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LARGE DEVIATIONS FOR
TWO-SCALE CHEMICAL KINETIC PROCESSES∗

TIEJUN LI† AND FENG LIN‡

Abstract. We formulate the large deviations for a class of two scale chemical kinetic processes
motivated from biological applications. The result is successfully applied to treat a genetic switching
model with positive feedbacks. The corresponding Hamiltonian is convex with respect to the momentum
variable as a byproduct of the large deviation theory. This property ensures its superiority in the rare
event simulations compared to the result obtained by formal WKB asymptotics. The result is of general
interest in understanding the large deviations for multiscale problems.
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1. Introduction
We will investigate the large deviations for a class of two-scale chemical kinetic

processes with the slow variable zn∈Nd/n satisfying

zn(t)=zn(0)+

S∑
i=1

1

n
Pi

(
n

∫ t

0

λi(zn(s),ξn(s))ds

)
ui (1.1)

subject to some fixed initial state zn(0)=z0, where {Pi(t)}i=1,...,S are independent
uni-rate Poisson processes, λi∈R+ is called the propensity function which characterizes
the reaction rate of the ith reaction, and ui∈Zd is called the state change vector.
The number n∈N corresponds to the system volume; thus, zn has the meaning of
concentration (number of molecules per volume) for the considered kinetic system. The
fast variable ξn∈ZD :={1,2, . . . ,D} is a simple jump process with the time-dependent
rate nqij(zn(t)) from state i to j at time t. With this mathematical setup, the processes
zn(t) and ξn(t) are fully coupled to each other and the infinitesimal generator Ln of
this system has the form

Lnh(z,i)=n

S∑
l=1

λl(z,i)[h(z+ul/n,i)−h(z,i)]+n

D∑
j=1
j �=i

qij(z)[h(z,j)−h(z,i)], (1.2)

where z∈Nd/n, i∈ZD, and h is any compactly supported smooth function of z for each
i. For more about the notations and the backgrounds on the chemical kinetic processes,
the readers may be referred to [11,13].

The above problem is motivated by our recent rare event study in the biological
applications [1,19,21]. In a cell, the reactions underlying gene expression usually involve
a low copy number of molecules, such as DNA, mRNAs, and transcription factors,
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so the stochasticity in the gene regulation process is inevitable even under constant
environmental conditions [10]. When the number of the molecules for all species goes to
infinity and the law of mass action holds for the propensity functions, one gets the well-
known large volume limit or Kurtz’s limit, which gives the deterministic reaction rate
equations for the concentration of the species [17]. The convergence result can be further
refined to the large deviation type [26]. Recently, the following typical biological model
with positive feedbacks is utilized to investigate the robustness of the genetic switching
system [1, 4, 19, 21]. This problem is a special case of our formulation shown at the

DNAin ∅ ∅

DNAact mRNA(Z1) Protein(Z2)

F (Z2)G(Z2) γ 1
a γb

beginning of this paper for d=2, D=2, and S=4. Denote by n the system size and
z=(z1,z2)=(Z1,Z2)/n the slow variables after taking large volume scaling, where Z1

and Z2 are the number of mRNA and protein molecules, respectively. Since there is only
one molecule of DNA in an active (DNAact) or an inactive state (DNAin), for better
use of notation, we take the fast variable ξ∈{0,1} instead of {1,2} to represent that
the DNA is in an inactive (ξ=0) or an active state (ξ=1), respectively. By taking into
account the scaling of parameters

a∼nb−1, F (Z2),G(Z2)∼O(n) if Z1,Z2∼O(n),

we further assume

F (Z2)=nf(z2), G(Z2)=ng(z2). (1.3)

This assumption holds when we consider Hill-function type jump rates with Hill co-
efficient 2 and large volume scaling for equilibrium constants [1]. Thus, we have the
rescaled jump rates for DNA

q01(z)=f(z2), q10(z)=g(z2), (1.4)

and the following list of reactions associated with slow variables as shown in Table 1.1.

Reaction scheme Propensity function State change vector
DNAact→mRNA λ1(z1,z2,ξ)= b−1ξ u1=(1,0)
mRNA→∅ λ2(z1,z2,ξ)=γz1 u2=(−1,0)
mRNA→Protein λ3(z1,z2,ξ)=γbz1 u3=(0,1)
Protein→∅ λ4(z1,z2,ξ)= z2 u4=(0,−1)

Table 1.1. Reaction schemes and parameters

The infinitesimal generator of this process has the form

Lnh(z,i)=n

4∑
l=1

λl(z,i)
(
h(z+n−1ul,i)−h(z,i)

)
+n

(
f(z2)[h(z,1)−h(z,0)]+g(z2)[h(z,0)−h(z,1)]

)
(1.5)



T. LI AND F. LIN 125

for i=0,1. One can obtain a mean field ODE system as

dz1
dt

=
b−1f(z2)

f(z2)+g(z2)
−γz1,

dz2
dt

=γbz1−z2 (1.6)

when n goes to infinity through the perturbation analysis for the infinitesimal generator
[18, 21, 23]. With suitable choice of functions F (Z2) and G(Z2), the final mean field
ODEs have two stable stationary points, and there are noise induced transitions between
these two states when n is finite. To understand the robustness of the genetic switching,
the biophysicists employed the WKB ansatz to the stationary distribution [1]

P (Z1,Z2)∼ exp[−nS(z1,z2)] (1.7)

and obtained a steady-state Hamilton–Jacobi equation H(z1,z2,∇S)=0. Mathemati-
cally, the function S resembles the role of the quasi-potential of the stochastic dynamical
system [12, 22, 32], but it is not clear whether it is the case in the current stage. An-
other related physics approach to studying a similar switching system is to utilize the
spin-boson path integral formalism in quantum field theory and then take the semi-
classical approximation and adiabatic limit [19, 31]. Both approaches are difficult to
be rationalized in mathematical sense. So how are we to formulate this problem in a
mathematically rigorous way? To resolve this issue, we have to answer the following
two fundamental questions.

(1) Question 1. What is the large deviation principle (LDP) associated with the
system (1.2)? Presumably, we can obtain the Lagrangian from the large devi-
ation analysis and then get the Hamiltonian H through the Legendre–Fenchel
transform.

(2) Question 2. What is the relation between the rigorously obtained Hamiltonian
H in the above question and the Hamiltonian obtained via WKB asymptotics?

The aim of this paper is to make an exploration on these two questions. To do
this, we first note that the large volume limit no longer holds in the current example.
Although the mRNA and protein copy numbers scale as V , we have only one DNA,
which switches between the active and inactive states. This fact excludes the direct
applicability of the LDP results in [26]. However, the fast switching between the two
states of the DNA ensures the averaging technique still valid as shown in Equation (1.6)
by taking the quasi-equilibrium limit [8, 16, 21]. We will show that the LDP analysis is
also feasible by incorporating the Donsker-Varadhan type large deviations. Indeed, a
similar situation has been nicely discussed by Liptser [20] and Veretennikov [29,30] for
two-scale diffusions like

dXn(t)=A(Xn(t),ξn(t))dt+
1√
n
B(Xn(t),ξn(t))dWt, (1.8)

dξn(t)=nb(ξn(t))dt+
√
nσ(ξn(t))dVt. (1.9)

The main idea of this paper is to generalize the result in [20] to our two-scale chemical
kinetic processes. As we will see, although the framework is similar, we have to deal
with the technicalities brought by the jump processes and the full coupling between the
fast and slow variables (ξn is independent of Xn in Equation (1.9)).

To state the main results of this paper, let us introduce the occupation measure νn
on ([0,T ]×ZD,B([0,T ])⊗B(ZD) corresponding to ξn

νn(Δ×Γ)=

∫ T

0

1(t∈Δ,ξn∈Γ)dt, Δ∈B([0,T ]),Γ∈B(ZD), (1.10)
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where T is any fixed positive real number. Denote by Dd[0,T ] the space of d-dimensional
vector functions on [0,T ] whose components are right-continuous with left-hand limits,
ML[0,T ] of finite measures ν=ν(dt,i) on ([0,T ]×ZD,B([0,T ])⊗B(ZD)) which are ab-
solutely continuous with respect to dt and have Lebesgue time marginals, i.e. we have
ν(dt,i)=nν(t,i)dt, nν(t,i)≥0 and

∑D
i=1nν(t,i)=1. The νn we considered always be-

longs to ML[0,T ]. Take the metric ρ(2) on ML[0,T ] as the Lévy–Prohorov metric and
ρ(1) on Dd[0,T ] as the Skorohod metric defined as

ρ(1)(r, r̃)= inf
λ∈F

{
‖λ‖◦∨ sup

t∈[0,T ]

‖r(t)− r̃(λ(t))‖
}
, (1.11)

where ‖·‖ is the Euclidean norm in the corresponding space, F is the collection of
strictly increasing functions λ(t) such that λ(0)=0 and λ(T )=T , and

‖λ‖◦ := sup
0≤s<t≤T

∣∣∣∣log λ(t)−λ(s)

t−s

∣∣∣∣ .
Dd[0,T ] and ML[0,T ] are complete and separable spaces with ρ(1) and ρ(2), respectively
[2]. Our task is to establish the LDP for the pair (zn,νn) in metric space (Dd[0,T ]×
ML[0,T ],ρ

(1)×ρ(2)).
This paper is organized as follows. In Section 2, we present the main large devia-

tion theorem and give the rate functional of the whole system. By using the contraction
principle and the Legendre–Fenchel transform, we get the Hamiltonian related to the
slow variable zn. As a concrete application, we then study the genetic switching model
and compare the difference between the rigorously obtained Hamiltonian and that ob-
tained by WKB ansatz. In sections 3 and 4, we give the proof of the main theorem.
Due to the technicalities of handling the non-negativity constraint for r, we decompose
the proof procedure into two steps. In Section 3, we prove the LDT theorem by relaxing
the bounded domain condition to the whole space case. The upper-bound estimate is
standard in some sense. However, the proof of the lower bound is technical because of
the full coupling between the fast and slow variables. The resolution is based on the ap-
proximation and change-of-measure approach. The central idea is to make a piecewise
linear approximation to any given path and occupation measure (r,ν) by (y,π) at first
and then construct suitable new processes (z̄n, ν̄n) such that P− limn→∞ρ(1)(z̄n,y)=0
and P− limn→∞ρ(2)(ν̄n,π)=0. This turns out to be technical and one key part of the
whole paper. In Section 4, we strengthen the result to the half-space case. Some details
are left to Appendix A.

This paper should be considered as the companion of [19, 21] for studying the rare
events in genetic switching system, and it is of general interest to understand the large
deviations for multiscale problems [7, 8].

2. Main result and its application

2.1. Main theorem. We need the following technical assumptions for our main
result.
Assumption 2.1. Let W :=Rd

+. Assume the following regularity conditions for the
propensity functions and jump rates hold.

(1) (a) For each i∈{1,2, . . . ,S} and j∈ZD and for all z,x∈W , the Lipschitz con-
dition holds

|λi(z,j)−λi(x,j)|≤L‖z−x‖. (2.1)
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(b) For each i∈{1,2, . . . ,S},j∈ZD and for all z∈W ◦, λi(z,j)>0.

(c) For each x∈∂W and y∈C{uj |λj(x)>0}, we have x+sy∈W for some
s∈ (0,∞) , where C{uj} is the positive cone spanned by the vectors {uj} defined
as

C{uj} :=
{
v|there exist αj≥0 such that v=

∑
j
αjuj

}
. (2.2)

(2) For each i,j∈ZD, logqij(z) are bounded and Lipschitz continuous with respect
to z∈W .

These assumptions hold in our application example in Section 2.2.

Theorem 2.1. Under Assumption 2.1, the family (zn,νn) defined by Equations (1.1)
and (1.10) obeys the LDP in (Dd[0,T ]×ML[0,T ],ρ

(1)×ρ(2)) with a good rate functional
I(r,ν)= Is(r,ν)+If (r,ν), i.e.

(0) I(r,ν) values in [0,+∞], and its level sets are compact in (Dd[0,T ]×
ML[0,T ],ρ

(1)×ρ(2)),

(1) for every closed set F ∈Dd[0,T ]×ML[0,T ],

limsup
n→∞

1

n
logP((zn,νn)∈F )≤− inf

(r,ν)∈F
I(r,ν), (2.3)

(2) for every open set G∈Dd[0,T ]×ML[0,T ],

liminf
n→∞

1

n
logP((zn,νn)∈G)≥− inf

(r,ν)∈G
I(r,ν), (2.4)

where the rate functional for the slow variables

Is(r,ν)=

{∫ T

0
Ls(r(t), ṙ(t),nν(t, ·))dt, dr(t)= ṙ(t)dt,

∞, otherwise,
(2.5)

Ls(z,β,w)= sup
p∈Rd

(〈p,β〉−Hs(z,p,w)) , (2.6)

Hs(z,p,w)=

S∑
i=1

D∑
j=1

λi(z,j)wj

(
e〈p,ui〉−1

)
, (2.7)

and the rate functional for the fast variables

If (r,ν)=

∫ T

0

S(r(t),nν(t, ·))dt, (2.8)

S(z,w)= sup
σ∈RD

S(z,w,σ), (2.9)

S(z,w,σ)=−
D∑

i,j=1

wiqij(z)
(
e〈σ,eij〉−1

)
. (2.10)

Here, we take the notation ν(dt, ·)=nν(t, ·)dt; thus, nν(t, ·) is a probabilistic vector
(nν(t,1),nν(t,2), . . . ,nν(t,D)). w=(w1,w2, . . . ,wD), and 〈·, ·〉 is the inner product in
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the Euclidean space. eij =ei−ej and {ei}Di=1 are a canonical basis in Euclidean space
RD. We take the convention that r(t) is absolutely continuous with respect to time when
we use the notation dr(t)= ṙ(t)dt, and S is a function of (z,w) (or (z,w,σ)) when we
use S(z,w) (or S(z,w,σ)) by default.

