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GLOBAL WELL-POSEDNESS AND PULLBACK ATTRACTORS FOR
A TWO-DIMENSIONAL NON-AUTONOMOUS MICROPOLAR

FLUID FLOWS WITH INFINITE DELAYS∗

CAIDI ZHAO† AND WENLONG SUN‡

Abstract. This paper studies the non-autonomous micropolar fluid flows in two-dimensional
bounded domains with external forces containing infinite delay effects. The authors first prove the
global well-posedness of the weak solutions and then establish the existence of the pullback attractors
for the associated process.
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1. Introduction
The micropolar fluid flows were first formulated by Eringen [15] in 1966, which

describe fluids consisting of randomly oriented particles suspended in a viscous medium.
According to [26], the motion of the micropolar fluid flows can be described by the
following equations:

∂u

∂t
−(ν+νr)Δu−2νr∇×ω+(u ·∇)u+∇p=f, (1.1)

∇·u= 0, (1.2)

∂ω

∂t
−(ca +cd)Δω+4νrω+(u ·∇)ω−(c0 +cd−ca)∇(∇·ω)−2νr∇×u= f̃ , (1.3)

where u= (u1,u2,u3) is the velocity, p represents the pressure, ω= (ω1,ω2,ω3) is the
microrotation field interpreted as the angular velocity field of rotation of particles.
f = (f1,f2,f3) and f̃ = (f̃1, f̃2, f̃3) are external force and moments, respectively. The
positive parameters ν,νr,c0,ca,cd denote the viscosity coefficients. In fact, ν is the
usual Newtonian viscosity and νr the microrotation viscosity. From [15,26], we see that
Equations (1.1)–(1.3) express the balance of momentum, mass and moment of momen-
tum, accordingly. If νr = 0 and ω= (0,0,0), then Equations (1.1)–(1.3) reduce to the
incompressible Navier–Stokes equations. Therefore, the equations of micropolar fluid
flows can be regarded as a generalization of the Navier–Stokes equations in the sense
that they take into account the microstructure of the fluid. One can see, e.g. [26, 27],
for physical background.

Due to the wide applications in the real world, the micropolar fluid flows have
been well studied by some mathematicians and physicists. First, we must mention
that �Lukaszewicz has obtained fruitful results in his monograph [26]. Also, a series of
papers are devoted to the existence and uniqueness of solutions (see, e.g. [14,16,17,23–
28]). At the same time, the long time behavior of solutions has been investigated from
various aspects. For example, the existence and estimation of Hausdorff and fractal
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dimension of the L2-global attractor was studied in [27]; the existence of H2-compact
global attractor was proved in [9]; the global and uniform attractor on unbounded
domain was verified in [13] and [29, 37, 41], respectively; the uniform attractor of non-
homogeneous micropolar fluid flows in non-smooth domains was obtained in [10]; the
H1-pullback attractor was obtained in [11,30]; the existence of L2-pullback attractor in
Lipschitz bounded domain with non-homogeneous boundary conditions was established
in [12]. The pullback asymptotic behaviors of solutions for non-autonomous micropolar
fluid flows in two-dimensional bounded domains was investigated in [44].

However, to our knowledge, there is not many references discussing the micropolar
fluid flows with infinite delays so far. As we know, delay terms appear naturally, for
instance as effects in wind tunnel experiments. Also, the delay situations may occur as
well, when we want to control the system via applying a force which considers not only
the present state but also the history state of the system.

