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PIECEWISE SMOOTH SOLUTIONS
TO THE BURGERS–HILBERT EQUATION∗

ALBERTO BRESSAN† AND TIANYOU ZHANG‡

Abstract. The paper is concerned with the Burgers–Hilbert equation ut+(u2/2)x=H[u], where
the right-hand side is a Hilbert transform. Unique entropy admissible solutions are constructed locally
in time, having a single shock. In a neighborhood of the shock curve, a detailed description of the
solution is provided.
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1. Introduction
Consider the balance law obtained from Burgers’ equation by adding the Hilbert

transform as a source term

ut+

(
u2

2

)
x

=H[u]. (1.1)

Here,

H[f ](x)
.
= lim

ε→0+

1

π

∫
|y|>ε

f(x−y)

y
dy (1.2)

denotes the Hilbert transform of a function f ∈L2(R). The above equation was derived
in [1] as a model for nonlinear waves with constant frequency. For initial data

u(0,x)= ū(x), (1.3)

in H2(R), the local existence and uniqueness of the solution to Equation (1.1) was
proved in [7], together with a sharp estimate on the time interval where this solution
remains regular. See also [8] for a shorter proof. For general initial data ū∈L2(R), the
global existence of entropy weak solutions was recently proved in [4] together with a
partial uniqueness result. We remark that, in this general setting, the well-posedness of
the Cauchy problem remains a largely open question.

In the present paper, we consider an intermediate situation. Namely, we construct
solutions of Equation (1.1) which are piecewise continuous, with a single shock. Our
solutions have the form

u(t,x)=ϕ
(
x−y(t)

)
+w

(
t, x−y(t)

)
,

where t �→y(t) denotes the location of the shock. Here, w∈H2
(
]−∞,0[∪ ]0,+∞[

)
, while

ϕ(x)= 2
π |x| ln |x|, for x near the origin.
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In Section 2 we write Equation (1.1) in an equivalent form and state an existence-
uniqueness theorem, locally in time. The key a priori estimates on approximate solutions
and a proof of the main theorem are then worked out in sections 3–5.

The present results can be easily extended to the case of solutions with finitely many
non-interacting shocks. An interesting open problem is to describe the local behavior of
a solution in a neighborhood of a point (t0,x0) where either (i) a new shock is formed or
(ii) two shocks merge into a single one. Motivated by the analysis in [12] we conjecture
that, for generic initial data

ū ∈ H2(R)∩C3(R),

the corresponding solution of Equation (1.1) remains piecewise smooth with finitely
many shock curves on any domain of the form [0,T ]×R. We thus regard the present
results as a first step toward a description of all generic singularities. For other examples
of hyperbolic equations where generic singularities have been studied, we refer to [2,3,5,
6,9]. The possible emergence of singularities, for more general dispersive perturbations
of Burgers’ equation, has been recently studied in [10].

2. Statement of the main result
Consider a piecewise smooth solution of Equation (1.1) with one single shock. Call-

ing y(t) the location of the shock at time t, by the Rankine–Hugoniot conditions, we
have

ẏ(t)=
u−(t)+u+(t)

2
. (2.1)

where u−,u+ denote the left and right limits of u(t,x) as x→y(t). Here and in the
sequel, the upper dot denotes a derivative with respect to time. It is convenient to shift
the space coordinate, replacing x with x−y(t), so that in the new coordinate system
the shock is always located at the origin. In these new coordinates, Equation (1.1) takes
the equivalent form

ut+

(
u2

2

)
x

− ẏux=H[u]. (2.2)

We shall construct solutions to Equation (2.2) in a special form, providing a cancellation
between leading order terms in the transport equation and the Hilbert transform.

Consider a smooth function with compact support η∈C∞c (R), with η(x)=η(−x),
and such that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
η(x)=1 if |x|≤1,

η(x)=0 if |x|≥2,

η′(x)≤0 if x∈ [1,2].
(2.3)

Moreover, define

ϕ(x)
.
=

2|x| ln |x|
π

·η(x). (2.4)

Notice that ϕ has support contained in the interval [−2,2] and is smooth separately on
the domains {x<0} and {x>0}.
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In addition, we consider the space of functions

H .
= H2

(
]−∞,0[∪ ]0,+∞[

)
. (2.5)

Every function w∈H is continuously differentiable outside the origin. The distributional
derivative of wx is an L2 function restricted to the half lines ]−∞,0[ and ]0,+∞[ .
However, both w and wx can have a jump at the origin. It is clear that the traces

{
u− .

= w(0−),
u+ .

= w(0+),

{
b− .

= wx(0−),
b+

.
= wx(0+)

(2.6)

are continuous linear functionals on H.

10−2 2

ϕ
u =    + wϕ

w

x x
0

u
_

+u

Fig. 2.1. Decomposing a piecewise regular function u=ϕ+w as a sum of the function ϕ defined
at (2.4) and a function w∈H2(R\{0}), continuously differentiable outside the origin.

Solutions of Equation (2.2) will be constructed in the form

u(t,x)=ϕ(x)+w(t, x). (2.7)

In order that the shock be entropy admissible, the function w should range in the open
domain

D .
=

{
w∈H2

(
R\{0}) ; w(0−)>w(0+)

}
. (2.8)

By Equations (2.6)–(2.8), for x≈0, this solution has the asymptotic behavior

u(t,x)=

⎧⎨
⎩

u−(t)+b−(t)x+ 2|x| ln|x|
π +O(1) · |x|3/2 if x<0,

u+(t)+b+(t)x+ 2|x| ln|x|
π +O(1) · |x|3/2 if x>0

(2.9)

for suitable functions u±,b±. Here and throughout the sequel, the Landau symbol O(1)
denotes a uniformly bounded quantity.

