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LITTLE-o CONVERGENCE RATES FOR SEVERAL ALTERNATING
MINIMIZATION METHODS∗

TAO SUN† AND LIZHI CHENG‡

Abstract. Alternating minimization is an efficient method for solving convex minimization prob-
lems whose objective function is a sum of a differentiable function and a separable nonsmooth function.
Variants and extensions of the alternating minimization method have been developed in recent years.
In this paper, we consider the convergence rate of several existing alternating minimization schemes.
We improve the proven big-O convergence rate of these algorithms to little-o under an error bound
condition which is actually quite common in many applications. We also investigate the convergence
of a variant of alternating minimization proposed in this paper.
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1. Introduction
Let H, f , and g all be closed, proper, and convex functions. This paper considers

the following minimization problem

min
y∈RN1 ,z∈RN2

Φ(y,z)=f(y)+H(y,z)+g(z), (1.1)

where H is a differentiable function but f and g may or may not be. Such a model has
many applications in signal and image processing, machine learning research, statistical
problem, to name a few. The authors in [19] provide plenty of examples.

An old but classical and effective method for problem (1.1) is the Alternating Min-
imization scheme (AM) [16]. In other literature, this algorithm is also called as coor-
dinate descent method or Gauss–Seidel method [7]. A recent survey on the coordinate
descent method is shared by [21]. This method fixes one of y and z in each iteration,
and then minimizes the other one. The author in [2] first investigates the convergence
rate of the AM method for problem (1.1). A sublinear convergence rate is given in [2]
under some trivial assumptions on f , g, and H. In a latter paper [18], the authors point
out the drawbacks of AM method for problem (1.1): it solves a minimization problem
in each iteration, the stopping criterion is hard to determine, and error accumulates.
In view of this, paper [18] proposes the Proximal Alternating Linearized Minimization
(PALM). This algorithm solves a linear approximation which is actually the proximal
map of f or g; and then, the subproblem in each iteration can be exactly solved if the
proximal maps of f and g are easily calculated. The authors in [18] also prove the
sublinear convergence of PALM.

It is natural to think of combining AM and PALM, i.e., in each iteration, we use
the linearized methodology for one of y and z rather than both. Such an idea is inspired
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by the following problem which reads as

min
y∈RN1 ,z∈RN2

λ1‖y‖1+‖Ay−z‖22+λ2‖z‖1,2, (1.2)

where λ1,λ2>0, and ‖·‖1 and ‖·‖1,2 are the �1 norm and �1,2 norm, respectively. When
z is fixed, minimizing the function above needs iteration; therefore, we use the PALM
strategy. While when y is fixed, the minimization of the function is quite simple. We
call such algorithm as Half Proximal Alternating Linearized Minimization (HPALM)
algorithm.

In the paper, we investigate the convergence rates of the three schemes above when
function satisfies some error bound. Such an error bound is quite common for the
polyhedral minimization. With the summable sequence techniques proposed in [10–12],
we improve the proved big-O rate AM and PALM to little-o rate. We also prove the
little-o rate of HPALM.

2. Assumptions and preliminaries
We adopt the notation described here throughout the paper. Let x1 and x2 be two

elements of the space RN . Let xi be ith component of x. The inner product of x1 and
x2 is defined as 〈x1,x2〉 :=∑N

i=1x
1
ix

2
i . The length of x is denoted by ‖x‖2 :=

√〈x,x〉.
For a convex set Q⊆RN , the projection of vector x to Q is denoted as ProjQ(x) :=

argminw∈Q‖x−w‖2. Let dom(J) be the domain of J , i.e., dom(J) :={x∈RN |J(x)>
−∞}. Through the paper, we follow the convention used in [2] that x∈RN1+N2 which
is generated by

x=(y,z). (2.1)

All partial derivatives corresponding to y will be denoted as ∇yJ(x), and so is ∇zJ(x).
Then, we have that

∇J(x)=(∇yJ(x),∇zJ(x)).