In this paper, we consider the situation that the velocity component in the x3-
direction is zero and the axes of rotation of particles are parallel to the x3-axis. That
is, u= (u1,u2,0), ω= (0,0,ω3), f = (f1,f2,0) and f̃ = (0,0, f̃3). Then we discuss the fol-
lowing equations of two-dimensional non-autonomous incompressible micropolar fluid
flows with infinite delays:

∂u

∂t
−(ν+νr)Δu−2νr∇⊥ω+(u ·∇)u+∇p=f(t,x)+g(t,ut), t>τ, x∈Ω, (1.4)

∂ω

∂t
−αΔω+4νrω−2νr∇×u+(u ·∇)ω= f̃(t,x)+ g̃(t,ωt), t>τ, x∈Ω, (1.5)

∇·u= 0, in (τ,+∞)×Ω, (1.6)

u= 0, ω= 0, on (τ,+∞)×∂Ω, (1.7)

(u(τ +s,x),ω(τ +s,x)) =φ(s,x), s∈ (−∞,0], τ ∈R, x∈Ω, (1.8)

where α := (ca +cd), x := (x1,x2)∈Ω, t>τ for some τ ∈R, and Ω⊂R
2 is an open and

bounded domain with smooth boundary ∂Ω, such that the following Poincaré inequality
holds:

λ1‖ϕ‖2L2(Ω)≤‖∇ϕ‖2L2(Ω), ∀ϕ(x)∈H1
0 (Ω), (1.9)

where λ1>0 denotes the first eigenvalue of the operator −Δ in L2(Ω) with domain
H1

0 (Ω)∩H2(Ω) and with the Dirichlet boundary condition. Note that λ1 is a constant
depending only on Ω.

In Equations (1.4)–(1.8), the unknown vector function u := (u1,u2) is the velocity
field of the fluid, and the unknown scalar functions p and ω are its pressure and angular
velocity, respectively. f(t,x) := (f1,f2) is the external force and f̃(t,x) is the scalar
moments, respectively. The vector function g(t,ut) := (g1,g2) and scalar function g̃(t,ωt)
are additional external forces containing some hereditary characteristics ut and ωt, which
are defined on (−∞,0] as follows:

ut =ut(·) :=u(t+ ·), ωt =ωt(·) :=ω(t+ ·), t≥ τ. (1.10)

In addition, φ(s,x) = (u(τ +s,x),ω(τ +s,x)) = (uτ ,ωτ ) is the initial datum in the interval
of delay time (−∞,0], and

∇×u :=
∂u2

∂x1
− ∂u1

∂x2
and ∇⊥ω := (

∂ω

∂x2
,− ∂ω

∂x1
).
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The first purpose of the present paper is to prove the global well-posedness of
the weak solutions for Equations (1.4)–(1.8). The main arguments used here are the
Faedo–Galerkin approximation and energy equality, as well as the compact embedding
between the Sobolev spaces. The second goal of this paper is to establish the existence of
pullback attractors for fixed bounded sets. To this end, we verify some useful estimates
for the solutions, and by so we prove the existence of the pullback absorbing set for the
associated process {U(t,τ)}t≥τ . Then we establish the asymptotically compactness of
the process {U(t,τ)}t≥τ and obtain the existence of pullback attractors.

It is worth mentioning that Caraballo and Real have studied the asymptotic be-
havior of the Navier–Stokes equations with finite delays in [6, 7]. Later, Maŕın-Rubio,
Real, and Valero in [34] extended the results of [7] to unbounded domains. Recently,
Maŕın-Rubio, Real, and Valero proved the global well-posedness of the weak solutions
for the two-dimensional Navier–Stokes equations with an external force containing in-
finite delays in [36]. Also, they obtained the existence of pullback attractors. We want
to point out that the idea of this paper originates from paper [36]. Compared with the
Navier–Stokes equations studied in [36], the equations of micropolar fluid flows contain
the angular velocity field ω of the micropolar particles, which leads to a different nonlin-
ear term B(u,w) and an additional term N(w) in the abstract equation (see Equation
(3.1)). Due to these differences, more delicate estimates and analysis are required in
our studies.

The rest of the paper is organized as follows. Section 2 is preliminaries. Section 3
is devoted to the proof of the global well-posedness of the weak solutions for Equations
(1.4)–(1.8). In Section 4, we first concentrate on proving the existence of the pullback
attractors. Then we end the paper with two remarks on the extensions of our studies.