Substutiting Equation (2.7) into Equation (2.2) and recalling Equation (2.6), one
obtains

wt+

(
ϕ+w− u−+u+

2

)
(ϕx+wx)=H[ϕ]+H[w]. (2.10)

To derive estimates on the Hilbert transform, the following observation is useful.
Consider a function f with compact support, continuously differentiable for x<0 and
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for x>0, with a jump at the origin. Then, for any x �=0, an integration by parts yields1

H[f ](x)=
1

π

∫ ∞

−∞
f ′(y) ln |x−y|dy+ 1

π

[
f(0+)−f(0−)] ln |x|. (2.11)

A similar computation shows that, to leading order, the Hilbert transform of w near
the origin is given by

H[w](x)=
u+−u−

π
ln |x|+O(1), (2.12)

with u−,u+ as in Equation (2.6). On the other hand, for x≈0, one has(
ϕ(x)+w(x)− w(0−)+w(0+)

2

)
ϕx(x)

=

(
sign(x) · u

+−u−

2
+O(1) · |x| ln |x|

)
· 2sign(x) ·

(
1+ln |x|)

π

=
u+−u−

π
ln |x|+O(1). (2.13)

The identity between the leading terms in Equations (2.12) and (2.13) achieves a crucial
cancellation between the two sides of Equation (2.10). It is thus convenient to write
this equation in the equivalent form

wt+

(
ϕ+w− u−+u+

2

)
wx=H[ϕ]−ϕϕx+

(
H[w]−

(
w− u−+u+

2

)
ϕx

)
. (2.14)

Definition. By an entropic solution to the Cauchy problem (2.10) with initial data

w(0, ·)= w̄ ∈ D, (2.15)

we mean a function w : [0,T ]×R �→R such that
(i) For every t∈ [0,T ], the norm ‖w(t, ·)‖H2(R\{0}) remains uniformly bounded. As

x→0, the limits satisfy

u−(t) .
=u(t,0−) > u(t,0+)

.
= u+(t). (2.16)

1 Indeed, if f ∈C∞
c (R), then, for a suitably large constant M , we have

π ·H[f ](x) = lim
ε→0+

∫
|y−x|>ε

f(x−y)

y
dy=− lim

ε→0+

∫
|y−x|>ε

f(x+y)

y
dy

=− lim
ε→0+

(∫ −ε

−M
+

∫ M

ε

)
f(x+y)−f(x)

y
dy

= lim
ε→0+

(∫ −ε

−M
+

∫ M

ε

)
f ′(x+y) ln |y|dy− lim

ε→0+
[f(x−ε)−f(x)]lnε

+limε→0+[f(x+ε)−f(x)]lnε+[f(x−M)−f(x)]lnM− [f(x+M)−f(x)]lnM

=

∫ ∞

−∞
f ′(x+y) ln |y|dy=

∫ ∞

−∞
f ′(y) ln |x−y|dy.

By approximating f with a sequence of smooth functions with compact support, we obtain Equation
(2.11).
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(ii) Equation (2.14) is satisfied in integral sense. Namely, for every t0≥0 and
x0 �=0, calling t �→x(t;t0,x0) the solution to the Cauchy problem

ẋ
.
=ϕ(x)+w(t,x)− u−(t)+u+(t)

2
, x(t0)=x0, (2.17)

one has

w(t0,x0)= w̄(x(0;t0,x0))+

∫ t0

0

F (t,x(t; t0,x0))dt, (2.18)

with

F
.
=H[ϕ]−ϕϕx+

(
H[w]−

(
w− u−+u+

2

)
ϕx

)
. (2.19)

A few remarks are in order:

(i) The bound on the norm ‖w(t, ·)‖H2 implies that the limits in Equation (2.16)
are well defined. By requiring that the inequality in Equation (2.16) holds, we
make sure that the shock is entropy admissible.

(ii) Since w(t, ·)∈H2(R\{0}), the right-hand side of the ODE in Equation (2.17)
is continuously differentiable with respect to x. Combined with the inequalities
in Equation (2.16), this implies that the backward characteristic t �→x(t;t0,x0)
is well defined for all t∈ [0,t0].

(iii) In [11], a function satisfying the integral Equations (2.18) was called a broad
solution. The regularity assumption on w(t, ·) and the fact that the source
term F in Equation (2.19) is continuous outside the origin imply that w=
w(t,x) is continuously differentiable with respect to both variables t,x for x �=0.
Therefore, the identity in Equation (2.14) is satisfied at every point (t,x), with
x �=0.

The main result of this paper provides the existence and uniqueness of an entropic
solution, locally in time.

Theorem 2.1. For every w̄∈D, there exists T >0 such that the Cauchy problem (2.2),
(2.15) admits a unique entropic solution, defined for t∈ [0,T ].

In turn, Theorem 2.1 yields the existence of a piecewise regular solution to the
Burgers–Hilbert equation (1.1), locally in time, for initial data of the form

u(0,x)=ϕ(x)+ w̄(x),

with w̄∈D.
The solution w=w(t,x) of Equation (2.14) will be obtained as a limit of a sequence

of approximations. More precisely, for n=1, we define

w1(t, ·)= w̄ for all t≥0. (2.20)

Next, let the nth approximation wn(t,x) be constructed. By induction, we then define
wn+1(t,x) to be the solution of the linear, non-homogeneous Cauchy problem

wt+

(
ϕ+wn− u−

n +u+
n

2

)
wx=H[ϕ]−ϕϕx+

(
H[w]−

(
w− u−+u+

2

)
ϕx

)
. (2.21)

with initial data (2.15).
The induction argument requires the following three steps:
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(i) Existence and uniqueness of solutions to the linear problem (2.21) with initial
data (2.15).

(ii) A priori bounds on the strong norm ‖wn(t)‖H2(R\{0}), uniformly valid for t∈
[0,T ] and all n≥1.

(iii) Convergence in a weak norm, which will follow from the bound∑
n≥1

‖wn+1(t)−wn(t)‖H1(R\{0}) < ∞.

In the following sections, we shall provide estimates on each term on the right-hand side
of Equation (2.21) and complete the above steps (i)–(iii).

