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HIGH-ORDER QUASI-COMPACT DIFFERENCE SCHEMES FOR
FRACTIONAL DIFFUSION EQUATIONS∗

YANYAN YU† , WEIHUA DENG‡ , AND YUJIANG WU§

Abstract. The continuous time random walk (CTRW) underlies many fundamental processes in
non-equilibrium statistical physics. When the jump length of CTRW obeys a power-law distribution,
its corresponding Fokker–Planck equation has a space fractional derivative, which characterizes Lévy
flights. Sometimes the infinite variance of Lévy flight discourages it as a physical approach; exponen-
tially tempering the power-law jump length of CTRW makes it more ‘physical’ and the tempered space
fractional diffusion equation appears. This paper provides the basic strategy of deriving the high-order
quasi-compact discretizations for the space fractional derivative and the tempered space fractional
derivative. The fourth-order quasi-compact discretization for the space fractional derivative is applied
to solve a space fractional diffusion equation, and the unconditional stability and convergence of the
scheme are theoretically proved and numerically verified. Furthermore, the tempered space fractional
diffusion equation is effectively solved by its counterpart, the fourth-order quasi-compact scheme, and
the convergence orders are verified numerically.

Key words. space fractional derivative; tempered space fractional derivative; WSGD discretiza-
tion; quasi-compact difference scheme; numerical stability and convergence.
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1. Introduction

In recent years, more and more scientific and engineering problems are involved
in fractional calculus. They range from relaxation oscillation phenomena [14] to vis-
coelasticity [2] and from control theory [24] to transport problem [18]. The fractional
diffusion equation has been put forward as a more suitable model for describing ion
channel gating dynamics [10] and subdiffusive anomalous transport in an external field
[3], which are the results of the continuous time random walk (CTRW) in the scaling
limit. The CTRW is a mathematical formalization of a path that consists of a succes-
sion of random steps including the elements of random waiting time and jump length,
and it underlies many fundamental stochastic processes in statistical physics. When
the first moment of the distribution of waiting time and the second moment of jump
length are finite, the probability density function (PDF) of the particle’s location and
time satisfy the classical diffusion equation. However, if the jump length obeys the
power-law distribution, the PDF of the particle’s location and time is the solution of
the space fractional diffusion equation, and the corresponding dynamics is called Lévy
flight. Sometimes the jumps of the particles are limited by the finite size of the physical
system and the infinite variance of Lévy flight discourages it as a physical approach.
So the power-law distribution of the jump length is expected to be truncated [15] or
exponentially tempered [5]. For the CTRW with the distribution of the tempered jump
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length |x|−(1+α)e−λ|x| [6], the corresponding PDF of the particles satisfies the tempered
space fractional diffusion equation [5].

It seems that there are fewer works on the numerical solutions of tempered
space fractional diffusion equation [12]. However, for the space fractional diffusion
or advection-diffusion equation, much progress has been made for its numerical meth-
ods, e.g., [13, 17, 21, 22, 19, 23, 27, 9]. Transforming the Riemann–Liouville frac-
tional derivative to the Caputo fractional derivative, the space fractional Fokker–Planck
equation is solved by the method of lines in [13]. Using the superconvergence of
Grünwald discretization at a particular point, a second-order finite difference scheme
is proposed in [19]. Based on the difference discretization and spline approximation to
the Riemann–Liouville fractional derivative, a second-order scheme is presented for the
three-dimensional space fractional partial differential equations in [9]. Currently, the
most popular discretization scheme for the space Riemann–Liouville fractional deriva-
tive seems to be the weighted and shifted Grünwald (WSGD) operator. The first-order
WSGD operator is first presented and discussed in detail in [17], and the second-order
convergence is obtained by using the extrapolation method [21, 22]. The second-order
WSGD operator is given in [23], and the third-order compact WSGD (CWSGD) is
presented in [27]. The positivity and boundedness-preserving WSGD schemes for the
space-time fractional reaction-diffusion equation appear in [25], and the related schemes
for the time fractional equation can be found in [26]. Following the idea of the weight-
ing and shifting Grünwald operator, this paper provides the basic strategy of deriving
the quasi-compact scheme with any desired convergence orders for the space fractional
diffusion equation, and it can also be extended to solve the tempered space fractional
diffusion equation. The fourth-order quasi-compact scheme is discussed in detail when
solving the space fractional diffusion equation, including stability and convergence anal-
ysis and numerical verification of convergence orders. The fourth-order quasi-compact
scheme for the tempered space fractional diffusion equation is also proposed and effec-
tively used to solve the equation, and the convergence orders are numerically verified.

The outline of this paper is as follows. In Section 2, the high-order quasi-compact
discretizations are presented to approximate the space Riemann–Liouville fractional
derivative. In Section 3, following the obtained quasi-compact discretizations, the high-
order quasi-compact scheme for the one-dimensional space fractional diffusion equation
is designed, and its stability and convergence analysis are performed. Section 4 focuses
on the quasi-compact scheme and the corresponding stability and convergence analysis
in two-dimensional case. The high-order quasi-compact discretizations is extended to
the tempered space fractional derivative in Section 5, and the corresponding scheme is
derived to solve the tempered space fractional diffusion equation. In Section 6, numerical
experiments are performed to test the efficiency and verify the convergence orders of
the schemes. We conclude the paper with some discussion in the last section.

2. Quasi-compact discretizations for the Riemann–Liouville space frac-
tional derivatives

We first introduce some definitions and lemmas, including the Riemann–Liouville
fractional derivatives and the shifted Grünwald–Letnikov formulations.

Definition 2.1 ([20]). If the function u(x) is defined in the interval (a,b) and suffi-
ciently regular, then the α-th-order left and right Riemann–Liouville fractional deriva-
tives are, respectively, defined as

aD
α
xu(x)=

1

Γ(n−α)

dn

dxn

∫ x

a

(x−s)n−α−1u(s)ds, n−1<α<n (2.1)
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and

xD
α
b u(x)=

(−1)n
Γ(n−α)

dn

dxn

∫ b

x

(s−x)n−α−1u(s)ds, n−1<α<n, (2.2)

where a can be −∞ and b can be +∞.

And the standard left and right Grünwald–Letnikov formulations, which can be
potentially used to approximate the left and right Riemann–Liouville fractional deriva-
tives, are, respectively, given as

aD
α
xu(x)= lim

h→0

1

hα

[ x−a
h ]∑

k=0

g
(α)
k u(x−kh) (2.3)

and

xD
α
b u(x)= lim

h→0

1

hα

[ b−x
h ]∑

k=0

g
(α)
k u(x+kh), (2.4)

where the Grünwald weights g
(α)
k = Γ(k−α)

Γ(−α)Γ(k+1) are the coefficients of the power series

expansion of (1−z)α. To get the stable scheme, a shifted Grünwald–Letnikov operator
is proposed to approximate the left Riemann–Liouville fractional derivative with first-
order accuracy [21].

Lemma 2.2 ([21]). Let 1<α<2, u∈Cn+3(R), and Dku(x)∈L1(R), k=0,1, · · · ,n+3.
For any integer p, define the left shifted Grünwald–Letnikov operator by

Δα
pu(x) :=

1

hα

∞∑
k=0

g
(α)
k u(x−(k−p)h). (2.5)

Then we have

Δα
pu(x)=−∞Dα

xu(x)+

n−1∑
l=1

aαp,l−∞Dα+l
x u(x)hl+O(hn), (2.6)

uniformly in x∈R, where the weights aαp,l are the coefficients of the power series expan-

sion of the function ( 1−e−z

z )αepz and the first four terms of the coefficients are aαp,0=1,
aαp,1=p−α/2, aαp,2=(α+3α2−12αp+12p2)/24, and aαp,3=(8p3+2pα−12p2α−α2+
6pα2−α3)/48.

To approximate the right Riemann–Liouville fractional derivative, xD
α
∞u(x), the

right shifted Grünwald–Letnikov operator is given by Λα
p f(x) :=

1
hα

∞∑
k=0

g
(α)
k f(x+(k−

p)h). In the finite interval [a,b], the left and right shifted Grünwald–Letnikov fractional
derivatives are, respectively,

Δ̃α
pu(x)=

1

hα

[ x−a
h ]+p∑
k=0

g
(α)
k u(x−(k−p)h) (2.7)

and

Λ̃α
pu(x)=

1

hα

[ b−x
h ]+p∑
k=0

g
(α)
k u(x+(k−p)h). (2.8)
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In the remaining analysis of the paper, for a function defined in the bounded interval,
we suppose that it has been zero extended to R whenever the value of u(x) outside of
the bounded interval is used.

2.1. Fourth-order quasi-compact approximation to the Riemann–
Liouville fractional derivative. According to the definitions of the shifted
Grünwald–Letnikov fractional derivatives, we know that p can be any integer. In order
to ensure that the nodes in Equations (2.7) or (2.8) are within the bounded interval, we
need to choose the integer p∈{1,0,−1} when approximating the non-periodic fractional
differential equation in the bounded interval. Inspired by the shifted Grünwald–Letnikov
operator and the Taylor expansion, we derive the following fourth-order combined quasi-
compact approximations.

Theorem 2.3. Let u(x)∈C7(R) and suppose all the derivatives of u(x) up to order
7 belong to L1(R). Then the following quasi-compact approximation has fourth-order
accuracy; i.e.,

Px−∞Dα
xu(x)=μ1Δ

α
1 u(x)+μ0Δ

α
0u(x)+μ−1Δ

α
−1u(x)+O(h4), (2.9)

where Px=1+h2bα2 δ
2
x, called the CWSGD operator, δ2x is the centered difference opera-

tor; and the coefficients bα2 , μ1, μ0, and μ−1 are functions of α and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ1=(1+α)(2+α)/12,

μ0=−(−2+α)(2+α)/6,

μ−1=(−2+α)(−1+α)/12,

bα2 =(4+α−α2)/24.