The proof of Theorem 2.1 relies on first establishing a weaker statement based on
the following stronger assumption on the whole space.

Assumption 2.2. Regularity for the propensity functions and jump rates.

(1) For each i∈{1,2, . . . ,S} and j∈ZD, logλi(z,j) is bounded and Lipschitz con-
tinuous with respect to z∈Rd.

(2) For each i,j∈ZD, logqij(z) are bounded and Lipschitz continuous with respect
to z∈Rd.

This covers Assumption 2.1. Mathematically we express the boundedness of logλi and
logqij as

1

Λ
≤λi(z,j),qij(z)≤Λ, Λ>1 (2.11)

for any z∈Rd, i∈{1,2, . . . ,S} and j∈ZD. And in this stronger set-up we simply denote
the positive cone generated by {uj} as

C :={v|there exist αj≥0 such that v=
∑

j
αjuj

}
. (2.12)

Theorem 2.2. The large deviation result in Theorem 2.1 holds for (zn,νn)∈Dd[0,T ]×
ML[0,T ] under Assumption 2.2.

As a straightforward application of the contraction principle, we have the following.

Corollary 2.1. The slow variables zn obey the LDP in (Dd[0,T ],ρ(1)) with the rate
functional

I(r)= inf
ν∈ML[0,T ]

(Is(r,ν)+If (r,ν)). (2.13)

Define the set of probabilistic transition kernels on ZD as ΔD={w :w1,w2, . . . ,wD≥
0,
∑D

i=1wi=1}, where w=(w1,w2, . . . ,wD). We also define the reduced Lagrangian as

L(z,β)= inf
w∈ΔD

{Ls(z,β,w)+S(z,w)} . (2.14)

For convenience, we will abuse the notation nν ∈ML[0,T ] and ν ∈ML[0,T ] in later texts.

Lemma 2.1. For any r(·) which is absolutely continuous, we have

inf
nν∈ML[0,T ]

∫ T

0

Ls(r(t), ṙ(t),nν(t, ·))+S(r(t),nν(t, ·))dt=
∫ T

0

L(r(t), ṙ(t))dt. (2.15)

Proof. First, let us show the measurability of the integrand on the right-hand
side of Equation (2.15). By Lemma A.2, Ls(z,β,w)+S(z,w) is convex in w. So
Ls(z,β,w)+S(z,w) is continuous with respect tow in the set Δ◦

D⊂RD and the interior
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of the low dimensional boundaries of ΔD. Choosing a countable dense subset
{
wk
}∞
k=1

in ΔD, we have

L(r(t), ṙ(t))= inf
k≥1

{
Ls(r(t), ṙ(t),w

k)+S(r(t),wk)
}

(2.16)

for every r by the continuity condition. The measurability is a standard result with this
formulation.

It is straightforward to get that

inf
nν∈ML[0,T ]

∫ T

0

Ls(r(t), ṙ(t),nν(t, ·))+S(r(t),nν(t, ·))dt≥
∫ T

0

L(r(t), ṙ(t))dt.

Now let us show the converse part. For any given ε>0, define the sets

Ak=

{
t∈ [0,T ] :L(r(t), ṙ(t))−

(
Ls(r(t), ṙ(t),w

k)+S(r(t),wk)
)
≥−ε/T

}
for k≥1. We have that Ak are measurable sets since Ls(r(t), ṙ(t),w

k)+S(r(t),wk) and
L(r(t), ṙ(t)) are both measurable functions of t. Define the measurable functions

Fk(t)=

{
k, t∈Ak,

+∞, otherwise

for every k≥1 and

J(t)= inf
k≥1

Fk(t). (2.17)

It is not difficult to prove that J(t)<+∞ for any t and that J(t) is measurable and
takes values in positive integers. With these definitions, we have

L(r(t), ṙ(t))≥Ls(r(t), ṙ(t),w
J(t))+S(r(t),wJ(t))−ε/T. (2.18)

With wJ(t) :=
{
w

J(t)
1 ,w

J(t)
2 , . . . ,w

J(t)
D

}
, define the occupation measure ν̂

ν̂(dt,i)=w
J(t)
i dt, i∈{1,2, . . . ,D}.

Then ν̂ ∈ML[0,T ], nν̂(t,i)=w
J(t)
i , and∫ T

0

L(r(t), ṙ(t))dt≥
∫ T

0

Ls(r(t), ṙ(t),nν̂(t, ·))+S(r(t),nν̂(t, ·))dt−ε

≥ inf
nν∈ML[0,T ]

∫ T

0

Ls(r(t), ṙ(t),nν(t, ·))+S(r(t),nν(t, ·))dt−ε.

The proof is completed.

By Lemma 2.1, we have

I(r)= inf
ν∈ML[0,T ]

(Is(r,ν)+If (r,ν))

= inf
nν∈ML[0,T ]

∫ T

0

Ls(r(t), ṙ(t),nν(t, ·))+S(r(t),nν(t, ·))dt
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=

∫ T

0

L(r(t), ṙ(t))dt. (2.19)

Lemma 2.2. L(r,β) is convex in β .

Proof. By Lemma A.3,

L(z,β)= inf
w∈ΔD

{Ls(z,β,w)+S(z,w)}
= inf

w∈ΔD

sup
p∈Rd

(〈p,β〉−Hs(z,p,w)+S(z,w))

= sup
p∈Rd

inf
w∈ΔD

(〈p,β〉−Hs(z,p,w)+S(z,w)).

It is easy to see that infw∈ΔD
(〈p,β〉−Hs(z,p,w)+S(z,w)) is linear in β; thus, L(r,β)

is convex in β according to Lemma A.2.

It is well-known that the Lagrangian Ls does not have a closed form for the standard
chemical reaction kinetic system, instead it is more convenient to investigate its dual
Hamiltonian Hs by Legendre-Fenchel transform. The explicit form of the Hamiltonian
is important for the numerics to study the rare events in systems biology [15]. With a
similar idea, we have

H(z,p)= sup
β∈Rd

(〈p,β〉−L(z,β))

= sup
β∈Rd

(
〈p,β〉− inf

w∈ΔD

{Ls(z,β,w)+S(z,w)}
)

= sup
β∈Rd

sup
w∈ΔD

(〈p,β〉−Ls(z,β,w)−S(z,w))

= sup
w∈ΔD

sup
β∈Rd

(〈p,β〉−Ls(z,β,w)−S(z,w))

= sup
w∈ΔD

(Hs(z,p,w)−S(z,w)). (2.20)

A consequence about H from its definition is that H is convex with respect to p from
the convexity of L and the Legendre-Fenchel transform [9]. Furthermore, if the matrix
Q=(qij)D×D is symmetrizable, S(z,w) has an explicit expression [3]

S(z,w)=
1

2

∑
i

∑
j �=i

[√
wiqij(z)−

√
wjqji(z)

]2
. (2.21)

2.2. Application to the genetic switching model. The formula (2.20) has
a nice application in the genetic switching model introduced before. In this model, we
have d=2, D=2, and S=4. By the parameters shown in Equation (1.4) and Table 1.1,
we have

Hs(z,p,w)= b−1w1(e
p1−1)+A(z1,z2,p1,p2), (2.22)

where z=(z1,z2),p=(p1,p2),w=(w0,w1) (here we utilize the notation w=(w0,w1)
instead of w=(w1,w2) as mentioned in the introduction since there is only one molecule
of DNA) and A(z1,z2,p1,p2)=γz1(e

−p1−1)+γbz1(e
p2−1)+z2(e

−p2−1). We also have

S(z,w)=
(√

w0f(z2)−
√

w1g(z2)
)2

.
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Applying Equation (2.20) with the constraints w0+w1=1 and w0,w1≥0, we obtain the
final Hamiltonian

H(z,p)= b−1s(ep1−1)−
(√

(1−s)f(z2)−
√
sg(z2)

)2
+A(z1,z2,p1,p2), (2.23)

where

s=
1

2
+

s1

2
√
s21+4

, s1=
b−1(ep1−1)+f(z2)−g(z2)√

f(z2)g(z2)
.

It is instructive to compare this Hamiltonian with that obtained via WKB asymp-
totics. In [1], another form of the Hamiltonian for this system is given via WKB
asymptotics:

H̃(z,p)=A+g(z2)
−1[A+b−1(ep1−1)][f(z2)−A], (2.24)

where A=A(z1,z2,p1,p2). The relation between the Hamiltonian H̃ and H is not clear
so far. But one crucial difference is that H is convex with respect to the momentum
variable p from the form (2.20), while H̃ is not. It turns out this property is crucial for
the numerical computations, especially for computing the transition path in geometric
minimum action method (gMAM) [15]. It is also interesting to observe that the quasi-
potential S(z1,z2) obtained from

H(z,∇S)=0 or H̃(z,∇S)=0

is the same even though H and H̃ are very different [21]. It can also be verified that
H is not the convex hull of H̃ with respect to p. From the Hamilton-Jacobin theory,
one may speculate that these two Hamiltonians are connected through some canonical
transformation. But it is only a plausible answer which is difficult to be verified even
for this concrete example.

As the large deviation results give the sharpest characterization of the considered
two-scale chemical kinetic system, we can obtain the deterministic mean field ODEs and
the chemical Langevin approximation for the system based on the large deviations [5],
which corresponds to the law of large numbers (LLN) and the central limit theorem
(CLT) for the process. Taking advantage of Equation (2.23), we get

∂H

∂p1

∣∣∣
p=0

=
b−1f(z2)

f(z2)+g(z2)
−γz1,

∂H

∂p2

∣∣∣
p=0

=γbz1−z2. (2.25)

The mean field ODEs defined by

dz1
dt

=
∂H

∂p1

∣∣∣
p=0

and
dz2
dt

=
∂H

∂p2

∣∣∣
p=0

(2.26)

are exactly Equation (1.6).
Furthermore, we have

∂2H

∂p21

∣∣∣
p=0

=
b−1f(z2)

f(z2)+g(z2)
+

2b−2f(z2)g(z2)

(f(z2)+g(z2))
3 +γz1,

∂2H

∂p22

∣∣∣
p=0

=γbz1+z2.
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This naturally leads to the following chemical Langevin approximation:

dz1
dt

=

[
b−1f

f+g
−γz1

]
dt+

1√
n

[√
b−1f

f+g
+

2b−2fg

(f+g)3
dB1

t −
√
γz1dB

2
t

]
,

dz2
dt

=[γbz1−z2]dt+
1√
n

[√
γbz1dB

3
t −
√
z2dB

4
t

]
, (2.27)

where f,g are abbreviations of functions f(z2) and g(z2), and Bi
t (i=1, . . . ,4) are inde-

pendent standard Brownian motions. It is instructive to compare Equation (2.27) with
a granted formulation by naively transplanting the Langevin approximation from the
simple large volume limit [14], where the equation for z1 reads

dz1
dt

=

[
b−1f

f+g
−γz1

]
dt+

1√
n

[√
b−1f

f+g
dB1

t −
√
γz1dB

2
t

]
(2.28)

and the equation for z2 is the same. It is remarkable that Equation (2.27) has an
additional term related to the noise dB1

t . This additional fluctuation is induced by
the fast switching of DNA states. A similar situation will also occur when we derive
the chemical Langevin equations for enzymatic reactions, whereas we should take the
fluctuation effect of the fast switching into consideration if the considered scaling is in
our regime. However, this point does not seem to be paid much attention in previous
research. Similar situation is further discussed in [19].

2.3. A useful property of the Hamiltonian H. The Hamiltonian H(z,p)
has some nice properties which can be utilized to simplify the computations in many
cases. Assuming that Q=(qij)D×D is symmetrizable, according to Equation (2.20), we
have

H(z,p)= sup
w∈ΔD

h(z,p,w),

where

h(z,p,w)=Hs(z,p,w)−S(z,w)

=
d∑

i=1

D∑
j=1

λi(z,j)wj(e
〈p,ui〉−1)− 1

2

∑
i

∑
j �=i

[√
wiqij(z)−

√
wjqji(z)

]2
.

We will show that the supremum of h in ΔD can be only taken in the interior Δ◦
D of

ΔD. To do this, we first note that h is continuous in ΔD and differentiable in Δ◦
D. For

any wb∈∂(ΔD), define v=c0−wb where c0=(1,1, . . . ,1)/D is the center of ΔD. It is
easy to check that

lim
t→0+

1

t

(
h(z,p,wb+ tv)−h(z,p,wb)

)
=+∞. (2.29)

This means that the supremum of h cannot be taken in ∂(ΔD). Furthermore, since h
is strictly concave in w, there exists only one point w∗ in Δ◦

D such that

w∗=argsup
w∈ΔD

h(z,p,w).
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An important consequence of this fact is that we can get the derivative

∂H(z,p)

∂p
=

dh(z,p,w∗(p))
dp

=
∂h(z,p,w∗)

∂p
+

∂h

∂w

∣∣∣
w=w∗

∂w∗(p)
∂p

=
∂Hs(z,p,w

∗)
∂p

.