3. Estimates on the source terms
To estimate the right-hand side of Equation 2.21), we consider again the cutoff

function η in Equation (2.3) and split an arbitrary function w∈H2(R\{0}) as a sum:

w=v1+v2+v3, (3.1)

where

v1(x)
.
=

{
w(0−) ·η(x) if x<0,

w(0+) ·η(x) if x>0,
v2(x)

.
=

{
wx(0−) ·xη(x) if x<0,

wx(0+) ·xη(x) if x>0,
(3.2)

v3=w−v1−v2. (3.3)

The right-hand side of Equation (2.21) can be expressed as the sum of the following
terms:

A
.
=H[ϕ], B

.
=ϕϕx, C

.
=H[v2+v3], D

.
=H[v1]−

(
w− u−+u+

2

)
ϕx. (3.4)

The goal of this section is to provide a priori bounds of the size of these source terms
and on their first and second derivatives.

Lemma 3.1. There exist constants K0,K1 such that the following holds. For any
δ∈ ]0, 1/2] and any w∈H2(R\{0}), the source terms in (3.4) satisfy

‖A‖H2(R\[−δ,δ])+‖B‖H2(R\[−δ,δ])≤K0 ·δ−2/3, (3.5)

‖C‖H2(R\[−δ,δ])+‖D‖H2(R\[−δ,δ]) ≤ K1δ
−2/3 ·‖w‖H2(R\{0}). (3.6)

Proof.
(1) We begin by observing that the function ϕ is continuous with compact support,

smooth outside the origin. Therefore, the Hilbert transform A=H[ϕ] is smooth outside
the origin. As |x|→∞, one has

A(x)=O(1) ·x−1, Ax(x)=O(1) ·x−2, Axx(x)=O(1) ·x−3. (3.7)

In addition, as x→0, we claim that

A(x)=O(1) ·x ln2 |x|, Ax(x)=O(1) · ln2 |x|, Axx(x)=O(1) · ln |x|
x

. (3.8)
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Indeed, to fix the ideas, let 0<x<1/2. By Equation (2.11), we have

π ·H[ϕ](x)=

∫ 2

−2

ϕ′(y) ln |x−y|dy= I1+I2+I3, (3.9)

where

I1
.
=

(∫ −1

−2

+

∫ 2

1

)
ϕ′(y) ln |x−y|dy=O(1) ·x, (3.10)

π

2
I2

.
=

∫ 0

−1

− ln |x−y|dy+
∫ 1

0

ln |x−y|dy=
(∫ x

−x

−
∫ 1+x

1−x

)
ln |y|dy=O(1) ·x lnx, (3.11)

and, moreover,

π

2
I3

.
=

∫ 1

0

ln |y| ln |x−y|dy+
∫ 0

−1

− ln |y| ln |x−y|dy

=

(∫ x/2

0

+

∫ x

x/2

+

∫ 0

x−1

−
∫ 0

−1

)
ln |y| ln |x−y|dy

=

(∫ x/2

0

+

∫ x

x/2

)
ln |y| ln |x−y|dy−

∫ x

0

ln |y−1| ln |x−y+1|dy
.
= I31+I32+I33. (3.12)

We now have

|I31| ≤ ln
∣∣∣x
2

∣∣∣ ·∫ x/2

0

ln |y|dy=O(1) ·x ln2 |x|,

|I32| ≤ ln
∣∣∣x
2

∣∣∣ ·∫ x

x/2

ln |x−y|dy=O(1) ·x ln2 |x|,

|I33| ≤
∫ x

0

ln |1−x| ln |1+x||dy=O(1) ·x3.

(3.13)

Hence, H[ϕ]=O(1) ·x ln2 |x|. This yields the first estimate in Equation (3.8).
Next, we estimate the derivative π∂xH[ϕ]=∂xI1+∂xI2+∂xI3. The term |∂xI1| is

uniformly bounded, while

π

2
∂xI2 =

∫ 2x

0

1

x−y
dy+

∫ 1

2x

1

x−y
dy−

∫ 0

−1

1

x−y
dy=O(1) · ln |x|. (3.14)

Differentiating I3 with respect to x, we obtain

π

2
∂xI3=

(∫ −x/2

−1

+

∫ 0

−x/2

)
− ln |y|
x−y

dy+

(∫ x/2

0

+

∫ 1

3x/2

)
ln |y|
x−y

dy

+ lim
ε→0

(∫ x−ε

x/2

+

∫ 3x/2

x+ε

)
lny

x−y
dy. (3.15)
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Assuming 0<x<1/2, we obtain∫ −x/2

−1

− ln |y|
x−y

dy≤
∫ x/2

−1

− ln |y|
|y| dy=O(1) · ln2 |x|,

∫ 0

−x/2

− ln |y|
x−y

dy≤
∫ 0

−x/2

− ln |y|
x

dy=O(1) · ln |x|,

∫ x/2

0

ln |y|
x−y

dy≤
∫ x/2

0

ln |y|
x/2

dy=O(1) · ln |x|,

∫ 1

3x/2

ln |y|
x−y

dy≤ ln
∣∣∣3x
2

∣∣∣ ∫ 1

3x/2

1

x−y
dy=O(1) · ln2 |x|.

The remaining term is estimated as(∫ x−ε

x/2

+

∫ 3x/2

x−ε

)
lny

x−y
dy=

(∫ x−ε

x/2

+

∫ 3x/2

x−ε

)
lny− lnx

x−y
dy≤ 2

x
(x−2ε)≤2.

Combining the previous estimates, we obtain ∂xH[ϕ](x)=O(1) · ln2 |x|. This gives the
second estimate in Equation (3.8).

