PIECEWISE SMOOTH SOLUTIONS TO THE BURGERS–HILBERT EQUATION∗

ALBERTO BRESSAN† AND TIANYOU ZHANG‡

Abstract. The paper is concerned with the Burgers–Hilbert equation $u_t + (u^2/2)_x = \mathbf{H}[u]$, where the right-hand side is a Hilbert transform. Unique entropy admissible solutions are constructed locally in time, having a single shock. In a neighborhood of the shock curve, a detailed description of the solution is provided.

Key words. Piecewise smooth solutions, Burgers–Hilbert equation, shock, uniqueness.

AMS subject classifications. 35B65, 76B15.

1. Introduction

Consider the balance law obtained from Burgers' equation by adding the Hilbert transform as a source term

$$
u_t + \left(\frac{u^2}{2}\right)_x = \mathbf{H}[u].\tag{1.1}
$$

Here,

$$
\mathbf{H}[f](x) \doteq \lim_{\varepsilon \to 0+} \frac{1}{\pi} \int_{|y| > \varepsilon} \frac{f(x-y)}{y} \, dy \tag{1.2}
$$

denotes the Hilbert transform of a function $f \in L^2(\mathbb{R})$. The above equation was derived in [1] as a model for nonlinear waves with constant frequency. For initial data

$$
u(0,x) = \bar{u}(x),\tag{1.3}
$$

in $H^2(\mathbb{R})$, the local existence and uniqueness of the solution to Equation (1.1) was proved in [7], together with a sharp estimate on the time interval where this solution remains regular. See also [8] for a shorter proof. For general initial data $\bar{u} \in L^2(\mathbb{R})$, the global existence of entropy weak solutions was recently proved in [4] together with a partial uniqueness result. We remark that, in this general setting, the well-posedness of the Cauchy problem remains a largely open question.

In the present paper, we consider an intermediate situation. Namely, we construct solutions of Equation (1.1) which are piecewise continuous, with a single shock. Our solutions have the form

$$
u(t,x) = \varphi\bigl(x-y(t)\bigr) + w\bigl(t,x-y(t)\bigr),
$$

where $t \mapsto y(t)$ denotes the location of the shock. Here, $w \in H^2(]-\infty, 0[\cup]0, +\infty[$, while $\varphi(x) = \frac{2}{\pi} |x| \ln |x|$, for x near the origin.

[∗]Received: December 27, 2015; accepted (in revised form): April 16, 2016. Communicated by Mikhail Feldman.

This research was partially supported by NSF, with grant DMS-1411786: "Hyperbolic Conservation Laws and Applications".

[†]Department of Mathematics, Penn State University, University Park, PA, 16802, USA (bressan@ math.psu.edu). http://www.math.psu.edu/bressan/

[‡]Department of Mathematics, Penn State University, University Park, PA, 16802, USA (tuz107@ psu.edu).

In Section 2 we write Equation (1.1) in an equivalent form and state an existenceuniqueness theorem, locally in time. The key a priori estimates on approximate solutions and a proof of the main theorem are then worked out in sections 3–5.

The present results can be easily extended to the case of solutions with finitely many non-interacting shocks. An interesting open problem is to describe the local behavior of a solution in a neighborhood of a point (t_0,x_0) where either (i) a new shock is formed or (ii) two shocks merge into a single one. Motivated by the analysis in [12] we conjecture that, for generic initial data

$$
\bar{u} \in H^2(\mathbb{R}) \cap \mathcal{C}^3(\mathbb{R}),
$$

the corresponding solution of Equation (1.1) remains piecewise smooth with finitely many shock curves on any domain of the form $[0,T] \times \mathbb{R}$. We thus regard the present results as a first step toward a description of all generic singularities. For other examples of hyperbolic equations where generic singularities have been studied, we refer to $[2,3,5,$ 6, 9]. The possible emergence of singularities, for more general dispersive perturbations of Burgers' equation, has been recently studied in [10].

2. Statement of the main result

Consider a piecewise smooth solution of Equation (1.1) with one single shock. Calling $y(t)$ the location of the shock at time t, by the Rankine–Hugoniot conditions, we have

$$
\dot{y}(t) = \frac{u^-(t) + u^+(t)}{2}.\tag{2.1}
$$

where u^-, u^+ denote the left and right limits of $u(t,x)$ as $x \to y(t)$. Here and in the sequel, the upper dot denotes a derivative with respect to time. It is convenient to shift the space coordinate, replacing x with $x-y(t)$, so that in the new coordinate system the shock is always located at the origin. In these new coordinates, Equation (1.1) takes the equivalent form

$$
u_t + \left(\frac{u^2}{2}\right)_x - \dot{y}u_x = \mathbf{H}[u].\tag{2.2}
$$

We shall construct solutions to Equation (2.2) in a special form, providing a cancellation between leading order terms in the transport equation and the Hilbert transform.

Consider a smooth function with compact support $\eta \in C_c^{\infty}(\mathbb{R})$, with $\eta(x) = \eta(-x)$, and such that

$$
\begin{cases}\n\eta(x) = 1 & \text{if } |x| \le 1, \\
\eta(x) = 0 & \text{if } |x| \ge 2, \\
\eta'(x) \le 0 & \text{if } x \in [1, 2].\n\end{cases}
$$
\n(2.3)

Moreover, define

$$
\varphi(x) \doteq \frac{2|x|\ln|x|}{\pi} \cdot \eta(x). \tag{2.4}
$$

Notice that φ has support contained in the interval $[-2,2]$ and is smooth separately on the domains $\{x<0\}$ and $\{x>0\}$.

In addition, we consider the space of functions

$$
\mathcal{H} \doteq H^2\big(]-\infty, 0[\cup]0, +\infty[\big). \tag{2.5}
$$

Every function $w \in \mathcal{H}$ is continuously differentiable outside the origin. The distributional derivative of w_x is an \mathbf{L}^2 function restricted to the half lines $]-\infty,0[$ and $]0,+\infty[$. However, both w and w_x can have a jump at the origin. It is clear that the traces

$$
\begin{cases}\nu^- \doteq w(0-), \\
u^+ \doteq w(0+),\n\end{cases}\n\qquad\n\begin{cases}\nb^- \doteq w_x(0-), \\
b^+ \doteq w_x(0+)\n\end{cases}\n\tag{2.6}
$$

are continuous linear functionals on H.

FIG. 2.1. Decomposing a piecewise regular function $u = \varphi + w$ as a sum of the function φ defined at (2.4) and a function $w \in H^2(\mathbb{R} \setminus \{0\})$, continuously differentiable outside the origin.

Solutions of Equation (2.2) will be constructed in the form

$$
u(t,x) = \varphi(x) + w(t,x). \tag{2.7}
$$

In order that the shock be entropy admissible, the function w should range in the open domain

$$
\mathcal{D} \doteq \left\{ w \in H^2\big(\mathbb{R} \setminus \{0\} \big); \quad w(0-) > w(0+) \right\}. \tag{2.8}
$$

By Equations (2.6)–(2.8), for $x \approx 0$, this solution has the asymptotic behavior

$$
u(t,x) = \begin{cases} u^-(t) + b^-(t)x + \frac{2|x|\ln|x|}{\pi} + \mathcal{O}(1) \cdot |x|^{3/2} & \text{if } x < 0, \\ u^+(t) + b^+(t)x + \frac{2|x|\ln|x|}{\pi} + \mathcal{O}(1) \cdot |x|^{3/2} & \text{if } x > 0 \end{cases} \tag{2.9}
$$

for suitable functions u^{\pm}, b^{\pm} . Here and throughout the sequel, the Landau symbol $\mathcal{O}(1)$ denotes a uniformly bounded quantity.