This is very useful to simplify the derivations when utilizing the gMAM algorithm [15]
to explore the transition paths.

3. Proof of Theorem 2.2
We will mainly follow the framework in [20, 26] to make the proof. First we prove

the upper bound and then the lower bound.

3.1. Upper Bound. The proof of upper bound (2.3) is standard in some sense.
It is difficult to estimate the probability of (zn,νn)∈F directly. We proceed with the
following steps. Firstly, we approximate zn by z̃n, where z̃n is an absolutely continuous
path. Secondly, for a given compact set, we can get an upper bound for (z̃n,νn). Thirdly,
we prove that after excluding a set of exponentially small probability, z̃n and νn stay
in compact sets, which means that z̃n and νn are an exponentially tight sequence. And
finally, we get the desired result by combing the previous steps with further estimates.

Before proceeding to the proof, let us denote by Cd[0,T ] the collection of all contin-
uous functions of t∈ [0,T ] with values in Rd. Define the sup-norm for any r, r̃∈Cd[0,T ]

ρ(1)c (r, r̃) := sup
0≤t≤T

‖r(t)− r̃(t)‖.

We have that (Cd[0,T ],ρ
(1)
c ) is a Polish space. The metric ρ

(1)
c is stronger than

ρ(1) on Dd[0,T ]. As a consequence, every open set in (Dd[0,T ],ρ(1)) is also open

in (Dd[0,T ],ρ
(1)
c ). And, if K is compact in (Cd[0,T ],ρ

(1)
c ), it is also compact in

(Dd[0,T ],ρ
(1)
c ) and in (Dd[0,T ],ρ(1)).

To construct the approximation of zn, we subdivide the time interval [0,T ] into
n pieces with nodes tnj =Tj/n, j=0,1, . . . ,n. Define the piecewise linear interpolation
z̃n(t) of zn(t) as

z̃n(t)=(1−γj(t))zn(t
n
j )+γj(t)zn(t

n
j+1), t∈ [tnj ,tnj+1], (3.1)

where γj(t)=(t− tj)n/T ∈ [0,1].
We have the important characterization that z̃n is exponentially equivalent to zn.

Lemma 3.1. For each δ>0,

limsup
n→∞

1

n
logP(ρ(1)(zn, z̃n)>δ)=−∞. (3.2)

The proof of Lemma 3.1 is left to Appendix A.
For given compact sets in Cd[0,T ], the following quasi-LDP upper bound for (z̃n,νn)

holds.

Lemma 3.2. Fix step functions θ(t)∈Rd and α(t)∈RD. For any δ>0 and compact
sets K∈Cd[0,T ] and S ∈ML[0,T ], we have

limsup
n→∞

1

n
logP((z̃n,νn)∈K×S)≤− inf

(r,ν)∈K×S
(
Iδs (r,ν,θ)+Iδf (r,ν,α)

)
, (3.3)
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where

Iδs (r,ν,θ)=

{∫ T

0
Lδ
s(r(t), ṙ,nν(t, ·),θ(t))dt, dr(t)= ṙ(t)dt,

∞, otherwise,
(3.4)

Lδ
s(z,β,w,p)= 〈β,p〉−Hδ

s (z,p,w), (3.5)

Hδ
s (z,p,w)= sup

|x−z|<δ

Hs (x,p,w) , (3.6)

and

Iδf (r,ν,α)=

∫ T

0

Sδ(r(t),nν(t, ·),α(t))dt, (3.7)

Sδ(z,w,σ)=− sup
|x−z|<δ

D∑
i,j=1

wiqij(z)
(
e〈σ,eij〉−1

)
. (3.8)

Before proceeding to the proof, we remark that Hδ
s (z,p,w) and Lδ

s(z,β,w,p) are mono-
tonically increasing and decreasing functions of δ, respectively. Sδ(z,w,σ) is a monoton-
ically decreasing function of δ. Correspondingly, Iδs (r,ν,θ) and Iδf (r,ν,α) are decreasing
functionals of δ.

Proof. We only need to consider absolutely continuous functions r on the right-
hand side of Equation (3.3) since Iδs (r,ν,θ)+Iδf (r,ν,α)=∞ otherwise. For any r and
ν, define the sum

Jn(r,θ,ν,α)=

n−1∑
j=0

(〈
r(tnj+1)−r(tnj ),θ(t

n
j )
〉

−
∫ tnj+1

tnj

Hδ
s

(
r(tnj ),θ(t

n
j ),nν(t, ·)

)
dt+

∫ tnj+1

tnj

Sδ(r(tnj ),nν(t, ·),α(tnj ))dt

)
. (3.9)

By Corollary A.2 in Appendix A, we have

limsup
n→∞

1

n
logEexp(nJn(z̃n,θ,νn,α))≤0. (3.10)

For (z̃n,νn)∈K×S, it is obvious that
Jn(z̃n,θ,νn,α)− inf

(r,v)∈K×S
Jn(r,θ,ν,α)≥0. (3.11)

So we have

exp

(
Jn(z̃n,θ,νn,α)− inf

(r,ν)∈K×S
Jn(r,θ,ν,α)

)
≥1

and

P((z̃n,νn)∈K×S)≤Eexp

{
n
[
Jn(z̃n,θ,νn,α)− inf

(r,ν)∈K×S
Jn(r,θ,ν,α)

]}
.

Combining this with Equation (3.10), we get

limsup
n→∞

1

n
logP((z̃n,νn)∈K×S)≤− liminf

n→∞

(
inf

(r,ν)∈K×S
Jn(r,θ,ν,α)

)
. (3.12)
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We now represent the sum on the right-hand side of Equation (3.12) as an inte-
gral. Since K is compact, the absolutely continuous functions r∈K are thus uniformly
bounded. Let V be a compact set in Rd such that{

z :z=r(t) for some r∈K and t∈ [0,T ]}⊂V.

For step function θ, let us investigate an interval in which θ takes constant value θ0 –
say, the interval [0,τ ] – without loss of generality. Then

n−1∑
j=0

χ{tnj+1�τ}
〈
r(tnj+1)−r(tnj ),θ0

〉
=

∫ τ

0

〈ṙ,θ0〉dt+εn,

where the error εn takes into account the fact that τ may not match any of tnj . It goes
to zero uniformly for r∈K when n goes to infinity from the bound

|εn|≤ 2T

n
|θ0| sup

z∈V
|z|.

Now Hδ
s (z,p,w) is continuous in z, p, and w from the continuity of Hs on x, p,

and w and the boundedness of λi, θ, and nν(t, ·) in the current setting. So we have∣∣Hδ
s

(
r(tnj ),θ(t

n
j ),nν(t, ·)

)−Hδ
s

(
r(t),θ(tnj ),nν(t, ·)

)∣∣ , tnj ≤ t≤ tnj+1

goes to zero uniformly in j for r∈K and ν ∈S by equicontinuity. Therefore,

n−1∑
j=0

χ{tnj+1�τ}

∫ tnj+1

tnj

Hδ
s

(
r(tnj ),θ(t

n
j ),nν(t, ·)

)
dt=

∫ τ

0

Hδ
s

(
r(t),θ(tnj ),nν(t, ·)

)
dt+εn,

with εn converging to zero uniformly in (r,ν)∈K×S.
Similarly, we can estimate for the part Sδ(r(tnj ),nν(t, ·),α(tnj )) and repeat the ar-

gument on the finite number of intervals on which θ and α are constants. Thanks to
the uniformity in (r,ν)∈K×S, we obtain

liminf
n→∞

(
inf

(r,ν)∈K×S
Jn(r,θ,ν,α)

)
= inf

(r,ν)∈K×S
(Iδs (r,ν,θ)+Iδf (r,ν,α)).

Together with Equation (3.12), the proof is completed.

Next we show the exponential tightness of the sequence (z̃n,νn). Define the modulus
of continuity of a continuous function z as

Vδ(z)=sup
{‖z(t)−z(s)‖ : 0≤s≤ t≤T, |t−s|<δ

}
(3.13)

and the set

K(M)=

∞⋂
m=M

{
z∈Cd[0,T ] :z(0)=z0,V2−m(z)≤ 1

logm

}
(3.14)

for any fixed M ∈N.
Lemma 3.3 (Exponential tightness for z̃n). For each B>0, there is a compact set
K⊂Cd[0,T ] such that

limsup
n→∞

1

n
logP(z̃n /∈K)≤−B.
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Proof. For any fixed M ∈N, it is not difficult to see that the set K(M) is closed and
the functions in K(M) are equicontinuous. Thus, K(M) is compact by the Arzela-Ascoli
theorem. If 2−m<T/n, we have

V2−m−1(z̃n)=
1

2
V2−m(z̃n)

since z̃n is piecewise linear. Therefore, to check whether z̃n is in K(M), we only need
to consider a finite intersection, for values of m up to

M(n)=max

{
M,

⌈
log(n/T )

log2

⌉}
.

Using Corollary A.1 in Appendix A, we have for any n with M(n)>M ,

P(z̃n /∈K(M))≤
M(n)∑
m=M

P

(
V2−m(z̃n)>

1

logm

)

≤
M(n)∑
m=M

n−1∑
j=0

P

(
sup

0≤t≤2−m

|zn(t
n
j + t)−zn(t

n
j )|>

1

logM

)

≤nM(n) ·2dexp
(
−n c1

logM
log

(
2Mc2
logM

))
for positive constants c1 and c2. Thus

limsup
n→∞

1

n
logP(z̃n /∈K(M))≤−c M

logM

for some positive constant c when M�1.

Lemma 3.4. The measure space ML[0,T ] is compact.

Proof. Since [0,T ]×{1,2, . . . ,D} is compact, ML[0,T ] is tight. By Prohorov’s
theorem, ML[0,T ] is relatively compact. Let ν be the limit of any converging sequence

{νm} in ML[0,T ]. Since
∑D

i=1νm(dt,i)=dt for all m, we have
∑D

i=1ν(dt,i)=dt, and
thus ν(dt,i)�dt. So ν also belongs to ML[0,T ]. This proves that ML[0,T ] is compact.

The straightforward consequence of Lemma 3.4 is that νn is also exponentially tight.
Define the quasi-rate functionals for slow and fast variables corresponding to Is and

If in Theorem 2.1

Iδs (r,ν)=

{∫ T

0 Lδ
s(r(t), ṙ(t),nν(t, ·))dt, dr(t)= ṙ(t)dt,

∞, otherwise,
(3.15)

Lδ
s(z,β,w)= sup

p∈Rd

Lδ
s(z,β,w,p), (3.16)

and

Iδf (r,ν)=

∫ T

0

Sδ(r(t),nν(t, ·))dt, (3.17)
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Sδ(z,w)= sup
σ∈RD

Sδ(z,w,σ). (3.18)

The definitions of Lδ
s(z,β,w,p) and Sδ(z,w,σ) are referred to in Equations (3.5) and

(3.8). We have the following approximation lemmas.

Lemma 3.5. For any ε>0, the absolutely continuous function r∈Cd[0,T ] and ν ∈
ML[0,T ], there exists neighborhood Nr,ν ∈Cd[0,T ]×ML[0,T ] of (r,ν), step functions
θrν ⊂Rd and αrν ⊂RD, such that for any (q,μ)∈Nr,ν , we have

Iδs (q,μ,θrν)+Iδf (q,μ,αrν)≥ Iδs (r,ν)+Iδf (r,ν)−ε.

Lemma 3.6. For any pair (r,ν)∈Cd[0,T ]×ML[0,T ] and M0>0, if r is not abso-
lutely continuous, there exists neighborhood Nr,ν ∈Cd[0,T ]×ML[0,T ] of (r,ν) and step
functions θrν ∈Rd and αrν ∈RD, such that for any (q,μ)∈Nr,ν , we have

Iδs (q,μ,θrν)+Iδf (q,μ,αrν)≥M0.

Lemmas 3.5 and 3.6 are direct consequences of lemmas A.8 and A.9 in Appendix A.
Simply denote the product metric ρ(1)×ρ(2) on Dd[0,T ]×ML[0,T ] as d(·, ·) and

define the sets

Φ(K)=
{
(r,ν)∈Dd[0,T ]×ML[0,T ] : Is(r,ν)+If (r,ν)≤K

}
(3.19)

and

Φδ(K)=
{
(r,ν)∈Dd[0,T ]×ML[0,T ] : I

δ
s (r,ν)+Iδf (r,ν)≤K

}
. (3.20)

We have the following characterization for Φ(K) and Φδ(K).

Lemma 3.7. For any K>0, the level sets Φ(K) and Φδ(K) defined in Equations
(3.19) and (3.20) are compact sets.

Proof. By Lemma 3.4, ML[0,T ] is a compact set. By Lemma A.7, the functions
r∈Φ(K) are equicontinuous. Combining this with the fact that r(0)=z0, we have
that Φ(K) is pre-compact. By Lemma A.8, Is(r,ν)+If (r,ν) is lower semicontinuous.
Consequently, Φ(K) is closed and thus compact. The proof for Φδ(K) is similar.

Proposition 3.1. For each K>0, δ>0, and ε>0,

limsup
n→∞

1

n
logP

(
d
(
(z̃n,νn),Φ

δ(K)
)
>ε
)≤−(K−ε).