Finally, we estimate the second derivative of the Hilbert transform ∂xxH[ϕ]=
3∑

i=1

∂xx(Ii) . By Equations (3.10) and (3.14), we obtain

∂xxI1=O(1),

π

2
∂xxI2 =−∫ 1

2x
1

(x−y)2 dy+
∫ 0

−1
1

(x−y)2 dy=O(1) · ln|x|x . (3.16)

π

2
∂xxI3=

(∫ −x/2

−1

+

∫ 0

−x/2

)
ln |y|

(x−y)2
dy−

(∫ x/2

0

+

∫ 1

3x/2

)
ln |y|

(x−y)2
dy

+
ln
∣∣x/2∣∣
x

+
3ln

∣∣3x/2∣∣
x

+∂x

(∫ 3x/2

x/2

ln |y|
x−y

dy

)
. (3.17)

Assuming 0<x<1/2, we obtain

∣∣∣∫ −x/2

−1

ln |y|
(x−y)2

dy
∣∣∣≤ ln

∣∣∣x
2

∣∣∣∫ x/2

−1

1

(x−y)2
dy=O(1) · ln |x|

x
,

∣∣∣∫ 0

−x/2

ln |y|
(x−y)2

dy
∣∣∣≤∫ 0

−x/2

− ln |y|
x2

dy=O(1) · ln |x|
x

,

∣∣∣∫ x/2

0

ln |y|
(x−y)2

dy
∣∣∣≤∫ x/2

0

ln |y|
(x/2)2

dy=O(1) · ln |x|
x

,

∣∣∣∫ 1

3x/2

ln |y|
(x−y)2

dy
∣∣∣≤ ln

∣∣∣3x
2

∣∣∣ ∫ 1

3x/2

1

(x−y)2
dy=O(1) · ln |x|

x
.

(3.18)



A. BRESSAN AND T. ZHANG 173

The remaining term is estimated by

∂x

(∫ 3x/2

x/2

ln |y|
x−y

)
dy=∂x

(∫ x/2

−x/2

ln |x−y|
y

dy

)

=

∫ x/2

−x/2

1

y(x−y)
dy+

ln |x/2|
x

− ln |3x/2|
x

, (3.19)

where∣∣∣∣∣
∫ x/2

−x/2

1

y(x−y)
dy

∣∣∣∣∣=
∣∣∣∣∣
∫ x/2

−x/2

1

y

( 1

x−y
− 1

x

)
dy

∣∣∣∣∣=
∣∣∣∣∣
∫ x/2

−x/2

1

x(x−y)
dy

∣∣∣∣∣≤ 2

x
. (3.20)

Therefore, by Equations (3.16) and (3.18)–(3.20), we have ∂xxH[ϕ](x)=O(1) · ln |x|
x

.

(2) The function B=ϕϕx is smooth outside the origin and vanishes for |x|≥2. As
x→0, the following estimates are straightforward:

B(x)=O(1) · |x| ln2 |x|, Bx(x)=O(1) · ln2 |x|, Bxx(x)=O(1) · ln |x||x| . (3.21)

(3) Next, we observe that v3∈H2(R). Moreover, there exists a constant Cη such
that

‖v3‖H2(R)≤Cη ·‖w‖H2(R\{0}).

Clearly, the Hilbert transform H[v3] satisfies the same bounds. Hence,∥∥H[v3]
∥∥
H2(R)

=O(1) ·‖w‖H2(R\{0}). (3.22)

We observe that v2 is Lipschitz continuous, has compact support, and is continu-
ously differentiable outside the origin. Since v2 has better regularity properties than ϕ,
the same arguments used to estimate the Hilbert transform of ϕ also apply to H[v2].
More precisely, as in Equation (3.7), for |x|→∞, we have

H[v2](x)=O(1) ·x−1, H[v2]x(x)=O(1) ·x−2, H[v2]xx(x)=O(1) ·x−3. (3.23)

As in (3.8), for x→0 we have

H[v2](x)=O(1) ·x ln2 |x|, H[v2]x(x)=O(1) · ln2 |x|,

H[v2]xx(x)=O(1) · ln|x|x .

(3.24)

The only difference is that in Equations (3.23)–(3.24) by O(1) we now denote a quantity
such that

|O(1)|≤C ·‖w‖H2(R\{0}), (3.25)

for some constant C independent of w.

(4) Finally, observing that the the function v1 in Equation (3.2) has compact sup-
port, for |x|→∞, we have the bounds

D(x)=H[v1](x)=O(1) ·x−1 Dx(x)=O(1) ·x−2, Dxx(x)=O(1) ·x−3. (3.26)
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On the other hand, for x→0, we claim that

D(x)=O(1), Dx(x)=O(1) · ln |x|, Dxx(x)=O(1) · |x|−1, (3.27)

where O(1) is a quantity satisfying Equation (3.25). Indeed, without loss of generality,
we can assume 0<x<1/2. Recalling the construction of w and ϕ, we have

(
w− u−+u+

2

)
ϕx=

(u+−u−)ln |x|
π

+O(1). (3.28)

The Hilbert transform of v1 is computed by

πH[v1]=

∫ +∞

−∞

v1(y)

x−y
dy

=

(∫ −1

−2

+

∫ 2

1

)
v1(y)

x−y
dy+

∫ 0

−1

u−

x−y
dy+

(∫ x/2

0

+

∫ 1

3x/2

)
u+

x−y
dy+

∫ 3x/2

x/2

u+

x−y
dy.

The first term on the right-hand side is bounded and the last term vanishes, in the
principal value sense. The second term is computed by

∫ 0

−1

u−

x−y
dy=u−(− ln |x|+ln |x+1|)=−u− ln |x|+O(1) · |x|,

while the remaining integrals are estimated by(∫ x/2

0

+

∫ 1

3x/2

)
u+

x−y
dy=u+(ln |x|− ln |x−1|)=u+ ln |x|+O(1) · |x|.

Combining the previous estimates, we obtain

H[v1]=
(u+−u−)ln |x|

π
+O(1). (3.29)

Next, we estimate the derivative Dx(x). We have

∂x

(
w− u++u−

2

)
·ϕx=O(1) · ln |x|,

(
w− u++u−

2

)
ϕxx=

u+−u−

πx
+O(1). (3.30)

To estimate the derivative of H[v1], we write

π ·∂xH[v1]=

(∫ −1

−2

+

∫ 2

1

) −v1(y)
(x−y)2

dy−
∫ 0

−1

u−

(x−y)2
dy

+∂x

(∫ x/2

0

+

∫ 1

3x/2

)
v1(y)

x−y
dy+∂x

∫ 3x/2

x/2

v1(y)

x−y
dy. (3.31)

The first term on the right-hand side of Equation (3.31) is uniformly bounded. The
second term is estimated by

−
∫ 0

−1

u−

(x−y)2
dy =− u−

x
+O(1).
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Furthermore, we have

∂x

(∫ x/2

0

+

∫ 1

3x/2

)
v1(y)

x−y
dy=

(∫ x/2

0

+

∫ 1

3x/2

)
−v1(y)
(x−y)2

dy+
4u+

x

=
−3u+

x
+O(1)+

4u+

x
=

u+

x
+O(1). (3.32)

Lastly, since v1(x)=u+ for x∈ ]0,1], we have

∂x

∫ 3x/2

x/2

v1(y)

x−y
dy=∂x

∫ x/2

−x/2

u+

y
dy=0. (3.33)

Combining the previous estimates, we thus obtain

∂xH[v1](x)=
u+−u−

πx
+O(1).