Substutiting Equation (2.7) into Equation (2.2) and recalling Equation (2.6) , one obtains

$$
w_t + \left(\varphi + w - \frac{u^- + u^+}{2}\right)(\varphi_x + w_x) = \mathbf{H}[\varphi] + \mathbf{H}[w].
$$
\n(2.10)

To derive estimates on the Hilbert transform, the following observation is useful. Consider a function f with compact support, continuously differentiable for $x < 0$ and for $x > 0$, with a jump at the origin. Then, for any $x \neq 0$, an integration by parts yields¹

$$
\mathbf{H}[f](x) = \frac{1}{\pi} \int_{-\infty}^{\infty} f'(y) \ln|x - y| \, dy + \frac{1}{\pi} \left[f(0+) - f(0-) \right] \ln|x|. \tag{2.11}
$$

A similar computation shows that, to leading order, the Hilbert transform of w near the origin is given by

$$
\mathbf{H}[w](x) = \frac{u^+ - u^-}{\pi} \ln|x| + \mathcal{O}(1),\tag{2.12}
$$

with u^-, u^+ as in Equation (2.6). On the other hand, for $x \approx 0$, one has

$$
\left(\varphi(x) + w(x) - \frac{w(0-)+w(0+)}{2}\right)\varphi_x(x)
$$

= $\left(\text{sign}(x) \cdot \frac{u^+ - u^-}{2} + \mathcal{O}(1) \cdot |x| \ln|x|\right) \cdot \frac{2\text{sign}(x) \cdot (1+\ln|x|)}{\pi}$
= $\frac{u^+ - u^-}{\pi} \ln|x| + \mathcal{O}(1).$ (2.13)

The identity between the leading terms in Equations (2.12) and (2.13) achieves a crucial cancellation between the two sides of Equation (2.10). It is thus convenient to write this equation in the equivalent form

$$
w_t + \left(\varphi + w - \frac{u^- + u^+}{2}\right)w_x = \mathbf{H}[\varphi] - \varphi\varphi_x + \left(\mathbf{H}[w] - \left(w - \frac{u^- + u^+}{2}\right)\varphi_x\right). \tag{2.14}
$$

Definition. By an entropic solution to the Cauchy problem (2.10) with initial data

$$
w(0, \cdot) = \bar{w} \in \mathcal{D},\tag{2.15}
$$

we mean a function $w : [0,T] \times \mathbb{R} \to \mathbb{R}$ such that

(i) For every $t \in [0,T]$, the norm $||w(t,\cdot)||_{H^2(\mathbb{R}\setminus\{0\})}$ remains uniformly bounded. As $x \rightarrow 0$, the limits satisfy

$$
u^{-}(t) \doteq u(t, 0-) > u(t, 0+) \doteq u^{+}(t). \qquad (2.16)
$$

¹ Indeed, if $f \in \mathcal{C}_c^{\infty}(\mathbb{R})$, then, for a suitably large constant M, we have

$$
\pi \cdot \mathbf{H}[f](x) = \lim_{\varepsilon \to 0+} \int_{|y-x| > \varepsilon} \frac{f(x-y)}{y} dy = -\lim_{\varepsilon \to 0+} \int_{|y-x| > \varepsilon} \frac{f(x+y)}{y} dy
$$

\n
$$
= -\lim_{\varepsilon \to 0+} \left(\int_{-M}^{-\varepsilon} + \int_{\varepsilon}^{M} \right) \frac{f(x+y) - f(x)}{y} dy
$$

\n
$$
= \lim_{\varepsilon \to 0+} \left(\int_{-M}^{-\varepsilon} + \int_{\varepsilon}^{M} \right) f'(x+y) \ln|y| dy - \lim_{\varepsilon \to 0+} [f(x-\varepsilon) - f(x)] \ln \varepsilon
$$

\n
$$
+ \lim_{\varepsilon \to 0+} [f(x+\varepsilon) - f(x)] \ln \varepsilon + [f(x-M) - f(x)] \ln M - [f(x+M) - f(x)] \ln M
$$

\n
$$
= \int_{-\infty}^{\infty} f'(x+y) \ln|y| dy = \int_{-\infty}^{\infty} f'(y) \ln|x-y| dy.
$$

By approximating f with a sequence of smooth functions with compact support, we obtain Equation $(2.11).$

(ii) Equation (2.14) is satisfied in integral sense. Namely, for every $t_0 \geq 0$ and $x_0 \neq 0$, calling $t \mapsto x(t;t_0,x_0)$ the solution to the Cauchy problem

$$
\dot{x} \dot{=} \varphi(x) + w(t, x) - \frac{u^-(t) + u^+(t)}{2}, \qquad x(t_0) = x_0, \qquad (2.17)
$$

one has

$$
w(t_0, x_0) = \bar{w}(x(0; t_0, x_0)) + \int_0^{t_0} F(t, x(t; t_0, x_0)) dt,
$$
\n(2.18)

with.

$$
F = \mathbf{H}[\varphi] - \varphi \varphi_x + \left(\mathbf{H}[w] - \left(w - \frac{u^- + u^+}{2}\right) \varphi_x\right). \tag{2.19}
$$

A few remarks are in order:

- (i) The bound on the norm $||w(t, \cdot)||_{H^2}$ implies that the limits in Equation (2.16) are well defined. By requiring that the inequality in Equation (2.16) holds, we make sure that the shock is entropy admissible.
- (ii) Since $w(t, \cdot) \in H^2(\mathbb{R} \setminus \{0\})$, the right-hand side of the ODE in Equation (2.17) is continuously differentiable with respect to x . Combined with the inequalities in Equation (2.16), this implies that the backward characteristic $t \mapsto x(t;t_0,x_0)$ is well defined for all $t \in [0, t_0]$.
- (iii) In [11], a function satisfying the integral Equations (2.18) was called a **broad solution**. The regularity assumption on $w(t, \cdot)$ and the fact that the source term F in Equation (2.19) is continuous outside the origin imply that $w =$ $w(t,x)$ is continuously differentiable with respect to both variables t,x for $x\neq 0$. Therefore, the identity in Equation (2.14) is satisfied at every point (t, x) , with $x\neq 0$.

The main result of this paper provides the existence and uniqueness of an entropic solution, locally in time.

THEOREM 2.1. For every $\bar{w} \in \mathcal{D}$, there exists $T > 0$ such that the Cauchy problem (2.2), (2.15) admits a unique entropic solution, defined for $t \in [0,T]$.

In turn, Theorem 2.1 yields the existence of a piecewise regular solution to the Burgers–Hilbert equation (1.1), locally in time, for initial data of the form

$$
u(0,x) = \varphi(x) + \bar{w}(x),
$$

with $\bar{w} \in \mathcal{D}$.

The solution $w = w(t, x)$ of Equation (2.14) will be obtained as a limit of a sequence of approximations. More precisely, for $n = 1$, we define

$$
w_1(t, \cdot) = \bar{w} \qquad \text{for all } t \ge 0. \tag{2.20}
$$

Next, let the *n*th approximation $w_n(t,x)$ be constructed. By induction, we then define $w_{n+1}(t,x)$ to be the solution of the linear, non-homogeneous Cauchy problem

$$
w_t + \left(\varphi + w_n - \frac{u_n^- + u_n^+}{2}\right) w_x = \mathbf{H}[\varphi] - \varphi \varphi_x + \left(\mathbf{H}[w] - \left(w - \frac{u^- + u^+}{2}\right) \varphi_x\right). \tag{2.21}
$$

with initial data (2.15) .

The induction argument requires the following three steps:

- (i) Existence and uniqueness of solutions to the linear problem (2.21) with initial data (2.15).
- (ii) A priori bounds on the strong norm $||w_n(t)||_{H^2(\mathbb{R}\setminus\{0\})}$, uniformly valid for $t \in$ [0,*T*] and all $n \geq 1$.
- (iii) Convergence in a weak norm, which will follow from the bound

$$
\sum_{n\geq 1} \|w_{n+1}(t) - w_n(t)\|_{H^1(\mathbb{R}\setminus\{0\})} < \infty.
$$

In the following sections, we shall provide estimates on each term on the right-hand side of Equation (2.21) and complete the above steps (i) – (iii) .

3. Estimates on the source terms

To estimate the right-hand side of Equation 2.21), we consider again the cutoff function η in Equation (2.3) and split an arbitrary function $w \in H^2(\mathbb{R} \setminus \{0\})$ as a sum:

$$
w = v_1 + v_2 + v_3,\tag{3.1}
$$

where

$$
v_1(x) \doteq \begin{cases} w(0-) \cdot \eta(x) & \text{if } x < 0, \\ w(0+) \cdot \eta(x) & \text{if } x > 0, \end{cases} \qquad v_2(x) \doteq \begin{cases} w_x(0-) \cdot x \eta(x) & \text{if } x < 0, \\ w_x(0+) \cdot x \eta(x) & \text{if } x > 0, \end{cases} \qquad (3.2)
$$

$$
v_3 = w - v_1 - v_2. \tag{3.3}
$$

The right-hand side of Equation (2.21) can be expressed as the sum of the following terms:

$$
A = \mathbf{H}[\varphi], \qquad B = \varphi \varphi_x, \qquad C = \mathbf{H}[v_2 + v_3], \qquad D = \mathbf{H}[v_1] - \left(w - \frac{u^- + u^+}{2}\right)\varphi_x. \tag{3.4}
$$

The goal of this section is to provide a priori bounds of the size of these source terms and on their first and second derivatives.