Proof. From the exponential tightness, we can find a compact set KN ∈Cd[0,T ]
for each N >0 such that

limsup
n→∞

1

n
logP(z̃n /∈KN )≤−N.

Define the set

KN,ε={(r,ν)∈Cd[0,T ]×ML[0,T ] :d((r,ν),Φδ(K))>ε}∩(KN ×ML[0,T ]).

For any (r,ν)∈KN,ε, we can find the neighborhoodNr,ν either satisfying Lemma 3.5, if r
is absolutely continuous, or satisfying Lemma 3.6 if r is not absolutely continuous. This
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forms a covering of KN,ε. By compactness, we can choose a finite subcover {Nri,νj}i,j
for KN,ε. Define

Kij =Nri,νj
∩KN,ε.

Applying lemmas 3.2, 3.5, and 3.6 and letting M0 in Lemma 3.6 be larger than K, we
have for any i,j

limsup
n→∞

1

n
logP((z̃n,νn)∈Kij)≤−(K−ε) .

Then we have

limsup
n→∞

1

n
logP

(
d
(
(z̃n,νn),Φ

δ(K)
)
>ε
)

≤ limsup
n→∞

1

n
log

⎡⎣P(z̃n /∈KN )+
∑
i,j

P((z̃n,νn)∈Kij)

⎤⎦
≤−min{N,K−ε} .

Choosing N large enough, we complete the proof.

We are now ready to establish the upper bound.

Lemma 3.8. Given K>0 and ε>0, there exist δ>0 such that

Φδ(K−ε)⊂{(r,ν) :d((r,ν),Φ(K))≤ ε}.
Proof. Prove by contradiction. If the claim is false, we can choose

δi ↓0, (ri,νi)∈Φδi(K−ε), i=1,2, . . .

such that

d((ri,νi),Φ(K))≥ ε, ∀i. (3.21)

By the definition of Iδs (r,ν) and Iδf (r,ν), we have the monotonicity Iδs (r,ν)≤
Iδ

′
s (r,ν) and Iδf (r,ν)≤ Iδ

′
f (r,ν) when δ≥ δ′≥0. Thus, the sets Φδi(K−ε) are mono-

tonically decreasing as δi ↓0, and (ri,νi) are contained in the set Φδ1(K−ε) which is
compact by Lemma 3.7. So there exists a subsequence converging to (r0,ν0). With
Lemma A.8 in Appendix A we have for each j

Iδjs (r0,ν0)+I
δj
f (r0,ν0)≤ liminf

i→∞

(
Iδjs (ri,νi)+I

δj
f (ri,νi)

)
≤ liminf

i→∞

(
Iδis (ri,νi)+Iδif (ri,νi)

)
≤K−ε.

The monotone convergence theorem gives

Is(r0,ν0)+If (r0,ν0)= lim
j→∞

Iδjs (r0,ν0)+I
δj
f (r0,ν0)≤K−ε.

So (r0,ν0)∈Φ(K). For sufficiently large i, d((r0,ν0),(ri,νi))≤ ε. This contradicts Equa-
tion (3.21).
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Theorem 3.1. For each closed set F ⊂Dd[0,T ]×ML[0,T ],

limsup
n→∞

1

n
logP((zn,νn)∈F )≤− inf

(r,ν)∈F
(Is(r,ν)+If (r,ν)) .

Proof. Suppose inf(r,ν)∈F (Is(r,ν)+If (r,ν))=K<∞. Since F and Φ(K−ε) are
both closed sets, we assume the distance between them is η0>0. For any η≤η0,

P((zn,νn)∈F )

≤P

(
d((z̃n,νn),F )≤ η

2

)
+P

(
d(z̃n,νn),(zn,νn))≥ η

2

)
≤P

(
d((z̃n,νn),Φ(K−ε))≥ η

2

)
+P

(
ρ(1)((z̃n,zn)≥ η

2

)
. (3.22)

By Lemma 3.8, we can choose δ and η small enough so that

d
(
(z̃n,νn),Φ(K−ε)

)≥ η

2
implies d

(
(z̃n,νn),Φ

δ(K−ε−η/4)
)≥ η

4
.

From Proposition 3.1, we have

limsup
n→∞

1

n
logP

(
d((z̃n,νn),Φ(K−ε))≥ η

2

)
≤ limsup

n→∞
1

n
logP

(
d
(
(z̃n,νn),Φ

δ(K−ε−η/4)
)≥ η

4

)
≤−(K−ε−η/2). (3.23)

Combining Equations (3.22) and (3.23) and Lemma 3.1 for δ=η/4, we obtain

limsup
n→∞

1

n
logP((zn,νn)∈F )≤−(K−ε−η/2).

The case for

inf
(r,ν)∈F

(Is(r,ν)+If (r,ν))=∞

can be established similarly by choosing K arbitrarily large.

3.2. Lower bound. The proof of the lower bound is based on the change of
measure formula. From [5], it suffices to prove that for any (r,ν)∈Dd[0,T ]×ML[0,T ]
and arbitrarily small ε>0, we have

liminf
n→∞

1

n
logP(zn∈Nε(r),νn∈Nε(ν))≥−(Is(r,ν)+If (r,ν)) , (3.24)

where Nε(r) is the ε-neighborhood of r in Dd[0,T ] with metric ρ(1) and where Nε(ν)
is the ε-neighborhood of ν in ML[0,T ] with metric ρ(2). For given r∈Dd[0,T ] and
ν ∈ML[0,T ], if r is not absolutely continuous, Is(r,ν)+If (r,ν)=∞, thus nothing needs
to be proved. Below we will exclude this case. For convenience, we further assume that
nν(t,i) is continuous in t, and the case that nν(t,i) is not continuous will be discussed in
Theorem 3.2 in this section. To prove the lower bound, we perform the following steps.
First, we approximate r by a piecewise linear path y and the occupation measure ν by
π∈ML[0,T ] with nπ(t, ·) piecewise constant in t. Secondly, we construct new processes
z̄n and ξ̄n with occupation measure ν̄n such that

P− lim
n→∞ρ(1)c (z̄n,y)=0, P− lim

n→∞ρ(2)(ν̄n,π)=0, (3.25)
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where the notation P− lim means the convergence in probability. Moreover, we ask that
z̄n and the jump rates of ξ̄n satisfy the conditions required by lemmas 3.9 and 3.10.
Finally, based on the change of measure formula related to (zn,ξn) and (z̄n, ξ̄n), we get
the limit, and the proof is then finished.

As promised in the above procedure, we approximate r by a path y first. For a
given J , define Δ=T/J and let tm=mΔ. On each interval [tm,tm+1], define Δrm=
r(tm+1)−r(tm). Take μm={μm

i ,i=1, . . . ,S} so as to satisfy

S∑
i=1

μm
i ui=

Δrm
Δ

and μm
i ≥0. (3.26)

If Δrm are in the positive cone generated by the {ui} for all m, such a choice of μm

is possible. If at least one of Δrm is not in the positive cone generated by the {ui}, it
is easy to check that, for all ν ∈M[0,T ], Is(r,ν)=+∞ (see the Remark of [26, Lemma
5.21]) and nothing needs to be proved.

Now we construct the piecewise linear interpolation y of r such that y(t0)=r(t0)
and in each time interval [tm,tm+1]

d

dt
y(t)=

S∑
i=1

μm
i ui. (3.27)

Thus, y(tm)=r(tm) for each m. For any ε>0, we can choose J large enough such that

ρ(1)c (y,r)<ε/4.

Define the sets

S=
{
(η,ψ)

∣∣η=(ηij)D×D, ηij >0; ψ∈ΔD;

D∑
i=1

ψi

D∑
j=1

ηijeij =0
}

(3.28)

and

Kβ=
{
μ∈RS :μi≥0,

S∑
i=1

μiui=β
}
. (3.29)

We remark that the sets S and Kβ here have nothing to do with the definitions in the
proof of upper bound.

Lemma 3.9. For any ε>0 and large enough J , there exists a further subdivision of time
interval [tm,tm+1] for each m∈{0,1, . . . ,J−1} (i.e. tm= tm0<tm1< · · ·<tmKm

= tm+1)
and related (ηmk,ψmk)∈S (m=0,1, . . . ,J−1;k=0,1, . . . ,Km−1), such that

J−1∑
m=0

Km−1∑
k=0

∫ tm,k+1

tmk

D∑
i=1

ψmk
i

D∑
j=1

(
ηmk
ij log

ηmk
ij

qij(y(t))
+qij(y(t))−ηmk

ij

)
dt

≤ If (r,ν)+ε.

and

‖ψmk−nν(t, ·)‖<ε/(4DT ) (3.30)

for all t∈ [tmk,tm,k+1), k=0,1, . . . ,Km−1 and m=0,1, . . . ,J−1.
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The proof of Lemma 3.9 can be found in Appendix A.
We then define the measure π∈ML[0,T ] such that π(dt,i)=nπ(t,i)dt and

nπ(t,i) :=ψmk
i , t∈ [tmk,tm,k+1)

for m=0,1, . . . ,J−1 and k=0,1, . . . ,Km−1. With this choice nπ(t, ·) is piecewise con-
stant and

ρ(2)(π,ν)<ε/4.

We take the frequently used notation λπ
i in later text as the expectation of λi with

respect to the distribution nπ

λπ
i (y(s))=

D∑
j=1

λi(y(s),j)nπ(s,j). (3.31)

Lemma 3.10. For any ε>0 and large enough J , define βm=Δrm/Δ, then there
exists μm∈Kβm

such that

J−1∑
m=0

∫ tm+1

tm

S∑
i=1

(
λπ
i (y(t))−μm

i +μm
i log

μm
i

λπ
i (y(t))

)
dt≤ Is(r,ν)+ε.

The proof of Lemma 3.10 can be found in Appendix A.
With the constructed matrices {ηmk} in Lemma 3.9, we define the process ξ̄n with

jump rate nηij(t) where ηij(t)=ηmk
ij , t∈ [tmk,tm,k+1). Similarly, we take μm con-

structed from Lemma 3.10 and define z̄n with jump rate

nμi(t)
λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

for its ith component, where μi(t) is piecewise constant and μi(t)=μm
i for t∈ [tm,tm+1).

We have the following convergence result for the constructed approximations for π
and y.

Lemma 3.11. Convergence of the approximation ν̄n

P− lim
n→∞ρ(2)(ν̄n,π)=0.

Lemma 3.12. Convergence of the approximation z̄n

P− lim
n→∞ρ(1)c (z̄n,y)=0.

The proof of lemmas 3.11 and 3.12 are given in Appendix A.
As we have finished the construction of z̄n and ξ̄n, we now perform the change

of measure. Denote by Qn and Q̄n the distributions of (zn(t),ξn(t))t≤T and
(z̄n(t), ξ̄n(t))t≤T , respectively. We have

dQn

dQ̄n
(z̄n, ξ̄n)

= exp

{
−
∫ T

0

n

d∑
i=1

(
λi(z̄n(t), ξ̄n(t))−μi(t)

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

)
dt
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−
∫ T

0

∑
i

log
μi(t

−)
λπ
i (y(t

−))
dY i

t −
∫ T

0

n

D∑
i,j=1

(
qij(z̄n(t))−ηij(t)

)
dt

−
∫ T

0

∑
i,j

log
ηij(t

−)
qij(z̄n(t−))

dM ij
t

⎫⎬⎭
:= eB(z̄n,ξ̄n), (3.32)

where Y i
t is the counting process induced by z̄n(t) that will increase by one each time

when a jump occurs in the ui direction and M ij
t is the counting process induced by ξ̄n(t)

that will increase by one each time when a jump occurs from state i to state j. The
next lemma shows that the expectation of B(z̄n, ξ̄n) in the exponent becomes simple in
the limit n→∞.

Lemma 3.13.

lim
n→∞EQ̄n

∫ T

0

λi(z̄n(t), ξ̄n(t))−μi(t)
λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt=
J−1∑
m=0

∫ tm+1

tm

λπ
i (y(t))−μm

i dt.

(3.33)

lim
n→∞

1

n
EQ̄n

∫ T

0

∑
i

log
μi(t

−)
λπ
i (y(t))

dY i
t =

J−1∑
m=0

∫ tm+1

tm

S∑
i=1

μm
i log

μm
i

λπ
i (y(t))

dt. (3.34)

lim
n→∞

1

n
EQ̄n

∫ T

0

∑
i,j

log
ηij(t

−)
qij(z̄n(t−))

dM ij
t

=

J−1∑
m=0

Km−1∑
k=0

∫ tm,k+1

tmk

D∑
i=1

nπ(t,i)

D∑
j=1

ηmk
ij log

ηmk
ij

qij(y(t))
dt. (3.35)

The proof of Lemma 3.13 is based on the ideas in proving Lemma 5.52 and Lemma
8.70 in [26].

Proof. Since μi(t) is a step function and constant in [tm,tm+1), to prove Equation
(3.33), we just need to prove for each m

lim
n→∞EQ̄n

∫ tm+1

tm

λi(z̄n(t), ξ̄n(t))−μm
i

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt=

∫ tm+1

tm

λπ
i (y(t))−μm

i dt.

