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COMPUTATION OF THE LOCAL TIME OF REFLECTING
BROWNIAN MOTION AND THE PROBABILISTIC
REPRESENTATION OF THE NEUMANN PROBLEM*

YLJING ZHOU', WEI CAI*, AND ELTON HSU?

Abstract. In this paper, we propose numerical methods for computing the boundary local time
of reflecting Brownian motion (RBM) for a bounded domain in R?® and the probabilistic solution of
the Laplace equation with the Neumann boundary condition. Approximations of RBM based on walk-
on-spheres (WOS) and random walk on lattices are discussed and tested for sampling RBM paths
and their applicability in finding accurate approximation of the local time and discretization of the
probabilistic representation of the Neumann problems using the computed local time. Numerical tests
for several domains (a cube, a sphere, an ellipsoid, and a non-convex non-smooth domain made of
multiple spheres) have shown the convergence of the numerical methods as the time length of RBM
paths and number of paths sampled increase.

Keywords. Reflecting Brownian Motion, Brownian motion, boundary local time, Skorohod prob-
lem, WOS, random walk, Laplace equation.
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1. Introduction

Traditionally numerical solutions of boundary value problems for partial differential
equations (PDEs) are obtained by using finite difference, finite element, or boundary
element methods with both space and/or time discretizations. This usually requires
spatial mesh fine enough to ensure accuracy, which results in considerable storage space
requirement and computation time. Moreover, the solution process is global, namely, the
solutions of the PDEs have to be found together at all mesh points. In many scientific
and engineering applications, local solutions are sometimes all we need, such as the local
electrostatic potential on a molecular surface where molecular binding activities are most
likely to occur or the stress field at specific locations where the materials are susceptive
to failure. Therefore, it is of practical importance to have a numerical approach which
can give a local solution of the PDEs at some locality of our choice. In the case of
elliptic PDEs, this kind of local numerical method can be constructed using the well-
known probabilistic representation and the associated Feynman—Kac formula [12,13],
which relate It6 diffusion paths to the solution of an elliptic PDE. By sampling diffusion
paths, the evaluation of the solution at any point in the domain can be done through
an averaging process of the boundary (Dirichlet or Neumann) data under some given
measure on the boundary. Moreover, this method avoids expensive mesh generations
required by mesh-based deterministic methods [27].

Our previous work [28], using the Feynman-Kac formula for the Laplace equation
with Dirichlet data, has produced a local method for computing the DtN (Dirichlet-to-
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238 LOCAL TIME OF RBM AND THE NEUMANN PROBLEM

Neumann) mapping for the Laplace operator. In this paper, we will focus on solving the
following Neumann boundary value problem of the elliptic PDE using a probabilistic
approach:

Au=f on D

1.1
6—u:¢onaD, 1)
on

where D is a bounded domain in R3, A is the Laplace operator, f is a measurable

function, and ¢ is a bounded measurable function on the boundary dD satisfying

gbdaz/ fdx. Equation (1.1) becomes the Laplace equation when f=0, which
D

. 8D .
is the subject of our work.

The PDE (1.1) originates from either the Poisson equation for electrostatic po-
tentials [11], an implicit time discretization of the heat equation or the momentum
equation of the Navier—Stokes equation with an additional lower-order term in the lat-
ter cases. Historically, Brownian motion (BM) has been used in solving PDEs due to
its effectiveness and easy implementation regardless of dimensions [18]. The well-known
probabilistic representation can solve the elliptic equation with the Dirichlet boundary
condition by using the first exit time 7p of BM when f=0, i.e.,

u(z) = E*(¢(X7p))- (1.2)

In the above formula, only the values at the hitting positions on the boundary are used
in the computation of the mathematical expectation (average) to obtain w(z). Using
the construct of killed Brownian motion [28] in conjunction with Monte Carlo methods,
we can easily obtain an estimate of u(x).

However, for the Neumann problem to be studied here, in contrast to the usual
Brownian motion used in Equation (1.2), reflecting Brownian motion (RBM) [20, 26]
will be needed to produce a similar probabilistic solution. The theory has been de-
veloped in [1,5,15] by employing the concept of the boundary local time whose one
dimensional predecessor was introduced by Lévy in [19]. In [15], the boundary local
time of a one dimensional BM was extended to high dimensions and an explicit form,
shown in Equation (2.4), was obtained for domains with smooth boundaries. For higher
dimensions, similar results had also been found by Brosamler [5]. It should be noted
that the boundary local time is related to the Skorohod problem [7] and plays a signif-
icant role in the theoretical development of the probabilistic approach to the Neumann
problem.

One-dimensional local time of Brownian motion has been studied by many au-
thors [7,16,17,19,23]. Numerical methods using Euler discretizations of the underlying
diffusion process have also been used to compute the reflecting Brownian motions and
the solutions to parabolic equations with mixed boundary conditions [4,9]. Meanwhile,
Morillon [22] proposed random walk on a grid to treat the reflecting paths and consid-
ered the related Feynman-Kac formula for the Poisson problem with various boundary
conditions. Recently, in [21] a walk-on-spheres (WOS) method, as well as the Euler
discretization method with a localization kernel approach for computing the local time
of reflecting Brownian motions [16], was used to sample the Brownian motions inside
the domain and a finite difference discretization of the Neumann boundary condition to
obtain approximation of the solution near the boundary with the help of randomization.
In this paper, we will propose numerical methods, using the WOS technique, explicitly
for computing the local time of reflecting Brownian motions for a bounded domain in R?
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based on a rigorous probabilistic theory and apply the resulting methods to implement
computationally the probabilistic representation for the Neumann problem.