LEMMA 3.1. There exist constants K_0, K_1 such that the following holds. For any $\delta \in]0, 1/2]$ and any $w \in H^2(\mathbb{R} \setminus \{0\})$, the source terms in (3.4) satisfy

$$
||A||_{H^{2}(\mathbb{R}\setminus[-\delta,\delta])} + ||B||_{H^{2}(\mathbb{R}\setminus[-\delta,\delta])} \leq K_{0} \cdot \delta^{-2/3},
$$
\n(3.5)

$$
||C||_{H^{2}(\mathbb{R}\setminus[-\delta,\delta])} + ||D||_{H^{2}(\mathbb{R}\setminus[-\delta,\delta])} \leq K_{1}\delta^{-2/3} \cdot ||w||_{H^{2}(\mathbb{R}\setminus\{0\})}. \tag{3.6}
$$

Proof.

(1) We begin by observing that the function φ is continuous with compact support, smooth outside the origin. Therefore, the Hilbert transform $A = \mathbf{H}[\varphi]$ is smooth outside the origin. As $|x| \to \infty$, one has

$$
A(x) = \mathcal{O}(1) \cdot x^{-1}, \qquad A_x(x) = \mathcal{O}(1) \cdot x^{-2}, \qquad A_{xx}(x) = \mathcal{O}(1) \cdot x^{-3}.
$$
 (3.7)

In addition, as $x \to 0$, we claim that

$$
A(x) = \mathcal{O}(1) \cdot x \ln^2 |x|, \qquad A_x(x) = \mathcal{O}(1) \cdot \ln^2 |x|, \qquad A_{xx}(x) = \mathcal{O}(1) \cdot \frac{\ln |x|}{x}.
$$
 (3.8)

Indeed, to fix the ideas, let $0 < x < 1/2$. By Equation (2.11), we have

$$
\pi \cdot \mathbf{H}[\varphi](x) = \int_{-2}^{2} \varphi'(y) \ln|x - y| dy = I_1 + I_2 + I_3,
$$
\n(3.9)

where

$$
I_1 \doteq \left(\int_{-2}^{-1} + \int_{1}^{2} \right) \varphi'(y) \ln|x - y| dy = \mathcal{O}(1) \cdot x,\tag{3.10}
$$

$$
\frac{\pi}{2}I_2 \doteq \int_{-1}^0 -\ln|x-y| dy + \int_0^1 \ln|x-y| dy = \left(\int_{-x}^x - \int_{1-x}^{1+x} \right) \ln|y| dy = O(1) \cdot x \ln x, \tag{3.11}
$$

and, moreover,

$$
\frac{\pi}{2} I_3 \doteq \int_0^1 \ln|y| \ln|x-y| dy + \int_{-1}^0 -\ln|y| \ln|x-y| dy
$$

\n
$$
= \left(\int_0^{x/2} + \int_{x/2}^x + \int_{x-1}^0 - \int_{-1}^0 \right) \ln|y| \ln|x-y| dy
$$

\n
$$
= \left(\int_0^{x/2} + \int_{x/2}^x \right) \ln|y| \ln|x-y| dy - \int_0^x \ln|y-1| \ln|x-y+1| dy
$$

\n
$$
\doteq I_{31} + I_{32} + I_{33}.
$$
\n(3.12)

We now have

$$
|I_{31}| \leq \ln \left| \frac{x}{2} \right| \cdot \int_0^{x/2} \ln |y| dy = O(1) \cdot x \ln^2 |x|,
$$

\n
$$
|I_{32}| \leq \ln \left| \frac{x}{2} \right| \cdot \int_{x/2}^x \ln |x - y| dy = O(1) \cdot x \ln^2 |x|,
$$

\n
$$
|I_{33}| \leq \int_0^x \ln |1 - x| \ln |1 + x| |dy = O(1) \cdot x^3.
$$
\n(3.13)

Hence, $\mathbf{H}[\varphi] = O(1) \cdot x \ln^2 |x|$. This yields the first estimate in Equation (3.8).

Next, we estimate the derivative $\pi \partial_x \mathbf{H}[\varphi] = \partial_x I_1 + \partial_x I_2 + \partial_x I_3$. The term $|\partial_x I_1|$ is uniformly bounded, while

$$
\frac{\pi}{2}\partial_x I_2 = \int_0^{2x} \frac{1}{x-y} dy + \int_{2x}^1 \frac{1}{x-y} dy - \int_{-1}^0 \frac{1}{x-y} dy = O(1) \cdot \ln|x|.
$$
 (3.14)

Differentiating I_3 with respect to x , we obtain

$$
\frac{\pi}{2} \partial_x I_3 = \left(\int_{-1}^{-x/2} + \int_{-x/2}^0 \right) \frac{-\ln|y|}{x-y} dy + \left(\int_0^{x/2} + \int_{3x/2}^1 \right) \frac{\ln|y|}{x-y} dy \n+ \lim_{\epsilon \to 0} \left(\int_{x/2}^{x-\epsilon} + \int_{x+\epsilon}^{3x/2} \right) \frac{\ln y}{x-y} dy.
$$
\n(3.15)

Assuming $0 < x < 1/2$, we obtain

$$
\int_{-1}^{-x/2} \frac{-\ln|y|}{x-y} dy \le \int_{-1}^{x/2} \frac{-\ln|y|}{|y|} dy = O(1) \cdot \ln^2|x|,
$$

$$
\int_{-x/2}^{0} \frac{-\ln|y|}{x-y} dy \le \int_{-x/2}^{0} \frac{-\ln|y|}{x} dy = O(1) \cdot \ln|x|,
$$

$$
\int_{0}^{x/2} \frac{\ln|y|}{x-y} dy \le \int_{0}^{x/2} \frac{\ln|y|}{x/2} dy = O(1) \cdot \ln|x|,
$$

$$
\int_{3x/2}^{1} \frac{\ln|y|}{x-y} dy \le \ln\left|\frac{3x}{2}\right| \int_{3x/2}^{1} \frac{1}{x-y} dy = O(1) \cdot \ln^2|x|.
$$

The remaining term is estimated as

$$
\left(\int_{x/2}^{x-\epsilon} + \int_{x-\epsilon}^{3x/2} \right) \frac{\ln y}{x-y} dy = \left(\int_{x/2}^{x-\epsilon} + \int_{x-\epsilon}^{3x/2} \right) \frac{\ln y - \ln x}{x-y} dy \le \frac{2}{x} (x-2\epsilon) \le 2.
$$

Combining the previous estimates, we obtain $\partial_x \mathbf{H}[\varphi](x) = O(1) \cdot \ln^2 |x|$. This gives the second estimate in Equation (3.8).

Finally, we estimate the second derivative of the Hilbert transform $\partial_{xx}H[\varphi] =$ \sum 3 $i=1$ $\partial_{xx}(I_i)$. By Equations (3.10) and (3.14), we obtain

$$
\partial_{xx} I_1 = \mathcal{O}(1),
$$

$$
\frac{\pi}{2} \partial_{xx} I_2 = -\int_{2x}^1 \frac{1}{(x-y)^2} dy + \int_{-1}^0 \frac{1}{(x-y)^2} dy = O(1) \cdot \frac{\ln|x|}{x}.
$$
 (3.16)

$$
\frac{\pi}{2} \partial_{xx} I_3 = \left(\int_{-1}^{-x/2} + \int_{-x/2}^0 \right) \frac{\ln|y|}{(x-y)^2} dy - \left(\int_0^{x/2} + \int_{3x/2}^1 \right) \frac{\ln|y|}{(x-y)^2} dy
$$

$$
+ \frac{\ln|x/2|}{x} + \frac{3\ln|3x/2|}{x} + \partial_x \left(\int_{x/2}^{3x/2} \frac{\ln|y|}{x-y} dy \right). \tag{3.17}
$$

Assuming $0 < x < 1/2$, we obtain

$$
\left| \int_{-1}^{-x/2} \frac{\ln|y|}{(x-y)^2} dy \right| \le \ln \left| \frac{x}{2} \right| \int_{-1}^{x/2} \frac{1}{(x-y)^2} dy = O(1) \cdot \frac{\ln|x|}{x},
$$

$$
\left| \int_{-x/2}^{0} \frac{\ln|y|}{(x-y)^2} dy \right| \le \int_{-x/2}^{0} \frac{-\ln|y|}{x^2} dy = O(1) \cdot \frac{\ln|x|}{x},
$$

$$
\left| \int_{0}^{x/2} \frac{\ln|y|}{(x-y)^2} dy \right| \le \int_{0}^{x/2} \frac{\ln|y|}{(x/2)^2} dy = O(1) \cdot \frac{\ln|x|}{x},
$$

$$
\left| \int_{3x/2}^{1} \frac{\ln|y|}{(x-y)^2} dy \right| \le \ln \left| \frac{3x}{2} \right| \int_{3x/2}^{1} \frac{1}{(x-y)^2} dy = O(1) \cdot \frac{\ln|x|}{x}.
$$

(3.18)

The remaining term is estimated by

$$
\partial_x \left(\int_{x/2}^{3x/2} \frac{\ln|y|}{x-y} \right) dy = \partial_x \left(\int_{-x/2}^{x/2} \frac{\ln|x-y|}{y} dy \right)
$$

$$
= \int_{-x/2}^{x/2} \frac{1}{y(x-y)} dy + \frac{\ln|x/2|}{x} - \frac{\ln|3x/2|}{x}, \quad (3.19)
$$

where

$$
\left| \int_{-x/2}^{x/2} \frac{1}{y(x-y)} dy \right| = \left| \int_{-x/2}^{x/2} \frac{1}{y} \left(\frac{1}{x-y} - \frac{1}{x} \right) dy \right| = \left| \int_{-x/2}^{x/2} \frac{1}{x(x-y)} dy \right| \le \frac{2}{x}.
$$
 (3.20)

Therefore, by Equations (3.16) and (3.18)–(3.20), we have $\partial_{xx} \mathbf{H}[\varphi](x) = O(1) \cdot \frac{\ln|x|}{x}$.