2.1. Mathematical preliminaries. Here, we collect some basic definitions in
the following.

Definition 2.1 (See [15]). If a function J(x) is convex and differentiable, we call J
has continuous Lipschitz gradient L=L(J), provided

‖∇J(u)−∇J(v)‖2≤L(J)‖u−v‖2,u,v∈dom(J). (2.2)

Lemma 2.1 (See [15]). If J is convex and differentiable and has continuous Lipschitz
gradient L, we have that

J(u)≤J(v)+〈∇J(v),u−v〉+ L

2
‖u−v‖22. (2.3)

Definition 2.2 (See [9,17]). If a function J(x) is convex, the proximal map of J(x)
is defined as

ProxJ(x) :=argmin
w
{J(w)+ 1

2
‖x−w‖22}. (2.4)

It is easy to see that ProxJ(x)=(I+∂J)−1(x).
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Lemma 2.2 (See [2]). Let J be a proper, convex and closed function. Then, w=
Prox J

M
(x) if and only if for any u∈dom(J)

J(u)≥J(w)+M〈x−w,u−w〉,
where M>0.

Lemma 2.3 (See [2,6]). Let {αk}k≥1 be nonnegative sequence of real numbers satisfying

αk−αk+1≥γα2
k+1. (2.5)

Then, for any k≥2, we have that

αk≤max{
(
1

2

) k−1
2

α0,
4

γ(k−1)
}. (2.6)

Lemma 2.4 (Summable sequence convergence rate [12]). Suppose that nonnegative

scalar sequences {ξj}j=1,2,... and {aj}j=1,2,... satisfy
∑

j ξjaj <+∞. Let Σk :=
∑k

j=0 ξj,
k≥1. If {ξj}j=1,2,... be monotonically nonincreasing, then

ak=o(
1

Σk−Σ� k
2 �

). (2.7)

In particular, if ξj≥ εjp for some p>0 and ε>0, then, ak=o( 1
kp+1 ).

The summable sequence convergence rate (2.7) has been proved by Davis and Yin
in [12]. Here, we use it to prove the particular case. The proof is simple and presented
here just for completeness’s sake.

Proof. Note that

Σk−Σ� k
2 �≥ ε

k∑
j=� k

2 �
jp

≥ ε

k∑
j=� k

2 �

∫ j

j−1

tpdt

= ε
k∑

j=� k
2 �

jp+1−(j−1)p+1

p+1

=Ω(kp+1).

Then, we have

0≤akΩ(k
p+1)≤ak(Σk−Σ� k

2 �)→0. (2.8)

That is actually ak=o( 1
kp+1 ).

Remark 2.1. The summable sequence convergence technique is introduced by Davis
and Yin for analyzing several famous splitting schemes [12]; amazingly, the authors
present some new results for such well-studied classical schemes in general case. In
latter papers [10, 11], the technique is applied to some other methods. Recently, the
authors in [1] presents a little-o convergence rate for the FISTA [4]; in fact, they also
used such a technique.
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2.2. Assumptions and conditions. We collect several assumptions on f , g
and H as follows:

A.1: The functions f :RN1 �→ (−∞,+∞] and g :RN2 �→ (−∞,+∞] are closed and
proper convex, and the function H is continuously differentiable convex over dom(f)×
dom(g).

A.2: For any x0∈dom(f)×dom(g), the level set

LΦ(x
0) :={x|Φ(x)≤Φ(x0)} (2.9)

is compact.

A.3: There exists L1∈ (0,+∞) such that

‖∇yH(y1,z)−∇yH(y2,z)‖2≤L1‖y1−y2‖2,
for any y1,y2∈dom(f) and z∈dom(g).

A.4: There exists L2∈ (0,+∞) such that

‖∇zH(y,z1)−∇zH(y,z2)‖2≤L2‖z1−z2‖2,
for any y∈dom(f) and z1,z2∈dom(g).

From A.3 and A.4, for any x1=(y1,z1),x2=(y2,z2)∈dom(f)×dom(g), we have
that

‖∇H(x1)−∇H(x2)‖2≤‖∇yH(x1)−∇yH(x2)‖2+‖∇zH(x1)−∇zH(x2)‖2
≤‖∇yH(x1)−∇yH(y1,z2)+∇yH(y1,z2)−∇yH(x2)‖2
+‖∇zH(x1)−∇zH(y1,z2)+∇zH(y1,z2)−∇zH(x2)‖2

≤ (L1+L2)‖y1−y2‖2+(L1+L2)‖z1−z2‖2
≤
√
2(L1+L2)‖x1−x2‖2.

That means H has a continuous Lipschitz gradient
√
2(L1+L2) over dom(f)×dom(g).

We use

L=
√
2(L1+L2) (2.10)

through the paper.