Together with Equation (3.30), as x→0, this yields the asymptotic estimate

Dx(x)=H[v1]x−
[(

w− u−+u+

2

)
ϕx

]
x

=O(1) · ln |x|. (3.34)

The second derivative Dxx is estimated in a similar way. Indeed, by Equations
(3.1)–(3.3) and (3.30), we have

∂xx

(
w− u−+u+

2
ϕx

)
=∂xx

(
w− u++u−

2

)
ϕx+∂x

(
w− u++u−

2

)
ϕxx

+∂x

(
w− u−+u+

2
ϕx

)
ϕxx+

(
w− u−+u+

2
ϕx

)
ϕxxx

=− u+−u−

πx2
+O(1) · 1

x
. (3.35)

On the other hand, differentiating Equation (3.31) and recalling Equations (3.32) and
(3.33), we have

π ·∂xxH[v1]=

(∫ −1

−2

+

∫ 2

1

)
2v1(y)

(x−y)3
dy+

∫ 0

−1

2u−

(x−y)3
dy

+∂x

(∫ x/2

0

+

∫ 1

3x/2

)
−v1(y)
(x−y)2

dy− 4u+

x2
+∂xx

∫ x/2

−x/2

u+

y
dy. (3.36)

As before, the first term is uniformly bounded while the last term is zero. The second
term is computed by ∫ 0

−1

2u−

(x−y)3
dy=

u−

x2
+O(1). (3.37)

The third term is estimated by

∂x

(∫ x/2

0

+

∫ 1

3x/2

)
−v1(y)
(x−y)2

dy=

(∫ x/2

0

+

∫ 1

3x/2

)
2v1(y)

(x−y)3
dy− 2u+

x2
+

6u+

x2
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=
3u+

x2
+O(1). (3.38)

Combining the above estimates (3.35)–(3.38), we obtain

Dxx=H[v1]xx−
[(

w− u−+u+

2

)
ϕx

]
xx

=
1

π

(
u−

x2
+

3u+

x2
− 4u+

x2

)
+

u+−u−

πx2
+O(1) · 1

x
=O(1) · 1

x
. (3.39)

(5) By the estimates (3.8) and (3.21), it follows

‖A+B‖H2(R\[−δ,δ])=O(1) ·
(∫ 1

δ

ln2 |x|
x2

dx

)1/2

=O(1) ·
(∫ 1

δ

dx

x7/3

)1/2

=O(1) ·(δ−4/3)1/2=O(1) ·δ−2/3. (3.40)

Similarly, the estimates (3.6) follow from Equation (3.22) and Equations (3.26)–(3.27).

4. Construction of approximate solutions
In this section, given an initial datum w̄∈D, we prove that all the approximate

solutions wn at (2.20)–(2.21) are well defined, on a suitably small time interval [0,T ].
As in Equation (2.6), we define{

ū− .
= w̄(0−),

ū+ .
= w̄(0+),

{
u−
n (t)

.
=wn(t,0−),

u+
n (t)

.
=wn(t,0+).

To fix the ideas, assume that the initial data w̄∈H2(R\{0}) satisfies

ū−− ū+=6δ0, ‖w̄‖H2(R\{0})=
M0

2
, (4.1)

for some (possibly large) constants δ0,M0>0.
Choosing a time interval [0,T ] sufficiently small, we claim that, for each n≥1, the

approximate solution wn satisfies the a priori bounds{ |u−
n (t)− ū−| ≤ δ0,

|u+
n (t)− ū+| ≤ δ0,

‖wn(t)‖H2(R\{0})≤M0, for all t∈ [0,T ]. (4.2)

This will be proved by induction. For n=1 these bounds are a trivial consequence of the
definition (2.20). In the following, we assume that the function wn=wn(t,x) satisfies
Equation (4.2), and we show that the same bounds are satisfied by wn+1. We recall that
wn+1 is defined as the solution to the linear Equation (2.21), with initial data (2.15).

A sequence of approximate solutions w(k) to the linear equation (2.21) will be
constructed by induction on k∈{1,2, . . .} For notational convenience, we introduce the
function

a(t,x)
.
=ϕ(x)+wn(t,x)− u−

n (t)+u+
n (t)

2
. (4.3)

As in Equation (2.17), call t �→x(t;t0,x0) the solution to the Cauchy problem

ẋ
.
=a(t,x(t)), x(t0)=x0. (4.4)
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We begin by defining

w(1)(t,x)
.
= w̄(x). (4.5)

By induction, if w(k) has been constructed, we then set

w(k+1)(t0,x0)= w̄(x(0;t0,x0))+

∫ t0

0

F (k)(t,x(t; t0,x0))dt, (4.6)

where F (k) is defined as in Equation (2.19), with w replaced by w(k) and u±(t)=w(t,0±)
replaced by w(k)(t,0±), respectively.

Assuming that wn satisfies Equation (4.2), we will show that every approximation
w(k) to the linear Cauchy problem (2.21), (2.15) satisfies the same bounds, on a suffi-
ciently small time interval [0,T ]. Our first result deals with the solution to the linear
transport Equation (4.7). We show that, within a sufficiently short time interval, the
H2 norm of the solution can be amplified at most by a factor of 3/2.