(2.10)

Proof. Taking n=4 in Equation (2.6) of Lemma 2.2, we require that the following
conditions are satisfied: u∈C7(R) and assume all the derivatives of u(x) up to order 7
belong to L1(R). For a different parameter p∈{1,0,−1}, there exists

Δα
pu(x)=−∞Dα

xu(x)+

3∑
l=1

aαp,l−∞Dα+l
x u(x)hl+O(h4), p=1,0,−1.

Next we choose three suitable variables, μ1, μ0, and μ−1, to eliminate two lower-order
terms in the above equations corresponding to hl (l=1,3); i.e.,

μ1Δ
α
1 u(x)+μ0Δ

α
0u(x)+μ−1Δ

α
−1u(x)=−∞Dα

xu(x)+bα2 −∞Dα+2
x u(x)h2+O(h4),

where bα2 =μ1a
α
1,2+μ0a

α
0,2+μ−1a

α
−1,2, which can be obtained by solving the following

algebraic equation: ⎧⎪⎪⎨⎪⎪⎩
μ1+μ0+μ−1=1,

μ1a
α
1,1+μ0a

α
0,1+μ−1a

α
−1,1=0,

μ1a
α
1,3+μ0a

α
0,3+μ−1a

α
−1,3=0.

Let δ2xu(x)=(u(x−h)−2u(x)+u(x+h))/h2. Then we have
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μ1Δ
α
1 u(x)+μ0Δ

α
0u(x)+μ−1Δ

α
−1u(x)=−∞Dα

xu(x)+bα2 −∞Dα+2
x u(x)h2+O(h4)

=

(
1+h2bα2

∂2

∂x2

)
−∞Dα

xu(x)+O(h4)

=
(
1+h2bα2 δ

2
x

)
−∞Dα

xu(x)+O(h4)

=Px−∞Dα
xu(x)+O(h4), (2.11)

where Px=1+h2bα2 δ
2
x. The proof is complete.

Remark 2.4. The assumption of requiring u∈C7(R) in Theorem 2.3 can be weakened
by using recently introduced techniques; see Equation (3.14) of [8].

Since δ2xu(x)=
∂2u(x)
∂x2 +O(h2), for any function u we have

Pxu=

(
1+h2bα2

∂2

∂x2

)
u+O(h4).

In a similar way, we can derive the fourth-order quasi-compact approximation for the
right Riemann–Liouville fractional derivative:

PxxD
α
+∞u(x)=μ1Λ

α
1u(x)+μ0Λ

α
0 u(x)+μ−1Λ

α
−1u(x)+O(h4). (2.12)

For u(x) defined in a bounded interval, supposing its zero extension to R satisfies the
assumptions of Theorem 2.3, the following approximations hold:

Px aD
α
xu(x)=μ1Δ̃

α
1 u(x)+μ0Δ̃

α
0u(x)+μ−1Δ̃

α
−1u(x)+O(h4) (2.13)

and

PxxD
α
b u(x)=μ1Λ̃

α
1 u(x)+μ0Λ̃

α
0 u(x)+μ−1Λ̃

α
−1u(x)+O(h4). (2.14)

Now using the CWSGD operator, we solve a two-point boundary value problem to
numerically verify the above statements.

Example 2.5. Consider the steady state fractional diffusion problem

0D
α
xu(x)=

720x6−α

Γ(7−α)
, x∈ (0,1),

with 1<α<2 and the boundary conditions u(0)=0, u(1)=1. Its exact solution is u(x)=
x6.

Using the quasi-compact scheme (2.13) to solve Example 2.5 leads to the desired
convergence orders; see Table 2.1.

2.2. Fifth-order quasi-compact approximation to the Riemann–Liouville
fractional derivative. In this subsection, we present a fifth-order quasi-compact
approximation given as follows.

Theorem 2.6. Let u(x)∈C8(R) and assume all the derivatives of u(x) up to order
8 belong to L1(R). Then the following quasi-compact approximation has fifth-order
accuracy; i.e.,

P 5
x −∞Dα

xu(x)=μ1Δ
α
1 f(x)+μ0Δ

α
0 f(x)+μ−1Δ

α
−1f(x)+O(h5), (2.15)
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α hx ‖u−U‖2 rate ‖u−U‖∞ rate
1.1 1/8 6.0879e−04 1.0551e−03

1/16 2.7715e−05 4.4572 5.1569e−05 4.3548
1/32 1.5024e−06 4.2054 2.8244e−06 4.1905
1/64 9.0430e−08 4.0543 1.6385e−07 4.1075
1/128 5.5808e−09 4.0183 9.5651e−09 4.0984

1.5 1/8 2.9459e−04 3.9380e−04
1/16 1.8470e−05 3.9955 2.4150e−05 4.0274
1/32 1.1590e−06 3.9942 1.5252e−06 3.9850
1/64 7.2639e−08 3.9960 9.5671e−08 3.9948
1/128 4.5471e−09 3.9977 5.9911e−09 3.9972

1.9 1/8 1.1926e−04 1.6198e−04
1/16 7.4913e−06 3.9927 1.0174e−05 3.9928
1/32 4.6919e−07 3.9970 6.3722e−07 3.9970
1/64 2.9352e−08 3.9986 3.9899e−08 3.9974
1/128 1.8352e−09 3.9994 2.4947e−09 3.9994

Table 2.1. Numerical errors and convergence rates in the L∞-norm and the L2-norm by using
Equation (2.13) to solve Example 2.5, where U denotes the numerical solution and hx is the space
step size.

where P 5
x −∞Dα

xu(x)=γ1−∞Dα
xu(x−h)+ −∞Dα

xu(x)+γ2−∞Dα
xu(x+h),

called 5-CWSGD operator, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1=
350+331α−15α2−75α3−15α4

1724−2α−570α2−30α3+30α4
,

γ2=
566−329α−135α2+105α3−15α4

1724−2α−570α2−30α3+30α4
,

μ1=
566+329α−135α2−105α3−15α4

1724−2α−570α2−30α3+30α4
,

μ0=
862+α−285α2+15α3+15α4

862−a−285α2−15α3+15α4
,

μ−1=
350−331α−15α2+75α3−15α4

1724−2α−570α2−30α3+30α4
.

(2.16)

The method for deriving Equation (2.15) is similar to the derivation of the fourth-
order quasi-compact approximation. On one hand, from Equation (2.6), we know for a
different parameter p∈{1,0,−1} there exists

Δα
pu(x)=−∞Dα

xu(x)+
4∑

k=1

aαp,k−∞Dα+k
x u(x)hk+O(h5), p=1,0,−1. (2.17)

On the other hand, in view of the Taylor expansion, we have

−∞Dα
xu(x−h)=−∞Dα

xu(x)+(−1)k
4∑

k=1

1

k!
−∞Dα+k

x u(x)hk+O(h5),

−∞Dα
xu(x+h)=−∞Dα

xu(x)+

4∑
k=1

1

k!
−∞Dα+k

x u(x)hk+O(h5).

(2.18)
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So in order to get the fifth-order quasi-compact approximation, combining Equations
(2.17) and (2.18), we need to eliminate the lower-order terms corresponding to hk (k=
1,2,3,4) which can be done by solving the algebraic equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μ1+μ0+μ−1−γ1−γ2=1,

μ1a
α
1,1+μ0a

α
0,1+μ−1a

α
−1,1+γ1−γ2=0,

μ1a
α
1,2+μ0a

α
0,2+μ−1a

α
−1,2−γ1/2−γ2/2=0,

μ1a
α
1,3+μ0a

α
0,3+μ−1a

α
−1,3+γ1/3!−γ2/3!=0,

μ1a
α
1,4+μ0a

α
0,4+μ−1a

α
−1,4−γ1/4!−γ2/4!=0.

(2.19)

Equation (2.16) is the solution of Equation (2.19). Then we get Theorem 2.6. Next
we utilize the 5-CWSGD operator to solve Example 2.7, and the numerical results are
presented in Table 2.2, from which the accuracy of the 5-CWSGD operator is verified.

Example 2.7. We again consider the steady state fractional diffusion problem simu-
lated in Example 2.5; i.e.,

0D
α
xu(x)=

720x6−α

Γ(7−α)
, x∈ (0,1),

with 1<α<2 and the boundary conditions u(0)=0, u(1)=1, and the exact solution
u(x)=x6.

α hx ‖u−U‖2 rate ‖u−U‖∞ rate
1.1 1/8 2.3456e−05 5.2058e−05

1/16 6.8783e−07 5.0918 1.6758e−06 4.9572
1/32 2.0903e−08 5.0403 5.3410e−08 4.9716
1/64 6.4355e−10 5.0215 1.6852e−09 4.9861
1/128 1.9956e−11 5.0112 5.2916e−11 4.9931

1.5 1/8 9.0595e−06 1.9904e−05
1/16 2.8200e−07 5.0057 6.7018e−07 4.8924
1/32 8.9299e−09 4.9809 2.2033e−08 4.9268
1/64 2.8313e−10 4.9791 7.1095e−10 4.9538
1/128 8.9603e−12 4.9818 2.2661e−11 4.9714

Table 2.2. Numerical errors and convergence rates in the L∞-norm and the L2-norm of the
scheme (2.15) to solve Example 2.7, where U denotes the numerical solution and hx is space step size.

Remark 2.8. Since the fifth-order quasi-compact scheme is not stable in solving the
time-dependent space fractional differential equation, we discuss in detail the fourth-
order quasi-compact schemes in sections 3 and 4.