(3.36)

Define

Nε(y) :={z∈Dd[0,T ] :ρ(1)c (z,y)≤ ε}.
We have

EQ̄n

∫ tm+1

tm

λi(z̄n(t), ξ̄n(t))−μm
i

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt

=EQ̄n
χ{z̄n∈Nε(y)}

∫ tm+1

tm

λi(z̄n(t), ξ̄n(t))−μm
i

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt
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+EQ̄n
χ{z̄n /∈Nε(y)}

∫ tm+1

tm

λi(z̄n(t), ξ̄n(t))−μm
i

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt. (3.37)

By Lemma 3.12, the second term on the right-hand side of Equation (3.37) tends to
zero as n→∞. Next let us estimate the first term.

By Assumption 2.2, we have∣∣∣∣λi(x
′,j)

λπ
i (x)

− λi(z,j)

λπ
i (z)

∣∣∣∣≤ ∣∣∣∣λi(x
′,j)

λπ
i (x)

− λi(x
′,j)

λπ
i (z)

∣∣∣∣+ ∣∣∣∣λi(x
′,j)−λi(z,j)

λπ
i (z)

∣∣∣∣
≤Λ3L‖x−z‖+ΛL‖x′−z‖ (3.38)

for any z,x,x′∈Rd, i∈{1, . . . ,S} and j∈{1,2 . . . ,D}.
Now take an integer N and divide [tm,tm+1] into N pieces. Define τl= tm+ l(tm+1−

tm)/N for l=0, . . . ,N . Since y is continuous in [0,T ], we can choose N large enough
such that

sup
t∈[τl,τl+1]

‖y(t)−y(τl)‖≤ ε for any l∈{0, . . . ,N−1}.

By Equations (2.1) and (3.38), we have

χ{z̄n∈Nε(y)}

∫ tm+1

tm

λi(z̄n(t), ξ̄n(t))−μm
i

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt

≤χ{z̄n∈Nε(y)}
N−1∑
l=0

∫ τl+1

τl

λi(y(τl), ξ̄n(t))−μm
i

λi(y(τl), ξ̄n(t))

λπ
i (y(τl))

+Cεdt,

where C=(2+2Λ+Λ3)L. So we have

lim
n→∞EQ̄n

∫ tm+1

tm

λi(z̄n(t), ξ̄n(t))−μm
i

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt

≤
N−1∑
l=0

∫ τl+1

τl

D∑
j=1

λi(y(τl),j)nπ(t,j)−μm
i +Cεdt

≤
N−1∑
l=0

∫ τl+1

τl

D∑
j=1

λi(y(t),j)nπ(t,j)−μm
i +C1εdt

=

∫ tm+1

tm

λπ
i (y(t))−μm

i dt+C1(tm+1− tm)ε

by the ergodicity of the process ξ̄n, where C1=(3+2Λ+Λ3)L. Similarly, we can also
obtain

lim
n→∞EQ̄n

∫ tm+1

tm

λi(z̄n(t), ξ̄n(t))−μm
i

λi(z̄n(t), ξ̄n(t))

λπ
i (y(t))

dt

≥
∫ tm+1

tm

λπ
i (y(t))−μm

i dt−C1(tm+1− tm)ε.

So we finish the proof for Equation (3.33).
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To prove Equation (3.34), we first assume that λi(x) are constant functions. In
[tm,tm+1), the number of jumps z̄n makes in each direction ui/n are independent Pois-
son random variables with mean nμm

i (tm+1− tm). So

lim
n→∞

1

n
EQ̄n

∫ tm+1

tm

∑
i

log
μi(t

−)
λπ
i (y(t))

dY i
t =

∫ tm+1

tm

S∑
i=1

μm
i log

μm
i

λπ
i (y(t))

dt. (3.39)

For general λi, we can use the technique for proving Equation (3.33) by dividing the
interval [tm,tm+1] into small pieces and approximating Equation (3.34) by Riemann
sums.

For Equation (3.35), again we first assume that qij(x) are constant functions. In
[tmk,tm,k+1], the number of jumps ξ̄n makes in each direction eij are independent Pois-
son random variables with mean n ·nπ(tmk,i)η

mk
ij (tm,k+1− tmk). So

lim
n→∞

1

n
EQ̄n

∫ tm,k+1

tmk

∑
i,j

log
ηij(t

−)
qij(z̄n(t−))

dM ij
t =

∫ tm,k+1

tmk

D∑
i=1

nπ(t,i)

D∑
j=1

ηmk
ij log

ηmk
ij

qij(y(t))
dt.

(3.40)

For general qij , we consider separate cases {z̄n∈Nε(y)} and {z̄n /∈N c
ε (y)} as in Equa-

tion (3.37). Similar to proving Equation (3.33), we can get the limit (3.35).

Lemma 3.14. For given r∈Dd[0,T ] and ν ∈ML[0,T ], assume that r is absolutely
continuous and nν(t, ·) is continuous in t. Then, for arbitrarily small ε>0, we have

liminf
n→∞

1

n
logP(zn∈Nε(r),νn∈Nε(ν))≥−(Is(r,ν)+If (r,ν)) .

Proof. By Equation (3.32) and Jensen’s inequality, for any ε>0,

P(zn∈Nε(r),νn∈Nε(ν))

≥P(zn∈Nε/2(y),νn∈Nε/2(π)
)

=EQ̄n

[
dQn

dQ̄n
(z̄n(t), ξ̄n(t))χ{z̄n∈Nε/2(y),ν̄n∈Nε/2(π)}

]
=EQ̄n

[
eB(z̄n,ξ̄n)χ{z̄n∈Nε/2(y),ν̄n∈Nε/2(π)}

]
≥EQ̄n

[
χ{z̄n∈Nε/2(y),ν̄n∈Nε/2(π)}

]
exp

{
EQ̄n

[
χ{z̄n∈Nε/2(y),ν̄n∈Nε/2(π)}B(z̄n, ξ̄n)

]
EQ̄n

[
χ{z̄n∈Nε/2(y),ν̄n∈Nε/2(π)}

] }
.

(3.41)

By lemmas 3.11 and 3.12, we know that

lim
n→∞EQ̄n

[
χ{z̄n∈Nε/2(y),ν̄n∈Nε/2(π)}

]
=1. (3.42)

Thus, according to Lemma 3.13 and Equations (3.41) and (3.42), we have

liminf
n→∞

1

n
logP(zn∈Nε(r),νn∈Nε(ν))
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≥ liminf
n→∞

1

n
EQ̄n

[
χ{z̄n∈Nε/2(y),ν̄n∈Nε/2(π)}B(z̄n, ξ̄n)

]
=−

(
J−1∑
m=0

∫ tm+1

tm

S∑
i=1

(λπ
i (y(t))−μm

i )dt

+
J−1∑
m=0

∫ tm+1

tm

S∑
i=1

μm
i log

μm
i

λπ
i (y(t))

dt

+

J−1∑
m=0

Km−1∑
k=0

∫ tm,k+1

tmk

D∑
i=1

nπ(t,i)

D∑
j=1

(
ηmk
ij log

ηmk
ij

qij(y(t))
+qij(y(t))−ηmk

ij

)
dt

)
. (3.43)

Combining Lemma 3.9, Lemma 3.10, and Equation (3.43), we finish the proof.

In the final theorem, we remove the continuity assumption on nν(t, ·) to get the
desired lower bound estimation.

Theorem 3.2. For given r∈Dd[0,T ] and ν ∈ML[0,T ], assume that r is absolutely
continuous, we have

liminf
n→∞

1

n
logP(zn∈Nε(r),νn∈Nε(ν))≥−(Is(r,ν)+If (r,ν)) .

Proof. We can construct a sequence of measures ν(k) (k≥1) such that for any
k, nν(k) is continuous in t and ρ(2)(ν,ν(k))→0. From Lemma A.8, Is(r,ν)+If (r,ν) is
lower semicontinuous in ν. Thus, we can choose k0 large enough such that for any δ>0
and ε>0,

Is(r,ν
(k0))+If (r,ν

(k0)))≥ Is(r,ν)+If (r,ν)−δ

and

ρ(2)(ν,ν(k0))<ε/2.

Thanks to Lemma 3.14, we have

liminf
n→∞

1

n
logP(zn∈Nε(r),νn∈Nε(ν))

≥ liminf
n→∞

1

n
logP

(
zn∈Nε(r),νn∈Nε/2(ν

(k0))
)

≥−
(
Is(r,ν

(k0))+If (r,ν
(k0))

)
≥−(Is(r,ν)+If (r,ν))−δ.

The proof is completed.

3.3. Goodness of the rate functional. The rate functional Is(r,ν)+If (r,ν)
is lower semicontinuous by Lemma A.8. The goodness of the rate functional is a direct
consequence of Lemma 3.7.

4. Proof of Theorem 2.1
Now we prove Theorem 2.1 under the consideration r∈W =(R+)d instead of the

whole space. The main clue of the proof is the same as the proof of Theorem 2.2 except
some technicalities to understand the behavior of jumps near the boundary of W . We
will only focus on the key parts, which is different from the proof of Theorem 2.2.
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The difficulty in the proof of lower bound is that we cannot use the change of
measure formula directly, since some of the jump rates may diminish on the bound-
ary. Mainly following [27], we overcome this issue by carefully analyzing the boundary
behavior of the dynamics.

Let a d-dimensional unit vector v := (1,1, . . . ,1)/
√
d and define the shifting rδ(t)=

r(t)+δv with δ>0 a sufficiently small number. With a similar approach to proving [27,
Lemma 5.1], we can show that

limsup
δ→0+

(Is(rδ,ν)+If (rδ,ν))≤ Is(r,ν)+If (r,ν). (4.1)

Next, we will prove

liminf
n→∞

1

n
logP(zn∈Nδ(r),νn∈Nδ(ν))≥−(Is(r,ν)+If (r,ν)) .

Denote by Va(r) the modulus of continuity of r with size a, and set η(a)=max{Va(r),a}
so that η−1(a)≤a. Now, fix δ and set tδ =η−1(δ/3). Then, tδ≤ δ/3 and, for t≤ tδ,

sup
0≤t≤tδ

‖r(0)+ t ·v−r(t)‖≤ tδ ·‖v‖+η(tδ)≤2δ/3.

Therefore, for 0<α<1/6,

P(zn∈Nδ(r),νn∈Nδ(ν))≥P

(
‖zn(t)−r(0)− t ·v‖≤αδ on t∈ [0,tδ],

zn∈Nδ(r; [tδ,T ]);νn∈Nδ(ν)
)
,

where Nδ(r; [tδ,T ]) is the δ-neighborhood of r restricted on t∈ [tδ,T ]. Now, on this time
interval,

sup
tδ≤t≤T

‖r(t)−rtδ(t)‖≤ δ/3.

Moreover, d(rtδ(t),∂G)≥ tδ/
√
d. Therefore, for any function u on t∈ [tδ,T ], ‖u−rtδ‖≤

tδ/2
√
d implies that ‖u−r‖≤5δ/6 and d(rtδ(t),∂G)≥ tδ/2

√
d. Now define Aδ the αδ-

neighborhood of r0+ tδv, i.e. Aδ :=Bαδ(r0+ tδv), and let rytδ be the shift of rtδ such
that rytδ(tδ)=y. Then,

P(zn∈Nδ(r),νn∈Nδ(ν))≥P

(
‖zn(t)−r(0)− t ·v‖≤αδ on t∈ [0,tδ];νn∈Nδ(ν; [0,tδ])

)
× inf

y∈Aδ

Py

(
zn∈N tδ

2
√

d

(rytδ ; [tδ,T ]);νn∈Nδ(ν; [tδ,T ])

)
.

The first term satisfies a large deviation lower bound

liminf
n→∞

1

n
logP

(
‖zn(t)−r(0)− t ·v‖≤αδ on t∈ [0,tδ];νn∈Nδ(ν; [0,tδ])

)
≥−Ctδ (4.2)

by estimating the probability of a specific path zn lying in the αδ-neighborhood of
the curve r(0)+ tv. Because the paths in N tδ

2
√

d

(rytδ ; [tδ,T ]) are bounded away from the

boundary uniformly for y∈Aδ, by Theorem 3.2, we have

liminf
n→∞

1

n
log inf

y∈Aδ

Py

(
zn∈N tδ

2
√

d

(rytδ ; [tδ,T ]);νn∈Nε(ν; [tδ,T ])

)
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≥−
(
I [tδ,T ]
s (rtδ ,ν)+I

[tδ,T ]
f (rtδ ,ν)

)
≥−

(
Is(rtδ ,ν)+If (rtδ ,ν)

)
, (4.3)

where I
[tδ,T ]
s (rtδ ,ν) and I

[tδ,T ]
f (rtδ ,ν) are rate functionals defined on the integration

interval [tδ,T ]. According to Equations (4.1), (4.2), and (4.3), we have proved the lower
bound.

Next, let us consider the upper bound. At first, we note that, since the rates λi(z,j)
satisfies the linear growth condition

λi(z,j)≤C(1+‖z‖),
it is easy to show that

lim
K→∞

limsup
n→∞

1

n
logP( sup

0≤t≤T
‖zn(t)‖>K)=−∞

by simple moment estimates and Doob’s martingale inequality. Consequently, it suffices
to prove the large deviation estimates for bounded sets, and we can assume λi(z,j) are
bounded.

We only need to recheck Lemma 3.8 and Lemma A.9, since the other lemmas in
upper bound estimates can be verified easily under the assumption that λi(z,j) are
bounded. Thanks to Corollary 4.2 and Lemma 4.6 in [27], we can obtain that Lemma
3.8 and Lemma A.9 are also correct under Assumption 2.1. Thus, the upper bound is
also established.