Lemma 4.1. Let wn=wn(t,x) be a function that satisfies the bounds (4.2) for all
t>0, and define a=a(t,x) as in Equation (4.3). Then there exists T >0 small enough,
depending only on δ0,M0, that the following holds. For any τ ∈ [0,T ] and any solution
w of the linear equation

wt+a(t,x)wx=0 (4.7)

with initial datum

w(0)= w̄ ∈ H2
(
R\ [−δ0τ, δ0τ ]

)
,

one has

‖w(τ)‖H2(R\{0})≤ 3

2
‖w̄‖

H2
(
R\[−δ0τ,δ0τ ]

). (4.8)

Proof.
(1) Equation (4.7) can be solved by the method of characteristics, separately on the

regions where x<0 and x>0. We observe that characteristics move toward the origin
from both sides. In this first step, we prove that all characteristics starting at time t=0
inside the interval [−δ0τ, δ0τ ] hit the origin before time τ (see Figure 4.1). Hence, the
profile w(τ, ·) does not depend on the values of w̄ on this interval.

We claim that there exists δ1>0 such that{
a(t,x)≤−δ0 for all x∈ ]0,δ1],
a(t,x)≥ δ0 for all x∈ [−δ1, 0[ .

(4.9)

Indeed, Equations (4.1) and (4.2) imply

a(t,0+)=
u+
n (t)−u−

n (t)

2
≤−2δ0. (4.10)

Moreover, for x>0, we have

∣∣a(t,x)−a(t,0+)
∣∣≤ 2

π

∣∣x lnx∣∣+∫ x

0

|wn,x(t,y)|dy≤C0 |x|1/2, (4.11)
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for some constant C0 depending only on the norm ‖wn(t, ·)‖H2 , hence only on M0 in

Equation (4.2). Choosing δ1>0 small enough such that C0δ
1/2
1 <δ0, from Equations

(4.10)–(4.11), we obtain the first inequality in Equation (4.9). The second inequality is
proved in the same way. In addition, by choosing the time interval [0,T ] small enough,
we can also assume

δ0T ≤ δ1. (4.12)

(2) Multiplying Equation (4.7) by 2w, one finds

(w2)t+(aw2)x=axw
2. (4.13)

Integrating Equation (4.13) over the domain

Ω
.
=

{
(t,x); |x|>δ0(τ− t), t∈ [0,τ ]

}
(4.14)

shown in Figure 4.1, we obtain∫ ∞

−∞
w2(τ,x)dx≤

∫
|x|>δ0τ

w̄2dx+

∫ τ

0

∫
|x|>δ0(τ−t)

axw
2dxdt. (4.15)

Indeed, by Equations (4.9) and (4.12), for every τ ∈ ]0,T [ , the flow points outward along
the boundary of the domain Ω. By Equation (4.3), the derivative ax satisfies a bound
of the form

|ax(t,x)|≤Ca

(
1+ | ln |x||), (4.16)

where Ca is a constant depending only on the norm ‖wn‖H2 in Equatino (4.2). Taking
the supremum of |ax(t,x)| over the set

Ωt
.
={x ; |x|>δ0(τ− t)} (4.17)

from Equation (4.15), we thus obtain

‖w(τ)‖2L2(R)≤‖w̄‖2L2(Ω0)
+

∫ τ

0

Ca

(
1+ | ln(δ0(τ− t))|

)
‖w(t)‖2L2(Ωt)

dt. (4.18)

By Gronwall’s lemma, this yields a bound on ‖w(τ)‖2L2 .

(3) Next, differentiating Equation (4.7) with respect to x and multiplying by 2wx

we obtain

wxt+awxx=−axwx, wx(0, ·)= w̄x. (4.19)

(w2
x)t+(aw2

x)x=−axw2
x. (4.20)

Integrating Equation (4.20) over the domain Ω in Equation (4.14) and using the bound
(4.16) by similar computations as before, we now obtain

‖wx(τ)‖2L2(R)≤‖w̄x‖2L2(Ω0)
+

∫ τ

0

Ca

(
1+ | ln(δ0(τ− t))|

)
‖wx(t)‖2L2(Ωt)

dt. (4.21)

By Gronwall’s lemma, this yields a bound on ‖wx(τ)‖2L2 .
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x
1

T

δ0 δ

Ω

0

τ

τ

Fig. 4.1. The norm ‖w(τ)‖H2(R\{0}) is estimated by using the balance laws for w2,w2
x,w

2
xx on

the shaded domain Ω. By Equation (4.9), along the boundary where |x|= δ0(τ− t), all characteristics
move outward. Hence, no inward flux is present.

(4) Differentiating Equation (4.19) once again and multiplying all terms by 2wxx,
we find

wxxt+awxxx=−2axwxx−axxwx, wxx(0, ·)= w̄xx, (4.22)

(
w2

xx

)
t
+
(
aw2

xx

)
x
=−3axw2

xx−2axxwxwxx. (4.23)

Integrating Equation (4.23) over the domain Ω in Equation (4.14), we obtain∫ ∞

−∞
w2

xx(τ,x)dx

≤
∫
|x|>δτ

w̄2
xx(y)dy+

∫ τ

0

∫
|x|>δ0(τ−t)

(
−3axw

2
xx−2axxwxwxx

)
dxdt. (4.24)

To estimate the right-hand side of Equation (4.24), we observe that, for |x| small,

|ax|= |ϕx+wn,x|=O(1) ·
(
| ln |x||+‖wn‖H2

)
,

|axx|= |ϕxx+wn,xx|=O(1) · 1
|x| + |wn,xx|.