3. Quasi-compact scheme for the one-dimensional space fractional diffu-
sion equation

Based on the fourth-order quasi-compact discretization to the Riemann-Liouville
space fractional derivative, we develop the Crank–Nicolson (C-N) quasi-compact scheme
of the two-sided space fractional diffusion equations. Here, we consider the initial bound-
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ary value problem of the space fractional diffusion equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u(x,t)

∂t
=K1 aD

α
xu(x,t)+K2xD

α
b u(x,t)+f(x,t), (x,t)∈ (a,b)×(0,T ],

u(x,0)=u0(x), x∈ [a,b],
u(a,t)=φa(t), u(b,t)=φb(t), t∈ [0,T ],

(3.1)

where 1<α≤2. The diffusion coefficients K1 and K2 are nonnegative constants and
they satisfy K2

1 +K2
2 �=0. If K1 �=0, then φa(t)≡0 and K2 �=0, then φb(t)≡0. In the

following analysis of the numerical method, we suppose that the problem (3.1) has a
unique and sufficiently smooth solution.

3.1. CN-CWSGD scheme. The time interval [0,T ] is partitioned into a
uniform mesh with step size τ =T/N and the space interval [a,b] is partioned into
another uniform mesh with step size h=(b−a)/M , where N and M are two positive
integers. Then the set of grid points can be denoted by xj =a+jh (0≤ j≤M) and tn=

nτ (0≤n≤N). Let un
j =u(xj ,tn), tn+1/2=(tn+ tn+1)/2, and f

n+1/2
j =f(xj ,tn+1/2) for

0≤n≤N−1. The maximum norm and the discrete L2-norm are defined as

‖u‖∞= max
1≤j≤M−1

|uj |, ‖u‖2=h

M−1∑
j=1

u2
j . (3.2)

We use the C-N technique for the time discretization of the problem (3.1) and get

un+1
j −un

j

τ
=
1

2

(
K1(aD

α
xu)

n
j +K1(aD

α
xu)

n+1
j +K2(xD

α
b u)

n
j +K2(xD

α
b u)

n+1
j

)
+f

n+1/2
j +O(τ2). (3.3)

In space, the fourth-order quasi-compact discretizations are used to approximate the
Riemann–Liouville fractional derivatives. This implies that

Px

un+1
j −un

j

τ
=
K1τ

2
LD

α
hu

n
j +

K2τ

2
RD

α
hu

n
j +

K1τ

2
LD

α
hu

n+1
j +

K2τ

2
RD

α
hu

n+1
j

+Pxf
n+1/2
j +R

n+1/2
j , (3.4)

where

LD
α
hu

n
j =:μ1Δ̃

α
1u

n
j +μ0Δ̃

α
0u

n
j +μ−1Δ̃

α
−1u

n
j =

1

hα

j+1∑
k=0

w
(α)
k un

j−k+1,

RD
α
hu

n
j =:μ1Λ̃

α
1u

n
j +μ0Λ̃

α
0u

n
j +μ−1Λ̃

α
−1u

n
j =

1

hα

M−j+1∑
k=0

w
(α)
k un

j+k−1,

the coefficients w
(α)
0 =μ1g

(α)
0 , w

(α)
1 =μ0g

(α)
0 +μ1g

(α)
1 , and

w
(α)
k =μ1g

(α)
k +μ0g

(α)
k−1+μ−1g

(α)
k−2, k=2, · · · ,M and R

n+1/2
j ≤C(τ2+h4).

Then the above equation can be rewritten as



YANYAN YU, WEIHUA DENG, AND YUJIANG WU 1191

Pxu
n+1
j −K1τ

2
LD

α
hu

n+1
j −K2τ

2
RD

α
hu

n+1
j

=Pxu
n
j +

K1τ

2
LD

α
hu

n
j +

K2τ

2
RD

α
hu

n
j +τPxf

n+1/2
j +τR

n+1/2
j . (3.5)

Denoting by Un
j the numerical approximation of un

j , we obtain the C-N quasi-compact
scheme for the problem (3.1)

PxU
n+1
j −K1τ

2
LD

α
hU

n+1
j −K2τ

2
RD

α
hU

n+1
j

=PxU
n
j +

K1τ

2
LD

α
hU

n
j +

K2τ

2
RD

α
hU

n
j +τPxf

n+1/2
j . (3.6)

For convenience, the approximation scheme (3.6) can be written in matrix form

(Pα−Bα)U
n+1=(Pα+Bα)U

n+τPαF
n+Hn, (3.7)

where Un=(Un
1 ,U

n
2 , · · · ,Un

M−1)
T , Fn=(f

n+1/2
1 ,f

n+1/2
2 , · · · ,fn+1/2

M−1 )T ,

Bα=
τ

2hα (K1Aα+K2A
T
α) with

Aα=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w
(α)
1 w

(α)
0

w
(α)
2 w

(α)
1 w

(α)
0

... w
(α)
2 w

(α)
1

w
(α)
M−2 · · · . . .

. . . w
(α)
0

w
(α)
M−1 w

(α)
M−2 · · · w

(α)
2 w

(α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.8)

Pα=

⎛⎜⎜⎜⎜⎝
1−2bα2 bα2
bα2 (1−2bα2 ) b

α
2

· · ·
bα2 1−2bα2 bα2

bα2 1−2bα2

⎞⎟⎟⎟⎟⎠ ,

and

Hn =

⎛⎜⎜⎜⎝
bα2
0
...
0

⎞⎟⎟⎟⎠(Un
0 −Un+1

0 )+ τ
2hα

⎛⎜⎜⎜⎜⎜⎜⎝
K1w

(α)
2 +K2w

(α)
0

K1w
(α)
3

...

K1w
(α)
M−1

K1w
(α)
M

⎞⎟⎟⎟⎟⎟⎟⎠(Un
0 +Un+1

0 )

+

⎛⎜⎜⎜⎝
0
...
0
bα2

⎞⎟⎟⎟⎠(Un
M −Un+1

M )+
τ

2hα

⎛⎜⎜⎜⎜⎜⎜⎝
K2w

(α)
M

K2w
(α)
M−1
...

K2w
(α)
3

K1w
(α)
0 +K2w

(α)
2

⎞⎟⎟⎟⎟⎟⎟⎠(Un
M +Un+1

M ).

(3.9)
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3.2. Stability and convergence analysis. In this subsection, we prove that
the CN quasi-compact scheme has fourth-order accuracy in space and is unconditionally
stable. Now we give some important lemmas to be used in the analyses.

Lemma 3.1 ([7]). Let H be a Toeplitz matrix with generating function f ∈C2π. Let
λmin(H) and λmax(H) denote the smallest and largest eigenvalues of H, respectively.
Then we have

fmin≤λmin(H)≤λmax(H)≤fmax,

where fmin and fmax denote the minimum and maximum values of f(x), respectively.
In particular, if fmax≤0 and fmin �=fmax, then H is negative definite.

Lemma 3.2 ([4]). Let A be a positive semi-definite matrix. Then there exists a unique
n-square positive semi-definite matrix B such that B2=A. Such a matrix B is called
the square root of A, denoted by A

1
2 .

Theorem 3.3. The matrix Aα+AT
α is negative definite, and Bα+BT

α is also negative
definite, where Aα is given by Equation (3.8) and Bα=

τ
2hα (K1Aα+K2A

T
α).

In fact, the generating function [7] of A+AT satisfies

f(α,x)

=fAα
(x)+fAT

α
(x)=

( ∞∑
k=0

w
(α)
k e−i(k−1)x+

∞∑
k=0

w
(α)
k ei(k−1)x

)

=μ1

( ∞∑
k=0

g
(α)
k e−i(k−1)x+

∞∑
k=0

g
(α)
k ei(k−1)x

)
+μ0

( ∞∑
k=0

g
(α)
k e−ikx+

∞∑
k=0

g
(α)
k eikx

)

+μ−1

( ∞∑
k=0

g
(α)
k e−i(k+1)x+

∞∑
k=0

g
(α)
k ei(k+1)x

)
=μ1((1−e−ix)αeix+(1−eix)αe−ix)+μ0((1−e−ix)α+(1−eix)α)

+μ−1((1−e−ix)αe−ix+(1−eix)αeix)

=
(
2sin

(x
2

))α
(μ1(e

i(απ
2 −αx

2 +x)+e−i(απ
2 −αx

2 +x))+μ0(e
i(απ

2 −αx
2 )+e−i(απ

2 −αx
2 ))

+μ−1(e
i(απ

2 −αx
2 −x)+e−i(απ

2 −αx
2 −x)))

=2
(
2sin

(x
2

))α(
μ1 cos

(α
2
(π−x)+x

)
+μ0 cos

(α
2
(π−x)

)
+μ−1 cos

(α
2
(π−x)−x

))
=2

(
2sin

(x
2

))α(
(μ1+μ0 cos(x)+μ−1 cos(2x))cos

(α
2
(π−x)+x

)
+(μ0 sin(x)+μ−1 sin(2x))sin

(α
2
(π−x)+x

))
, (3.10)

where fAα(x) and fAT
α
(x) denote the generating functions of the matrices Aα and AT

α ,
respectively. Next we check that f(α;x)≤0 for 1<α<2. Denote

f(α;x)=f1(α;x) ·(f2(α;x)+f3(α;x)),

where f1(α;x)=2
(
2sin(x2 )

)α
, f2(α;x)=(μ1+μ0 cos(x)+μ−1 cos(2x))cos(

α
2 (π−x)+x),

and f3(α;x)=(μ0 sin(x)+μ−1 sin(2x))sin(
α
2 (π−x)+x). Since f(α;x) is a real-valued

and even function, it’s reasonable to consider its principal value on [0,π]. For f1(α;x),
there exists

f1(α;x)≥0.
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When α∈ [1,2], α
2 (π−x)+x∈ [π/2,π]. It’s easy to verify that −cos(α2 (π−x)+x) and

(μ1+μ0 cos(x)+μ−1 cos(2x)) increase with respect to α and are positive and sin(α2 (π−
x)+x) and (μ0 sin(x)+μ−1 sin(2x)) decrease with respect to α and are positive. And
they imply that −f2(α;x) increases with respect to α and f3(α;x) decreases with respect
to α. So

−f2(α;x)≥−f2(1;x), f3(α;x)≤f3(1;x).