(2) The function $B = \varphi \varphi_x$ is smooth outside the origin and vanishes for $|x| \ge 2$. As $x \rightarrow 0$, the following estimates are straightforward:

$$
B(x) = \mathcal{O}(1) \cdot |x| \ln^2 |x|, \qquad B_x(x) = \mathcal{O}(1) \cdot \ln^2 |x|, \qquad B_{xx}(x) = \mathcal{O}(1) \cdot \frac{\ln |x|}{|x|}. \tag{3.21}
$$

(3) Next, we observe that $v_3 \in H^2(\mathbb{R})$. Moreover, there exists a constant C_η such that

$$
||v_3||_{H^2(\mathbb{R})} \leq C_{\eta} \cdot ||w||_{H^2(\mathbb{R} \setminus \{0\})}.
$$

Clearly, the Hilbert transform $\mathbf{H}[v_3]$ satisfies the same bounds. Hence,

$$
\|\mathbf{H}[v_3]\|_{H^2(\mathbb{R})} = \mathcal{O}(1) \cdot \|w\|_{H^2(\mathbb{R}\setminus\{0\})}. \tag{3.22}
$$

We observe that v_2 is Lipschitz continuous, has compact support, and is continuously differentiable outside the origin. Since v_2 has better regularity properties than φ , the same arguments used to estimate the Hilbert transform of φ also apply to $\mathbf{H}[v_2]$. More precisely, as in Equation (3.7), for $|x| \to \infty$, we have

$$
\mathbf{H}[v_2](x) = \mathcal{O}(1) \cdot x^{-1}, \qquad \mathbf{H}[v_2]_x(x) = \mathcal{O}(1) \cdot x^{-2}, \qquad \mathbf{H}[v_2]_{xx}(x) = \mathcal{O}(1) \cdot x^{-3}. \tag{3.23}
$$

As in (3.8), for $x \to 0$ we have

$$
\mathbf{H}[v_2](x) = \mathcal{O}(1) \cdot x \ln^2 |x|, \qquad \mathbf{H}[v_2]_x(x) = \mathcal{O}(1) \cdot \ln^2 |x|,
$$
\n
$$
\mathbf{H}[v_2]_{xx}(x) = \mathcal{O}(1) \cdot \frac{\ln |x|}{x}.
$$
\n(3.24)

The only difference is that in Equations (3.23)–(3.24) by $\mathcal{O}(1)$ we now denote a quantity such that

$$
|\mathcal{O}(1)| \le C \cdot ||w||_{H^2(\mathbb{R} \setminus \{0\})},\tag{3.25}
$$

for some constant C independent of w .

(4) Finally, observing that the the function v_1 in Equation (3.2) has compact support, for $|x| \to \infty$, we have the bounds

$$
D(x) = \mathbf{H}[v_1](x) = \mathcal{O}(1) \cdot x^{-1} \qquad D_x(x) = \mathcal{O}(1) \cdot x^{-2}, \qquad D_{xx}(x) = \mathcal{O}(1) \cdot x^{-3}. \tag{3.26}
$$

On the other hand, for $x \to 0$, we claim that

$$
D(x) = \mathcal{O}(1), \qquad D_x(x) = \mathcal{O}(1) \cdot \ln|x|, \qquad D_{xx}(x) = \mathcal{O}(1) \cdot |x|^{-1}, \tag{3.27}
$$

where $\mathcal{O}(1)$ is a quantity satisfying Equation (3.25). Indeed, without loss of generality, we can assume $0 < x < 1/2$. Recalling the construction of w and φ , we have

$$
\left(w - \frac{u^{-} + u^{+}}{2}\right)\varphi_{x} = \frac{(u^{+} - u^{-})\ln|x|}{\pi} + \mathcal{O}(1). \tag{3.28}
$$

The Hilbert transform of v_1 is computed by

$$
\begin{aligned}\n\pi \mathbf{H}[v_1] &= \int_{-\infty}^{+\infty} \frac{v_1(y)}{x-y} \, dy \\
&= \left(\int_{-2}^{-1} + \int_{1}^{2} \right) \frac{v_1(y)}{x-y} \, dy + \int_{-1}^{0} \frac{u^-}{x-y} \, dy + \left(\int_{0}^{x/2} + \int_{3x/2}^{1} \right) \frac{u^+}{x-y} \, dy + \int_{x/2}^{3x/2} \frac{u^+}{x-y} \, dy.\n\end{aligned}
$$

The first term on the right-hand side is bounded and the last term vanishes, in the principal value sense. The second term is computed by

$$
\int_{-1}^{0} \frac{u^{-}}{x-y} dy = u^{-}(-\ln|x| + \ln|x+1|) = -u^{-}\ln|x| + \mathcal{O}(1) \cdot |x|,
$$

while the remaining integrals are estimated by

$$
\left(\int_0^{x/2} + \int_{3x/2}^1\right) \frac{u^+}{x-y} dy = u^+ (\ln|x| - \ln|x-1|) = u^+ \ln|x| + \mathcal{O}(1) \cdot |x|.
$$

Combining the previous estimates, we obtain

$$
\mathbf{H}[v_1] = \frac{(u^+ - u^-)\ln|x|}{\pi} + \mathcal{O}(1). \tag{3.29}
$$

Next, we estimate the derivative $D_x(x)$. We have

$$
\partial_x \left(w - \frac{u^+ + u^-}{2} \right) \cdot \varphi_x = \mathcal{O}(1) \cdot \ln|x|, \qquad \left(w - \frac{u^+ + u^-}{2} \right) \varphi_{xx} = \frac{u^+ - u^-}{\pi x} + \mathcal{O}(1). \tag{3.30}
$$

To estimate the derivative of $\mathbf{H}[v_1]$, we write

$$
\pi \cdot \partial_x \mathbf{H}[v_1] = \left(\int_{-2}^{-1} + \int_{1}^{2}\right) \frac{-v_1(y)}{(x-y)^2} dy - \int_{-1}^{0} \frac{u^{-}}{(x-y)^2} dy + \partial_x \left(\int_{0}^{x/2} + \int_{3x/2}^{1}\right) \frac{v_1(y)}{x-y} dy + \partial_x \int_{x/2}^{3x/2} \frac{v_1(y)}{x-y} dy.
$$
\n(3.31)

The first term on the right-hand side of Equation (3.31) is uniformly bounded. The second term is estimated by

$$
-\int_{-1}^{0} \frac{u^{-}}{(x-y)^{2}} dy = -\frac{u^{-}}{x} + \mathcal{O}(1).
$$

Furthermore, we have

$$
\partial_x \left(\int_0^{x/2} + \int_{3x/2}^1 \right) \frac{v_1(y)}{x - y} dy = \left(\int_0^{x/2} + \int_{3x/2}^1 \right) \frac{-v_1(y)}{(x - y)^2} dy + \frac{4u^+}{x}
$$

$$
= \frac{-3u^+}{x} + \mathcal{O}(1) + \frac{4u^+}{x} = \frac{u^+}{x} + \mathcal{O}(1). \tag{3.32}
$$

Lastly, since $v_1(x) = u^+$ for $x \in [0,1]$, we have

$$
\partial_x \int_{x/2}^{3x/2} \frac{v_1(y)}{x-y} dy = \partial_x \int_{-x/2}^{x/2} \frac{u^+}{y} dy = 0.
$$
 (3.33)

Combining the previous estimates, we thus obtain

$$
\partial_x \mathbf{H}[v_1](x) = \frac{u^+ - u^-}{\pi x} + \mathcal{O}(1).
$$

Together with Equation (3.30), as $x \to 0$, this yields the asymptotic estimate

$$
D_x(x) = \mathbf{H}[v_1]_x - \left[\left(w - \frac{u^- + u^+}{2} \right) \varphi_x \right]_x = \mathcal{O}(1) \cdot \ln|x|. \tag{3.34}
$$