Q-Sufficient Descent Condition

Definition 2.3. Let Q⊆RN be a closed convex set. We call that function J satisfies
Q-Sufficient Descent condition (Q-SD), if, for any x∈Q,

J(x)−J∗≥ν‖x−Projχ∗(x)‖22, (2.11)

where χ∗ is the solution set of minxJ(x), and J∗ is the minimum of J , and ν >0.
Further, if Q=RN , we it as Global Sufficient Descent condition (GSD).

The Q-SD can be regarded as a modification of the error bound which was pro-
posed in [14]. Although not explicitly proposing the definition, the authors in [3] have
already employed GSD to prove the linear convergence of Away-Step conditional gra-
dient method. In fact, the GSD has a deep relationship with the Restricted Strongly
Convexity (RSC) [13]; the RSC implies GSD(we will provide a brief proof of this in
the appendix). In the following, we provide two examples to demonstrate that a wide
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class of function which owns the same form as the objective function in problem (1.1)
satisfies Q-SD/GSD.

Example 1. If κ is a strongly convex function, and S and D are two polyhedral
sets, and λ1,λ2≥0. Then,

Φ(y,z)=κ(Ay+Bz)+λ1δS(y)+λ2δD(z)

satisfies the GSD condition, where δS(y) and δD(z) are the well-known indicator func-
tions. We can immediately obtain this by using [3, Lemma 2.5].

Example 2. If κ1 and κ2 are strongly convex functions and λ1,λ2≥0. Then,

Φ(y,z)=κ1(Ay+Bz)+κ2(Cy+Dz)+λ1‖y‖1+λ2‖z‖1
satisfies the Q-SD condition, where Q={x|‖x‖2=‖(y,z)‖2≤R} and R is any positive
sufficiently large constant. We will provide a proof for this example in the appendix. If Φ
satisfies assumption A.2, R can be chosen large such that LΦ(x

0)⊆B(0,R). Therefore,
the function satisfies LΦ(x

0)-SD in this case.

Remark 2.2. Example 1 and Example 2 have many applications in engineering.
In [2], the author proposes using Example 2 to solve the following problem

min
z
‖Tz‖1+‖b−Az‖22. (2.12)

Actually the author focuses on the penalty version of Equation (2.12) rather than the
original one, i.e.,

min
y,z

ρ‖Tz−y‖22+‖b−Az‖22+‖y‖1, (2.13)

where ρ>0 is the penalty parameter.

2.3. Schemes. In this subsection, we present the specific schemes of the algo-
rithms mentioned in Section 1. From any starting point x0=(y0,z0)∈dom(f)×dom(g),
the AM method updates xk+1=(yk+1,zk+1) as

yk+1∈argmin
y

H(y,zk)+f(y), (2.14a)

zk+1∈argmin
z

H(yk+1,z)+g(z). (2.14b)

The KKT condition for the second relation gives that

0∈∇zH(yk+1,zk+1)+∂g(zk+1).

Thus, for any γ >0, it holds that

zk+1=(I+∂g/γ)−1(zk+1−∇zH(yk+1,zk+1)/γ). (2.15)

The PALM algorithm solves the linearized approximation of the problems above,
i.e.,

yk+1∈argmin
y
〈∇yH(yk,zk),y−yk〉+ γk

2
‖y−yk‖22+f(y), (2.16a)

zk+1∈argmin
z
〈∇zH(yk+1,zk),z−zk〉+ λk

2
‖z−zk‖22+g(z). (2.16b)
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For PALM, the KKT condition gives that

0∈∇yH(yk,zk)+γk(y
k+1−yk)+∂f(yk+1), (2.17a)

0∈∇zH(yk+1,zk)+λk(z
k+1−zk)+∂g(zk+1). (2.17b)

Therefore, we can derive that

yk+1=(I+
∂f

γk
)−1(yk− 1

γk
∇yH(yk,zk)), (2.18a)

zk+1=(I+
∂g

λk
)−1(zk− 1

λk
∇zH(yk+1,zk)). (2.18b)

The HPALM combines the two algorithms above; it has the following two forms

yk+1∈argmin
y
〈∇yH(yk,zk),y−yk〉+ γk

2
‖y−yk‖22+f(y), (2.19a)

zk+1∈argmin
z

H(yk+1,z)+g(z), (2.19b)

and

yk+1∈argmin
y

H(y,zk)+f(y), (2.20a)

zk+1∈argmin
z
〈∇zH(yk+1,zk),z−zk〉+ λk

2
‖z−zk‖22+g(z). (2.20b)

We call the schemes above as HPALM-I and HPALM-II, respectively.

3. Main results
In this part, we present the convergence results of AM, PALM, and HPALM, re-

spectively. We first present a theorem as follows.