Then we get

f2(α;x)+f3(α;x)≤f2(1;x)+f3(1;x)=0,

which implies f(α;x)=f1(α;x) ·(f2(α;x)+f3(α;x))≤0 for 1<α<2 on [0,π]. Therefore,

f(α;x)≤0 (3.11)

for 1<α<2 on [−π,π]. Then from Lemma 3.1, we know the matrix Aα+AT
α is negative

definite. Rewriting Bα+BT
α as ( τ

2hα (K1(Aα+AT
α)+K2(A

T
α +Aα))), it can be clearly

seen that Bα+BT
α is negative definite.

Theorem 3.4. The difference scheme (3.6) with α∈ (1,2) is unconditionally stable.

Proof. Define the round-off error as εnj =Un
j − Ũn

j , where Ũ
n
j is the exact solution of

the discretized Equation (3.6) and Un
j the numerical solution of the discretized Equation

(3.6) obtained in finite precision arithmetic. Since Ũn
j satisfies the discretized equation

exactly, round-off error εnj must also satisfy the discretized equation [1]. Thus we obtain
the following error equation

Pxε
n+1
j −K1τ

2
LD

α
h ε

n+1
j −K2τ

2
RD

α
h ε

n+1
j =Pxε

n
j +

K1τ

2
LD

α
h ε

n
j +

K2τ

2
RD

α
h ε

n
j . (3.12)

Since the boundary conditions of the error equation (3.12) are εn0 = εnM = εn+1
0 = εn+1

M =0,
we zero extend the solution of the problem (3.12) to the whole real line R. So it’s
reasonable to replace the symbols j+1 and M−j+1 in error equation (3.12) with ∞.
Now we have

bα2 ε
n+1
j−1 +(1−2bα2 )ε

n+1
j +bα2 ε

n+1
j+1 −

K1τ

2hα

∞∑
k=0

w
(α)
k εn+1

j−k+1−
K2τ

2hα

∞∑
k=0

w
(α)
k εn+1

j+k−1

=bα2 ε
n
j−1+(1−2bα2 )ε

n
j +bα2 ε

n
j+1+

K1τ

2hα

∞∑
k=0

w
(α)
k εnj−k+1+

K2τ

2hα

∞∑
k=0

w
(α)
k εnj+k−1. (3.13)

Let εnj =vneijσ be the solution of Equation (3.13), where i=
√
−1, vn is the amplitude

at time level n, and σ(=2πh/k) is the phase angle with wavelength k. We just need to
prove that the amplification factor v(σ,α) satisfies the relation |v(σ,α)|≤1 for all σ in
[−π,π]. In fact, by substituting the expressions of εnj (=vneijσ) and εn+1

j (=vn+1eijσ)
into Equation (3.13), we obtain the amplification factor of the CN quasi-compact scheme

v(σ,α)=

1−4bα2 sin
2 σ
2 +

K1τ
2hα

∞∑
k=0

w
(α)
k e−i(k−1)σ+ K2τ

2hα

∞∑
k=0

w
(α)
k ei(k−1)σ

1−4bα2 sin
2 σ
2 − K1τ

2hα

∞∑
k=0

w
(α)
k e−i(k−1)σ− K2τ

2hα

∞∑
k=0

w
(α)
k ei(k−1)σ
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=
Q1(σ,α)+Q2(σ,α)

Q1(σ,α)−Q2(σ,α)
,

where Q1(σ,α)=1−4bα2 sin
2 σ
2 and

Q2(σ,α)=
K1τ
2hα

∞∑
k=0

w
(α)
k e−i(k−1)σ+ K2τ

2hα

∞∑
k=0

w
(α)
k ei(k−1)σ.

A straightforward calculation yields

Q2(σ,α)

=
K1τ

2hα

∞∑
k=0

w
(α)
k e−i(k−1)σ+

K2τ

2hα

∞∑
k=0

w
(α)
k ei(k−1)σ

=
μ1τ

2hα
(K1

∞∑
k=0

g
(α)
k e−i(k−1)σ+K2

∞∑
k=0

g
(α)
k ei(k−1)σ)+

μ0τ

2hα
(K1

∞∑
k=0

g
(α)
k e−i(k)σ

+K2

∞∑
k=0

g
(α)
k ei(k)σ)+

μ−1τ

2hα
(K1

∞∑
k=0

g
(α)
k e−i(k+1)σ+K2

∞∑
k=0

g
(α)
k ei(k+1)σ)

=
μ1τ

2hα
(K1(1−e−iσ)αeiσ+K2(1−eiσ)αe−iσ)+

μ0τ

2hα
(K1(1−e−iσ)α+K2(1−eiσ)α)

+
μ−1τ

2hα
(K1(1−e−iσ)αe−iσ+K2(1−eiσ)αeiσ)

=
τ

2hα
(2sin(

σ

2
))α(μ1(K1e

i(απ
2 −ασ

2 +σ)+K2e
−i(απ

2 −ασ
2 +σ))+μ0(K1e

i(απ
2 −ασ

2 )

+K2e
−i(απ

2 −ασ
2 ))+μ−1(K1e

i(απ
2 −ασ

2 −σ)+K2e
−i(απ

2 −ασ
2 −σ))). (3.14)

Since Q1(σ,α) is real-valued,

|v(σ,α)|= |Q1+Q2|
|Q1−Q2|

=

√
(Q1+Re(Q2))

2
+(Im(Q2))2

(Q1−Re(Q2))
2
+(Im(Q2))

2 ,

where Re(Q2) and Im(Q2) are the real part and the imaginary part of Q2, respectively.
In order to prove that |v(σ,α)|≤1, we need to check

Q1 ·Re(Q2)≤0.

Note that bα2 =(4+α−α2)/24≤1/6 for any α∈ [1,2]. So Q1=1−4bα2 sin
2(σ2 )>0. From

Equation (3.14), we know

Re(Q2) =
(K1+K2)τ

2hα
(2sin(

σ

2
))α(μ1 cos(

απ

2
− ασ

2
+σ)+μ0 cos(

απ

2
− ασ

2
)

+μ−1 cos(
απ

2
− ασ

2
−σ))

=
(K1+K2)τ

4hα
f(α;σ),

where f(α;σ) is defined by Equation (3.10). Together with K1+K2>0 and Equation
(3.11), we obtain Re(Q2)≤0. Thus Q1 ·Re(Q2)≤0. Then |v(σ,α)|≤1. So the CN
quasi-compact difference scheme is unconditionally stable.

Theorem 3.5. Let u(xj ,tn) be the exact solution of the problem (3.1), and Un
j the

solution of the given finite difference scheme (3.6). Then we have

‖u(xj ,tn)−Un
j ‖≤C(τ2+h4),
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for all 1≤n≤N , where C is a constant independent of n, τ , and h.

Proof. Denote εnj =u(xj ,tn)−Un
j and εn=(εn1 ,ε

n
2 , · · · ,εnM−1)

T . According to Equa-
tions (3.5)-(3.7), we obtain

(Pα−Bα)ε
n+1=(Pα+Bα)ε

n+τRn+1/2, (3.15)

where Rn+1/2=(R
n+1/2
1 ,R

n+1/2
2 , · · · ,Rn+1/2

M−1 )T . The eigenvalues of Pα are given by

λ(Pα)j =1−4bα2 sin
2(jπ/M)>0, j=1, · · · ,M−1.

Since bα2 ∈ (1/12,1/6), we have λ(Pα)j ∈ (1/3,1). So the matrix Pα is invertible and
positive definite, which means that P−1

α exists and is also positive definite. Accord-

ing to Lemma 3.2, we know that (P−1
α )

1
2 uniquely exists and is positive semi-definite.

Multiplying (P−1
α )

1
2 and taking the discrete L2-norm on both sides of Equation (3.15)

imply

‖((Pα)
1
2 −(P−1

α )
1
2Bα)ε

n+1‖≤‖((Pα)
1
2 +(P−1

α )
1
2Bα)ε

n‖+τ‖(P−1
α )

1
2Rn+1/2‖.

In view of Theorem 3.3, we know that Bα+BT
α is a negative definite matrix. Further-

more,

((Pα)
1
2 −(P−1

α )
1
2Bα)

T ((Pα)
1
2 −(P−1

α )
1
2Bα)

=Pα−Bα−BT
α +BT

αP
−1
α Bα≥Pα+BT

αP
−1
α Bα (3.16)

and
((Pα)

1
2 +(P−1

α )
1
2Bα)

T ((Pα)
1
2 +(P−1

α )
1
2Bα)

=Pα+Bα+BT
α +BT

αP
−1
α Bα≤Pα+BT

αP
−1
α Bα, (3.17)

where the matrix A≥B means that A−B is positive semi-definite. Denote

En=

√
h(εn)T (Pα+BT

αP
−1
α Bα)εn. (3.18)

Since BT
αP

−1
α Bα is positive definite, we know

En≥
√

h(εn)TPαεn≥
√
λmin(Pα)||εn||, (3.19)

where λmin(Pα) is the minimum eigenvalue of matrix Pα. Together with Equations
(3.16) and (3.17), we have

En+1−En≤τ‖(P−1
α )

1
2Rn+1/2‖= τ

√
h(Rn+1/2)T (P−1

α )Rn+1/2

≤τ
√
λmax(P

−1
α )‖Rn+1/2‖= τ√

λmin(Pα)
‖Rn+1/2‖. (3.20)

Summing up Equation (3.20) from 0 to n−1 leads to

En≤ τ

n−1∑
k=0

‖(P−1
α )

1
2Rk+1/2‖≤ τ√

λmin(Pα)

n−1∑
k=0

‖Rk+1/2‖. (3.21)

Combining Equations (3.19) and (3.21) and noticing that |Rk+1/2
j |≤ c(τ2+h4) for 1≤

j≤M−1, we obtain

‖εn‖≤ cT

λmin(Pα)
(τ2+h4)≤C(τ2+h4).
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4. Quasi-compact scheme for the two-dimensional space fractional diffu-
sion equation

To discuss the quasi-compact scheme in the two-dimensional case, we consider the
following space fractional diffusion equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)

∂t
=Kx

1 aD
α
xu(x,t)+Kx

2 xD
α
b u(x,t)

+Ky
1 cD

β
yu(x,t)+Ky

2 yD
β
du(x,t)+f(x,t), (x,y,t)∈Ω×(0,T ],

u(x,y,0)=u0(x,y), (x,y)∈Ω,
u(x,y,t)=φ(x,y,t), (x,y,t)∈∂Ω×(0,T ],

(4.1)

where Ω=(a,b)×(c,d) and the fractional orders 1<α,β≤2. The diffusion coefficients
Kx

j and Ky
j (j=1,2) are non-negative and satisfy (Kj

1)
2+(Kj

2)
2 �=0 (j=x,y). The

boundary function φ satisfies the following conditions: if Kx
1 �=0, then φ(a,y,t)=0, if

Ky
1 �=0, then φ(x,c,t)=0, if Kx

2 �=0, then φ(b,y,t)=0, and if Ky
2 �=0, then φ(x,d,t)=0.