The second derivative D_{xx} is estimated in a similar way. Indeed, by Equations $(3.1)–(3.3)$ and (3.30) , we have

$$
\partial_{xx}\left(w - \frac{u^- + u^+}{2}\varphi_x\right) = \partial_{xx}\left(w - \frac{u^+ + u^-}{2}\right)\varphi_x + \partial_x\left(w - \frac{u^+ + u^-}{2}\right)\varphi_{xx} \n+ \partial_x\left(w - \frac{u^- + u^+}{2}\varphi_x\right)\varphi_{xx} + \left(w - \frac{u^- + u^+}{2}\varphi_x\right)\varphi_{xxx} \n= -\frac{u^+ - u^-}{\pi x^2} + \mathcal{O}(1) \cdot \frac{1}{x}.
$$
\n(3.35)

On the other hand, differentiating Equation (3.31) and recalling Equations (3.32) and (3.33), we have

$$
\pi \cdot \partial_{xx} \mathbf{H}[v_1] = \left(\int_{-2}^{-1} + \int_{1}^{2}\right) \frac{2v_1(y)}{(x-y)^3} dy + \int_{-1}^{0} \frac{2u^-}{(x-y)^3} dy \n+ \partial_x \left(\int_{0}^{x/2} + \int_{3x/2}^{1}\right) \frac{-v_1(y)}{(x-y)^2} dy - \frac{4u^+}{x^2} + \partial_{xx} \int_{-x/2}^{x/2} \frac{u^+}{y} dy.
$$
\n(3.36)

As before, the first term is uniformly bounded while the last term is zero. The second term is computed by

$$
\int_{-1}^{0} \frac{2u^{-}}{(x-y)^{3}} dy = \frac{u^{-}}{x^{2}} + \mathcal{O}(1).
$$
 (3.37)

The third term is estimated by

$$
\partial_x \left(\int_0^{x/2} + \int_{3x/2}^1 \right) \frac{-v_1(y)}{(x-y)^2} dy = \left(\int_0^{x/2} + \int_{3x/2}^1 \right) \frac{2v_1(y)}{(x-y)^3} dy - \frac{2u^+}{x^2} + \frac{6u^+}{x^2}
$$

$$
=\frac{3u^{+}}{x^{2}} + \mathcal{O}(1). \tag{3.38}
$$

Combining the above estimates (3.35) – (3.38) , we obtain

$$
D_{xx} = \mathbf{H}[v_1]_{xx} - \left[\left(w - \frac{u^- + u^+}{2} \right) \varphi_x \right]_{xx}
$$

= $\frac{1}{\pi} \left(\frac{u^-}{x^2} + \frac{3u^+}{x^2} - \frac{4u^+}{x^2} \right) + \frac{u^+ - u^-}{\pi x^2} + \mathcal{O}(1) \cdot \frac{1}{x} = \mathcal{O}(1) \cdot \frac{1}{x}.$ (3.39)

(5) By the estimates (3.8) and (3.21), it follows

$$
||A + B||_{H^{2}(\mathbb{R}\setminus[-\delta,\delta])} = \mathcal{O}(1) \cdot \left(\int_{\delta}^{1} \frac{\ln^{2}|x|}{x^{2}} dx\right)^{1/2} = \mathcal{O}(1) \cdot \left(\int_{\delta}^{1} \frac{dx}{x^{7/3}}\right)^{1/2}
$$

= $\mathcal{O}(1) \cdot (\delta^{-4/3})^{1/2} = \mathcal{O}(1) \cdot \delta^{-2/3}.$ (3.40)

Similarly, the estimates (3.6) follow from Equation (3.22) and Equations (3.26) – (3.27) . \Box

4. Construction of approximate solutions

In this section, given an initial datum $\bar{w} \in \mathcal{D}$, we prove that all the approximate solutions w_n at (2.20) – (2.21) are well defined, on a suitably small time interval $[0,T]$.

As in Equation (2.6), we define

$$
\begin{cases} \bar{u}^- \doteq \bar{w}(0-), \\ \bar{u}^+ \doteq \bar{w}(0+), \end{cases} \qquad \begin{cases} u_n^-(t) \doteq w_n(t,0-), \\ u_n^+(t) \doteq w_n(t,0+). \end{cases}
$$

To fix the ideas, assume that the initial data $\bar{w} \in H^2(\mathbb{R} \setminus \{0\})$ satisfies

$$
\bar{u}^- - \bar{u}^+ = 6\delta_0, \qquad \qquad ||\bar{w}||_{H^2(\mathbb{R}\backslash\{0\})} = \frac{M_0}{2}, \qquad (4.1)
$$

for some (possibly large) constants $\delta_0, M_0 > 0$.

Choosing a time interval [0,T] sufficiently small, we claim that, for each $n \geq 1$, the approximate solution w_n satisfies the a priori bounds

$$
\begin{cases} |u_n^-(t) - \bar{u}^-| \le \delta_0, \\ |u_n^+(t) - \bar{u}^+| \le \delta_0, \end{cases} \qquad \|w_n(t)\|_{H^2(\mathbb{R}\backslash\{0\})} \le M_0, \qquad \text{for all } t \in [0, T]. \tag{4.2}
$$

This will be proved by induction. For $n=1$ these bounds are a trivial consequence of the definition (2.20). In the following, we assume that the function $w_n = w_n(t,x)$ satisfies Equation (4.2), and we show that the same bounds are satisfied by w_{n+1} . We recall that w_{n+1} is defined as the solution to the linear Equation (2.21), with initial data (2.15).

A sequence of approximate solutions $w^{(k)}$ to the linear equation (2.21) will be constructed by induction on $k \in \{1,2,...\}$ For notational convenience, we introduce the function

$$
a(t,x) \doteq \varphi(x) + w_n(t,x) - \frac{u_n^-(t) + u_n^+(t)}{2}.
$$
 (4.3)

As in Equation (2.17), call $t \mapsto x(t;t_0,x_0)$ the solution to the Cauchy problem

$$
\dot{x} \doteq a(t, x(t)), \qquad x(t_0) = x_0. \tag{4.4}
$$

We begin by defining

$$
w^{(1)}(t,x) = \bar{w}(x).
$$
 (4.5)

By induction, if $w^{(k)}$ has been constructed, we then set

$$
w^{(k+1)}(t_0, x_0) = \bar{w}(x(0; t_0, x_0)) + \int_0^{t_0} F^{(k)}(t, x(t; t_0, x_0)) dt,
$$
\n(4.6)

where $F^{(k)}$ is defined as in Equation (2.19), with w replaced by $w^{(k)}$ and $u^{\pm}(t) = w(t,0\pm)$ replaced by $w^{(k)}(t,0\pm)$, respectively.

Assuming that w_n satisfies Equation (4.2), we will show that every approximation $w^{(k)}$ to the linear Cauchy problem (2.21), (2.15) satisfies the same bounds, on a sufficiently small time interval $[0,T]$. Our first result deals with the solution to the linear transport Equation (4.7). We show that, within a sufficiently short time interval, the $H²$ norm of the solution can be amplified at most by a factor of 3/2.

LEMMA 4.1. Let $w_n = w_n(t,x)$ be a function that satisfies the bounds (4.2) for all $t > 0$, and define $a = a(t, x)$ as in Equation (4.3). Then there exists $T > 0$ small enough, depending only on δ_0, M_0 , that the following holds. For any $\tau \in [0,T]$ and any solution w of the linear equation

$$
w_t + a(t, x)w_x = 0 \tag{4.7}
$$

with initial datum

$$
w(0) = \bar{w} \in H^2(\mathbb{R} \setminus [-\delta_0 \tau, \delta_0 \tau]),
$$

one has

$$
||w(\tau)||_{H^2(\mathbb{R}\setminus\{0\})} \leq \frac{3}{2} ||\bar{w}||_{H^2(\mathbb{R}\setminus[-\delta_0 \tau, \delta_0 \tau])}.
$$
\n(4.8)

Proof.

(1) Equation (4.7) can be solved by the method of characteristics, separately on the regions where $x < 0$ and $x > 0$. We observe that characteristics move toward the origin from both sides. In this first step, we prove that all characteristics starting at time $t=0$ inside the interval $[-\delta_0 \tau, \delta_0 \tau]$ hit the origin before time τ (see Figure 4.1). Hence, the profile $w(\tau, \cdot)$ does not depend on the values of \bar{w} on this interval.