2. Preliminaries
In this section, we first introduce some notations and operators. Then we put

the Equations (1.4)–(1.8) into an abstract form and specify the definition of its weak
solutions.

Let’s denote by Lp(Ω) and Wm,p(Ω) respectively the usual Lebesgue space and
Sobolev space (see [1, 3, 4]) endowed with norms ‖·‖p and ‖·‖m,p as

‖ϕ‖p :=
(∫

Ω

|ϕ|pdx
)1/p

and ‖ϕ‖m,p :=
( ∑
|β|≤tm

∫
Ω

|∂βϕ|pdx
)1/p

.

Especially, we denote ‖·‖ :=‖·‖2, Hm(Ω) :=Wm,2(Ω) and H1
0 (Ω) the closure of {ϕ∈

C∞0 (Ω)} with respect to H1(Ω) norm. Then we introduce the following function spaces:

V :={ϕ∈C∞0 (Ω)×C∞0 (Ω)|ϕ= (ϕ1,ϕ2),∇·ϕ= 0} ,
H := “completion of V in L2(Ω)×L2(Ω) norm with norm ‖·‖H and dual space H∗,”

V := “completion of V in H1(Ω)×H1(Ω) norm with norm ‖·‖V and dual space V ∗,”

Ĥ := “H×L2(Ω) with norm ‖·‖
̂H and dual space Ĥ∗,”

V̂ := “V ×H1
0 (Ω) with norm ‖·‖

̂V and dual space V̂ ∗.”

Note that ‖·‖
̂H and ‖·‖

̂V are defined as

‖(u,v)‖
̂H := (‖u‖2H +‖v‖2)1/2, ‖(u,v)‖

̂V := (‖u‖2V +‖v‖21,2)1/2.

Throughout this article, we simplify the notations ‖·‖H and ‖·‖
̂H by the same notation

‖·‖ if there is no confusion occurs. According to the above notations, we further denote

Lp(I;X) := “space of strongly measurable functions on the interval I,



100 NON-AUTONOMOUS MICROPOLAR FLUID FLOWS WITH INFINITE DELAYS

with values in a Banach space X, endowed with norm

‖ϕ‖Lp(I;X) :=
(∫

I

‖ϕ‖pXdt
)1/p

, for 1≤p<∞;”

C(I;X) := “space of continuous functions on the interval I, with values

in the Banach space X, endowed with the usual norm;”

L2
loc(I;Ĥ) :=“space of square locally integrable functions from the interval I to Ĥ;”

W 1,2
loc (I;Ĥ) := {G| G∈L2

loc(I;Ĥ)andG′∈L2
loc(I;Ĥ)}, here “ ′ ” means the

generalized derivative with respect to time variable.

In addition, we denote by (·, ·) the inner product in L2(Ω), H, or Ĥ, and by 〈·, ·〉 the

dual pairing between V and V ∗ or between V̂ and V̂ ∗.

To write Equations (1.4)–(1.8) into the abstract form, we further introduce three
operators. First, the operator A is defined as

〈Aw,φ〉:= (ν+νr)(∇u,∇Φ)+α(∇ω,∇φ3)

= (ν+νr)

2∑
i,j=1

∫
Ω

∂ui

∂xj

∂φi

∂xj
dx+α

2∑
i=1

∫
Ω

∂ω

∂xi

∂φ3

∂xi
dx, (2.1)

for any w= (u,ω) and φ= (Φ,φ3) belonging to V̂ , where u= (u1,u2)∈V and Φ =

(φ1,φ2)∈V . In fact, D(A) = V̂ ∩(
H2(Ω)

)3
. Secondly, the operator B(·, ·) is defined

via

〈B(u,ψ),φ〉 := ((u ·∇)ψ,φ) =

3∑
j=1

2∑
i=1

∫
Ω

ui
∂ψj

∂xi
φjdx,

for any u= (u1,u2)∈V , ψ= (ψ1,ψ2,ψ3)∈ V̂ and any φ= (φ1,φ2,φ3)∈ V̂ . Thirdly, the
operator N(·) is defined by

N(w) := (−2νr∇⊥ω,−2νr∇×u+4νrω), ∀w= (u,ω)∈ V̂ with u= (u1,u2)∈V.
Some useful estimations for the operators A, B(·, ·), and N(·) have been established

in [27,29]. For completeness, we recall them as follows.