This paper is organized as follows. In Section 2, we introduce the RBM via the
Skorohod problem and the concept of local time of the RBM and the explicit proba-
bilistic solution to the Neumann problem. In Section 3, the WOS method is reviewed
and discussed for its application to the RBM. In Section 4, a numerical method, the
WOS combined with a Monte Carlo method, is proposed for an approximation to the
Neumann problem. Numerical results for a cube, a sphere, an ellipsoid, and a non-
smooth convex domains will be given in Section 5. Section 5 also includes discussions
on convergence rates, various numerical issues of the algorithms, and the comparison
with other Monte Carlo and deterministic methods. Finally, we draw conclusions from
our Monte Carlo simulations and discuss possible further work in Section 6.

2. Boundary local time of RBM and Neumann problem

Before discussing a probabilistic solution for the Neumann problem for elliptic
PDEs, we introduce the boundary local time for reflecting Brownian motion through
the Skorohod problem.

DEFINITION 2.1 (Skorohod problem).  Assume D is a bounded domain in R® with a
C? boundary. Let f(t) be a (continuous) path in R with f(0)€D. A pair (£(t),L(t))
is a solution to the Skorohod problem S(f;D) if the following conditions are satisfied:
1. € is a path in D;
2. L(t) is a nondecreasing function which increases only when £ € 9D, namely,

L(t)= / Iop(€(s)) L(ds); (2.1)

3. the Skorohod equation holds

S(D): €)= f(t) -+ / n(€(s))L(ds), (2.2)

where n(x) stands for the outward unit normal vector at x € 9D.

If f(t) is replaced by a standard Brownian motion By, the corresponding & will
be a standard reflecting Brownian motion (RBM) X;. Just as the name suggests, a
RBM behaves like a BM as long as its path remains inside the domain D, but it will
be reflected back inwardly along the normal direction of the boundary when the path
attempts to pass through the boundary. The fact that X; is a diffusion process can be
proven by using a martingale formulation and showing that X; is the solution to the
corresponding martingale problem with the Neumann boundary condition [15]. The
result gives an intuitive and direct way to construct RBM from BM, which will be
discussed in detail in Section 4.

The boundary local time L(t) for a RBM measures the amount of time the RBM
spends near the boundary and at the same time the frequency that the RBM hits the
boundary. We have the following properties of L(t):

(a) it is the unique continuous nondecreasing process that appears in the Skorohod

equation (2.2) [15,20,26];
(b) it measures the amount of time the standard reflecting Brownian motion X
spending in a vanishing neighborhood of the boundary during the time interval
[0,¢]. If D has a C® boundary, we have
t
L(t)ElimM, (2.3)

e—0 €
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where D is a strip region of width e containing 9D and D.C D. This limit
exists both in L? and P*-a.s. for any x € D.

Alternatively, we have the following explicit formula for L(¢) derived in [15],

L(t)= \/z/otfaD(Xs)\@, (2.4)

where the right-hand side of Equation (2.4) is understood as the limit of

n—1

T

52 nézszaD(Xs)\MAiL max|A;| =0, (2.5)
Pl SEA; i

where A ={A;} is a partition of the interval [0,¢] and each A; is an element in A. We
will discuss the implementation of both Equations (2.3) and (2.4) in Section 4.

We are now ready to consider the following elliptic PDE in R?® with a Neumann
boundary condition,

<§+q>u—0, on D

ou_
on

. (2.6)
¢, on 0D

When the bottom of the spectrum of the operator A/2+ ¢ is negative a probablistic
solution of Equation (2.6) is given by

u(z) = %Em { /O ooeq(t)cﬁ(Xt)L(dt)} , 2.7)

where X, is a RBM starting at « and ey(t) is the Feynman-Kac functional [15]

eq(t) =exp [/th(Xs)ds} .

From the definition of the local time in (2.3), we have the following approximation
for small €

o In. (X)ds

€

L(t) (2.8)

Plugging Equation (2.8) into Equation (2.7), we have

u(z)~ Z—EE””

%) t+dt
/ eq(t)¢(Xt)/ Ip, (XS)ds] . (2.9)
0 t

The solution defined in (2.7) should be understood as a weak solution for the clas-
sical PDE (2.6). The identification of Equation (2.7) with the classical solution can be
achieved by using the martingale formulation [15]. If the weak solution satisfies some
smoothness condition [5,15], it can be shown that it is also a classical solution to the
Neumann problem. This formula is the basis for our numerical approximations to the
Neumann problem (2.6). To compute the expectation in this formula, we rely on Monte
Carlo random samplings to simulate Brownian paths and then take the average.
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In the present work, as we only consider the Laplace equation (¢=0), we have

oo t-+dt
/ S(X2) / I, (Xs>dsl , (2.10)
0 t

and we will show how this formula is implemented with the Monte Carlo and WOS
methods in Section 4.

1 X

REMARK 2.1.  Formula (2.7) is very similar to the probabilistic solution (1.2) for
the Laplace equation with the Dirichlet boundary condition. In the Dirichlet case,
killed Brownian paths were sampled by running random walks until they are absorbed
on the boundary upon a first hit on the boundary and u(x) is evaluated as an av-
erage of the boundary values at the first hitting positions on the boundary, namely,
u(z)=E"[¢p(X,,)] where ¢ is the Dirichlet boundary data. On the other hand, for the
Neumann condition, while u(z) is also given as a weighted average of the Neumann
data at multiple hitting positions of RBM on the boundary, the weight is related to
the boundary local time of RBM. This is a noteworthy point when we compare the
probabilistic solutions of the two boundary value problems and try to understand the
formula in Equation (2.7).

3. Method of walk on spheres (WOS)

Random walk on spheres (WOS) method was first proposed by Miiller [24], which
can solve the Dirichlet problem for the Laplace operator efficiently with the probabilistic
representation of the solution (1.2). The expectation in Equation (1.2) is taken over all
sample paths starting from x and 7p is the first exit time for the domain D. For the
Neumann boundary condition, similar formulas can be obtained [22]. However different
measures on the boundary 0D is used in the mathematical expectation.