Theorem 3.1. Assume that x0 is the starting point and Φ given in problem (1.1)
satisfies the LΦ(x

0)-SD condition. Let {xk}k≥1 satisfy

Φ(xk)−Φ(xk+1)≥ π

dist2(xk+τ ,χ∗)
(Φ(xk+1)−Φ∗)2, (3.1)

where χ∗ is the solution set of problem (1.1), Φ∗ is the minimum of Φ, τ is an integer,
and π>0. Then,

Φ(xk)−Φ∗=o(
1

k
). (3.2)

Proof. It is easy to see that xk and Projχ∗(x
k) all belong to the level set LΦ(x

0).
Let

R= max
x∈LΦ(x0)

{‖x−Projχ∗(x)‖}.

From assumption A.2, R<+∞. Thus, Equation (3.1) turns to

Φ(xk)−Φ∗− [Φ(xk+1)−Φ∗]≥ π

R2
(Φ(xk+1)−Φ∗)2.

Note that Φ(xk)−Φ∗≥0, from Lemma 2.3, we derive that Φ(xk)−Φ∗≤O( 1k ). If Φ
satisfies the LΦ(x

0)-SD condition, we can obtain

Φ(xk)−Φ∗≥ν ·dist2(xk,χ∗) (3.3)
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due to the fact that {Φ(xk)}k=0,1,2,... is decreasing. Therefore, we have dist2(xk,χ∗)≤
O( 1k ). For a fixed τ , we can further obtain that 1

dist2(xk+τ ,χ∗) ≥μk for some μ>0.

Obviously, Φ(xk)−Φ∗ is monotonically nonincreasing and

�∑
k=1

1

dist2(xk+τ ,χ∗)
(Φ(xk+1)−Φ∗)2≤ 1

π
(Φ(x�+1)−Φ(x1))<+∞. (3.4)

Then, from Lemma 2.4, we have that

(Φ(xk)−Φ∗)2=o(
1

k2
). (3.5)

In the following part, we only need to prove that the sequences generated by AM,
PALM, and HPALM all satisfy Equation (3.1). The proof is motivated by the method-
ology presented in [2] and [18], which contains following two main steps:

1. Find a ρ1>0 and function r(xk+i1 ,xk+i2 , . . . ,xk+iα)≥0 such that

Φ(xk+1)−Φ(x∗)≤ρ1r(x
k+i1 ,xk+i2 , . . . ,xk+iα) ·dist(xk+τ ,x∗),∀k=1,2 . . . ,

where α∈N and i1,i2, . . . ,iα∈N.
2. For k=0,1, . . ., find another positive constant ρ2 and r(xk+i1 ,xk+i2 , . . . ,xk+iα)≥

0 such that

Φ(xk)−Φ(xk+1)≥ρ2 ·r(xk+i1 ,xk+i2 , . . . ,xk+iα)2.

Combining the two relations above, we can obtain that

Φ(xk)−Φ(xk+1)≥ ρ2
ρ21

1

dist2(xk+τ ,x∗)
(Φ(xk+1)−Φ(x∗))2. (3.6)

Through the proofs in the following, we use the convention

xk :=Projχ∗(x
k) and xk=(yk,zk). (3.7)

3.1. AM scheme.
Lemma 3.1. Let {xk=(yk,zk)}k=1,2,... be generated by the AM method for problem
(1.1). Then, for any k∈N,

Φ(xk+1)−Φ∗≤L‖yk−Proxf/L[y
k− 1

L
∇yH(yk,zk)]‖2 ·dist(xk,χ∗), (3.8)

where L is defined in Equation (2.10).

Proof. Denote that h(x)=f(y)+g(z). Considering the point (pk1 ,p
k
2)=pk :=

Proxh/L[x
k− 1

L∇H(xk)]. Then, we have that pk1 =Proxf/L(y
k− 1

L∇yH(xk)) and pk2 =

Proxg/L(z
k− 1

L∇zH(xk)). From Equation (2.15), we see that

pk2 = zk. (3.9)

Then, the scheme of AM method then gives that

H(pk1 ,z
k)+f(pk1)≥H(yk+1,zk)+f(yk+1). (3.10)
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Then, we have that

Φ(pk)=H(pk1 ,p
k
2)+f(pk1)+g(pk2)

=H(pk1 ,z
k)+f(pk1)+g(zk)

≥H(yk+1,zk)+f(yk+1)+g(zk)=Φ(yk+1,zk). (3.11)