(4.25)

Recalling that ϕ(x)=0 for |x|≥2, we have the bounds

E
.
=|3axw2

xx+2axxwxwxx|

≤O(1) ·(1+ | ln |x||)w2
xx+O(1) ·

(
1

|x|+ |wn,xx|
)
‖w‖H2wxx, (4.26)

∫ 2

δ0(τ−t)

|wxx(t,x)|
x

dx≤
(∫ 2

δ0(t−s)

1

x2

)1/2

‖wxx‖L2(Ωt)
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≤
(

1

δ0(t−s)

)1/2

‖wxx‖L2(Ωt), (4.27)

∫ τ

0

∫
|x|>δ0(τ−t)

E(t,x)dxdt≤O(1) ·
∫ τ

0

(
1+ | lnδ0(τ− t)|) ·‖w(t)‖2H2(Ωt)

dt

+O(1) ·
∫ τ

0

[δ0(τ− t)]−1/2 ·‖w(t)‖2H2(Ωt)
dt

+O(1) ·
∫ τ

0

‖wn(t)‖H2 ·‖w(t)‖2H2(Ωt)
dt. (4.28)

(5) Calling Z(t)
.
=‖w(t)‖H2(Ωt), by the estimates (4.18), (4.21), and (4.28), we obtain

an integral inequality of the form

Z2(τ)≤Z2(0)+C1 ·
∫ τ

0

(
1+ | lnδ0(τ− t)|+[δ0(τ− t)]−1/2+M0

)
Z2(t)dt. (4.29)

By Gronwall’s lemma, if τ >0 is sufficiently small, this yields Z(τ)≤ 3
2Z(0), proving

Equation (4.8).

The above estimate can be easily extended to the linear, non-homogeneous problem

wt+a(t,x)wx=F (t,x), w(0,x)= w̄(x). (4.30)

Indeed, in the same setting as Lemma 2, using Equation (4.8) and Duhamel’s formula,
for τ ∈ [0,T ], we obtain

‖w(τ, ·)‖H2(R\{0}) ≤ 3

2
‖w̄‖

H2
(
R\[−δ0τ,δ0τ ]

)+ 3

2

∫ τ

0

‖F (t, ·)‖
H2

(
R\[−δ0(τ−t),δ0(τ−t)]

)dt.
(4.31)

Relying on Lemma 3.1 we now prove uniform H2 bounds on all approximations
w(k), on a suitably small time interval [0,T ].

Lemma 4.2. Let wn=wn(t,x) be a function that satisfies the bounds (4.2) for all
t>0, and define a=a(t,x) as in (4.3). Then there exists T >0 small enough, depending
only on δ0,M0 in Equation (4.1), so that the following holds. For every k≥1 and every
τ ∈ [0,T ], one has

‖w(k)(τ)‖H2(R\{0})≤M0, (4.32)

|w(k)(τ,0−)− ū−|≤ δ0, |w(k)(τ,0+)− ū+|≤ δ0. (4.33)

Proof.
(1) Recalling the constants K0,K1 in Lemma 3.1, choose T >0 small enough so

that ∫ T

0

(δ0s)
−2/3ds <

M0

6(K0+K1M0)
. (4.34)

(2) The estimate (4.32) trivially holds for w(1)(τ)
.
= w̄. Assuming that it holds for

w(k)(t), t∈ [0,T ], by Equation (4.31), for any τ ∈ [0,T ], we have the estimate

‖w(k+1)(τ)‖H2(R\{0})
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≤3

2
‖w̄‖H2(R\{0})+

3

2

∫ τ

0

‖A+B+C+D‖H2(R\[−δ0(τ−t),δ0(τ−t)])ds

≤3

4
M0+

3

2

∫ τ

0

K0[δ0(τ− t)]−2/3dt+
3

2

∫ τ

0

K1[δ0(τ− t)]−2/3‖w(k)(t)‖H2(R\{0})dt

≤3

4
M0+

3

2
(K0+K1M0)

∫ τ

0

(δ0s)
−2/3ds

<
3

4
M0+

3

2
(K0+K1M0) · M0

6(K0+K1M0)
=M0. (4.35)

By induction, this proves the bound (4.32).

(3) To prove the two estimates in Equation (4.33), we write

∣∣w(k+1)(τ,0+)− ū+
∣∣≤|w̄(x(0;τ,0+))− ū+|+τ · sup

t∈[0,τ ]

∥∥(A+B+C+D)(t)
∥∥
L∞ . (4.36)

The a priori bound on ‖w(k)(t, ·)‖H2(R\{0}) implies that the L∞ norm in Equation (4.36)
is uniformly bounded. By possibly choosing a smaller T >0, both terms on the right-
hand side of Equation (4.36) will be <δ0/2. This yields the second inequality in Equa-
tion (4.33). The first inequality is proved in the same way.

The next lemma shows that the sequence of approximations w(k) defined in Equa-
tions (4.5)–(4.6) converges to a solution to Equation (2.21).

Lemma 4.3. For some T >0 sufficiently small, the sequence of approximations
w(k)(t, ·) converges in H2(R\{0}) to a function w=w(t, ·). The convergence is uni-
form for t∈ [0,T ]. This limit function provides a solution to the initial value problem
(2.21) with initial data (2.15).

Proof.

(1) By the previous bounds, the difference between two approximations can be
estimated by

‖w(k+1)(τ)−w(k)(τ)‖H2(R\{0})

≤3

2

∫ τ

0

[δ0(τ− t)]−2/3K1‖w(k)(t)−w(k−1)(t)‖H2(R\[−δ0(τ−t),δ0(τ−t)]dt. (4.37)

If T >0 is small enough, so that

3

2

∫ T

0

(δ0s)
−2/3K1ds ≤ 1

2
,

then, for every τ ∈ [0,T ], the sequence w(k)(τ, ·) is Cauchy in H2(R\{0}), hence it
converges to a unique limit function w(τ, ·).

(2) It remains to prove that that w provides a solution to the problem (2.21) with
initial data (2.15), in the sense that the integral identities (2.18) are satisfied for all
t0∈ [0,T ] and x0 �=0.

This is clear because, for every ε>0 as k→∞, the source terms on the right-hand
side of Equation (2.21) converge uniformly on the set {(t,x); t∈ [0,T ], |x|≥ ε}.
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5. Convergence of the approximate solutions
By the analysis in the previous section, the sequence of approximate solutions wn

of the problem (2.21), (2.15) is well defined, on a suitably small time interval [0,T ].
Moreover, the uniform bounds (4.2) hold.

To complete the proof of Theorem 2.1, it remains to show that the wn converge
to a limit function w, providing an entropic solution to the Cauchy problem (2.10),
(2.15). Towards this goal, we prove that, on a suitably small time interval [0,T ], the
sequence (wn)n≥1 constructed in Equation (2.21) is Cauchy with respect to the norm
of H1(R\{0}), hence it converges to a unique limit. This will be achieved in several
steps.