The goodness of the rate functional trivially holds under Assumption 2.1. So we
complete the proof of Theorem 2.1.

Appendix A. In this appendix, we will supplement the proof of the main lemmas.
Lemma A.1. Let {fα} be a collection of lower semicontinuous functions on a metric
space. Then the function f defined by f(x)=supαfα(x) is lower semicontinuous.

Lemma A.2. Let {fα} be a collection of convex functions on a metric space. Then
the function f define by f(x)=supαfα(x) is convex.

Lemma A.3. Let K(x,y) be a real-valued function, continuous in (x,y) on Rd×RD,
convex in x for each y, and concave in y for each x. Let two non-empty closed convex
sets U and V be given, at least one of which is bounded. Then

inf
x∈U

sup
y∈V

K(x,y)= sup
y∈V

inf
x∈U

K(x,y).

The proof of Lemma A.3 may be found in [24, Corollary 37.3.2].

A.1. Part 1. Proof of lemmas related to the upper bound estimate.
Lemma A.4. Let z(t)∈Rd be any measurable process for t∈ [0,T ]. Suppose there exist
numbers a and δ such that, for each p∈Rd with ‖p‖=1,

P

(
sup

0≤t≤T
〈z(t),p〉≥a

)
≤ δ.

Then

P

(
sup

0≤t≤T
‖z(t)‖≥a

√
d

)
≤2dδ.
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Proof. It is not difficult to find that

{
sup

0≤t≤T
‖z(t)‖≥a

√
d
}
⊂

2d⋃
i=1

{
sup

0≤t≤T
〈z(t),pi〉≥a

}
,

where pi :=ei, pi+d :=−ei for i=1, . . . ,d, and ei are chosen as the canonical orthonormal
basis in Euclidean space Rd.

In later texts, we will abuse notation by denoting ξn(t)=ei∈RD when ξn(t)= i∈
ZD. This will not bring confusion since ξn(t) is considered as a multidimensional vector
only when we take the inner product with other vectors.

Lemma A.5. There exists a function K :R+→R+ with

lim
a→∞K(a)/a=+∞,

such that

P

(
sup

0≤t≤T
‖zn(t)−zn(0)‖≥a

)
≤2dexp

(
−nTK

( a
T

))
. (A.1)

Proof. The inequality (A.1) holds trivially whenever K(a/T )=0. It suffices to
prove the lemma when a is large. For p∈Rd, σ∈RD, and any ρ>0, with the form of
infinitesimal generator Ln (1.2), we define a mean one exponential martingale

Mσ
t =exp

(
〈zn (t)−zn(0),ρp〉−n

∫ t

0

S∑
i=1

λi(zn(s),ξn(s))(e
〈ρp,ui/n〉−1)ds

+ 〈ξn(t)−ξn(0),σ〉−n

∫ t

0

D∑
i=1

χ{ξn(s)=i}
D∑

j=1

qij(zn(s))(e
〈σ,eij〉−1)ds

⎞⎠ .

Define U =max1≤i≤S ‖ui‖. Fix ‖p‖=1, and we have

n

∫ t

0

S∑
i=1

λi(zn(s),ξn(s))(e
〈ρp,ui/n〉−1)ds≤ntSΛeUρ/n=:R(t,ρ)

by Assumption 2.2. Hence, we obtain

P

(
sup

0≤t≤T
〈zn (t)−zn(0),p〉≥a

)
=P

(
sup

0≤t≤T
exp(ρ〈zn (t)−zn(0),p〉)≥ exp(ρa)

)
≤P
(

sup
0≤t≤T

Mσ=0
t ≥ exp

(
ρa−R(T,ρ)

))
≤exp

(
nT
[
SΛeUρ/n− ρ

n

a

T

])
,

where the inequality follows from Doob’s martingale inequality. Take

ρ=
n

U
log

a

TSΛU
>0.
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Then it is not difficult to show that, if we set

K̃(a)=
a

U

(
log

a

SΛU
−1
)

for a large and K(a)=0 otherwise, then

P

(
sup

0≤t≤T
〈zn (t)−zn(0),p〉≥a

)
≤ exp

(
−nTK̃

( a
T

))
.

Define K(a)= K̃(a/
√
d), and we get the desired estimate by applying Lemma A.4.

Corollary A.1. There exist positive constants c1 and c2 independent of t and τ ,
such that, for any t,τ ∈ [0,T ] with 0≤ t+τ ≤T ,

P

(
sup

t≤s≤t+τ
‖zn(s)−zn(t)‖≥a

)
≤2dexp

(
−nac1 log

(ac2
τ

))
.

Proof. (Proof of Lemma 3.1.) Consider a typical interval [tnj ,t
n
j+1]. Since zn(t)

and z̃n(t) agree at the endpoints of this interval, it is obvious that

‖z̃n(t
n
j )− z̃n(t

n
j+1)‖>

δ

2
implies ‖zn(t

n
j+1)−zn(t

n
j )‖>

δ

2
.

On the other hand, we have

‖zn(t)−zn(t
n
j )‖≥‖zn(t)− z̃n(t)‖−‖z̃n(t

n
j+1)− z̃n(t

n
j )‖

since z̃n is piecewise linear and z̃n(t
n
j )=zn(t

n
j ). Therefore, if ‖zn(t)− z̃n(t)‖>δ for

some t in the jth interval, we must have

sup
tnj ≤t≤tnj+1

‖zn(t)−zn(t
n
j )‖≥ δ/2.

Applying Corollary A.1 with a= δ/2 and τ =T/n, we obtain

P

(
sup

tnj ≤t≤tnj+1

‖zn(t)−zn(t
n
j )‖≥ δ/2

)
≤2dexp

(
−nδc1

2
log
(nδc3

2

))
,

where c3= c2/T . Thus,

P(ρ(1)(zn, z̃n)>δ)≤
n−1∑
j=0

P

(
sup

tnj ≤t≤tnj+1

‖zn(t)− z̃n(t)‖>δ

)

≤
n−1∑
j=0

P

(
sup

tnj ≤t≤tnj+1

‖zn(t)−zn(t
n
j )‖>δ/2

)

≤n ·2dexp
(
−nδc1

2
log
(nδc3

2

))
.

The result follows since c1 and c3 are positive constants.

Lemma A.6. For any given bounded sets A1∈Rd and A2∈RD, we have that

limsup
n→∞

Ex,m exp

{
n

〈
z̃n

(
T

n

)
− z̃n(0),p

〉
−n

∫ T/n

0

Hδ
s (x,p,nνn

(t, ·))dt
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+

〈
ξn

(
T

n

)
−ξn(0),σ

〉
+n

∫ T/n

0

Sδ(x,nνn(t, ·),σ)dt
}
≤1

holds uniformly in x∈Rd, m∈{1,2, . . . ,D}, p∈A1, and σ∈A2, where Ex,m means the
expectation with respect to the paths of (zn,ξn) starting from (x,m) at t=0.

Proof. For any p∈A1 and σ∈A2, define the mean one exponential martingale

Mt=exp

(
n

[
〈zn (t)−zn(0),p〉−

∫ t

0

S∑
i=1

λi(zn(s),ξn(s))(e
〈p,ui〉−1)ds

]

+ 〈ξn(t)−ξn(0),σ〉−n

∫ t

0

D∑
i=1

χ{ξn(s)=i}
D∑

j=1

qij(zn(s))(e
〈σ,eij〉−1)ds

⎞⎠ .

Since z̃n(t
n
j )=zn(t

n
j ), for any p∈A1, we have

1=Ex,m exp

{
n

[〈
z̃n

(
T

n

)
− z̃n(0),p

〉

−
∫ T/n

0

S∑
i=1

D∑
j=1

λi(zn(s),j)(e
〈p,ui〉−1)νn(ds,j)

⎤⎦
+

〈
ξn

(
T

n

)
−ξn(0),σ

〉
−n

∫ T/n

0

D∑
i,j=1

qij(zn(s))(e
〈σ,eij〉−1)νn(ds,i)

⎫⎬⎭ .

By definition, the term

S∑
i=1

D∑
j=1

λi(zn(s),j)(e
〈p,ui〉−1)νn(ds,j)

can be written as Hs(zn(s),p,nνn
(s, ·))ds and

−
D∑
i=1

D∑
j=1

qij(zn(s))(e
〈σ,eij〉−1)νn(ds,i)

can be written as S(zn(s),nνn
(s, ·),σ)ds.

Let

Sδ =

{
ω : sup

0≤t≤T/n

‖zn(t)−x‖< δ

2

}
,

and we have

1�Ex,mχSδ
exp

{(
n

〈
z̃n

(
T

n

)
− z̃n(0),p

〉
−n

∫ T/n

0

Hδ
s (x,p,nνn(t, ·))dt

)

+

〈
ξn

(
T

n

)
−ξn(0),σ

〉
+n

∫ T/n

0

Sδ(x,nνn
(t, ·),σ)dt

}
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=Ex,m exp

{(
n

〈
z̃n

(
T

n

)
− z̃n(0),p

〉
−n

∫ T/n

0

Hδ
s (x,p,nνn(t, ·))dt

)

+

〈
ξn

(
T

n

)
−ξn(0),σ

〉
+n

∫ T/n

0

Sδ(x,nνn
(t, ·),σ)dt

}

−Ex,mχSc
δ
exp

{(
n

〈
z̃n

(
T

n

)
− z̃n(0),p

〉
−n

∫ T/n

0

Hδ
s (x,p,nνn

(t, ·))dt
)

+

〈
ξn

(
T

n

)
−ξn(0),σ

〉
+n

∫ T/n

0

Sδ(x,nνn(t, ·),σ)dt
}
. (A.2)

Since A1 and A2 are bounded sets, there exist B1 and B2 such that ‖p‖≤B1 and
‖σ‖≤B2. From Assumption 2.2 and the boundedness of p and σ, we have

Ex,mχSc
δ
exp

{(
n

〈
z̃n

(
T

n

)
− z̃n(0),p

〉
−n

∫ T/n

0

Hδ
s (x,p,nνn(t, ·))dt

)

+

〈
ξn

(
T

n

)
−ξn(0),σ

〉
+n

∫ T/n

0

Sδ(zn(t),nνn
(t, ·),σ)dt

}

≤Ex,m

(
χSc

δ
exp

(
n

〈
z̃n

(
T

n

)
− z̃n(0),p

〉
+3K

))
�

∞∑
k=1

exp

(
n(k+1)

δ

2
|p|+3K

)
×P

(
kδ

2
� sup

0�t�T/n

|zn(t)−x|� (k+1)δ

2

)

�
∞∑
k=1

2dexp

(
n

(
(k+1)

δ

2
B1− kδc1

2
log

(
kδc2n

2T

)))
×e3K→0 (A.3)

as n goes to infinity for all x∈Rd with ‖p‖≤B1 and ‖σ‖≤B2, where K is a uniform
bound depending on the bounds of Sδ(·, ·, ·) and Hδ

s (·, ·, ·) in the whole space, B1, B2,
and T . Combining Equations (A.3) and (A.2), we complete the proof.

Corollary A.2. For any fixed step functions θ(t)∈Rd and α(t)∈RD, there exist
constants C>0 and n0 such that

Eexp{nJn(z̃n,θ,νn,α)}≤C

for all n>n0, where Jn is defined in Equation (3.9).

Proof. By definition,

exp{nJn(z̃n,θ,νn,α)}

=exp

⎧⎨⎩
n−1∑
j=0

(
n
〈
z̃n(t

n
j+1)− z̃n(t

n
j ),θ(t

n
j )
〉−n

∫ tn+1
j

tnj

Hδ
s

(
z̃n(t

n
j ),θ(t

n
j ),nνn

(t, ·))dt
+ n

∫ tn+1
j

tnj

Sδ(z̃n(t
n
j ),nνn

(t, ·),α(tnj ))dt
)}

=exp

⎧⎨⎩
n−1∑
j=0

(
n
〈
z̃n(t

n
j+1)− z̃n(t

n
j ),θ(t

n
j )
〉 −n

∫ tn+1
j

tnj

Hδ
s

(
z̃n(t

n
j ),θ(t

n
j ),nνn

(t, ·))dt
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+
〈
ξn(t

n
j+1)−ξn(t

n
j ),α(tnj )

〉
+n

∫ tn+1
j

tnj

Sδ(z̃n(t
n
j ),nνn(t, ·),α(tnj ))dt

)

−
n−1∑
j=0

〈
ξn(t

n
j+1)−ξn(t

n
j ),α(tnj )

〉⎫⎬⎭ . (A.4)

Now, α is a step function. Let us first consider α(t)=α0 on the interval t∈ [0,τ ]. We
have

n−1∑
j=0

χ{tnj+1≤τ}
〈
ξn(t

n
j+1)−ξn(t

n
j ),α0

〉
=

〈
ξn

(�nτ�
n

)
−ξn(0),α0

〉
,

where �a� is the largest integer smaller than a. Since ξn and α are bounded in [0,T ],∣∣∣〈ξn( �nτ�
n

)
−ξn(0),α0

〉∣∣∣ is uniformly bounded. Repeating this argument on the finite

number of intervals on which α are constants, we have that∣∣∣∣∣∣
n−1∑
j=0

〈
ξn(t

n
j+1)−ξn(t

n
j ),α(tnj )

〉∣∣∣∣∣∣
is bounded. Thus by Equation (A.4), Lemma A.6 and the Markov property of (zn,ξn),

limsup
n→∞

Eexp{nJn(z̃n,θ,νn,α)}≤C

where C is a positive constant.