In order to illustrate the WOS method for the Dirichlet problem, formula (1.2) can
be rewritten in terms of a measure 7 defined on the boundary 9D,

u(z) = E*(¢(X7p)) = (v)dup, (3.1)

¢
aD
where u7, is the so-called harmonic measure defined by
uhH(F)y=P*{X,, € F},FCOD,z€D. (3.2)

It can be shown that the harmonic measure is related to the Green’s function for
the domain with a homogeneous boundary condition [8],

__9g(z,y)
where
A — 5z — D
g(z,y)=d(z—y), =€ ;. (3.4)
g(x,y) =0, redD

If the starting point x of a Brownian motion is at the center of a ball, the probability
of the BM exiting a portion of the boundary of the ball will be proportional to the
portion’s area. It is known that all sample paths of a Brownian motion starting in the
domain intersects the boundary 9D almost surely [24]. Therefore, sampling a Brownian
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path by drawing balls within the domain, regardless of how the path navigates in the
interior of the ball, can significantly reduce the path sampling time. To be more specific,
given a starting point z inside the domain D, we simply draw a ball of the largest
possible radius fully contained in D and then the next location of the Brownian path on
the surface of the ball can be sampled, using a uniform distribution on the sphere, say
at x1. Treat 1 as the new starting point, draw a second ball fully contained in D, make
a jump from x; to x5 on the surface of the second ball as before. Repeat this procedure
until the path hits an absorption e-shell of the domain [14]. When this happens, we
assume that the path has hit the boundary 9D (see Figure 3.1(b) for an illustration).

(@
S

(a) WOS within the domain. (b) WOS (with a maximal step size
for each jump) within the domain.

Fia. 3.1. Walk on Spheres method.

Next we define an estimator of (3.1) by

1 N
UOESDIIEDE (3:5)

where N is the number of Brownian paths sampled and z; is the first hitting point of
each path on the boundary. Using a jump size (radius of the ball) § on each step for the
WOS, we expect to take O(1/82) (8 is chosen independently of €) steps for a Brownian
path to reach the boundary [2]. To speed up, maximum possible size for each step would
allow faster first hitting on the boundary. Most of the numerical results in this paper
will use the WOS approach as illustrated in Figure 3.1(b).

4. Numerical methods

4.1. Simulation of reflecting Brownian paths. A standard reflecting Brow-
nian motion path can be constructed by reflecting a standard Brownian motion path
back into the domain whenever it crosses the boundary. So in principle, the simulation
of RBM is reduced to that of BM.

It is known that standard Brownian motion can also be constructed as the scaling
limit of a random walk on a lattice so we can model BM by a random walk with
proper scaling (see Appendix A for details). We find out that the WOS method is the
better method to simulate BM for our purpose [25] (see Remark 4.2 for details). As
mentioned before, an e-shell is chosen around the boundary as the termination region
in the Dirichlet case. Here, we follow a similar strategy by setting up a e-region but
allowing the process X; to continue moving after it reaches the e-region instead of being
absorbed.

Figure 4.1 shows a strip region with width ¢ near the boundary for a bounded
domain. In a spherical domain, the e-region is simply an e-shell near the boundary
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&-shell

FIG. 4.1. A e-region for a bounded domain in R>.

Fic. 4.2. WOS in the e-region. BM path hits x1 in e-region for the first time. Then the radius
of sphere is changed to Az, the path continues until it arrives at xo whose distance to D is smaller
or equal to Ax. When this happens, the radius of the ball is enlarged to 2Ax so that the path has a
chance to run out of the domain at x3. Then, we pull x3 back to x4 which is the closest point to x3
on the boundary. Record ¢(x4), and continue the WOS-sampling of the path starting at x4.

of width e. Denote M,(D) as the eregion and I.(D) as the remaining interior region
D\M.(D).

Recall the discussion of the WOS in the previous section. For a BM starting at
a point x in the domain, we draw a ball centered at x. The Brownian path will hit
the spherical surface with a uniform probability as long as the ball does not overlap
the domain boundary dD. The balls are constructed so that the jumps are as large as
possible by taking the radius of the ball to be the distance to the boundary dD. We
repeat this procedure until the path reaches the region M,.(D). Here, we continue the
WOS in M,(D) but with a fixed radius Az much smaller than e. In order to simulate the
path of RBM, at some point of time the BM path will run out of the domain. For this
to happen, the radius of WOS is increased to 2Az when the path is close to boundary
at a distance less than Az. In this way, the BM path will have a chance to get out of
the domain, and when that happens, we then pull it back to the nearest point on the
boundary along the normal of the boundary. Afterwards, the BM path will continue as
before.

In summary, a reflecting Brownian motion path is simulated by the WOS method
inside D. Once it enters the e-region M.(D), the radius of WOS changes to a fixed
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Fic. 4.3. A RBM path within a cube in R>

value, either Ax or 2Az, depending on its current distance of the Brownian particle to
the boundary. When the path reaches a point on the boundary after the reflection, the
radius of WOS changes back to Az. Figure 4.2 illustrates the movement of RBM in
the e-region M(D). As time progresses, we expect the path hits the boundary at some
time instances and lies in either I.(D) or M(D) at others. A RBM path is shown in
Figure 4.3 within a cube of size 2.

4.2. Computing the boundary local time L(¢). Two equivalent forms of the
local time have been given in Equations (2.3) and (2.4). Here we will show how the e-
region for the construction of the RBM in Figure 4.2 can also be used for the calculation
of the local time. When the e-region is thin enough, i.e. e<1, an approximation of
Equation (2.3) is given in Equation (2.8), which is the occupation time that RBM X
sojourns within the e-region during the time interval [0,¢]. A close look at Equation
(2.8) reveals that only the time spent near the boundary is involved and the specific
moment when the path enters the e-region has no effect on the calculation of L(t).