From the scheme of AM method, we also see that

Φ∗≤Φ(yk+1,zk+1)≤Φ(yk+1,zk)≤Φ(yk,zk). (3.12)

Thus, we have that

Φ(xk+1)−Φ∗≤Φ(yk+1,zk)−Φ∗≤Φ(pk)−Φ∗. (3.13)

In Lemma 2.2, letting x=xk− 1
L∇H(xk), u=xk, J =h, and M =L, we then obtain

that

h(xk)≥h(pk)+L〈xk− 1

L
∇H(xk)−pk,xk−pk〉. (3.14)

From Lemma 2.1, we derive that

H(pk)−H(xk)≤H(xk)+〈∇H(xk),pk−xk〉+ L

2
‖pk−xk‖22−H(xk). (3.15)

Combining Equations (3.13), (3.14), and (3.15), we have that

Φ(xk+1)−Φ∗≤Φ(pk)−Φ∗

=H(pk)+h(pk)−Φ∗

≤H(xk)+h(xk)+L〈xk−pk,pk−xk〉+〈∇H(xk),xk−xk〉
+
L

2
‖pk−xk‖22−Φ∗

≤H(xk)+h(xk)−Φ∗+L〈xk−pk,pk−xk〉+ L

2
‖pk−xk‖22

=L〈xk−pk,xk−xk〉− L

2
‖pk−xk‖22

≤L〈xk−pk,xk−xk〉
≤L‖xk−pk‖2 ·‖xk−xk‖2=L‖xk−pk‖2 ·dist(xk,χ∗). (3.16)

The third inequality is based on the that

〈∇H(xk),xk−xk〉≤H(xk)−H(xk). (3.17)

From Equation (3.9), we have ‖xk−pk‖2=‖yk−pk1‖2.
Lemma 3.2. Let {xk=(yk,zk)}k=1,2,... be generated by the AM method for problem
(1.1). Then, for any k∈N,

Φ(xk)−Φ(xk+1)≥ L

2
‖yk−Proxf/L[y

k− 1

L
∇yH(yk,zk)]‖2. (3.18)

Proof. From Equation (3.12), we have that

Φ(xk)−Φ(xk+1)≥Φ(yk,zk)−Φ(yk+1,zk)
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≥H(yk,zk)+f(yk)−H(yk+1,zk)−f(yk+1).

We using the same notations employed in last lemma. Noth that yk+1 minimizes
H(y,zk)+f(y), then, we have that

H(yk,zk)+f(yk)−H(yk+1,zk)−f(yk+1)

≥H(yk,zk)+f(yk)−H(pk1 ,z
k)−f(pk1)≥

L

2
‖yk−pk1‖22. (3.19)

The second inequality depends on [5, Lemma 2.3].

3.2. PALM scheme.
Lemma 3.3. Assume that maxk{γk,λk}<+∞. Let {xk=(yk,zk)}k=1,2,... be generated
by the PALM method for problem (1.1). Then, for any k∈N,

Φ(xk+1)−Φ∗≤ρ1‖xk+1−xk‖2 ·dist(xk+1,χ∗), (3.20)

where ρ1=
√
2(maxk{γk,λk}+L).

Proof. Applying Lemma 2.2 to Equation (2.17) with u=yk+1 and u= zk+1, we
obtain that

f(yk+1)≥f(yk+1)+γk〈yk−yk+1,yk+1−yk+1〉+〈∇yH(yk,zk),yk+1−yk+1〉 (3.21)

and

g(zk+1)≥g(zk+1)+λk〈zk−zk+1,zk+1−zk+1〉+〈∇zH(yk+1,zk),zk+1−zk+1〉. (3.22)

The convexity of H gives that

H(xk+1)−H(xk+1)≤〈∇H(xk+1),xk+1−xk+1〉. (3.23)

Summing the inequalities above, we obtain that

Φ(xk+1)−Φ(xk+1)≤γk〈yk+1−yk,yk+1−yk+1〉+〈∇yH(xk+1)−∇yH(yk,zk),

yk+1−yk+1〉+λk〈zk+1−zk,zk+1−zk+1〉
+〈∇zH(xk+1)−∇zH(yk+1,zk),zk+1−zk+1〉. (3.24)

With the Schwartz’s inequality, we have

γk〈yk+1−yk,yk+1−yk+1〉≤γk‖yk+1−yk‖2 ·‖yk+1−yk+1‖2
≤max

k
{γk}·‖xk+1−xk‖2 ·‖yk+1−yk+1‖2. (3.25)