Lemma A.7 (Uniformly absolute continuity). Given r∈Dd[0,T ] and ν ∈ML[0,T ].
Let Is(r,ν)+If (r,ν)≤K and fix some ε>0. Then there is a δ>0, independent of r,
such that, for any collection of non-overlapping intervals in [0,T ] with total length δ

{
[tj ,sj ],j=1, . . . ,J

}
with

J∑
j=1

(sj− tj)= δ,

we have

J∑
j=1

‖r(sj)−r(tj)‖<ε.

We can also find a constant B depending only on ε and K so that∫ T

0

χ{‖ṙ(t)‖≥B}dt≤ ε.

Proof. For any collection of non-overlapping intervals
{
[tj ,sj ]

}
j
, define the func-

tion k(t) to be equal to one if t is in some interval [tj ,sj ] and zero otherwise. Since
Is(r,ν)+If (r,ν)≤K, r is absolutely continuous and Is(r,ν)≤K. For any a>0,

J∑
j=1

‖r(sj)−r(tj)‖≤
∫ T

0

‖ṙ(t)‖k(t)dt
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≤
∫ T

0

a ·χ{‖ṙ(t)‖≤a}k(t)dt

+

∫ T

0

Ls(r(t), ṙ(t),nν(t, ·))
Ls(r(t), ṙ(t),nν(t, ·))/|ṙ(t)|χ{‖ṙ(t)‖>a}k(t)dt

≤a ·δ+ K

f(a)
,

where

f(a) := inf
z,β,w∈ΔD

{
Ls(z,β,w)

‖β‖ :‖β‖≥a

}
.

Recalling the definition of Ls(z,β,w) in Equation (2.6), we define U :=maxi‖ui‖. For
any w∈ΔD, if we take p=β log‖β‖/(U‖β‖) in Equation (2.6), we obtain

Ls(z,β,w)≥‖β‖ log‖β‖/U−‖β‖SΛ.
This means that f(a)→∞ as a→∞. The choice a=1/

√
δ and taking δ sufficiently

small establishes the uniformly absolute continuity.
Now we turn to the second statement. Since∫ T

0

χ{‖ṙ(t)‖≥B}dt≤ 1

B

∫ T

0

‖ṙ(t)‖χ{‖ṙ(t)‖≥B}dt

≤ 1

B

∫ T

0

Ls(r(t), ṙ(t),nν(t, ·))
Ls(r(t), ṙ(t),nν(t, ·))/‖ṙ(t)‖χ{‖ṙ(t)‖≥B}dt

≤ 1

B

Is(r,ν)

f(B)
,

we complete the proof by choosing a sufficiently large B.

Lemma A.8. The rate functionals are lower semicontinuous, i.e., if (rn,νn)→ (r,ν)
as n→∞, then

liminf
n→∞ Is(rn,νn)≥ Is(r,ν), liminf

n→∞ If (rn,νn)≥ If (r,ν), (A.5)

liminf
n→∞ Iδs (rn,νn)≥ Iδs (r,ν), liminf

n→∞ Iδf (rn,νn)≥ Iδf (r,ν) (A.6)

and

liminf
n→∞ Iδs (rn,νn,θ)≥ Iδs (r,ν,θ), liminf

n→∞ If (rn,νn,α)≥ Iδf (r,ν,α) (A.7)

for any fix step functions θ(t)∈Rd and α(t)∈RD.

Proof. We only need to consider the sequences of rn which are absolutely contin-
uous since it will be trivial otherwise. Let (rn,νn)→ (r,ν) as n→∞. We may assume
that Is(rn,νn)+If (rn,νn) is bounded, say by a constant K. By Lemma A.7, we know
that r is also absolutely continuous.

Since r(t) is absolutely continuous in [0,T ], given δ, we can partition the interval
[0,T ] into J intervals 0= t1≤ t2≤···≤ tJ+1=T each of length Δ such that

max
j

sup
tj≤t≤tj+1

‖rn(t)−rn(tj)‖<δ.
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Denote Fn(t,i)=νn([0,t],i) and F (t,i)=ν([0,t],i). Recalling the definition of Lδ
s(z,β,w)

in Equation (3.5), we have that Lδ
s(z,β,w)) is lower semicontinuous in δ, z, β, and w

and convex in β and w by lemmas A.1 and A.2. Thus, for any ε>0 and small enough
Δ, we have ∫ T

0

Ls(rn(t), ṙn(t),nνn
(t, ·))dt

≥
J∑

j=1

∫ tj+1

tj

Lδ
s(rn(tj), ṙn(t),nνn

(t, ·))dt

≥
J∑

j=1

Δ ·Lδ
s

⎛⎝rn(tj),

∫ tj+1

tj
ṙn(t)dt

Δ
,

∫ tj+1

tj
nνn

(t, ·)dt
Δ

⎞⎠dt

=
J∑

j=1

Δ ·Lδ
s

(
rn(tj),

rn(tj+1)−rn(tj)

Δ
,
Fn(tj+1, ·)−Fn(tj , ·)

Δ

)
. (A.8)

Define the functions rJ , FJ as

rJ(t)=r(tj), FJ(t, ·)=F (tj , ·) for tj≤ t< tj+1,j=1, . . . ,J

and let

rJ(t) :=rJ(t+Δ), F J(t, ·) :=FJ(t+Δ, ·) for 0≤ t<T −Δ.

By Equation (A.8), we have

liminf
n→∞

∫ T

0

Ls(rn(t), ṙn(t),nνn
(t, ·))dt

≥
J∑

j=1

∫ tj+1

tj

liminf
n→∞ Lδ

s

(
rn(tj),

rn(tj+1)−rn(tj)

Δ
,
Fn(tj+1, ·)−Fn(tj , ·)

Δ

)
dt

≥
J−1∑
j=1

∫ tj+1

tj

Lδ
s

(
rJ(t),

rJ(t)−rJ(t)

Δ
,
F J(t, ·)−FJ(t, ·)

Δ

)
dt

=

∫ T−Δ

0

Lδ
s

(
rJ(t),

rJ(t)−rJ(t)

Δ
,
F J(t, ·)−FJ(t, ·)

Δ

)
dt.

Now we use the nested partitions Jk=2k, so that Δk=T/2k and a corresponding se-
quence δk converges to zero. By Fatou’s Lemma,

liminf
k→∞

∫ T−Δk

0

Lδk
s

(
rJk

(t),
rJk(t)−rJk

(t, ·)
Δ

,
F Jk(t, ·)−FJk

(t, ·)
Δ

)
dt

≥
∫ T

0

liminf
k→∞

χ{t≤T−Δk}L
δk
s

(
rJk

(t),
rJk(t)−rJk

(t, ·)
Δ

,
F Jk(t, ·)−FJk

(t, ·)
Δ

)
dt

≥
∫ T

0

Ls(r(t), ṙ(t),nν(t, ·))dt.

So we have established the lower semicontinuity of Is(r,ν).
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The lower semicontinuity of If (r,ν) can be done similarly. Recall the definition of
Sδ(z,w) in Equation (3.18). We have that Sδ(z,w) is lower semicontinuous in δ, z,
and w and convex in w by lemmas A.1 and A.2. With exactly the procedure as with
proving the lower semicontinuity of Is(r,ν), we can establish

liminf
n→∞

∫ T

0

S(rn(t),nνn
(t, ·))dt≥

∫ T−Δ

0

Sδ

(
rJ(t),

F J(t, ·)−FJ(t, ·)
Δ

)
dt

for a fine enough partition. Again, we consider the sequence of nested partition Jk=2k

and Δk=T/2k. By Fatou’s Lemma and the lower semicontinuity of S,

liminf
k→∞

∫ T−Δk

0

Sδk

(
rJk

(t),
F Jk(t, ·)−FJk

(t, ·)
Δ

)
dt

≥
∫ T

0

liminf
k→∞

χ{t≤T−Δk}S
δk

(
rJk

(t),
F Jk(t, ·)−FJk

(t, ·)
Δ

)
dt

≥
∫ T

0

S(r(t),nν(t, ·))dt.

Thus, we obtain the lower semicontinuity of If (r,ν). The proof of Equations (A.6) and
(A.7) are similar.

Lemma A.9. Given r∈Dd[0,T ], ν ∈ML[0,T ], and ε>0, there exist step functions
θ(t)∈Rd and α(t)∈RD such that

Is(r,ν,θ)≥ Is(r,ν)−ε, (A.9)

Iδs (r,ν,θ)≥ Iδs (r,ν)−ε, (A.10)

and

If (r,ν,α)≥ If (r,ν)−ε, (A.11)

Iδf (r,ν,α)≥ Iδf (r,ν)−ε. (A.12)

The proof of Equations (A.9) and (A.10) can be referred to Lemma 5.43 in [26] and
the proof of Equations (A.11) and (A.12) is similar. We will outline the main procedure
here.

Proof. First, we consider Equation (A.9). If r is not absolutely continu-
ous, Is(r,ν,α)=∞ by definition, so nothing needs to be proved. Now let us con-
sider the case that r is absolutely continuous. For convenience, let Ls(z,β,w,p) :=
〈p,β〉−Hs(z,p,w). Since by definition Ls(z,β,w,p)≤Ls(z,β,w) for any p, we have
for B large enough ∫ T

0

χ{‖ṙ(t)‖≥B}Ls(r(t), ṙ(t),nν(t, ·),θ(t))dt

≤
∫ T

0

χ{‖ṙ(t)‖≥B}Ls(r(t), ṙ(t),nν(t, ·))dt
≤ ε/4.
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by Lemma A.7. Choose θ1(t)=0 whenever ‖ṙ(t)‖≥B or ṙ(t) is not in C as defined in
Equation (2.12). Let R := sup0≤t≤T ‖r(t)‖. Since r is continuous, R is finite. Simply

replacing λi by
∑D

j=1λi(z,j)wj in Lemma 5.23 of [26], we have for B1 large enough,

sup
|p|≤B1

Ls(z,β,w,p)≥Ls(z,β,w)− ε

8T

for all ‖z‖≤R, ‖β‖≤B in C and w in ΔD. So, for any (z,β,w) in bounded set

A :=
{‖z‖≤R,β∈C,‖β‖≤B,w∈ΔD

}
,

there exist a pzβw with ‖pzβw‖≤B1 such that

Ls(z,β,w,pzβw)≥Ls(z,β,w)− ε

4T
.

On the bounded set {‖z‖≤R,β∈C,‖β‖≤B,w∈ΔD,‖p‖≤B1

}
,

the function Ls(z,β,w,p) is uniformly continuous. What’s more, by lemmas 5.22 and
5.33 in [26], Ls(z,β,w) is continuous in A. So, given any (z,β,w)∈A, there exist a
δzβw>0 such that

Ls(z̃,β̃,w̃,pzβw)≥Ls(z̃,β̃,w̃)− ε

2T

holds for any (z̃,β̃, )̃∈Ozβw∩A, where Ozβw is the δzβw-neighborhood of (z,β,w).
By the Heine–Borel theorem, we can choose finite number of Oziβjwk to cover A. This
means that

Ls(z,β,w,pziβjwk)≥Ls(z,β,w)− ε

2T

whenever ‖z−zi‖+‖β−βj‖+‖w−wk‖≤ δziβjwk .

Define the function θ1(t)=pziβjwk whenever ‖r(t)−zi‖+‖ṙ(t)−βj‖+‖nν(t, ·)−
wk‖≤ δziβjwk with some tie-breaking rule. The function θ1(t) takes a finite number of
values. It may not be constant on intervals of time. So we approximate θ1(t) by a step
function. Choose η small enough such that∫ T

0

χ{t∈B}Ls(r(t), ṙ(t),nν(t, ·))dt≤ ε

4

whenever the set B has measure less than η. Since θ1(t) is a simple function, we can
approximate it by a step function θ, and it agrees with θ1 outside of a set of measure η
(c.f. [25]).We finish the proof for Equation (A.9) by collecting all approximations above.

For the proof for Equation (A.11), we take advantage of Lemma 5.23 in [26] again

by replacing λi with
∑D

j=1wiqij . We have for C large enough

sup
‖σ‖≤C

S(z,w,σ)≥S(z,w)− ε

4T
.

On the bounded set {‖σ‖≤C,‖z‖≤R,w∈ΔD

}
,

the function S(z,w,σ) is uniformly continuous. With the similar strategy for Ls, we
can find the desired step function α. So we finish the proof for Equation (A.11). The
proof for Iδs and Iδf are similar.
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A.2. Part 2. Proof of lemmas related to the lower bound estimate.
Proof. ( Proof of Lemma 3.9.) Since S(z,w) is bounded by

Q :=
∑D

i,j=1 sup
z

qij(z), there exists (η(s),ψ(s))∈S for any s∈ [tm,tm+1] such that

D∑
i=1

ψi(s)

D∑
j=1

(
ηij(s)log

ηij(s)

qij(y(s))
+qij(y(s))−ηij(s)

)
≤S(y(s),nν(s, ·))+ε

and

|ψi(s)−nν(s,i)|<ε/(8DT )

by Lemma 8.61 in [26]. For each fixed s∈ [tm,tm+1], there exists δs>0 such that

D∑
i=1

ψi(s)

D∑
j=1

(
ηij(s)log

ηij(s)

qij(y(s))
+qij(y(s))−ηij(s)

)
≤S(y(t),nν(t, ·))+2ε

and

|ψi(s)−nν(t,i)|<ε/(4DT )

hold for any t∈Os=(s−δs,s+δs)∩ [tm,tm+1]. By the Heine-Borel theorem, we can
choose finite number of Osk in {Os}s∈[tm,tm+1]

to cover [tm,tm+1]. This means that

there exists a further subdivision of interval [tm,tm+1] (i.e. tm= tm0<tm1< · · ·<tmKm
=

tm+1) and related (ψm(sk),η
m(sk))∈S such that, for all t∈ [tmk,tm,k+1],

D∑
i=1

ψm
i (sk)

D∑
j=1

(
ηmij (sk)log

ηmij (sk)

qij(y(t))
+qij(y(t))−ηmij (sk)

)
≤S(y(t),nν(t, ·))+2ε.