Suppose x € D is the starting point of a Brownian path, which is simulated by the
WOS method. Once the path enters the e-region, the radius of WOS is changed to Ax
or 2Az. It is known that the elapsed time At for a step of a random walk on average
is proportional to the square of the step size, in fact, At =(Az)?/d,d=3 when Az is
small (see Appendix A), which also applies to WOS moves (See Remark 4.2 for details).
Therefore, we can obtain an approximation of the local time L(dt) by counting the
number of steps the path spent inside M. (D) multiplied by the time elapsed for each
step, i.e.

N S Ip (X,)ds

L(dt):L(tj_tj—l)N :(ntj _ntj—l) (41)

€ 3e
where dt is defined as time increment ¢; —t; 1 and ny, —ny,_, is the number of steps
that WOS steps remain in the e-region during the time interval [t;_1,t;]. Note that
in our method within the e-region, the radius of the BM may be Az or 2Az, which
means the corresponding elapsed time of one step for local time will be either (Ax)2/3
or (2Ax)?/3. If we absorb the factor 4 into n;, we will still have Equation (4.1). Figure
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4.4 gives a sample path of the simulated local time associated with the RBM in Figure
4.3.
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Fic. 4.4. Boundary local time (4.1) increases when the path runs into the region Mc(D). The
insert shows the piecewise linear profile of the local time path with flat level regions. By our construc-
tion, most of the path will fall into the e-region. If z-azis changes to time line, the graph should be
more flatter than it appears here which implies that boundary local time increases only on a small set.
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Fic. 4.5. Random walks on the lattice in e-region. A BM path hits x1 € Mc(D) by the WOS
method. Replace x1 by the nearest grid point x. Then, several steps of random walks will make a
path as wa — w3 —x4. Since x4 ¢ D, we push it back along the normal line (dash arrow) to zly then
replace it by the closest grid point within domain (solid arrow) xs. Here path crosses the boundary at
x4 €9D. Then continue the random walk as usual to zg.

In practical implementation, we treat n; as a vector of entries of increasing value,
the increment of each component of n; over the previous one after each step of WOS
will be 0, 1 or 4, corresponding to the scenarios that X; is out of the e-region, in the
e-region while sampled on the sphere of a radius Az, or in the e-region while sampled
on the sphere of a radius 2Ax, respectively.
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REMARK 4.1 (Alternative way to compute local time L(t)). From Equation (2.4), the
local time increases if and only if the RBM path hits the boundary, which implies that
the time before the path hits the boundary makes no contribution to the increment of
the local time. Thus, a WOS method with a changing radius can also be used with
Equation (2.4). Specifically, we divide the time interval [0,¢] into N small subintervals
of equal length. In each [t;,t;+1] the Brownian path will move 2Axz or Az with the
WOS method when the current path lies within a distance less or more than Az to
the boundary. If the path hits or crosses the boundary within [t;,¢;41], then L(t) will

increase by \/7/2+/tit1 —t;.

REMARK 4.2 (Approximating RBM by WOS or random walks on a lattice — a compar-
ison). There are two ways to find approximation to Brownian paths inside the region
M. (D) and construct their reflections once they get out of the domain. One way is by
using the WOS approach as described in Section 4.1. The other is in fact to use a ran-
dom walk on a lattice inside M. (D). Both belong to the random walk techniques while
WOS prevails in homogeneous media without consideration of the whole trajectories of
paths and random walk on a lattice is widely used in various other situations. In the
second approach, as illustrated in Figure 4.5, a grid mesh is set up over M (D) and the
random walk takes a one-step walk on the lattice until the path goes out of the domain
and then it will be pushed back to the nearest lattice point inside M.(D). And the
elapsed time for a Az walk is again on average (Ax)?/3 as shown in Appendix A. The
boundary local time L(t) can still be calculated as in Equation (4.1). The problem with
this approach is that a random walk on the lattice only considers six directions in R?
while a Brownian motion actually should have equal probability to go in all directions
in the space. This limitation was found in our numerical tests to lead to insufficient
accuracy in simulating reflecting Brownian motions.

Meanwhile, the WOS method in the e-region M. (D) has a fixed radius Az, which
enables us to calculate the boundary local time by Equation (4.1) since the elapsed
time of a Az move in R on average remains to be (Az)?/3. This conclusion can be
heuristically justified by considering points on the sphere as linear combinations of the
directions along the three axes, which implies that the average time that the path hits
the sphere with a radius Az should also be the same. As discussed before, if the path
comes within a distance very close to the boundary, say less than Az, the radius of the
WOS method is increased to 2Ax so that it will have a chance to run out of the domain
and then be pushed back to the nearest point on the boundary to realize a hit of the
RBM on the boundary.

4.3. Probabilistic representation for the Neumann problem. Finally, with
the boundary local time of RBM available, we can discuss the approximation of the
Neumann problem solution u(x) using the probabilistic approach (2.10). First of all,
we will need to truncate the infinite time duration required for the RBM path X;
in Equation (2.10) to a finite extent for computer simulations. The exact length of
truncation will have to be numerically determined by increasing the length until a
convergence is confirmed (namely, the approximation to u(z) does not improve within a
prescribed error tolerance between two different choices of truncation times under same
number of sampled paths). Assume that the time period is limited to from 0 to 7', then
by a Monte Carlo sampling of RBM paths, an approximation of Equation (2.10) will be

1 N
i) =53

T ) ] t+dt .
/ (X Iop (XF) / In, <X;>ds] , (4.2)
0 t
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where Xti,i: 1,...,N are stochastic processes sampled according to the law of RBM.
Next, let us see how the RBM can be incorporated into the representation formula
once its path is obtained.
Associate the time interval [0,7] with the number of steps NT of a sampling path,
NT will give the total length of each path. Then, the integral inside the square bracket
in Equation (4.2) can be transformed into

NT t;
) (¢<X;)IaD<X:j> | . <X;>ds> , (43)
=1 i-1
where j' stands for the j'th step of the WOS method, and j corresponds to a step for
which ij € 0D and summation is only done over those j’s.