Lemma 2.1. (see [27, 29])
(1) There are two positive constants c1 and c2 such that

c1〈Aw,w〉≤‖w‖2
̂V
≤ c2〈Aw,w〉, ∀w∈ V̂ . (2.2)

Furthermore, for any w∈D(A), there holds

min{ν+νr,α}‖∇w‖2≤〈Aw,w〉≤‖w‖‖Aw‖≤λ
− 1

2
1 ‖∇w‖‖Aw‖. (2.3)

(2) There exists some positive constant λ which depends only on Ω, such that for

any (u,ψ,ϕ)∈V × V̂ × V̂ there holds

|〈B(u,ψ),ϕ〉|≤
{
λ‖u‖ 1

2 ‖∇u‖ 1
2 ‖ϕ‖ 1

2 ‖∇ϕ‖ 1
2 ‖∇ψ‖,

λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖ψ‖ 1
2 ‖∇ψ‖ 1

2 ‖∇ϕ‖. (2.4)

Moreover, if (u,ψ,ϕ)∈V ×D(A)×D(A), then

|〈B(u,ψ),Aϕ〉|≤λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇ψ‖ 1
2 ‖Aψ‖ 1

2 ‖Aϕ‖. (2.5)
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(3) There exists a positive constant c(νr) such that

‖N(ψ)‖≤ c(νr)‖ψ‖
̂V , ∀ψ∈ V̂ . (2.6)

In addition,

−〈N(ψ),Aψ〉≤ 1

4
‖Aψ‖2 +c2(νr)‖ψ‖2

̂V
, ∀ψ∈D(A), (2.7)

δ1‖ψ‖2
̂V
≤〈Aψ,ψ〉+〈N(ψ),ψ〉, ∀ψ∈ V̂ , (2.8)

hereinafter δ1 := min{ν,α}.
On the base of Lemma 2.1, we further have

Lemma 2.2.

(1) The operator A is linear continuous both from V̂ to V̂ ∗ and from D(A) to Ĥ,

and so is for the operator N(·) from V̂ to Ĥ.

(2) The operator B(·, ·) is continuous from V × V̂ to V̂ ∗. Moreover, for any u∈V
and w∈ V̂ , there holds

〈B(u,ψ),ϕ〉=−〈B(u,ϕ),ψ〉, ∀u∈V, ∀ψ∈ V̂ , ∀ϕ∈ V̂ . (2.9)

Proof.
(1). The continuity of the operators A and N(·) follows directly from Equations

(2.2)–(2.3) and (2.6), respectively. The linearity of the operator A is evident. So we

only need check the linearity of the operator N(·). Indeed, for any φ= (Φ,φ3)∈ V̂ with

Φ = (φ1,φ2) and ψ= (Ψ,ψ3)∈ V̂ with Ψ = (ψ1,ψ2), we have

N(φ)−N(ψ)

=
(−2νr(∇⊥φ3−∇⊥ψ3),−2νr(∇×Φ−∇×Ψ)+4νr(φ3−ψ3)

)
=

(−2νr(
∂φ3

∂x2
− ∂ψ3

∂x2
,−∂φ3

∂x1
+

∂ψ3

∂x1
),−2νr(

∂φ2

∂x1
− ∂φ1

∂x2
− ∂ψ2

∂x1
+

∂ψ1

∂x2
)

+4νr(φ3−ψ3)
)

=
(−2νr(

∂(φ3−ψ3)

∂x2
,−∂(φ3−ψ3)

∂x1
),−2νr(

∂(φ2−ψ2)

∂x1
− ∂(φ1−ψ1)

∂x2
)

+4νr(φ3−ψ3)
)

=
(−2νr∇⊥(φ3−ψ3),−2νr∇×(Φ−Ψ)+4νr(φ3−ψ3)

)
=N(φ−ψ). (2.10)

(2). The continuity of the operators B(·, ·) follows directly from Equation (2.4).

