x

∂uα

∂x

)
hαΣzx,α

+w̃α+1/2
∂

∂x

N∑
j=α+1

hjΣzx,j− w̃α−1/2
∂

∂x

N∑
j=α

hjΣzx,j ,

with w̃α+1/2 defined by,

w̃α+1/2=kα−
∂(zα+1/2uα)

∂x
=kα+1−

∂(zα+1/2uα+1)

∂x
.

The two last terms of R̃αuα give a telescoping series and vanish when summing since
w̃1/2=0 and

∑N
j=α+1hjΣzx,j vanish when α=N . Finally, the quantity,

N∑
α=1

Vαuα,

gives the expression involving of the terms related to the Cauchy stress tensor in Equa-
tion (5.12) proving the result.
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