As the integral in Equation (4.3) is in fact the occupation time as shown in Equation
(4.1), Equation (4.3) becomes

NT
i i (Az)?
)y (ot o (63 o, =, )57 ). (4.4

As a result, an approximation to the PDE solution @(x) becomes

N NT 2
) =53 [ 3 (6 ton (s e VSE) [ )

i=1 |j/=1

Theoretically speaking, ¢ should be chosen much larger than Axz. Here, we take
e=kAx, k >1 is an integer, which will increase as Ax vanishes to zero. Then, Equation
(4.5) reduces to

i(z) = 2k1Aa:Z Z (¢<ng)IaD(ij)(ntj _ntjfl)(A;:) )
Ax N NT . 4
=T 2o | 22 (oK o (X1 e, =) | (ws)

which is the final numerical approximation for the Neumann problem. In the following
we present the general implementation of the numerical algorithm.

Let x be any interior point in D where the solution u(z) for the Neumann problem
is sought. First, we define the e-region M.(D) near the boundary. For each one of
N RBM paths, the following procedure will be executed until the length of the path
reaches a prescribed length given by NT:

1. If ©¢ M.(D), predict next point of the path by the WOS with a maximum
possible radius until the path locates near the boundary within a certain given
distance €, say e=3Ax (hit the e-region M.(D)). It x € M. (D), I(t;)=1 or 4;
otherwise, [(¢;)=0. Here [(t) is the unit increment of L(¢) at time ¢.

2. If € M. (D), use the WOS method with a fixed radius Az (if dist(z,0D) > Ax)
or 2Az (if dist(x,0D) < Az) to predict the next location for Brownian path.
Then, execute one of the two options:
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Option 1. If the path happens to hit the domain boundary 0D at x,, record

Option 2. If the path crosses the domain boundary 0D, then pull the path back
along the normal to the nearest point on the boundary. Record the Neumann value at
the boundary location.

Due to the independence of the paths simulated with the Monte Carlo method, we
can run a large number of paths simultaneously on a computer with many cores in a
perfectly parallel manner, and then collect all the data at the end of the simulation to
compute the average. Algorithm 1 gives a pseudo-code for the numerical realization of
implementing the WOS in both I.(D) and M. (D) regions.

As described in this section, it is quite clear that calculation of the distance to the
boundary accounts for a large portion of computing time in our algorithm, especially
when the Brownian path is out of the e-shell. For simple domains like a cube and a
sphere in R3, this distance can be found easily and thus consumes little time. In the
ellipsoid case, the distance is still computable which involves the calculation of normal
directions and thus requires much more time than the former cases. For more general
domains, more efficient numerical methods are desired.

5. Numerical results

In this section, we give the numerical results for the Neumann problem in a cube,
a sphere, an ellipsoid, and a non-smooth domain.

To monitor the accuracy of the numerical approximation of the solutions, we select
a circle inside the domain, where the solution of the PDE u(x) will be found by the
proposed numerical methods, defined by
)T

{(x,y,2)T = (rcos; sinby,rsinb; sinfy,rcosfy)”} (5.1)

with r=0.6, 6, =0,27/30,47/30,...,7, 03=137/30 with 15 different #; in ascending
order. In addition, a line segment will also be selected as the locations to monitor
the numerical solution, the endpoints of the segment are (0.4,0.4,0.6)” and (0.1,0,0)7,
respectively. Fifteen uniformly spaced points on the circle or the line are chosen as the
locations for computing the numerical solutions.

The true solution of the Neumann problem (1.1) with the corresponding Neumann
boundary data is taken to be

u(z) =sin3zsindy e +5. (5.2)

In the figures of numerical results given below, the (blue) curves are the true solu-
tions and the (red) curves with circles are the approximations. The numerical solutions
are shifted by a constant so they agree with the exact solution at one point as the
Neumann problem is only unique up to an arbitrary additive constant. “Err”indicates
the relative error of the approximations.

5.1. Convergence rate study. The analysis of the errors of our numerical
methods is complex as it involves several inter-connected factors, the time truncation
T, the radius of the WOS sphere inside the e-layer and the layer’s thickness, and the
number of Brownian paths.

A cubic domain of size 2 is selected to test the choice of the number of paths and
the length of the paths in the numerical formula (4.6). Taking the cubic domain avoids
a source of errors in computing the projection of the paths onto the domain boundary.



Y.J. ZHOU, W. CAI, AND E. HSU 249

First we consider the proper choice of the truncation length NT parameter of the
Brownian paths. The step-size Az =5x10"% is used as the radius of the WOS inside
the e-region M. (D), namely, the step-size of the random walk approximation of the
RBM near the boundary. The strip width € is chosen to be 3Az. The number of paths
is taken as N =2x 10°. Two choices for the path length parameter NT =2.7 x 10* and
NT=2.9x10" for the circle (NT =2.4x 10" and NT =2.5x 10* for the line segment)
are compared to gauge the convergence of the numerical formula in terms of the path
truncation. Figure 5.1 and Figure 5.2 show the solution and the relative errors in both
cases, which indicates that NT'=2.9 x 10* and NT'=2.5 x 10* will be sufficient to give
an error below 3% for the circle and the line segment, respectively, as shown in Figure
5.2.

(a) € = 3Az, Err = 10.50%, NT = 2.7 x 10* (b) € = 3Az, Err = 3.83%, NT = 2.4 x 10%

Fic. 5.1. Cubic domain: number of paths N=2x10°. (Left): Solution on the circle. (Right):
Solution on a line segment.