We next verify Equation (2.9). In fact, for any u∈V and ψ∈ V̂ , we have by direct
computation that

〈B(u,ψ),ψ〉= ((u ·∇)ψ,ψ) =

3∑
j=1

2∑
i=1

∫
Ω

ui
∂ψj

∂xi
ψjdx=

3∑
j=1

2∑
i=1

1

2

∫
Ω

ui

∂ψ2
j

∂xi
dx

=−1

2

3∑
j=1

2∑
i=1

∫
Ω

ψ2
j

∂ui

∂xi
dx=−1

2

3∑
j=1

∫
Ω

ψ2
j (∇·u)dx= 0. (2.11)

Hence, Equation (2.9) is valid as a consequence of Equation (2.11).



102 NON-AUTONOMOUS MICROPOLAR FLUID FLOWS WITH INFINITE DELAYS

3. Global well-posedness of the weak solutions
The task of this section is to establish the global well-posedness of the weak solutions

to Equations (1.4)–(1.8).
First, according to the notations and operators introduced in Section 2, we can

formulate the weak version of Equations (1.4)–(1.8) as follows:

∂w

∂t
+Aw+B(u,w)+N(w) =F (t)+G(t,wt), t>τ, (3.1)

w|t=τ =wτ =w(τ +s) = (u(τ +s),ω(τ +s)) :=φ(s), s∈ (−∞,0], (3.2)

where

w= (u,ω), F (t) =F (t,x) := (f(t,x), f̃(t,x)), G(t,wt) := (g(t,ut), g̃(t,wt)), (3.3)

and the functions ut and wt are defined by Equation (1.10). Note that Equation (3.1)

is understood in the distribution sense of D′(τ,T ;V̂ ∗).

In order to deal with the infinite delays, we introduce the space Cγ(Ĥ) with some
suitable γ >0 as follows:

Cγ(Ĥ) :={ϕ∈C((−∞,0];Ĥ)| ∃ lim
s→−∞eγsϕ(s)∈ Ĥ}, (3.4)

which is a Banach space with the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs‖ϕ(s)‖.

We now specify the definition of weak solutions to problem (3.1)–(3.2).

Definition 3.1. For each T >τ , if a function w∈C((−∞,T ];Ĥ)∩L2(τ,T ;V̂ ) with

wτ =φ(s)∈Cγ(Ĥ) such that for t∈ (τ,T ) and for any ϕ∈ V̂ the equation

d

dt
(w,ϕ)+〈Aw,ϕ〉+〈B(u,w),ϕ〉+〈N(w),ϕ〉= 〈F (t),ϕ〉+(G(t,wt),ϕ) (3.5)

holds in the distribution sense of D′(τ,T ). Then w is called a weak solution of problem
(3.1)–(3.2) in the interval (−∞,T ].

To prove the global well-posedness of the weak solutions to problem (3.1)–(3.2), we
need formulate some assumptions on the functions F and G.

(I) Assume that for each T >τ , F (·,x) = (f(·,x), f̃(·,x))∈L2(τ,T ;V̂ ∗).