Similarly, we also have

λk〈zk+1−zk,zk+1−zk+1〉≤max
k
{λk}·‖xk+1−xk‖2 ·‖zk+1−zk+1‖2. (3.26)

We also have that

〈∇yH(xk+1)−∇yH(yk,zk),yk+1−yk+1〉
≤‖∇yH(xk+1)−∇yH(yk,zk)‖2 ·‖yk+1−yk+1‖2
≤‖∇H(xk+1)−∇H(yk,zk)‖2 ·‖yk+1−yk+1‖2
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≤L‖xk+1−xk‖2 ·‖yk+1−yk+1‖2 (3.27)

and

〈∇zH(xk+1)−∇zH(yk+1,zk),zk+1−zk+1〉
≤‖∇zH(xk+1)−∇zH(yk+1,zk)‖2 ·‖zk+1−zk+1‖2
≤L2‖zk+1−zk‖2 ·‖zk+1−zk+1‖2
≤L‖xk+1−xk‖2 ·‖zk+1−zk+1‖2. (3.28)

Substituting Equations (3.25), (3.26), (3.27), and (3.28) into (3.24), we obtain that

Φ(xk+1)−Φ(xk+1)≤
√
2(max

k
{γk,λk}+L)‖xk+1−xk‖2 ·dist(xk+1,χ∗). (3.29)

Lemma 3.4. Assume that mink{γk,λk}>L2+
L
2 . Let {xk=(yk,zk)}k=1,2,... be gener-

ated by the PALM method for problem (1.1). Then, for any k∈N,
Φ(xk)−Φ(xk+1)≥ρ2‖xk+1−xk‖22, (3.30)

where ρ2=mink{γk,λk}−(L2+
L
2 ).

Proof. Applying Lemma 2.2 to Equation (2.17) with u=yk and u= zk, we obtain
that

f(yk)≥f(yk+1)+γk〈yk−yk+1,yk−yk+1〉+〈∇yH(yk,zk),yk+1−yk〉 (3.31)

and

g(zk)≥g(zk+1)+λk〈zk−zk+1,zk−zk+1〉+〈∇zH(yk+1,zk),zk+1−zk〉. (3.32)

Applying Lemma 2.1 to H at xk, we have

H(xk+1)−H(xk)≤〈∇H(xk),xk+1−xk〉+ L

2
‖xk+1−xk‖22. (3.33)

Summing the inequalities above, we have that

Φ(xk)−Φ(xk+1)≥ (min
k
{γk,λk}− L

2
)‖xk−xk+1‖22

+〈∇zH(yk+1,zk)−∇zH(yk,zk),zk+1−zk〉. (3.34)

Note that

|〈∇zH(yk+1,zk)−∇zH(yk,zk),zk+1−zk〉|≤L2‖yk+1−yk‖2 ·‖zk+1−zk‖2
≤L2‖xk+1−xk‖22. (3.35)

Thus, we have that

Φ(xk)−Φ(xk+1)≥ (min
k
{γk,λk}− L

2
−L2)‖xk−xk+1‖22. (3.36)

3.3. HPALM scheme. In this part, we investigate the convergence of both
HPALM-I and HPALM-II.
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3.3.1. HPALM-I.
Lemma 3.5. Assume that maxk{γk}<+∞. Let {xk=(yk,zk)}k=1,2,... be generated
by the PALM-I method for problem (1.1). If γk≥ L1

2 , then, for any k∈N,

Φ(xk+1)−Φ∗≤ρ1‖yk+1−yk‖2 ·dist(xk,χ∗), (3.37)

where ρ1=maxk{γk}.
Proof. Applying Lemma 2.2 to Equation (2.19) with u=yk, we obtain that

f(yk)≥f(yk+1)+γk〈yk−yk+1,yk−yk+1〉+〈∇yH(yk,zk),yk+1−yk〉. (3.38)

And from the scheme and the KKT condition, we easily have that

0∈∇zH(yk,zk)+∂g(zk).