(a) e = 3Az, Err = 2.87%, NT = 2.9 x 10* (b) € = 3Az, Err = 1.78%, NT=2.5 x 10%

FIic. 5.2. Cubic domain: number of paths N=2x10°. (Left): Solution on the circle. (Right):
Solution on a line segment.
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Algorithm 1: The algorithm for the probabilistic solution of the Laplace equation
with the Neumann boundary condition

Data: Select integers N and NT, a starting point X € D, step size h and e-region
M,(D) near the boundary.
Output An approximation of u(Xy).

Initialize L[NT],v[NT],u[N], X = Xo, i< 1 and j <+ 1;

While i <N do
Set Sl =0.
While j < NT do
If X<cI.(D)then /*If the path has not touched the e-region */
Set L[j]< 0; /*Increment of local time at each step. */
Set < d(X,0D); /* Find the distance to the boundary */
Randomly choose a point X; on B(X,r) then set X + X;.
Else /* The path enters the e-region */
Set r<—h (2h); /*If d(X,0D)>h or =0 (0<d(X,0D)<h) */
L[j]«+ 1(4); /*local time increases */
Randomly choose a point X; on B(X,r) then set X < X;.
If X¢ D, then
Find X; to be the nearest point on dD to X and pull X back
onto 0D at Xj;
Set X (*Xj;
Set u[j] — H(X;)
End
End
it
End
count < 0;
For k=1:NT
count <+ count + L[k];
If v[k] ~=0 then
uli] < uli] + ¢ (X} )-count;

count < 0;
End
1—1i+1;
End
N
Return @(Xo)=hY _ulk]/N/(6k)
k=1

It should be noted that the parameter NT for the length of the path (in terms of
number of WOS steps) does not correspond to the physical time T'. This is due to the
fact that no elapsed time estimate is known for a WOS step of a large sphere radius
inside the interior of the domain. In theory, the larger the truncation time 7', the more
accurate is the probabilistic solution for the Neumann solution. Theoretical variance
estimate on the truncation of the time 7" has been given in [21]. However, for a fixed
spatial mesh size Az, a too long time integration will result in the accumulation of
time discretization error for the Brownian paths, thus leading to the degeneracy of the
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numerical solutions as shown in our numerical experiments. Therefore, the choices for
NT and Az for our method are more complicated than that for the number of paths
N, and have been tested, as discussed above, to give about 3% relative errors in our
simulations.

The traditional Monte Carlo methods for computing high dimensional integrals has
al/ VN convergence rate where N is the number of samples in the simulation. However,
in computing the path averages in the Feynman—Kac formula for the Neumann solution,
the accuracy for the local time will also affect the overall accuracy of numerical methods.
Regarding the former, Révész [10] proposed several approximations of the local time for
1D Brownian motions with convergence rates ranging from O(At'/%) to O(At'/?). Such
an analytical result is expected to hold in higher dimensional Brownian motions. As
such, we expect the overall convergence rate for our Neumann solution will be limited
by that of the local time.

In Table 5.1, we have included the relative errors of the Neumann solution monitored
along a circle and a line segment in terms of the number of paths N. For all simulations,
Az=5x10"*% and the strip width € is chosen to be 3Az. The numerical results show
that the convergence rate is around O(1/N%),a=0.29, which is less than the O(1/V'N)
convergence rate of Monte Carlo integrations. Meanwhile, the relative error of 2.87 x
1072 for the Neumann solution is approximately at the same order of At/ =1.68 x 1072
for At=(Ax)*/3,Az=>5x10"*, reflecting the error estimate of local time in [10]. In

NT=25x10% a NT=29x10* a
N errors on the line errors on the circle
2x10? 0.2316 1.0158
2% 10° 0.0364 0.37 0.4395 0.52
2% 10* 0.0345 0.15 0.0717 0.59
2% 10° 0.0178 0.29 0.0287 0.39

TABLE 5.1. Convergence rate of relative errors as O(1/N<) for the Neumann solution in a cube
where Az=5x10"%,e =3Axz.

the rest of the numerical tests below, we will set Az=>5x10"* and the number of path
N =2x10°, but change NT for different boundaries.

5.2. Spherical domain. The unit ball is centered at the origin. Similar numer-
ical results are obtained as in the case of the cube domain. Here, the reflected points
of Brownian path are the intersection of the normal and the domain. Though both
Figure 5.3(a) and (b) shows some deviations in the middle, the overall approximation
are within an acceptable relative error less than 5.26%.

5.3. Ellipsoidal domain. We use the ellipsoid with axis lengths (3, 2, 1) cen-
tered at the origin. Az remains to be 5x 10~%. The numerical results (Figure 5.4) on
the circle are less accurate than those for the cubic and spherical domains. A possible
reason is as follows. An ellipsoid has “corners” around the longest axis if the lengths
of three axis are not the same. When the initial point of the Brownian particle is far
away from the “corners”, the Brownian paths have a smaller probability to run into the
regions close to those “corners”. This implies that a large number of sampled paths
starting at those points may stay away from the “corners”, which may undermine the
calculation accuracy of u(z) since u(x) is the weighted average over of Neumann data
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(a) € = 3Az, Err = 5.26%, NT = 5x 10% (b) € = 3Az, Err = 2.00%, NT = 4.5x 10%

FiG. 5.3. Spherical domain: number of paths N =2x10°. (Left): Solution on the circle. (Right):
solution on a line segment.

at hitting positions of RBM on the whole boundary. The numerical solutions along the
line segment show a better accuracy.

(a) € = 3Az, Err = 8.85%, NT = 5.025x 10*  (b) € = 3Az, Err = 1.69%, NT = 4.525 x 10*

Fic. 5.4. Ellipsoidal domain: number of paths N =2x105. (Left): Solution on the circle. (Right):
solution on a line segment.