We claim that there exists $\delta_1 > 0$ such that

$$
\begin{cases}\na(t,x) \le -\delta_0 & \text{for all } x \in]0,\delta_1], \\
a(t,x) \ge \delta_0 & \text{for all } x \in [-\delta_1,0].\n\end{cases}
$$
\n(4.9)

Indeed, Equations (4.1) and (4.2) imply

$$
a(t,0+) = \frac{u_n^+(t) - u_n^-(t)}{2} \le -2\delta_0.
$$
\n(4.10)

Moreover, for $x > 0$, we have

$$
\left| a(t,x) - a(t,0+) \right| \leq \frac{2}{\pi} \left| x \ln x \right| + \int_0^x \left| w_{n,x}(t,y) \right| dy \leq C_0 |x|^{1/2},\tag{4.11}
$$

for some constant C_0 depending only on the norm $||w_n(t, \cdot)||_{H^2}$, hence only on M_0 in Equation (4.2). Choosing $\delta_1 > 0$ small enough such that $C_0 \delta_1^{1/2} < \delta_0$, from Equations (4.10) – (4.11) , we obtain the first inequality in Equation (4.9) . The second inequality is proved in the same way. In addition, by choosing the time interval $[0,T]$ small enough, we can also assume

$$
\delta_0 T \le \delta_1. \tag{4.12}
$$

(2) Multiplying Equation (4.7) by 2w, one finds

$$
(w2)t + (aw2)x = axw2.
$$
 (4.13)

Integrating Equation (4.13) over the domain

$$
\Omega \doteq \left\{ (t, x); \ |x| > \delta_0(\tau - t), \ t \in [0, \tau] \right\}
$$
\n
$$
(4.14)
$$

shown in Figure 4.1, we obtain

$$
\int_{-\infty}^{\infty} w^2(\tau, x) dx \le \int_{|x| > \delta_0 \tau} \bar{w}^2 dx + \int_0^{\tau} \int_{|x| > \delta_0 (\tau - t)} a_x w^2 dx dt.
$$
 (4.15)

Indeed, by Equations (4.9) and (4.12), for every $\tau \in]0,T[$, the flow points outward along the boundary of the domain Ω . By Equation (4.3), the derivative a_x satisfies a bound of the form

$$
|a_x(t,x)| \le C_a \left(1 + |\ln|x||\right),\tag{4.16}
$$

where C_a is a constant depending only on the norm $||w_n||_{H^2}$ in Equatino (4.2). Taking the supremum of $|a_x(t,x)|$ over the set

$$
\Omega_t \doteq \{x; \quad |x| > \delta_0(\tau - t)\}\tag{4.17}
$$

from Equation (4.15), we thus obtain

$$
||w(\tau)||_{\mathbf{L}^{2}(\mathbb{R})}^{2} \leq ||\bar{w}||_{\mathbf{L}^{2}(\Omega_{0})}^{2} + \int_{0}^{\tau} C_{a} \Big(1 + |\ln(\delta_{0}(\tau - t))|\Big) ||w(t)||_{\mathbf{L}^{2}(\Omega_{t})}^{2} dt.
$$
 (4.18)

By Gronwall's lemma, this yields a bound on $||w(\tau)||_{\mathbf{L}^2}^2$.

(3) Next, differentiating Equation (4.7) with respect to x and multiplying by $2w_x$ we obtain

$$
w_{xt} + aw_{xx} = -a_x w_x, \qquad w_x(0, \cdot) = \bar{w}_x. \tag{4.19}
$$

$$
(w_x^2)_t + (aw_x^2)_x = -a_x w_x^2. \t\t(4.20)
$$

Integrating Equation (4.20) over the domain Ω in Equation (4.14) and using the bound (4.16) by similar computations as before, we now obtain

$$
||w_x(\tau)||^2_{\mathbf{L}^2(\mathbb{R})} \le ||\bar{w}_x||^2_{\mathbf{L}^2(\Omega_0)} + \int_0^{\tau} C_a \Big(1 + |\ln(\delta_0(\tau - t))| \Big) ||w_x(t)||^2_{\mathbf{L}^2(\Omega_t)} dt. \tag{4.21}
$$

By Gronwall's lemma, this yields a bound on $||w_x(\tau)||_{\mathbf{L}^2}^2$.

FIG. 4.1. The norm $||w(\tau)||_{H^2(\mathbb{R}\setminus\{0\})}$ is estimated by using the balance laws for w^2, w_x^2, w_{xx}^2 on the shaded domain Ω . By Equation (4.9), along the boundary where $|x| = \delta_0(\tau - t)$, all characteristics move outward. Hence, no inward flux is present.

(4) Differentiating Equation (4.19) once again and multiplying all terms by $2w_{xx}$, we find

$$
w_{xxt} + aw_{xxx} = -2a_x w_{xx} - a_{xx} w_x, \qquad w_{xx}(0, \cdot) = \bar{w}_{xx}, \qquad (4.22)
$$

$$
\left(w_{xx}^2\right)_t + \left(a\,w_{xx}^2\right)_x = -3\,a_x w_{xx}^2 - 2a_{xx} w_x w_{xx}.\tag{4.23}
$$

Integrating Equation (4.23) over the domain Ω in Equation (4.14), we obtain

$$
\int_{-\infty}^{\infty} w_{xx}^2(\tau, x) dx
$$

$$
\leq \int_{|x| > \delta \tau} \bar{w}_{xx}^2(y) dy + \int_0^{\tau} \int_{|x| > \delta_0(\tau - t)} \left(-3a_x w_{xx}^2 - 2a_{xx} w_x w_{xx} \right) dx dt.
$$
 (4.24)

To estimate the right-hand side of Equation (4.24), we observe that, for $|x|$ small,

$$
|a_x| = |\varphi_x + w_{n,x}| = \mathcal{O}(1) \cdot \left(|\ln|x|| + ||w_n||_{H^2} \right),
$$

$$
|a_{xx}| = |\varphi_{xx} + w_{n,xx}| = \mathcal{O}(1) \cdot \frac{1}{|x|} + |w_{n,xx}|.
$$
 (4.25)

Recalling that $\varphi(x) = 0$ for $|x| \geq 2$, we have the bounds

$$
E = |3a_x w_{xx}^2 + 2a_{xx} w_x w_{xx}|
$$

\n
$$
\leq \mathcal{O}(1) \cdot (1 + |\ln|x||) w_{xx}^2 + \mathcal{O}(1) \cdot \left(\frac{1}{|x|} + |w_{n,xx}|\right) ||w||_{H^2} w_{xx},
$$
\n(4.26)

$$
\int_{\delta_0(\tau-t)}^2 \frac{|w_{xx}(t,x)|}{x} dx \le \left(\int_{\delta_0(t-s)}^2 \frac{1}{x^2}\right)^{1/2} ||w_{xx}||_{\mathbf{L}^2(\Omega_t)}
$$

$$
\leq \left(\frac{1}{\delta_0(t-s)}\right)^{1/2} \|w_{xx}\|_{\mathbf{L}^2(\Omega_t)},\tag{4.27}
$$

$$
\int_{0}^{\tau} \int_{|x| > \delta_{0}(\tau - t)} E(t, x) dx dt \leq \mathcal{O}(1) \cdot \int_{0}^{\tau} (1 + |\ln \delta_{0}(\tau - t)|) \cdot ||w(t)||_{H^{2}(\Omega_{t})}^{2} dt \n+ \mathcal{O}(1) \cdot \int_{0}^{\tau} [\delta_{0}(\tau - t)]^{-1/2} \cdot ||w(t)||_{H^{2}(\Omega_{t})}^{2} dt \n+ \mathcal{O}(1) \cdot \int_{0}^{\tau} ||w_{n}(t)||_{H^{2}} \cdot ||w(t)||_{H^{2}(\Omega_{t})}^{2} dt.
$$
\n(4.28)

(5) Calling $Z(t) = ||w(t)||_{H^2(\Omega_t)}$, by the estimates (4.18), (4.21), and (4.28), we obtain an integral inequality of the form

$$
Z^{2}(\tau) \leq Z^{2}(0) + C_{1} \cdot \int_{0}^{\tau} \left(1 + |\ln \delta_{0}(\tau - t)| + [\delta_{0}(\tau - t)]^{-1/2} + M_{0}\right) Z^{2}(t) dt.
$$
 (4.29)

By Gronwall's lemma, if $\tau > 0$ is sufficiently small, this yields $Z(\tau) \leq \frac{3}{2}Z(0)$, proving Equation (4.8).

The above estimate can be easily extended to the linear, non-homogeneous problem

$$
w_t + a(t, x)w_x = F(t, x), \qquad w(0, x) = \bar{w}(x). \tag{4.30}
$$

Indeed, in the same setting as Lemma 2, using Equation (4.8) and Duhamel's formula, for $\tau \in [0,T]$, we obtain

$$
||w(\tau,\cdot)||_{H^2(\mathbb{R}\setminus\{0\})} \leq \frac{3}{2} ||\bar{w}||_{H^2(\mathbb{R}\setminus[-\delta_0\tau,\delta_0\tau])} + \frac{3}{2} \int_0^\tau ||F(t,\cdot)||_{H^2(\mathbb{R}\setminus[-\delta_0(\tau-t),\delta_0(\tau-t))} dt. \tag{4.31}
$$

Relying on Lemma 3.1 we now prove uniform H^2 bounds on all approximations $w^{(k)}$, on a suitably small time interval $[0, T]$.