The convexity of g then gives that

g(zk)≥g(zk)+〈∇zH(yk,zk),zk−zk〉. (3.39)

From Lemma 2.1, we have

H(yk+1,zk)−H(xk)

≤H(xk)+〈∇yH(yk,zk),yk+1−yk〉+ L1

2
‖yk+1−yk‖22−H(xk). (3.40)

With the convexity of H, we have that

H(xk)−H(xk)≤〈∇yH(yk,zk),yk−yk〉+〈∇zH(yk,zk),zk−zk〉. (3.41)

Combining Equations (3.40) and (3.41), we have

H(yk+1,zk)−H(xk)

≤〈∇yH(yk,zk),yk+1−yk〉+〈∇zH(yk,zk),zk−zk〉+ L1

2
‖yk+1−yk‖22. (3.42)

Note that Φ(xk+1)≤Φ(yk+1,zk), summing up Equations (3.38), (3.39), and (3.42), we
obtain that

Φ(xk+1)−Φ∗≤Φ(yk+1,zk)−Φ(yk,zk)

≤γk〈yk+1−yk,yk−yk+1〉+ L1

2
‖yk+1−yk‖22

≤γk〈yk+1−yk,yk−yk+1〉+γk‖yk+1−yk‖22
≤γk〈yk−yk,yk+1−yk〉. (3.43)

It is easy to obtain that

γk〈yk−yk,yk+1−yk〉≤γk‖yk−yk‖2 ·‖yk+1−yk‖2
≤γk‖xk−xk‖2 ·‖yk+1−yk‖2. (3.44)

Substituting Equation (3.44) into Equation (3.43), we have

Φ(xk+1)−Φ∗≤ (max
k
{γk})‖yk+1−yk‖2 ·dist(xk,χ∗). (3.45)
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Lemma 3.6. Assume that mink{γk}> L1

2 . Let {xk=(yk,zk)}k=1,2,... be generated by
the PALM-I method for problem (1.1). Then, for any k∈N,

Φ(xk)−Φ(xk+1)≥ρ2‖yk+1−yk‖2, (3.46)

where ρ2=mink{γk}− L1

2 .

Proof. Applying Lemma 2.2 to Equation (2.19) with u=yk, we obtain that

f(yk)≥f(yk+1)+γk〈yk−yk+1,yk−yk+1〉+〈∇yH(yk,zk),yk+1−yk〉. (3.47)

Applying Lemma 2.1 to H(y,zk), we have that

H(yk+1,zk)≤H(yk,zk)+〈∇yH(yk,zk),yk+1−yk〉+ L1

2
‖yk+1−yk‖22. (3.48)

Summing them together, we derive that

H(yk,zk)+f(yk)−H(yk+1,zk)−f(yk+1)≥ (γk− L1

2
)‖yk+1−yk‖22. (3.49)

Then, we have

Φ(xk)−Φ(xk+1)≥Φ(yk,zk)−Φ(yk+1,zk)

≥ (γk− L1

2
)‖yk+1−yk‖22

≥ (min
k
{γk}− L1

2
)‖yk+1−yk‖22. (3.50)

3.3.2. HPALM-II.
Lemma 3.7. Assume that maxk{γk}<+∞ and mink{λk}≥ L2

2 . Let {xk=
(yk,zk)}k=1,2,... be generated by the PALM-II method for problem (1.1). Then, for any
k∈N,

Φ(xk+1)−Φ∗≤ρ1‖zk+1−zk‖2 ·dist(xk+1,χ∗), (3.51)

where ρ1=maxk{γk}.
Proof. Applying Lemma 2.2 to Equation (2.20) with u= zk, we obtain that

g(zk)≥g(zk+1)+γk〈zk−zk+1,zk−zk+1〉+〈∇zH(yk+1,zk),zk+1−zk〉. (3.52)

And from the scheme and the KKT condition, we easily have that

0∈∇yH(yk+1,zk)+∂f(yk+1).

The convexity of f then gives

f(yk)≥f(yk+1)+〈∇yH(yk+1,zk),yk+1−yk〉. (3.53)

From Lemma 2.1, we have that

H(xk+1)−H(xk)≤H(yk+1,zk)+〈∇zH(yk+1,zk),zk+1−zk〉
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+
L2

2
‖zk+1−zk‖22−H(xk). (3.54)

With the convexity of H, we have that

H(yk+1,zk)−H(xk)≤〈∇yH(yk+1,zk),yk+1−yk〉+〈∇zH(yk+1,zk),zk−zk〉. (3.55)

Combining Equations (3.54) and (3.55), we have that

H(xk+1)−H(xk)≤〈∇yH(yk+1,zk),yk+1−yk〉
+〈∇zH(yk+1,zk),zk+1−zk〉+ L2

2
‖zk+1−zk‖22. (3.56)