5.4. Exterior Neumann problem for a domain of multiple spheres. Now
we consider the exterior Neumann problem of a domain whose boundary is formed by
multiple spheres, as shown in Figure 5.5. Thirty small hemispheres, with varying radii
ranging from 0.12 to 0.18, are superimposed on the surface of a unit sphere with no
overlapping between the small spheres. The solution domain is formed by the big sphere
and thirty small hemispheres. We will calculate the potential on the boundary for the
exterior Neumann problem of this domain. Using the Feynman—Kac formula, we can
find the potential at any single point within the domain. By our algorithm, we can
simply place the point on the boundary and start the reflecting Brownian path from
that point. Solutions at fourteen points with ten points on the unit sphere and four
points on the small hemispheres are calculated. For this case, the analytical solution
is set to be 10/y/(x—0.5)2+y2+22. Figure 5.6 shows the satisfactory results of the
algorithm on the boundary with a relative error around 2%. Note that for the exterior
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problem, the Brownian path may go to infinity so a large boundary is needed to mark
the paths considered to be far away from the domain boundary, namely, escaping to
infinite, and here a much larger sphere with radius 20R(R=1) is chosen. Finally, the
number of Monte Carlo path samples is taken to be 2 x 10%, giving the obtained results.

R=1, 0.12<=smallR<=0.18, 30 small spheres

Fic. 5.5. A domain with a boundary formed by multiple small hemispheres and a unit sphere.

T —

F1G. 5.6. Exterior Neumann problem for the domain in Figure 5.5: Ezact potentials (asterisks)
and numerical solutions (circles) on the boundary with a relative error of 2.31%. Az =5 X 1074, € =
3Az, N=2x10%, NT = 5x10%.

5.5. Some numerical issues and comparison with existing MC and grid-
based methods.

5.5.1. Calculation of distance and parallel implementation. It is clear
that the calculation of the distance to the boundary accounts for a large portion of
computing time for the WOS algorithm. In the multiple-spheres example, it takes a
little time to find the closest point on the boundary by looping over all the thirty small
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hemispheres. But, consider the case of a boundary formed by many more small spheres,
e.g. 1000 spheres, it will be time-consuming to calculate the distance. However, if the
number of unique radii of the small spheres is small, some existing packages, for instance
nanoflann library [3], can be used to speed up the closest-point query. But for a general
domain, a regular Cartesian mesh covering the whole domain can be used to facilitate
the calculation. As the signed distance function is a smooth function of position if
it is given a negative value of the absolute distance outside the domain, we can pre-
calculate the signed distance function at the regular mesh points, and the distance for
any interior point to the boundary can be approximated accurately by appropriate high
order interpolations of the distance function values on the mesh points. This greatly
reduces the computing time at each step of the WOS algorithm. Also, as our algorithm
requires the exact reflecting point on the boundary when the path exits the domain, a
Newton root-finding method will be used to locate the nearest point on the boundary
along the inward normal.

The MC approach of our method is intrinsically parallel as paths initiating from
the location where the PDE solution is sought after are independent, a large number of
paths can be sampled simultaneously on a multiple-core/nodes computer in a perfectly
parallel manner and only at the end of the simulation the data is collected to compute
the average in the Feynman—Kac formula.

5.5.2. Memory use and CPU time for sampling paths. For each sample
path, the hitting locations and corresponding local time are recorded to evaluate the
average of contributions of each path. Therefore, the memory storage required for the
algorithm is O(N-NT) given N paths, each of length NT. If distance functions are
pre-calculated, as needed for a domain of general shape, additional memory of O(Nf’ )
(N1 be the number of subdivision along each dimension of the domain), is needed to
store the distance function values on the mesh. The CPU time of the algorithm mainly
arises from the calculation of the distance to the boundary and the reflecting points. For
cube and sphere domains, it is trivial and thus quick to compute. For general domains,
one should also take into account of CPU time spending on the Newton method used
to find the reflecting points on the boundary. Naturally, the overall CPU time depends
on the number of sample paths, length of each path in proportion.

5.5.3. Comparison to an existing MC for the Neumann problem. A
Monte Carlo method for the Neumann problem of the Poisson equation was proposed
n [21] where WOS method was also used to simulate Brownian motions. The main
difference from the algorithm in this paper is about how to treat the Brownian paths
once they enter the e-layer of the boundary. In [21], once the path enters the e-layer,
the path is then projected onto the boundary, say at (z,y). And, in order to continue
the walk back into the domain, with the help of the Neumann data ¢(z), a Taylor
expansion for the PDE solution is used to relate the solutions at a grid point of a
local regular mesh of size h inside the domain, say (z+h,y), and at the boundary in
the form of u(x,y)=u(z+h,y)+2hd(x). A randomization of this relation shows the
score of the walk should be increased by an amount of 2h¢(x) and the walk arrives
at the new position (z+ h,y) inside the domain. Moreover, in order to introduce the
elapsed time for each walk, a kinetic approximation of the diffusion operator by a
neutron transport operator is used such that the new position of the walk can now be
at (z+ hvgte,y+hoyt.), where (vg,v,) is the velocity of the walk, ¢, is a small parameter,
and h%t, will be the elapsed time to arrive this new position. A Taylor expansion of the
solution will give a similar afore-mentioned relation, which indicates a different score
increment 4¢(z)h/m. And, the motion of the walk continues until the pre-set truncation
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time of the path is reached.

In terms of complexity and memory usage, the MC algorithm of [21] is similar to
the method introduced in this paper as it only needs to record the locations when the
Brownian path enter e-layer and the projected position onto the boundary and the times
(or stepsizes) at each walk step.

However, there is one difference in the way when a path is considered having hit
the boundary and then reflected back into the domain. In our algorithm, the path has
to “physically” cross the boundary before it is treated as a RBM path. In the approach
of [21], once a path enters the e-layer, it is then considered as a RBM path, as a result,
this approach may treat a Brownian path which enters the layer, then leaves it without
hitting the boundary for a while, also as behaving as a RBM path, in fact the local
time increment for this path before it re-enters the e-layer should be zero. The effect of
this happening to the averages in the Feynman—-Kac formula is not clear and should be
investigated in relation to the thickness of the e-layer .