LEMMA 4.2. Let $w_n = w_n(t, x)$ be a function that satisfies the bounds (4.2) for all $t > 0$, and define $a = a(t, x)$ as in (4.3). Then there exists $T > 0$ small enough, depending only on δ_0, M_0 in Equation (4.1), so that the following holds. For every $k \geq 1$ and every $\tau \in [0,T]$, one has

$$
||w^{(k)}(\tau)||_{H^2(\mathbb{R}\setminus\{0\})} \le M_0,\tag{4.32}
$$

$$
|w^{(k)}(\tau, 0-) - \bar{u}^-| \le \delta_0, \qquad |w^{(k)}(\tau, 0+) - \bar{u}^+| \le \delta_0. \tag{4.33}
$$

Proof.

(1) Recalling the constants K_0, K_1 in Lemma 3.1, choose $T > 0$ small enough so that

$$
\int_0^T (\delta_0 s)^{-2/3} ds < \frac{M_0}{6(K_0 + K_1 M_0)}.\tag{4.34}
$$

(2) The estimate (4.32) trivially holds for $w^{(1)}(\tau) \doteq \bar{w}$. Assuming that it holds for $w^{(k)}(t), t \in [0,T],$ by Equation (4.31), for any $\tau \in [0,T]$, we have the estimate

 $||w^{(k+1)}(\tau)||_{H^2(\mathbb{R}\setminus\{0\})}$

$$
\leq \frac{3}{2} \|\bar{w}\|_{H^{2}(\mathbb{R}\setminus\{0\})} + \frac{3}{2} \int_{0}^{\tau} \|A+B+C+D\|_{H^{2}(\mathbb{R}\setminus[-\delta_{0}(\tau-t),\delta_{0}(\tau-t)])} ds
$$

\n
$$
\leq \frac{3}{4} M_{0} + \frac{3}{2} \int_{0}^{\tau} K_{0}[\delta_{0}(\tau-t)]^{-2/3} dt + \frac{3}{2} \int_{0}^{\tau} K_{1}[\delta_{0}(\tau-t)]^{-2/3} \|w^{(k)}(t)\|_{H^{2}(\mathbb{R}\setminus\{0\})} dt
$$

\n
$$
\leq \frac{3}{4} M_{0} + \frac{3}{2} (K_{0} + K_{1} M_{0}) \int_{0}^{\tau} (\delta_{0} s)^{-2/3} ds
$$

\n
$$
< \frac{3}{4} M_{0} + \frac{3}{2} (K_{0} + K_{1} M_{0}) \cdot \frac{M_{0}}{6(K_{0} + K_{1} M_{0})} = M_{0}.
$$
\n(4.35)

By induction, this proves the bound (4.32).

(3) To prove the two estimates in Equation (4.33), we write

$$
\left| w^{(k+1)}(\tau, 0+) - \bar{u}^+ \right| \leq \left| \bar{w}(x(0; \tau, 0+)) - \bar{u}^+ \right| + \tau \cdot \sup_{t \in [0, \tau]} \left\| (A + B + C + D)(t) \right\|_{\mathbf{L}^{\infty}}. \tag{4.36}
$$

The a priori bound on $||w^{(k)}(t, \cdot)||_{H^2(\mathbb{R}\setminus\{0\})}$ implies that the \mathbf{L}^{∞} norm in Equation (4.36) is uniformly bounded. By possibly choosing a smaller $T > 0$, both terms on the righthand side of Equation (4.36) will be $\langle \delta_0/2 \rangle$. This yields the second inequality in Equation (4.33). The first inequality is proved in the same way. \Box

The next lemma shows that the sequence of approximations $w^{(k)}$ defined in Equations (4.5) – (4.6) converges to a solution to Equation (2.21) .

LEMMA 4.3. For some $T > 0$ sufficiently small, the sequence of approximations $w^{(k)}(t, \cdot)$ converges in $H^2(\mathbb{R} \setminus \{0\})$ to a function $w = w(t, \cdot)$. The convergence is uniform for $t \in [0,T]$. This limit function provides a solution to the initial value problem (2.21) with initial data (2.15) .

Proof.

(1) By the previous bounds, the difference between two approximations can be estimated by

$$
\|w^{(k+1)}(\tau) - w^{(k)}(\tau)\|_{H^2(\mathbb{R}\setminus\{0\})} \n\leq \frac{3}{2} \int_0^{\tau} [\delta_0(\tau - t)]^{-2/3} K_1 \|w^{(k)}(t) - w^{(k-1)}(t)\|_{H^2(\mathbb{R}\setminus[-\delta_0(\tau - t), \delta_0(\tau - t)]} dt.
$$
\n(4.37)

If $T > 0$ is small enough, so that

$$
\frac{3}{2} \int_0^T (\delta_0 s)^{-2/3} K_1 ds \le \frac{1}{2},
$$

then, for every $\tau \in [0,T]$, the sequence $w^{(k)}(\tau, \cdot)$ is Cauchy in $H^2(\mathbb{R}\setminus\{0\})$, hence it converges to a unique limit function $w(\tau, \cdot)$.

(2) It remains to prove that that w provides a solution to the problem (2.21) with initial data (2.15) , in the sense that the integral identities (2.18) are satisfied for all $t_0 \in [0, T]$ and $x_0 \neq 0$.

This is clear because, for every $\epsilon > 0$ as $k \to \infty$, the source terms on the right-hand of Equation (2.21) converge uniformly on the set $\{(t,x): t \in [0,T], |x| > \epsilon\}$. side of Equation (2.21) converge uniformly on the set $\{(t,x);\ t\in[0,T], |x|\geq\epsilon\}.$

5. Convergence of the approximate solutions

By the analysis in the previous section, the sequence of approximate solutions w_n of the problem (2.21) , (2.15) is well defined, on a suitably small time interval $[0,T]$. Moreover, the uniform bounds (4.2) hold.

To complete the proof of Theorem 2.1, it remains to show that the w_n converge to a limit function w , providing an entropic solution to the Cauchy problem (2.10) , (2.15) . Towards this goal, we prove that, on a suitably small time interval $[0,T]$, the sequence $(w_n)_{n>1}$ constructed in Equation (2.21) is Cauchy with respect to the norm of $H^1(\mathbb{R}\setminus\{0\})$, hence it converges to a unique limit. This will be achieved in several steps.

Proof.

(1) For a fixed n, consider the differences

$$
\left\{ \begin{array}{ll} W \doteq w_{n+1} - w_n, \\ W_n \doteq w_n - w_{n-1}, \end{array} \right. \qquad \left\{ \begin{array}{ll} U^- \doteq u_{n+1}^- - u_n^-, \\ U_n^- \doteq u_n^- - u_{n-1}^-, \end{array} \right. \qquad \left\{ \begin{array}{ll} U^+ \doteq u_{n+1}^- - u_n^+, \\ U_n^+ \doteq u_n^+ - u_{n-1}^+. \end{array} \right.
$$

From Equation (2.21), we deduce

$$
W_t + \left(\varphi + w_n - \frac{u_n - u_n^+}{2}\right)W_x + \left(W_n - \frac{U_n^- + U_n^+}{2}\right)w_{n,x} = \mathbf{H}[W] - \left(W - \frac{U^- + U^+}{2}\right)\varphi_x. \tag{5.1}
$$

Multiplying both sides by $2W$, we obtain the balance law

$$
(W^{2})_{t} + \left[\left(\varphi + w_{n} - \frac{u_{n}^{-} - u_{n}^{+}}{2} \right) W^{2} \right]_{x}
$$

= $(\varphi + w_{n})_{x} W^{2} - \left(W_{n} - \frac{U_{n}^{-} + U_{n}^{+}}{2} \right) 2W w_{n,x} + 2\mathbf{H}[W] \cdot W - \left(W - \frac{U^{-} + U^{+}}{2} \right) 2W \varphi_{x}.$ (5.2)

Integrating over the domain Ω in Equation (4.14) and observing that $\varphi_x(x) = \mathcal{O}(1)(1 +$ $|\ln|x||$, we obtain

$$
\frac{1}{2} \int W^{2}(\tau,x) dx
$$
\n
$$
\leq -\int_{0}^{\tau} \int_{|x| > \delta_{0}(\tau - t)} \left\{ (\varphi + w_{n})_{x} \cdot W^{2} - \left(W_{n} - \frac{U_{n}^{-} + U_{n}^{+}}{2} \right) 2W w_{n,x} + 2\mathbf{H}[W] \cdot W - \left(W - \frac{U^{-} + U^{+}}{2} \right) 2W \varphi_{x} \right\} dx dt
$$
\n
$$
= \mathcal{O}(1) \cdot \int_{0}^{\tau} \left\{ \left| \ln(\tau - t) \right| \cdot \|W(s)\|_{\mathbf{L}^{2}}^{2} + \|W_{n}(t)\|_{H^{1}} \|W(t)\|_{\mathbf{L}^{2}} + \|W(t)\|_{\mathbf{L}^{2}}^{2} + \left| \ln(\tau - t) \right| \cdot \|W(t)\|_{H^{1}} \|W(t)\|_{\mathbf{L}^{2}} \right\} dt
$$
\n
$$
\leq C_{3} \cdot \int_{0}^{\tau} \|W(t)\|_{\mathbf{L}^{2}} \cdot \left(\|W_{n}(t)\|_{H^{1}} + \left| \ln(\tau - t) \right| \|W(t)\|_{H^{1}} \right) dt, \tag{5.3}
$$

for some constant C_3 .