Summing Equations (3.52), (3.53), and (3.56), we obtain that

Φ(xk+1)−Φ∗≤λk〈zk+1−zk,zk−zk+1〉+ L2

2
‖zk+1−zk‖22

≤λk〈zk+1−zk,zk−zk+1〉+λk‖zk+1−zk‖22
≤λk〈zk+1−zk,zk−zk〉. (3.57)

It is easy to obtain that

λk〈zk+1−zk,zk−zk〉≤λk‖zk+1−zk‖2 ·‖zk−zk‖2
≤λk‖zk+1−zk‖2 ·‖xk−xk‖2. (3.58)

Substituting Equation (3.58) into Equation (3.57), we have

Φ(xk+1)−Φ∗≤ (max
k
{λk})‖zk+1−zk‖2 ·dist(xk,χ∗). (3.59)

Lemma 3.8. Let {xk=(yk,zk)}k=1,2,... be generated by the PALM-II method for
problem (1.1). Then, for any k∈N,

Φ(xk)−Φ(xk+1)≥ρ2‖zk+1−zk‖2, (3.60)

where ρ2=mink{λk}− L2

2 .

Proof. Applying Lemma 2.2 to Equation (2.20) with u= zk, we obtain that

g(zk)≥g(zk+1)+λk〈zk−zk+1,zk−zk+1〉+〈∇zH(yk+1,zk),zk+1−zk〉. (3.61)

Applying Lemma 2.1 to H(yk+1,z), we have that

H(yk+1,zk+1)≤H(yk+1,zk)+〈∇zH(yk+1,zk),zk+1−zk〉+ L2

2
‖zk+1−zk‖22. (3.62)

Summing them together, we derive that

H(yk+1,zk)+g(zk)−H(yk+1,zk+1)−g(zk+1)≥ (γk− L2

2
)‖zk+1−zk‖22. (3.63)

Therefore, we have

Φ(xk)−Φ(xk+1)≥Φ(yk+1,zk)−Φ(xk+1)

≥ (γk− L2

2
)‖zk+1−zk‖22

≥ (min
k
{γk}− L2

2
)‖zk+1−zk‖22. (3.64)
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4. Conclusion
In this paper, we investigate the convergence rates of several alternating minimiza-

tion schemes. With the Q-SD condition, we improve the big-O rate of AM and PALM
to little-o. The proofs employ a technique proposed by Davis and Yin. We also combine
AM and PALM, then propose HPALM. The little-o convergence rates of two subvariants
of HPALM are also studied.
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Appendix A.
Proposition A.1. If a closed convex proper function J satisfies RSC. Then, it
satisfies GSD.

Proof. Let χ∗ be the solution set of minxJ(x). From the definition of RSC [13],
we have that

〈∇J(x),x−Projχ∗(x)〉≥ν‖x−Projχ∗(x)‖22, (A.1)

for some ν >0. For a fixed x, note that tx+(1− t)Projχ∗(x) also projects Projχ∗(x)
onto χ∗. Therefore, we have that

J(x)−J(Projχ∗(x))=

∫ 1

0

〈∇J [Projχ∗(x)+ t(x−Projχ∗(x))],x−Projχ∗(x)〉dt. (A.2)

Let yt=Projχ∗(x)+ t(x−Projχ∗(x)), we have that Projχ∗(yt)=Projχ∗(x). Thus, x−
Projχ∗(x)=

1
t (yt−Projχ∗(yt)). Then, Equation (A.2) turns into

J(x)−J(Projχ∗(x))=

∫ 1

0

1

t
〈∇J(yt),yt−Projχ∗(yt)〉

≥ν

∫ 1

0

1

t
‖yt−Projχ∗(yt)‖22dt

=ν

∫ 1

0

t‖x−Projχ∗(x)‖22dt=
ν

2
‖x−Projχ∗(x)‖22. (A.3)

Proposition A.2. For any sufficiently large positive constant R, the function in
Example 2 satisfies Q-SD, where Q={x|‖x‖2=‖(y,z)‖2≤R}.

Proof. Let

κ(x1,x2) :=κ1(x1)+κ2(x2), W =

(
a b
c d

)
, λ̃ :=

(
λ1in1

λ2in2

)
.

Then, κ is strongly convex. And we have that

Φ(x)=κ(Wx)+‖λ̃x‖1. (A.4)

From [8, Lemma 10], Φ(x) satisfies Q-SD condition, where Q={x|‖x‖2=‖(y,z)‖2≤R}
and R is any positive sufficiently large constant.
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