We assume that Equation (4.1) has a unique and sufficiently smooth solution.

4.1. CN-CWSGD scheme. Let us denote xj =a+jhx, ys= c+shy, and
tn=nτ for 0≤ j≤Mx, 0≤s≤My, and 0≤n≤N , where the space step size hx=(b−
a)/Mx, hy =(d−−c)/My and time step size τ =T/N . Here we take un

j,s=u(xj ,ys,tn)

and f
n+1/2
j,s =f(xj ,ys,tn+1/2). The maximum norm and the discrete L2-norm are defined

as

‖u‖∞= max
1≤j≤Mx−1,
1≤s≤My−1

|uj,s|, ‖u‖2=hxhy

Mx−1∑
j=1

My−1∑
s=1

u2
j,s. (4.2)

We still use the C-N technique for the time discretization of Equation (4.1) and get

un+1
j,s −un

j,s

τ
=
1

2

(
Kx

1 (aD
α
xu)

n
j,s+Kx

1 (aD
α
xu)

n+1
j,s +Kx

2 (xD
α
b u)

n
j,s+Kx

2 (xD
α
b u)

n+1
j,s

+Ky
1 (cD

β
yu)

n
j,s+Ky

1 (cD
β
yu)

n+1
j,s +Ky

2 (yD
β
du)

n
j,s+Ky

2 (yD
β
du)

n+1
j,s

)
+f

n+1/2
j,s +O(τ2). (4.3)

In space, the fourth-order quasi-compact discretizations are used to approximate the
Riemann–Liouville fractional derivatives. This implies that

(PxPy−
Kx

1 τ

2
Py LD

α
hx
−Kx

2 τ

2
Py RD

α
hx
−Ky

1 τ

2
PxLD

α
hy
−Ky

2 τ

2
PxRD

α
hy
)un+1

j,s

=(PxPy+
Kx

1 τ

2
Py LD

α
hx

+
Kx

2 τ

2
Py RD

α
hx

+
Ky

1 τ

2
PxLD

α
hy

+
Ky

2 τ

2
PxRD

α
hy
)un

j,s

+τPxPyf
n+1/2
j,s +τR

n+1/2
j,s , (4.4)

where

R
n+1/2
j,s ≤C(τ2+h4

x+h4
y).

For convenience, we introduce the following discrete operator which works for two vari-
ables x,y,

δαxuj,s=Kx
1 LD

α
hx
uj,s+Kx

2 RD
α
hx
uj,s.
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Then Equation (4.4) can be rewritten as

(PxPy−
τ

2
Pyδ

α
x −

τ

2
Pxδ

β
y )u

n+1
j,s

=(PxPy+
τ

2
Pyδ

α
x +

τ

2
Pxδ

β
y )u

n
j,s+τPxPyf

n+1/2
j,s +τR

n+1/2
j,s . (4.5)

Adding the splitting term

τ2

4
δαx δ

β
y (u

n+1
j,s −un

j,s), (4.6)

which is equal to τ3

4

(
(Kx

1 aD
α
x +Kx

2 xD
α
b )(K

y
1 cD

β
y +Ky

2 yD
β
d )ut

)n+1/2

j,s
+τ3O(τ2+h4

x+

h4
y), to Equation (4.5), we obtain

(Px−
τ

2
δαx )(Py−

τ

2
δβy )u

n+1
j,s =(Px+

τ

2
δαx )(Py+

τ

2
δβy )u

n
j,s+τPxPyf

n+1/2
j,s +τR

n+1/2
j,s .

(4.7)
Thus the quasi-compact finite difference scheme for Equation (4.1) is given by

(Px−
τ

2
δαx )(Py−

τ

2
δβy )U

n+1
j,s =(Px+

τ

2
δαx )(Py+

τ

2
δβy )U

n
j,s+τPxPyf

n+1/2
j,s . (4.8)

As an efficient way to implement, we give the following equivalent schemes:

• quasi-compact Douglas–ADI scheme:

(Px−
τ

2
δαx )U

∗
j,s=(PxPy+

τ

2
Pyδ

α
x +τPxδ

β
y )U

n
j,s+τPxPyf

n+1/2
j,s ,

(Py−
τ

2
δβy )U

n+1
j,s =U∗

j,s−
τ

2
δβyU

n
j,s,

(4.9)

• quasi-compact D’yakonov–ADI scheme:

(Px−
τ

2
δαx )U

∗
j,s=(Px+

τ

2
δαx )(Py+

τ

2
δβy )U

n
j,s+τPxPyf

n+1/2
j,s ,

(Py−
τ

2
δβy )U

n+1
j,s =U∗

j,s.
(4.10)

4.2. Stability and convergence analysis. The following stability analysis
and accuracy analysis indicate that the two-dimensional CN quasi-compact scheme has
fourth-order accuracy in space and is unconditionally stable.

Lemma 4.1 ([4]). Let A, B be two positive semi-definite matrices, symbolized A≥0,
B≥0. Then A⊗B≥0.

Lemma 4.2 ([11]). Let A∈Rn×n have eigenvalues {ρ̃j}nj=1 and B∈Rm×m have eigen-
values {ρj}mj=1. Then the mn eigenvalues of A⊗B are

ρ̃1ρ1, · · · , ρ̃1ρm, ρ̃2ρ1, · · · , ρ̃2ρm, · · · , ρ̃nρ1, · · · , ρ̃nρm.

Lemma 4.3 ([11]). Let A∈Rm×n, B∈Rr×s, C ∈Rn×p, and D∈Rs×t. Then

(A⊗B)(C⊗D)=AC⊗BD,

where ⊗ denotes the Kronecker product. Moreover, if A,B∈Rn×n and I is a unit matrix
of order n, then the matrices I⊗A and B⊗I commute.
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Lemma 4.4 ([11]). Let A be a m×n matrix and B a p×q matrix. We have that the
transposition is distributive over the Kronecker product:

(A⊗B)T =AT ⊗BT .

Theorem 4.5. For any 1<α,β<2, the finite different scheme (4.8) is unconditionally
stable.

Proof. Define the round-off error as εnj,s=Un
j,s− Ũn

j,s. The error equation is given
by

(Px−
τ

2
δαx )(Py−

τ

2
δβy )ε

n+1
j,s =(Px+

τ

2
δαx )(Py+

τ

2
δβy )ε

n
j,s. (4.11)

Since the boundary conditions of the above error equation are homogeneous, we zero
extend the solution of the problem (4.11) to the whole real plane R×R. It’s reasonable
to replace the symbols j+1 and M−j+1 in the error equation (4.11) with ∞. Now
we have

(Px−
τ

2
δα
′

x )(Py−
τ

2
δβ
′

y )εn+1
j,s =(Px+

τ

2
δα
′

x )(Py+
τ

2
δβ
′

y )εnj,s, (4.12)

where

δα
′

x εj,s=
Kx

1

hα

∞∑
k=0

w
(α)
k εj−k+1,s+

Kx
2

hα

∞∑
k=0

w
(α)
k εj+k−1,s,

which works for two variables x,y. Let εnj,s=vnei(jσ1+sσ2), where i=
√
−1, vn is the

amplitude at time level n, and σ1=2πhx/kx, σ2=2πhy/ky are the phase angles with
wavelength kx and ky, respectively. Next we just need to prove that the amplification
factorG(σ1,σ2)=vn+1/vn satisfies the relation |G(σ1,σ2)|≤1 for all σ1 and σ2 in [−π,π].
In fact, substituting the expressions of εnj,s and εn+1

j,s into Equation (4.12), we get the
amplification factor

G(σ1,σ2)=

(1−4bα2 sin
2 σ1

2 +
Kx

1 τ
2hα

∞∑
k=0

w
(α)
k e−i(k−1)σ1 +

Kx
2 τ

2hα

∞∑
k=0

w
(α)
k ei(k−1)σ1)

(1−4bα2 sin
2 σ1

2 −
Kx

1 τ
2hα

∞∑
k=0

w
(α)
k e−i(k−1)σ1− Kx

2 τ
2hα

∞∑
k=0

w
(α)
k ei(k−1)σ1)

·
(1−4bβ2 sin

2 σ2

2 +
Ky

1 τ

2hβ

∞∑
k=0

w
(β)
k e−i(k−1)σ2 +

Ky
2 τ

2hβ

∞∑
k=0

w
(β)
k ei(k−1)σ2)

(1−4bβ2 sin
2 σ2

2 −
Ky

1 τ

2hβ

∞∑
k=0

w
(β)
k e−i(k−1)σ2− Ky

2 τ

2hβ

∞∑
k=0

w
(β)
k ei(k−1)σ2)

=
Q1(σ1,α)+Q2(σ1,α)

Q1(σ1,α)−Q2(σ1,α)
·Q1(σ2,β)+Q2(σ2,β)

Q1(σ2,β)−Q2(σ2,β)

=v(σ1,α) ·v(σ2,β),

where

Q1(σ1,α)=1−4bα2 sin
2 σ1

2

and

Q2(σ1,α)=
Kx

1 τ

2hα

∞∑
k=0

w
(α)
k e−i(k−1)σ1 +

Kx
2 τ

2hα

∞∑
k=0

w
(α)
k ei(k−1)σ1 ,
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which work for two pairs of variables (σ1,α) and (σ2,β). According to the analysis
of Theorem 3.4, we know that |v(σ1,α)|≤1 and |v(σ2,β)|≤1 hold for any α,β∈ (1,2).
Then

|G(σ1,σ2)|= |v(σ1,α)| · |v(σ2,β)|≤1.