Since logqij(z) are bounded and Lipschitz continuous in z, we can establish that
S(z,w) is absolutely continuous in z, and this absolute continuity is uniform in w∈ΔD.
To see this, we only need to show that the function

f(x,w) := sup
σ∈RD

⎛⎝− D∑
i,j=1

wixij

(
e〈σ,eij〉−1

)⎞⎠
is absolutely continuous in x=(x11,x12, . . . ,xDD)∈ [1/Λ,Λ]D2

(as defined in Equation

(2.11)), uniformly in w∈ΔD. For any x,x+Δx∈ [1/Λ,Λ]D2

with ‖Δx‖≤1/4Λ, let
h=1/4Λ and r=‖Δx‖/(h+‖Δx‖), and define q=x+Δx/r. With this construction,

we have q∈ [1/2Λ,M+1/2Λ]D
2

, f(x,w), f(x+Δx,w), f(q,w)∈ [0,(Λ+1/2Λ)D2], and
x+Δx=(1−r)x+rq. From the convexity of f(x,w) in x, we have

f(x+Δx,w)≤ (1−r)f(x,w)+rf(q,w),

and thus

f(x+Δx,w)−f(x,w)≤ r(f(q,w)−f(x,w))≤4Λ
(
Λ+

1

2Λ

)
D2‖Δx‖.
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The absolute continuity in z and uniformity in w of S(z,w) ensures that the estimate

S(y(t),nν(t, ·))≤S(r(t),nν(t, ·))+ε

holds when J is large enough.
To simplify the notation, we will rewrite ηm(sk) as ηmk and ψm(sk) as ψmk. So,

for each m, we have

Km−1∑
k=0

∫ tm,k+1

tmk

D∑
i=1

ψmk
i

D∑
j=1

(
ηmk
ij log

ηmk
ij

qij(y(t))
+qij(y(t))−ηmk

ij

)
dt

≤
∫ tm+1

tm

S(r(t),nν(t, ·))dt+3(tm+1− tm)ε.

The proof is completed.

Proof. (Proof of Lemma 3.10.) Define

f̃(μ,λ(z, ·),w) :=

S∑
i=1

( D∑
j=1

λi(z,j)wj−μi+μi log
μi∑D

j=1λi(z,j)wj

)
and

L̃s(z,β,w)= inf
μ∈Kβ

f̃(μ,λ(z, ·),w).

Taking advantage of Theorem 5.26 of [26], we have

L̃s(z,β,w)=Ls(z,β,w). (A.13)

We will show that, for any B1, L̃s(z,β,w) is continuous in z and w, uniformly in β in

V :={β∈C,‖β‖≤B1},
where C is the cone defined in Equation (2.12).

By Lemma 5.20 of [26], we can find a constant B2 such that, for any β∈V there
exists a μ∈Kβ with ‖μ‖≤B2. Therefore, for all β∈V and any μ∈Kβ with ‖μ‖≤B2,

L̃s(z
′,β,w′)− L̃s(z,β,w)

≤f̃(μ,λ(z′, ·),w′)− L̃s(z,β,w)

≤f̃(μ,λ(z, ·),w′)− L̃s(z,β,w)+C1‖z′−z‖
≤f̃(μ,λ(z, ·),w)− L̃s(z,β,w)+C1‖z′−z‖+C2‖w′−w‖

for some positive constants C1 and C2. Now choose μ to minimize L̃s(z,β,w) to
establish that

L̃s(z
′,β,w′)− L̃s(z,β,w)≤C1‖z′−z‖+C2‖w′−w‖. (A.14)

By Lemma 5.17 and Lemma 5.32 of [26] (replacing λi(x) with
∑D

j=1λi(x,j)wj), we
know that there exist positive constants M1, M2, and B so that, for all β∈C with
‖β‖≥B, for all z∈Rd, and all w∈ΔD,

M1‖β‖ log‖β‖≤ L̃s(z,β,w)≤M2‖β‖ log‖β‖.



T. LI AND F. LIN 159

So, for any q∈Dd[0,T ] and any ν̃ ∈M[0,T ],∫ T

0

χ{‖ṙ(t)‖≥B}L̃s(q(t), ṙ(t),nν̃(t, ·))dt

≤
∫ T

0

χ{‖ṙ(t)‖≥B}M2‖ṙ(t)‖ log‖ṙ(t)‖dt

≤
∫ T

0

χ{‖ṙ(t)‖≥B}
M2

M1
L̃s(r(t), ṙ(t),nν(t, ·))dt

:=ε(B). (A.15)

By Lemma A.7, we have that, ε(B)→0 as B→∞. Combining Equations (A.14) and
(A.15), we have for any ε>0, there exists a δ>0 such that

sup
0≤t≤T

‖q(t)−r(t)‖<δ and sup
0≤t≤T

‖nν̃(t, ·)−nν(t, ·)‖<δ

implies ∣∣∣∣∣
∫ T

0

L̃s(r(t), ṙ(t),nν(t, ·))dt−
∫ T

0

L̃s(q(t), ṙ(t),nν̃(t, ·))dt
∣∣∣∣∣≤ ε. (A.16)

With this continuity property, we have∫ T

0

L̃s(r(t), ṙ(t),nν(t, ·))dt

=

J−1∑
m=0

∫ tm+1

tm

L̃s(r(t), ṙ(t),nν(t, ·))dt

≥
J−1∑
m=0

∫ tm+1

tm

L̃s(r(tm), ṙ(t),nπ(tm, ·))dt−ε

≥
J−1∑
m=0

Δ · L̃s

(
r(tm),

r(tm+1)−r(tm)

Δ
,nπ(tm, ·)

)
−ε.

By the definition of L̃s, for each m, we have μm∈Kβm
such that

L̃s

(
r(tm),

r(tm+1)−r(tm)

Δ
,nπ(tm, ·)

)
≥

S∑
i=1

(
λπ
i (y(tm))−μm

i +μm
i log

μm
i

λπ
i (y(tm))

)
−ε/T,

and finally we have∫ T

0

L̃s(r(t), ṙ(t),nν(t, ·))dt

≥
J−1∑
m=0

Δ ·
S∑

i=1

(
λπ
i (y(tm))−μm

i +μm
i log

μm
i

λπ
i (y(tm))

)
−2ε
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≥
∫ T

0

S∑
i=1

(
λπ
i (y(t))−μm

i +μm
i log

μm
i

λπ
i (y(t))

)
dt−3ε. (A.17)

Lemma 3.10 is proved by combing (A.13) and (A.17).

Proof. (Proof of Lemma 3.11.) We need to prove that, for any bounded contin-
uous function h(t,z),

lim
n→∞

∫ T

0

h(t, ξ̄n(t))dt=

∫ T

0

D∑
i=1

h(t,i)nπ(t,i)dt

in probability. It suffices to prove that for each time interval [tmk,tm,k+1],

lim
n→∞

∫ tm,k+1

tmk

h(t, ξ̄n(t))dt=

∫ tm,k+1

tmk

D∑
i=1

h(t,i)nπ(t,i)dt.

Since ξ̄n lives on only finite states, for any ε>0, there exists δ>0 such that for |tk− t|<δ

|h(t, ξ̄n(t))−h(tk, ξ̄n(t))|<ε

for all t∈ [tmk,tm,k+1].

Take an integer L large enough and define δ̃=(tm,k+1− tmk)/L<δ. Let τl= tmk+ lδ̃
for l=0,1, . . . ,L. We then have

limsup
n→∞

∫ tm,k+1

tmk

h(t, ξ̄n(t))dt=limsup
n→∞

N−1∑
l=0

∫ τl+1

τl

h(t, ξ̄n(t))dt

≤ limsup
n→∞

N−1∑
l=0

∫ τl+1

τl

h(τl, ξ̄n(t))dt+Tε

=
N−1∑
k=0

∫ τl+1

τl

D∑
i=1

h(τl,i)nπ(t,i)dt+Tε

≤
N−1∑
k=0

∫ τl+1

τl

D∑
i=1

h(t,i)nπ(t,i)dt+2Tε

=

∫ tm,k+1

tmk

D∑
i=1

h(t,i)nπ(t,i)dt+2Tε. (A.18)

In Equation (A.18), we utilized the ergodicity of the process ξ̄n on each interval [τl,τl+1).
The convergence can be obtained in the almost sure and L1

P-sense rather than in prob-
ability [6]. Similarly, we can prove

liminf
n→∞

∫ T

0

h(t, ξ̄n(t))dt≥
∫ tm,k+1

tmk

D∑
i=1

h(t,i)nπ(t,i)dt−2Tε.

The proof is completed.

Proof. (Proof of Lemma 3.12.) The goal is to prove that for any ε>0,

lim
n→∞P

(
sup

0≤t≤T
‖z̄n(t)−y(t)‖≥ ε

)
=0.
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For any p∈Rd and ρ>0, we have the martingale

Mt=exp

{
〈z̄n (t)−y(t),ρp〉

−
∫ t

0

S∑
i=1

(
nμi(s)

λi(z̄n(s), ξ̄n(s))

λπ
i (y(s))

(e〈ρp,ui/n〉−1)−μi(s)〈ρp,ui〉
)
ds

}

=exp

{
〈z̄n (t)−y(t),ρp〉

−
∫ t

0

S∑
i=1

(
μi(s)

λi(z̄n(s), ξ̄n(s))−λπ
i (y(s))

λπ
i (y(s))

〈ρp,ui〉

+μi(s)
λi(z̄n(s), ξ̄n(s))

λπ
i (y(s))

(
n(e〈ρp,ui/n〉−1)−〈ρp,ui〉

))
ds

}
.

Recall that Assumption 2.2 and μi(t) is piecewise constant and bounded. We can
perform similar estimate as in Lemma A.5 to obtain

P

(
sup

0≤t≤T

∥∥∥∥z̄n(t)−y(t)−
∫ t

0

S∑
i=1

μi(s)
λi(z̄n(s), ξ̄n(s))−λπ

i (y(s))

λπ
i (y(s))

dsui

∥∥∥∥≥ ε

)
≤exp

(
−nεc1 log(εc2)

)
, (A.19)

where c1 and c2 are positive constants. By Lemma 3.11, we have∫ t

0

λi(z̄n(s), ξ̄n(s))ds−
∫ t

0

λπ
i (y(s))ds

=

(∫ t

0

λi(z̄n(s), ξ̄n(s))ds−
∫ t

0

λi(y(s), ξ̄n(s))ds

)

+

⎛⎝∫ t

0

D∑
j=1

λi(y(s),j)nν̄n(s,j)ds−
∫ t

0

λπ
i (y(s))ds

⎞⎠
�K

∫ t

0

‖z̄n(s)−y(s)‖ds+Bn, (A.20)

where

Bn= sup
t∈[0,T ]

∣∣∣∣∣∣
D∑

j=1

∫ t

0

λi(y(s),j)
(
nν̄n

(s,j)−nπ(s,j)
)
ds

∣∣∣∣∣∣→0 (A.21)

as n goes to infinity for t≤T .
Define C=dAUTΛ, where

A= max
t∈[0,T ]

max
i=1,...,S

μi(t) and U = max
i=1,...,S

‖ui‖.

Combining Equations (A.19), (A.20), and (2.11), we have

P

(
sup

0≤t≤T

(
‖z̄n(t)−y(t)‖−CK

∫ t

0

‖z̄n(s)−y(s)‖ds−CBn

)
≥ ε

)
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≤P
(

sup
0≤t≤T

∥∥∥∥z̄n(t)−y(t)−
∫ t

0

S∑
i=1

μi(t)
λi(z̄n(s), ξ̄n(s))−λπ

i (y(s))

λπ
i (y(s))

dsui

∥∥∥∥≥ ε

)
≤exp

(
−nεc1 log(εc2)

)
. (A.22)

From Equation (A.22) and Gronwall’s inequality, we obtain

P

(
sup

0�t�T
‖z̄n(t)−y(t)‖� (ε+CBn)e

CKT

)
�P

(
sup

0�t�T

(
‖z̄n(t)−y(t)‖−CK

∫ t

0

‖z̄n(s)−y(s)‖ds
)
� ε

)
� exp

(
−nεc1 log(εc2)

)
.

Combing the condition (A.21) and the inequality

P

(
sup

0�t�T
‖z̄n(t)−y(t)‖�2εeCKT

)
≤P

(
sup

0�t�T
‖z̄n(t)−y(t)‖� (ε+CBn)e

CKT

)
+P

(
Bn�

ε

C

)
,

we finish the proof.
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