5.5.4. Comparison to grid-based method. Comparing to grid based method
such as finite element method with a mesh size Ax =Ay=Az= N for a cube of [0,L]3,

an unstructured mesh as in a general domain will require O(N®) memory while the
generation of the mesh itself will also take large amount of CPU time. An iterative
solver such as GMRES or conjugate gradient will take O(pN ‘3) flops for p-iterations.
The main difference is that the grid-based method has to find the solution in the whole
solution domain while the Monte Carlo method allows the solution at one single point.
For the Monte Carlo method used in this paper, to find the solution at one single point,
we only need to record the times and locations where the reflecting Brownian path
hits the boundary for each of the IV paths and no mesh generation and linear solver is
required either.

6. Conclusions and discussions

In this paper we have proposed numerical methods for computing the local time
of reflecting Brownian motion and the probabilistic solution of the Laplace equation
with the Neumann boundary condition. Without knowing the complete trajectories
of RBM in space, we are able to use the WOS to sample the RBM and calculate its
local time, based on which a discrete probabilistic representation (4.6) was obtained to
produce satisfactory approximations to the solution of the Neumann problem at one
single point. Numerical results validated the stability and accuracy of the proposed
numerical methods.

In addition, random walk on a lattice was also investigated as an alternative way
to sample RBM. However, numerical experiments show that the numerical results are
inferior to those obtained by the WOS method. A possible reason is that formula (2.3)
for the local time is valid for a smooth path while a random walk approximation of the
the Brownian path contains inherent errors.

The local time can also be computed by a mathematically equivalent formula (2.4),
for which the implementation is discussed briefly in Section 4.2. Again the numerical
results based on Equation (2.4) are inferior to those obtained using the original limiting
process of Lévy in [19] . We believe that this fact may result from the time discretiza-
tion error of Brownian paths especially when long time truncation is employed in the
probabilistic representation.

Various issues affecting the accuracy of the proposed numerical methods remain
to be further investigated, such as the number of random walk or WOS steps and the
truncation of duration time T for the paths [21], the choice of the thickness for the
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e-region, the size of Az for the lattice, etc. Regarding the convergence rate of the

proposed method as discussed in Section 5.1, more theoretical work is needed on the
exact rate of convergence.

Appendix A. For the random walk on a lattice as in Figure A.1 to converge to a

(x,y,2+1)

(x-1,y,2)
(xy-1,2)

(xy,2)

(x,y+1,2)
(x+1,y,2)

(x,y,2-1)
Fic. A.1. Central difference scheme in R,

continuous BM, a relationship between At and Az in R? will be needed and is shown
to be

Ax)?
B

The following is a proof of this result (See [6] for a reference). The density function
of standard BM satisfies the following PDE [15]

op 1

Atz(

(A1)

By using a central difference scheme and changing p to v, Equation (A.2) becomes
Uk Vi LUk U gkt Ok U U O k1 — 60T
At 2 (Az)2 ’
(A.3)
where 7, j,k are the indices of grid points on the lattice with respect to the three axes.
Reorganizing Equation (A.3) and letting A= At/(2(Ax)?), we have

1
zn;—k: )\/U7,+1_]k+AUz 1]k+szj+1k+AUzj 1k+)‘vz]k+1+AU1jk 1+(1 6)\) .5,k

(A.4)
1
By setting )\— , we have
1 1 1 1, 1, 1,
v; ;rzi 6 z+1,]k+6v1 1]k+6 ,J+1,k+gvi,j—1,k+6”¢,j,k+1+6vi,j,k—1- (A.5)

Using the initial condition ¢, we have

ﬁj;_ Z Cir ji 1 <Za> (A.6)
=1

k?/
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where
T 1
(=h,0,0)", prob= g
1
(h,0,0)T, prob= 5
1
N (O7h70)T7 prOb: 6
m= 1 (A7)
(07_h70)T7 pI‘Ob: 6
1
(0707h)T7 pI'Ob: 6
1
(07077h)T7 pI‘Ob: 6
and
" —n+2i' +i
Som=| -n+2i+j |h (A.8)
=1 —n+2k'+k
Let ﬁ; = (z1,y1,2)", then
1
—h b=—
, pro 5
1
si={ b, prob=¢ . (A.9)
2
0 b=—
, prob=7
for each [. We known that y;, z; have the same distribution as x;.
Notice that the covariance between any two of x;, y;, z; is zero, i.e.
E(x1y)=0, E(y;2) =0, and E(x;2)=0.
So
E(leZyl):O, E(ZylZzl):O, and E(leZzl):O.
i=1  i=1 i=1 i=1 i=1  i=1
According to the central limit theorem, we have
le ZN (0,%) as n— oo. (A.10)
i=1
The same assertion holds for Zyl and Zzl.
i=1 i=1
At 1 h? =
Since A= m =& then h? =3k and, hence, %:nk‘:t. Therefore le ~

n n
N(0,t) as n—00. So are Zyl and Zzl.

i=1 i=1

i=1
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n n n
Recall that the covariance between any pair of le, Zyl, and Zzl is zero, that
i=1 =1 i=1

E xy, E Y1, and E z; become independent normal random variables as n — co. Hence,
i=1  i=1 i=1

n
2
i=1

n —n+2i' +i X o
Cijriwmn=P me n+2j/+] h= Zyl %(27”5)3/26 5 . (A11)
- —n+2k"+k

n

> 4
i=1
and

" —sz 12
=Y Cow n¢> —>///R G —E o g(x)de, (A.12)

ik

which coincides with the density function of the 3D standard BM

At 1 Az
In conclusion, when m =5 ie. At= ( 3> or \/>— 7 the central differ-

ence scheme converges to the standard BM in 3D. Generally, the result can be extended
(Az)?
d
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to d-dimensional Euclidean space and the result will be At =
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