So the CN quasi-compact scheme is unconditionally stable.

Theorem 4.6. Let u(xj ,ys,tn) be the exact solution of Equation (4.1), and let Un
j,s

be the solution of the given finite difference scheme (4.8). Then we have

‖u(xj ,ys,tn)−Un
j,s‖≤C(τ2+h4

x+h4
y),

for all 1≤n≤N , where C is a constant independent of τ , hx, and hy.

Proof. Denote εnj,s=u(xj ,ys,tn)−Un
j,s, and

P(α)= Iβ⊗Pα, P(β)=Pβ⊗Iα,

(P(α))
1
2 = Iβ⊗(Pα)

1
2 , (P(β))

1
2 =(Pβ)

1
2 ⊗Iα,

B(α)=
Kx

1 τ

2hα
x

Iβ⊗Aα+
Kx

2 τ

2hα
x

Iβ⊗AT
α , B(β)=

Ky
1 τ

2hβ
y

Aβ⊗Iα+
Ky

2 τ

2hβ
y

AT
β ⊗Iα, (4.13)

where Aα and Aβ are defined in Equation (3.8) corresponding to α and β. In view of
Equations (4.7)–(4.8), we obtain

(P(α)−B(α))(P(β)−B(β))ε
n+1=(P(α)+B(α))(P(β)+B(β))ε

n+τRn+1/2, (4.14)

where

ε=(ε1,1,ε2,1, · · · ,εMx−1,1,ε1,2,ε2,2, · · · ,εMx−1,2,ε1,My−1,ε2,My−1, · · · ,εMx−1,My−1)
T .

Multiplying (P−1
(α))

1
2 (P−1

(β))
1
2 and taking the discrete L2-norm on both sides of Equation

(4.14) imply

‖(P−1
(α))

1
2 (P−1

(β))
1
2 (P(α)−B(α))(P(β)−B(β))ε

n+1‖

≤‖(P−1
(α))

1
2 (P−1

(β))
1
2 (P(α)+B(α))(P(β)+B(β))ε

n‖+τ‖(P−1
(α))

1
2 (P−1

(β))
1
2Rn+1/2‖. (4.15)

Using lemmas 4.3 and 4.4, it is easy to check that the matrix (P−1
(β))

1
2 can commute with

(P−1
(α))

1
2 and P(α)±BT

(α); i.e.,

(P−1
(β))

1
2 (P−1

(α))
1
2 =(P−1

(α))
1
2 (P−1

(β))
1
2 =(P−1

β )
1
2 ⊗(P−1

α )
1
2 ,

(P−1
(β))

1
2 (P(α)±BT

(α))=(P(α)±BT
(α))(P

−1
(β))

1
2 =(P−1

β )
1
2 ⊗

(
Pα±

Kx
1 τ

2hα
x

AT
α±

Kx
2 τ

2hα
x

Aα

)
.

After some similar calculations, we also get that P(β)−B(β) commutes with P(α)−
B(α), (P−1

(α))
1
2 , and P(α)−BT

(α), and P(β)+B(β) commutes with P(α)+B(α), (P−1
(α))

1
2 ,

and P(α)+BT
(α). In view of Theorem 3.3, we know that Bα+BT

α and Bβ+BT
β are
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negative definite matrixes. Together with Lemma 4.2, it yields that B(α)+BT
(α) and

B(β)+BT
(β) are also negative definite matrixes. Using Lemma 4.1, there exist

((P−1
(α))

1
2 (P−1

(β))
1
2 (P(α)−B(α))(P(β)−B(β)))

T (P−1
(α))

1
2 (P−1

(β))
1
2 (P(α)−B(α))(P(β)−B(β))

≥(P(β)+BT
(β)P

−1
(β)B(β))(P(α)+BT

(α)P
−1
(α)B(α))+(B(β)+BT

(β))(B(α)+BT
(α)) (4.16)

and

((P−1
(α))

1
2 (P−1

(β))
1
2 (P(α)+B(α))(P(β)+B(β)))

T (P−1
(α))

1
2 (P−1

(β))
1
2 (P(α)+B(α))(P(β)+B(β))

≤(P(β)+BT
(β)P

−1
(β)B(β))(P(α)+BT

(α)P
−1
(α)B(α))+(B(β)+BT

(β))(B(α)+BT
(α)), (4.17)

where the matrix A≥B means that A−B is positive semi-definite. Denoting

En=√
h(εn)T ((P(β)+BT

(β)P
−1
(β)B(β))(P(α)+BT

(α)P
−1
(α)B(α))+(B(β)+BT

(β))(B(α)+BT
(α)))ε

n,

we have

En≥
√

h(εn)T (P(α))(P(β))εn≥
√
λmin(Pα)λmin(Pβ)||εn||, (4.18)

where λmin(Pα) and λmin(Pβ) are the minimum eigenvalues of the matrices Pα and Pβ ,
respectively. Together with Equations (4.16) and (4.17), we have

En+1≤E0+τ

n∑
k=0

‖(P−1
(α))

1
2 (P−1

(β))
1
2Rn+1/2‖≤ τ

n∑
k=0

√
λmax(P

−1
(α)P

−1
(β))‖Rn+1/2‖

=
τ√

λmin(Pα)λmin(Pβ)

n∑
k=0

‖Rn+1/2‖.

Using Equation (4.18) and noticing that |Rk+1/2
j,s |≤ c(τ2+h4

x+h4
y) for 1≤ j≤Mx−1

and 1≤s≤My−1, we obtain

‖εn‖≤ cT

λmin(Pα)λmin(Pβ)
(τ2+h4

x+h4
y)≤C(τ2+h4

x+h4
y).

5. Extending quasi-compact discretizations and schemes to the tempered
space fractional derivative and equation

This section focuses on developing the high-order quasi-compact schemes of the
tempered fractional differential equation with Dirichlet boundary condition. We begin
with the definitions of α-th-order left and right Riemann–Liouville tempered fractional
derivatives.

Definition 5.1 ([12]). If the function u(x) is defined in a finite interval [a,b] and
sufficiently regular, then for any λ≥0 the α-th-order left and right Riemann–Liouville
tempered fractional derivatives are, respectively, defined as

aD
α,λ
x u(x)= e−λx

aD
α
x (e

λxu(x))=
e−λx

Γ(n−α)

dn

dxn

∫ x

a

(x−s)n−α−1eλsu(s)ds (5.1)
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and

xD
α,λ
b u(x)= eλxxD

α
b (e

−λxu(x))=
(−1)neλx
Γ(n−α)

dn

dxn

∫ b

x

(s−x)n−α−1e−λsu(s)ds, (5.2)

where n−1<α<n. Moreover, if λ=0, then the derivatives aD
α,λ
x u(x) and xD

α,λ
b u(x)

reduce to the derivatives aD
α
xu(x) and xD

α
b u(x) defined in Definition 2.1.

To get the stable scheme, we introduce a shifted Grünwald–Letnikov operator to
approximate the left tempered Riemann–Liouville fractional derivative with first-order
accuracy.

Lemma 5.2 ([12]). Let 1<α<2, u∈Cn+3(R) such that Dku(x)∈L1(R), k=
0,1, · · · ,n+3. For any integer p and λ≥0, define the left shifted tempered Grünwald–
Letnikov operator by

Δα,λ
p u(x) :=

1

hα

∞∑
k=0

g
(α)
k e−(k−p)λhu(x−(k−p)h). (5.3)

Then we have

Δα,λ
p u(x)= −∞Dα,λ

x u(x)+

n−1∑
l=1

aαp,l−∞Dα+l,λ
x u(x)hl+O(hn) (5.4)

uniformly in x∈R, where the weights aαp,l are the same as in Lemma 2.2.

To approximate the right Riemann–Liouville tempered fractional derivative

xD
α,λ
+∞u(x), the right shifted tempered Grünwald–Letnikov operator is defined as

Λα,λ
p f(x) := 1

hα

∞∑
k=0

g
(α)
k e−(k−p)λhu(x+(k−p)h). If the function u(x) is defined on the

bounded interval [a,b], then the shifted tempered Grünwald–Letnikov formulae approx-
imating the tempered fractional derivative at the point x are written as

Δ̃α,λ
p u(x)=

1

hα

[ x−a
h ]+p∑
k=0

g
(α)
k e−(k−p)hλu(x−(k−p)h),

Λ̃α,λ
p u(x)=

1

hα

[ b−x
h ]+p∑
k=0

g
(α)
k e−(k−p)hλu(x+(k−p)h).

(5.5)

Next we establish some suitable high-order finite difference discretizations to approxi-
mate the tempered fractional derivative.

5.1. Quasi-compact discretizations to the tempered Riemann–Liouville
space fractional derivative. Now from the Taylor’s expansions of the shifted
tempered Grünwald–Letnikov operator, similar to get the CWSGD operator given in
Section 2, we derive the fourth and fifth-order quasi-compact difference operators for
Riemann–Liouville tempered fractional derivative.