(2) Next, differentiating Equation (5.1) with respect to x, we obtain

$$
W_{xt} + \left(\varphi + w_n - \frac{u_n^- - u_n^+}{2}\right)W_{xx}
$$

$$
+(\varphi_x + w_{n,x})W_x + \left(W_n - \frac{U_n^- + U_n^+}{2}\right)w_{n,xx} + W_{n,x}w_{n,x}
$$

=
$$
\mathbf{H}[W_x] - \left(W - \frac{U^- + U^+}{2}\right)\varphi_{xx} - \varphi_x W_x.
$$
 (5.4)

Multiplying both sides by $2W_x$, we obtain the balance law

$$
(W_x^2)_t + \left[\left(\varphi + w_n - \frac{u_n - u_n^+}{2} \right) W_x^2 \right]_x
$$

= -\left(\varphi_x + w_{n,x} \right) W_x^2 - \left(W_n - \frac{U_n^- + U_n^+}{2} \right) 2W_x w_{n,xx}
- 2w_{n,x} W_{n,x} W_x + 2\mathbf{H}[W_x] W_x - \left(W - \frac{U^- + U^+}{2} \right) 2W_x \varphi_{xx} - 2\varphi_x W_x^2. (5.5)

By the definition (2.4) one has

$$
\|\varphi_{xx}\|_{\mathbf{L}^2(\mathbb{R}\setminus[-\delta_0(\tau-t),\delta_0(\tau-t)])} = \mathcal{O}(1) \cdot (\tau-t)^{-1/2}.
$$
\n(5.6)

Integrating Equation (5.5) over the domain Ω in Equation (4.14), we obtain

$$
\int_0^\infty W_x^2(t,x) dx = \mathcal{O}(1) \cdot \int_0^\tau \left\{ \left| \ln(\tau - t) \right| \|W_x(t)\|_{\mathbf{L}^2}^2 + \|W_n(t)\|_{H^1} \|W_x(t)\|_{\mathbf{L}^2} \right. \\ \left. + \|W(t)\|_{H^1} \|W_x(t)\|_{\mathbf{L}^2} \cdot (\tau - t)^{-1/2} \right\} dt. \tag{5.7}
$$

(3) Calling $Z(t) = ||W(t)||_{H^1(\mathbb{R}\setminus{0})}$, from Equations (5.3) and (5.7) we obtain an integral inequality of the form

$$
Z^{2}(\tau) \leq C_{4} \int_{0}^{\tau} Z(t) \cdot \left(\|W_{n}(t)\|_{H^{1}} + Z(t) \right) \cdot (\tau - t)^{-1/2} dt, \tag{5.8}
$$

for some constant C_4 .

We now set

$$
\varepsilon_0 \doteq \sup_{t \in [0,T]} \|W_n(t)\|_{H^1(\mathbb{R}\setminus\{0\})}.
$$

Since $Z(0) = 0$, calling τ^* the first time where $Z \ge \varepsilon_0/2$ one has

$$
\frac{\varepsilon_0}{2} \le C_4 \int_0^{\tau^*} \frac{\varepsilon_0}{2} \cdot \left(\epsilon_0 + \frac{\varepsilon_0}{2}\right) (\tau^* - t)^{-1/2} dt = \frac{3}{2} C_4 \varepsilon_0^2 \tau^*.
$$

Hence, $\tau^* \geq (3C_4)^{-1}$. Choosing $0 < T < (3C_4)^{-1}$, we obtain

$$
Z(t) \le \frac{\epsilon_0}{2} \qquad \text{for all} \ \ t \in [0, T].
$$

This establishes the desired contraction property:

$$
\sup_{t \in [0,T]} \|w_{n+1}(t) - w_n(t)\|_{H^1(\mathbb{R}\setminus\{0\})} \le \frac{1}{2} \cdot \sup_{t \in [0,T]} \|w_n(t) - w_{n-1}(t)\|_{H^1(\mathbb{R}\setminus\{0\})}. \tag{5.9}
$$

(4) By Equation (5.9), for every $t \in [0,T]$, the sequence of approximations $w_n(t,\cdot)$ is Cauchy in the space $H^1(\mathbb{R}\setminus\{0\})$, hence it converges to a unique limit $w(t,\cdot)$.

It remains to check that this limit function w is an entropic solution, i.e. it satisfies the integral equation (2.18). But this is clear because, for every $\epsilon > 0$, the sequence of functions

$$
F_n \doteq \mathbf{H}[\varphi] - \varphi \varphi_x + \left(\mathbf{H}[w_n] - \left(w_n - \frac{u_n^- + u_n^+}{2}\right) \varphi_x\right) \tag{5.10}
$$

converges to the corresponding function F in Equation (2.19), uniformly for $t \in [0,T]$ and $|x| \geq \epsilon$.

(5) Finally, to prove uniqueness, assume that w, \tilde{w} are two entropic solutions. Consider the differences

$$
W \doteq w - \tilde{w}, \qquad \qquad \begin{cases} U^- \doteq u^- - \tilde{u}^-, \\ U^+ \doteq u^+ - \tilde{u}^+, \end{cases}
$$

and call $Z(t) = ||W(t)||_{H^1(\mathbb{R}\setminus{0})}$. Since $Z(0) = 0$, the same arguments used to prove Equation (5.8) now yield

$$
Z^2(\tau) \le C_4 \int_0^{\tau} Z(t) \cdot \left[Z(t) + Z(t) \right] \cdot (\tau - t)^{-1/2} dt.
$$

For $\tau \in [0,T]$ sufficiently small, we thus obtain $Z(\tau) = 0$. This completes the proof of Theorem 2.1. Theorem 2.1.

REFERENCES

- [1] J. Biello and J.K. Hunter, Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities, Comm. Pure Appl. Math., 63, 303–336, 2009.
- [2] A. Bressan and G. Chen, Generic regularity of conservative solutions to a nonlinear wave equation, Ann. Inst. H.Poincaré, Anal. Nonlin., to appear.
- [3] A. Bressan, T. Huang, and F. Yu, Structurally stable singularities for a nonlinear wave equation, Bull. Inst. Math. Acad. Sinica, 10, 449–478, 2015.
- [4] A. Bressan and K. Nguyen, *Global existence of weak solutions for the Burgers–Hilbert equation*, SIAM J. Math. Anal., 46, 2884–2904, 2014.
- [5] J-G. Dubois and J-P. Dufour, Singularités de solutions d'équations aux dérivées partielles, J. Diff. Eqs., 60, 174–200, 1985.
- [6] J. Guckenheimer, Catastrophes and partial differential equations, Ann. Inst. Fourier, 23, 31–59 1973.
- [7] J.K. Hunter and M. Ifrim, Enhanced life span of smooth solutions of a Burgers–Hilbert equation, SIAM J. Math. Anal., 44, 2039–2052, 2012.
- [8] J.K. Hunter and M. Ifrim, D. Tataru, and T.K. Wong, Long time solutions for a Burgers–Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143, 3407–3412, 2015.
- [9] D.-X. Kong, Formation and propagation of singularities for 2×2 quasilinear hyperbolic systems, Trans. Amer. Math. Soc., 354, 3155–3179, 2002.
- [10] F. Linares, D. Pilod, and J.C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: local theory, SIAM J. Math. Anal., 46, 1505–1537, 2014.
- [11] B.L. Rozdestvenskii and N. Yanenko, Systems of Quasilinear Equations, A.M.S. Translations of Mathematical Monographs, 55, 1983.
- [12] D. Schaeffer, A regularity theorem for conservation laws, Adv. in Math., 11, 368–386, 1973.