Proof.
(1) For a fixed n, consider the differences

{
W

.
= wn+1−wn,

Wn
.
=wn−wn−1,

{
U− .

=u−
n+1−u−

n ,

U−
n

.
=u−

n −u−
n−1,

{
U+ .

=u−
n+1−u+

n ,

U+
n

.
=u+

n −u+
n−1.

From Equation (2.21), we deduce

Wt+
(
ϕ+wn− u−

n −u+
n

2

)
Wx+

(
Wn− U−

n +U+
n

2

)
wn,x=H[W ]−

(
W − U−+U+

2

)
ϕx. (5.1)

Multiplying both sides by 2W , we obtain the balance law

(
W 2

)
t
+

[(
ϕ+wn− u−

n −u+
n

2

)
W 2

]
x

=(ϕ+wn)x W
2−

(
Wn− U−

n +U+
n

2

)
2Wwn,x+2H[W ] ·W −

(
W − U−+U+

2

)
2Wϕx.

(5.2)

Integrating over the domain Ω in Equation (4.14) and observing that ϕx(x)=O(1)
(
1+

| ln |x||), we obtain

1

2

∫
W 2(τ,x)dx

≤−
∫ τ

0

∫
|x|>δ0(τ−t)

{
(ϕ+wn)x ·W 2

−
(
Wn− U−

n +U+
n

2

)
2Wwn,x+2H[W ] ·W −

(
W − U−+U+

2

)
2Wϕx

}
dxdt

=O(1) ·
∫ τ

0

{∣∣ln(τ− t)
∣∣ ·‖W (s)‖2L2 +‖Wn(t)‖H1‖W (t)‖L2 +‖W (t)‖2L2

+
∣∣ln(τ− t)

∣∣ ·‖W (t)‖H1‖W (t)‖L2

}
dt

≤C3 ·
∫ τ

0

‖W (t)‖L2 ·
(
‖Wn(t)‖H1 +

∣∣ln(τ− t)
∣∣‖W (t)‖H1

)
dt, (5.3)

for some constant C3.

(2) Next, differentiating Equation (5.1) with respect to x, we obtain

Wxt+

(
ϕ+wn− u−

n −u+
n

2

)
Wxx
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+(ϕx+wn,x)Wx+

(
Wn− U−

n +U+
n

2

)
wn,xx+Wn,xwn,x

=H[Wx]−
(
W − U−+U+

2

)
ϕxx−ϕxWx. (5.4)

Multiplying both sides by 2Wx, we obtain the balance law

(W 2
x )t+

[(
ϕ+wn− u−

n −u+
n

2

)
W 2

x

]
x

=−(ϕx+wn,x)W
2
x −

(
Wn− U−

n +U+
n

2

)
2Wxwn,xx

−2wn,xWn,xWx+2H[Wx]Wx−
(
W − U−+U+

2

)
2Wxϕxx−2ϕxW

2
x . (5.5)

By the definition (2.4) one has

‖ϕxx‖L2(R\[−δ0(τ−t),δ0(τ−t)])=O(1) ·(τ− t)−1/2. (5.6)

Integrating Equation (5.5) over the domain Ω in Equation (4.14), we obtain∫ ∞

0

W 2
x (t,x)dx=O(1) ·

∫ τ

0

{∣∣ln(τ− t)
∣∣‖Wx(t)‖2L2 +‖Wn(t)‖H1 ‖Wx(t)‖L2

+‖W (t)‖H1‖Wx(t)‖L2 ·(τ− t)−1/2

}
dt. (5.7)

(3) Calling Z(t)
.
=‖W (t)‖H1(R\{0}), from Equations (5.3) and (5.7) we obtain an

integral inequality of the form

Z2(τ)≤C4

∫ τ

0

Z(t) ·
(
‖Wn(t)‖H1 +Z(t)

)
·(τ− t)−1/2dt, (5.8)

for some constant C4.
We now set

ε0
.
= sup

t∈[0,T ]

‖Wn(t)‖H1(R\{0}).

Since Z(0)=0, calling τ∗ the first time where Z≥ε0/2 one has

ε0
2
≤C4

∫ τ∗

0

ε0
2
·
(
ε0+

ε0
2

)
(τ∗− t)−1/2dt=

3

2
C4ε

2
0τ

∗.

Hence, τ∗≥ (3C4)
−1. Choosing 0<T < (3C4)

−1 , we obtain

Z(t)≤ ε0
2

for all t∈ [0,T ].

This establishes the desired contraction property:

sup
t∈[0,T ]

‖wn+1(t)−wn(t)‖H1(R\{0})≤ 1

2
· sup
t∈[0,T ]

‖wn(t)−wn−1(t)‖H1(R\{0}). (5.9)

(4) By Equation (5.9), for every t∈ [0,T ], the sequence of approximations wn(t, ·)
is Cauchy in the space H1(R\{0}), hence it converges to a unique limit w(t, ·).
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It remains to check that this limit function w is an entropic solution, i.e. it satisfies
the integral equation (2.18). But this is clear because, for every ε>0, the sequence of
functions

Fn
.
=H[ϕ]−ϕϕx+

(
H[wn]−

(
wn− u−

n +u+
n

2

)
ϕx

)
(5.10)

converges to the corresponding function F in Equation (2.19), uniformly for t∈ [0,T ]
and |x|≥ ε.

(5) Finally, to prove uniqueness, assume that w,w̃ are two entropic solutions. Con-
sider the differences

W
.
=w− w̃,

{
U− .

= u−− ũ−,
U+ .

= u+− ũ+,

and call Z(t)
.
=‖W (t)‖H1(R\{0}). Since Z(0)=0, the same arguments used to prove

Equation (5.8) now yield

Z2(τ)≤C4

∫ τ

0

Z(t) ·[Z(t)+Z(t)
] ·(τ− t)−1/2dt.

For τ ∈ [0,T ] sufficiently small, we thus obtain Z(τ)=0. This completes the proof of
Theorem 2.1.
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