5.1.1. Fourth-order quasi-compact approximation to the tempered
Riemann–Liouville fractional derivative.
Theorem 5.3. Let u(x)∈C7(R) and all the derivatives of u(x) up to order 7 belong
to L1(R). Then the following quasi-compact approximation has fourth-order accuracy,
i.e.,

Pλ
x −∞Dα,λ

x u(x)=μ1Δ
α,λ
1 u(x)+μ0Δ

α,λ
0 u(x)+μ−1Δ

α,λ
−1 u(x)+O(h4), (5.6)
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where Pλ
x u(x)=u(x)+h2bα2 e

−λxδ2x(e
λxu(x)) and the coefficients bα2 , μ1, μ0 and μ−1 are

given by Equation (2.10).

Note that, by Lemma 5.2, the following equation holds:

μ1Δ
α,λ
1 u(x)+μ0Δ

α,λ
0 u(x)+μ−1Δ

α,λ
−1 u(x)

=−∞Dα,λ
x u(x)+bα2 −∞Dα+2,λ

x u(x)h2+O(h4)

=(1+h2bα2 −∞D2,λ
x )−∞Dα,λ

x u(x)+O(h4)

=(1+h2bα2 e
−λx ∂2

∂x2
eλx)−∞Dα,λ

x u(x)+O(h4)

=Pλ
x −∞Dα,λ

x u(x)+O(h4). (5.7)

Then we get Equation (5.6). Since δ2xu=
∂2

∂x2u+O(h2), we know that for any function
u,

Pλ
x u=(1+h2bα2 −∞D2,λ

x )u+O(h4).

In a similar way, we obtain a quasi-compact approximation of the right Riemann–
Liouville tempered fractional derivative:

Pλ
x xD

α,λ
+∞u(x)=μ1Λ

α,λ
1 u(xj)+μ0Λ

α,λ
0 u(xj)+μ−1Λ

α,λ
−1 u(xj)+O(h4). (5.8)

For u(x) defined on a bounded interval, supposing its zero extension to R satisfies the
assumptions of Theorem 5.3, the following approximations hold:

Px aD
α,λ
x u(x)=μ1Δ̃

α,λ
1 u(x)+μ0Δ̃

α,λ
0 u(x)+μ−1Δ̃

α,λ
−1 u(x)+O(h4) (5.9)

and

PxxD
α,λ
b u(x)=μ1Λ̃

α,λ
1 u(x)+μ0Λ̃

α,λ
0 u(x)+μ−1Λ̃

α,λ
−1 u(x)+O(h4). (5.10)

Next we give an example to verify the efficiency and convergence order of the above
statement.

Example 5.4. Consider the steady state tempered fractional diffusion problem

0D
α,λ
x u(x)=

720e−λxx6−α

Γ(7−α)
, x∈ (0,1),

with the boundary conditions u(0)=0 and u(1)=e−λ, and α∈ (1,2). The exact solution
is given by u(x)= e−λxx6.

Let us denote by u and U the exact solution and approximate value, respectively. In
Table 5.1, we show that the proposed approximation in this subsection has fourth-order
accuracy in the L∞-norm and the L2-norm.

5.1.2. Fifth-order quasi-compact approximation to the tempered
Riemann–Liouville fractional derivative.
Theorem 5.5. Let u(x)∈C8(R). Then the quasi-compact approximations correspond-
ing to the left Riemann–Liouville tempered fractional derivative have fifth-order accu-
racy,

Pλ,5
x −∞Dα,λ

x u(x)=μ1Δ
α,λ
1 u(x)+μ0Δ

α,λ
0 u(x)+μ−1Δ

α,λ
−1 u(x)+O(h5), (5.11)
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α hx ‖u−U‖2 rate ‖u−U‖∞ rate
1.1 1/8 3.8735e−04 8.7474e−04

1/16 1.8576e−05 4.3821 4.6954e−05 4.2195
1/32 1.0159e−06 4.1926 2.6950e−06 4.1229
1/64 6.0438e−08 4.0712 1.6005e−07 4.0737
1/128 3.6901e−09 4.0337 9.4537e−09 4.0815

1.9 1/8 6.2019e−05 8.8032e−05
1/16 3.8991e−06 3.9915 5.6382e−06 3.9647
1/32 2.4425e−07 3.9967 3.5328e−07 3.9964
1/64 1.5281e−08 3.9985 2.2104e−08 3.9984
1/128 9.5548e−10 3.9994 1.3822e−09 3.9993

Table 5.1. Numerical errors and convergence rates in the L∞-norm and the L2-norm of the
scheme (5.6) to solve Example 5.4, where U denotes the numerical solution, hx is space step size, and
λ=1.5.

where the operator Pλ,5
x u(x)=me−λhu(x−h)+u(x)+neλhu(x+h) and the

coefficientsm, n, μ1, μ0 and μ−1 satisfy Equation (2.16).

Similar to the discussions in Subsection 2.2, we show three equalities

Δα,λ
p u(x)= −∞Dα,λ

x u(x)+

4∑
l=1

aαp,l −∞Dα+l,λ
x u(x)hl+O(h5), p=1,0,−1. (5.12)

In view of the Taylor expansion, we know

−∞Dα
x e

λ(x−h)u(x−h)=−∞Dα
x e

λxu(x)+(−1)l
4∑

l=1

1

l!
−∞Dα+l

x eλxu(x)hl+O(h5),

−∞Dα
x e

λ(x+h)u(x+h)=−∞Dα
x e

λxu(x)+

4∑
l=1

1

l!
−∞Dα+l

x eλxu(x)hl+O(h5). (5.13)

Since eλx−∞Dα,λ
x u(x)= −∞Dα

x e
λxu(x), multiplying by e−λx in the equations of (5.13)

we obtain

e−λh−∞Dα,λ
x u(x−h)=−∞Dα,λ

x u(x)+(−1)l
4∑

l=1

1

l!
−∞Dα+l,λ

x u(x)hl+O(h5),

eλh−∞Dα,λ
x u(x+h)=−∞Dα,λ

x u(x)+

4∑
l=1

1

l!
−∞Dα+l,λ

x u(x)hl+O(h5). (5.14)

So in order to get the fifth-order approximation, combining Equations (5.12) and (5.14),
we just need to eliminate the lower-order terms corresponding to hl (l=1,2,3,4). Then
we get Equation (5.11).

To show the efficiency of the proposed approximation in this subsection, we nu-
merically solve Example 5.6 and present the numerical results in Table 5.2, where u
and U denote the exact solution and approximate value, respectively. Obviously, the
approximations have fifth-order accuracy which verify the theoretical analysis.
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Example 5.6. Here we also consider the steady state tempered fractional diffusion
problem

0D
α,λ
x u(x)=

720e−λxx6−α

Γ(7−α)
, x∈ (0,1)

with the boundary conditions u(0)=0 and u(1)=e−λ, and α∈ (1,2). The exact solution
is u(x)= e−λxx6.

α hx ‖u−U‖2 rate ‖u−U‖∞ rate
1.1 1/8 8.2144e−06 1.4011e−05

1/16 2.4016e−07 5.0961 4.1068e−07 5.0924
1/32 7.3703e−09 5.0261 1.2489e−08 5.0392
1/64 2.2851e−10 5.0114 3.8494e−10 5.0199
1/128 7.1140e−12 5.0054 1.1945e−11 5.0101

1.5 1/8 3.1463e−06 5.3572e−06
1/16 9.7972e−08 5.0051 1.6423e−07 5.0276
1/32 3.1300e−09 4.9681 5.1523e−09 4.9944
1/64 9.9944e−11 4.9689 1.6239e−10 4.9876
1/128 3.1783e−12 4.9748 5.1120e−12 4.9895

Table 5.2. Numerical errors and convergence rates in the L∞-norm and the L2-norm of the
scheme (5.11) to solve Example 5.6, where U denotes the numerical solution, hx is space step size,
and λ=1.5.

5.2. Quasi-compact scheme for tempered space fractional diffusion equa-
tion. In this subsection, we present the numerical scheme of the variant of the space
fractional diffusion equation whose space fractional derivatives are replaced by the tem-
pered fractional derivatives⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u(x,t)

∂t
=K1 aD

α,λ
x u(x,t)+K2xD

α,λ
b u(x,t)+f(x,t), (x,t)∈ (a,b)×(0,T ],

u(x,0)=u0(x), x∈ [a,b],
u(a,t)=φa(t), u(b,t)=φb(t), t∈ [0,T ],

(5.15)

where λ≥0. Utilizing the C-N technique for the time discretization of (5.15) and fourth-
order quasi-compact discretization in space direction, we get

Pλ
x

un+1
j −un

j

τ
=
K1τ

2
LD

α,λ
h un

j +
K2τ

2
RD

α,λ
h un

j +
K1τ

2
LD

α,λ
h un+1

j +
K2τ

2
RD

α,λ
h un+1

j

+Pλ
x f(xj ,tn+1/2)+R

n+1/2
j , (5.16)

where

LD
α,λ
h un

j =:μ1Δ̃
α,λ
1 un

j +μ0Δ̃
α,λ
0 un

j +μ−1Δ̃
α,λ
−1 u

n
j =

1

hα

j+1∑
k=0

w
(α,λ)
k un

j−k+1,

RD
α,λ
h un

j =:μ1Λ̃
α,λ
1 un

j +μ0Λ̃
α,λ
0 un

j +μ−1Λ̃
α,λ
−1 u

n
j =

1

hα

M−j+1∑
k=0

w
(α,λ)
k un

j+k−1,
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the coefficients are w
(α,λ)
0 =μ1g

(α)
0 eλh, w

(α,λ)
1 =μ1g

(α)
1 +μ0g

(α)
0 , and

w
(α,λ)
k =(μ1g

(α)
k +μ0g

(α)
k−1+μ−1g

(α)
k−2)e

−(k−1)λh, k=2, · · · ,M, and R
n+1/2
j ≤C(τ2+h4).