(II) Assume that G : [τ,T ]×Cγ(Ĥ) �→G(t,ξ)∈ (L2(Ω))3 satisfies:

(i) For any ξ∈Cγ(Ĥ), the mapping [τ,T ]� t �→G(t,ξ)∈ (L2(Ω))3 is measurable;

(ii) G(·,0) = (0,0,0);

(iii) There exists a constant LG>0 such that for any t∈ [τ,T ] and any ξ,η∈Cγ(Ĥ),

‖G(t,ξ)−G(t,η)‖≤LG‖ξ−η‖γ .
Note that the above conditions (ii) and (iii) imply

‖G(t,ξ)‖≤LG‖ξ‖γ , ∀ξ∈Cγ(Ĥ). (3.6)

We begin with the existence of the weak solutions.
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Theorem 3.1 (Existence). Let assumptions (I) and (II) hold, and suppose that γ

satisfies δ1λ1<2γ. Then for any given initial datum φ(s)∈Cγ(Ĥ) and for any T >
τ , there corresponds at least one weak solution to problem (3.1)–(3.2) in the interval
(−∞,T ].

Proof. We will use three steps to prove Theorem 3.1.
Step One: Local existence and uniqueness of the Galerkin approximate solutions.

We first recall some properties of the operator A defined by Equation (2.1). According
to the classical spectral theory of elliptic operators (see [4, 33]), there exists a sequence
{λn}∞n=1 satisfying

0<λ1≤λ2≤···≤λn≤··· , λn→+∞ asn→∞,

and a sequence of elements {vn}∞n=1⊆D(A), which forms a Hilbert basis of Ĥ and span

{v1,v2, . . . ,vn, . . .} is dense in V̂ , such that

Avn =λnvn, ∀n∈N. (3.7)

Denote Vm := span{v1,v2, . . . ,vm} and consider the projector

Pmw :=

m∑
j=1

(w,vj)vj , w∈ Ĥ or V̂ .

For each T >τ , define the Galerkin approximate solutions of problem (3.1)–(3.2) as

w(m)(t) :=

m∑
j=1

βm,j(t)vj ,

where the coefficients βm,j(t) are desired to satisfy the following Cauchy problem of
ordinary differential equations:

d

dt
(w(m)(t),vj)+〈Aw(m)(t),vj〉+〈B(u(m)(t),w(m)(t)),vj〉+〈N(w(m)(t)),vj〉

=〈F (t),vj〉+(G(t,w
(m)
t ),vj), 1≤ j≤m, t∈ (τ,T ), (3.8)

w(m)(τ +s) =Pmφ(s), s∈ (−∞,0]. (3.9)

The above Cauchy problem of ordinary differential equations with infinite delays fulfills
the conditions for the existence and uniqueness of a local solution in [21, Thereom 1.1].
So we get the local existence and uniqueness of the Galerkin approximate solutions.

Step Two: A priori estimates of the Galerkin approximate solutions. We now deduce
a priori estimates to obtain the global existence of the Galerkin approximate solutions.
Multiplying Equation (3.8) by βm,j(t), summing up for j from 1 to m and then using
Equations (1.9), (2.8), and (2.11), we have

1

2

d

dt
‖w(m)(t)‖2 +

δ1λ1

2
‖w(m)(t)‖2 +

δ1
2
‖w(m)(t)‖2

̂V

≤ 1

2

d

dt
‖w(m)(t)‖2 +δ1‖w(m)(t)‖2

̂V

≤ 1

2

d

dt
‖w(m)(t)‖2 +〈Aw(m)(t),w(m)(t)〉+〈N(w(m)(t)),w(m)(t)〉



104 NON-AUTONOMOUS MICROPOLAR FLUID FLOWS WITH INFINITE DELAYS

= 〈F (t),w(m)(t)〉+(
G(t,w

(m)
t ),w(m)(t)

)
. (3.10)

Since

‖w(m)
t ‖γ = sup

s≤0
eγs‖w(m)(t+s)‖≥‖w(m)(t)‖, τ ≤ t≤T, (3.11)

by Equations (3.6), (3.10)–(3.11), and Cauchy’s inequality,

1

2

d

dt
‖w(m)(t)‖2 +

δ1λ1

2
‖w(m)(t)‖2 +

δ1
2
‖w(m)(t)‖2

̂V

≤〈F (t),w(m)(t)〉+(G(t,w
(m)
t ),w(m)(t))