Denoting by Un
j the numerical approximation of un

j , we obtain the C-N quasi-compact
scheme for (5.15)

Pλ
x U

n+1
j −K1τ

2
LD

α,λ
h Un+1

j −K2τ

2
RD

α,λ
h Un+1

j

=Pλ
x U

n
j,s+

K1τ

2
LD

α,λ
h Un

j +
K2τ

2
RD

α,λ
h Un

j +τPλ
x f

n+1/2
j . (5.17)

For convenience, the approximation scheme (5.17) may be written in matrix form

(Pλ
α −Bλ)Un+1=(Pλ

α +Bλ)Un+τPλ
αF

n+Hλ, (5.18)

where (Pλ
α )j,s=(Pα)j,se

(s−j)λh, Bλ= τ
2hα (K1A

λ
α+K2(A

λ
α)

T ), (Aλ
α)j,s=(Aα)j,se

(s−j)λh,

Un=(Un
1 ,U

n
2 , · · · ,Un

M−1)
T , and Fn=(f

n+1/2
1 ,f

n+1/2
2 , · · · ,fn+1/2

M−1 )T .

Remark 5.7. Note that when taking λ=0, the tempered fractional diffusion equation
(5.15) reduces to the fractional diffusion equation (3.1) and its scheme (5.17) reduces
to the scheme (3.6).

6. Numerical experiments
For the numerical schemes of the fractional diffusion equation, we present some

numerical results in the one- and two-dimensional cases to verify the theoretical re-
sults including the convergence orders and unconditional stability. For the tempered
fractional diffusion equation, numerical simulations are also performed which show the
effectiveness of the proposed scheme, and the desired fourth-order convergence is also
obtained.

Example 6.1. Consider the following tempered space fractional diffusion equation:

∂u

∂t
= 0D

α,λ
x u(x)−e−t−λx

(
x6+

720x6−α

Γ(7−α)

)
, (x,t)∈ (0,1)×(0,1], (6.1)

with the boundary conditions u(0,t)=0 and u(1,t)= e−t−λ and the initial value u(x,0)=
e−λxx6, x∈ [0,1]. The exact solution is u(x)=e−t−λxx6.

In Table 6.1, we show that the quasi-compact scheme (5.17) is fourth-order conver-
gent in space.
Example 6.2. Consider the following space fractional diffusion equation:

∂u

∂t
= 0D

α
xu(x)+ xD

α
1 u(x)+f(x,t), (x,t)∈ (0,1)×(0,1]. (6.2)

Then the source term is

f(x,t)=−e−t(x5(1−x)5−Γ(11)(x10−α+(1−x)10−α)/Γ(11−α)

+5Γ(10)(x9−α+(1−x)9−α)/Γ(10−α)−10Γ(9)(x8−α+(1−x)8−α)/Γ(9−α)

+10Γ(8)(x7−α+(1−x)7−α)/Γ(8−α)−5Γ(7)(x6−α+(1−x)6−α)/Γ(7−α)

+Γ(6)(x5−α+(1−x)5−α)/Γ(6−α).

The exact solution is given by u(x)=e−tx5(1−x)5. In the domain t∈ [0,1], the bound-
ary conditions are u(0,t)=0 and u(1,t)=0. The initial value is u(x,0)=x5(1−x)5,
x∈ [0,1].
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λ=0 λ=1.5
α MX ‖u−U‖2 rate ‖u−U‖2 rate
1.1 8 2.4321e−04 1.6011e−04

16 1.3090e−05 4.2156 9.1799e−06 4.1245
32 7.4456e−07 4.1360 5.3102e−07 4.1117
64 4.4692e−08 4.0583 3.1555e−08 4.0728
128 2.7455e−09 4.0249 1.9171e−09 4.0408

1.5 8 1.2806e−04 7.5690e−05
16 8.0137e−06 3.9982 4.7019e−06 4.0088
32 5.0273e−07 3.9946 2.9387e−07 4.0000
64 3.1507e−08 3.9960 1.8396e−08 3.9978
128 1.9724e−09 3.9976 1.1512e−09 3.9981

1.9 8 4.4604e−05 2.3601e−05
16 2.8032e−06 3.9920 1.4844e−06 3.9909
32 1.7561e−07 3.9967 9.2998e−08 3.9965
64 1.0987e−08 3.9985 5.8188e−09 3.9984
128 6.8700e−10 3.9993 3.6385e−10 3.9993

Table 6.1. Numerical errors and convergence rates in the L2-norm to Equation (6.1), approxi-
mated by the quasi-compact difference scheme (5.17) at t=1 with τ =h2.

α Mx ‖u−U‖2 rate ‖u−U‖∞ rate
1.1 8 9.4394e−07 1.4488e−06

16 7.7153e−08 3.6129 1.2492e−07 3.5358
32 5.6349e−09 3.7753 9.1789e−09 3.7665
64 3.8217e−10 3.8821 6.2304e−10 3.8809
128 2.4920e−11 3.9389 4.0617e−11 3.9392

1.5 8 1.4931e−06 2.5326e−06
16 1.0619e−07 3.8135 1.7066e−07 3.8915
32 7.2530e−09 3.8720 1.1354e−08 3.9098
64 4.7498e−10 3.9326 7.2882e−10 3.9615
128 3.0416e−11 3.9650 4.7293e−11 3.9459

1.9 8 1.5101e−06 2.6288e−06
16 8.5433e−08 4.1437 1.3980e−07 4.2329
32 5.3511e−09 3.9969 8.3686e−09 4.0622
64 3.3620e−10 3.9925 5.1288e−10 4.0283
128 2.1078e−11 3.9955 3.2590e−11 3.9761

Table 6.2. Numerical errors and convergence rates in the L∞-norm and the L2-norm to Equation
(6.2), approximated by the quasi-compact difference scheme (3.6) at t=1 with τ =h2.

Table 6.2 shows that the quasi-compact scheme (3.6) to solve the one-dimensional
two sided fractional diffusion equation is also fourth-order convergent.
Example 6.3. The following two-dimensional two-sided fractional diffusion problem

∂u(x,y,t)

∂t
= 0D

α
xu(x,y,t)+ xD

α
1 u(x,y,t)+ 0D

β
yu(x,y,t)+ yD

β
1u(x,y,t)+f(x,y,t),

(6.3)
is considered in the domain Ω=(0,1)2 and t∈ (0,1]. The source term is

f(x,t)=−106e−t
[
x5(1−x)5y5(1−y)5
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−
(

Γ(11)

Γ(11−α)
(x10−α+(1−x)10−α) +

5Γ(10)

Γ(10−α)
(x9−α+(1−x)9−α)

− 10Γ(9)

Γ(9−α)
(x8−α+(1−x)8−α)+

10Γ(8)

Γ(8−α)
(x7−α+(1−x)7−α)

− 5Γ(7)

Γ(7−α)
(x6−α+(1−x)6−α) +

Γ(6)

Γ(6−α)
(x5−α+(1−x)5−α)

)
y5(1−y)5

−
(

Γ(11)

Γ(11−β)
(y10−β+(1−y)10−β) +

5Γ(10)

Γ(10−β)
(y9−β+(1−y)9−β)

− 10Γ(9)

Γ(9−β)
(y8−β+(1−y)8−β)+

10Γ(8)

Γ(8−β)
(x7−β+(1−x)7−β)

− 5Γ(7)

Γ(7−β)
(y6−β+(1−y)6−β) +

Γ(6)

Γ(6−β)
(y5−β+(1−y)5−β)

)
x5(1−x)5

]
.

The exact solution is given by u(x)=106e−tx5(1−x)5y5(1−y)5. The boundary
condition is u(x,y,t)=0 with (x,y)∈∂Ω and t∈ [0,1]. The initial value is u(x,y,0)=
106x5(1−x)5y5(1−y)5 with (x,y)∈ [0,1]2.

In Table 6.3, we present the numerical errors ‖u−U‖2 and the corresponding conver-
gence orders with space step size hx=hy, where U is the solution of the quasi-compact
difference scheme (4.9) or (4.10). It can be noted that the schemes are fourth-order
convergent, which is in agreement with the theoretical convergence analysis.

(α,β)=(1.1,1.5) (α,β)=(1.4,1.9)
Mx ‖u−U‖2 rate ‖u−U‖2 rate

D’yakonov 8 7.2903e−04 8.4729e−04
16 5.3915e−05 3.7572 5.7210e−05 3.8885
32 3.7385e−06 3.8502 3.8200e−06 3.9046
64 2.4685e−07 3.9207 2.4748e−07 3.9482
128 1.5880e−08 3.9584 1.5763e−08 3.9727

Douglas 8 7.2903e−04 8.4729e−04
16 5.3915e−05 3.7572 5.7210e−05 3.8885
32 3.7385e−06 3.8502 3.8200e−06 3.9046
64 2.4685e−07 3.9207 2.4748e−07 3.9482
128 1.5880e−08 3.9584 1.5763e−08 3.9727

Table 6.3. Numerical errors and convergence rates in the L2-norm to Equation (6.3), approxi-
mated by the quasi-compact difference schemes (4.9) and (4.10), respectively, at t=1 with τ =h2

x=h2
y.

7. Conclusions
The continuous time random walk (CTRW) model is the basic stochastic process

in statistical physics. The CTRW model characterizes Lévy flight if the first moment
of the distribution of the waiting time is finite and the jump length obeys the power
law distribution and its second moment is infinite. The corresponding Fokker–Planck
equation of the process is the space fractional diffusion equation. Sometimes because
of the limit of space size, the power law distribution of the jump length has to be
tempered. The Fokker–Planck equation of the new stochastic process is the tempered
space fractional diffusion equation. This paper provides the basic strategy for deriving
the quasi-compact high-order discretizations of the space fractional derivative and the
tempered space fractional derivative. As concrete examples, fourth-order discretizations
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are discussed in detail and applied to solve the (tempered) space fractional diffusion
equation, and extensive numerical simulations confirm the effectiveness of the provided
schemes. In fact, strict numerical stability and convergence analysis are also performed
for the one- and two-dimensional space fractional diffusion equations.

Acknowledgements. We thank the anonymous reviewers for their valuable com-
ments which improved the presentation of this paper.
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