≤‖F (t)‖
̂V ∗‖w(m)(t)‖

̂V +LG‖w(m)
t ‖γ‖w(m)(t)‖

≤ δ1
4
‖w(m)(t)‖2

̂V
+
‖F (t)‖2

̂V ∗

δ1
+LG‖w(m)

t ‖2γ , (3.12)

hence,

d

dt
‖w(m)(t)‖2 +δ1λ1‖w(m)(t)‖2 +

δ1
2
‖w(m)(t)‖2

̂V

≤
2‖F (t)‖2

̂V ∗

δ1
+2LG‖w(m)

t ‖2γ , t∈ (τ,T ). (3.13)

Let τ ≤θ≤ t≤T . Changing the time variable t by θ, we rewrite Equation (3.13) as

d

dθ
‖w(m)(θ)‖2 +δ1λ1‖w(m)(θ)‖2 +

δ1
2
‖w(m)(θ)‖2

̂V

≤
2‖F (θ)‖2

̂V ∗

δ1
+2LG‖w(m)

θ ‖2γ , θ∈ (τ,T ). (3.14)

Multiplying Equation (3.14) by e−δ1λ1(t−θ) and then integrating it for θ over [τ,t] give

‖w(m)(t)‖2 +
δ1
2

∫ t

τ

e−δ1λ1(t−θ)‖w(m)(θ)‖2
̂V

dθ

≤ e−δ1λ1(t−τ)‖w(m)(τ)‖2 +2

∫ t

τ

e−δ1λ1(t−θ)
(‖F (θ)‖2

̂V ∗

δ1
+LG‖w(m)

θ ‖2γ
)
dθ, (3.15)

by which we get

‖w(m)
t ‖2γ =

(
sup

s∈(−∞,0]

eγs‖w(m)(t+s)‖
)2

≤max
{

sup
s∈(−∞,τ−t]

e2γs‖w(m)(t+s)‖2, sup
s∈(τ−t,0]

e2γs‖w(m)(t+s)‖2
}

= : max{I1,I2 +I3}, (3.16)

where

I1 : = sup
s∈(−∞,τ−t]

e2γs‖w(m)(t+s)‖2,

I2 : = sup
s∈(τ−t,0]

[
e2γs−δ1λ1(t+s−τ)‖w(m)(τ)‖2

]
,
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I3 : = 2 sup
s∈(τ−t,0]

[
e2γs

∫ t+s

τ

e−δ1λ1(t+s−θ)
(‖F (θ)‖2

̂V ∗

δ1
+LG‖w(m)

θ ‖2γ
)
dθ

]
.

We next estimate I1, I2 and I3. On one hand, since δ1λ1<2γ,

I1 = sup
s∈(−∞,τ−t]

e2γs‖Pmφ(t+s−τ)‖2≤ sup
s∈(−∞,τ−t]

e2γs‖φ(t+s−τ)‖2

= sup
s∈(−∞,0]

e2γ[s−(t−τ)]‖φ(s)‖2 = e2γ(τ−t)‖φ(s)‖2γ≤ e−δ1λ1(t−τ)‖φ(s)‖2γ . (3.17)

On the other hand, by direct computation,

I2≤ e−δ1λ1(t−τ)‖w(m)(τ)‖2 = e−δ1λ1(t−τ)‖φ(0)‖2≤ e−δ1λ1(t−τ)‖φ(s)‖2γ , (3.18)

I3≤2

∫ t

τ

e−δ1λ1(t−θ)
(‖F (θ)‖2

̂V ∗

δ1
+LG‖w(m)

θ ‖2γ
)
dθ. (3.19)

Then Equations (3.16)–(3.19) gives

‖w(m)
t ‖2γ≤ e−δ1λ1(t−τ)‖φ(s)‖2γ +2

∫ t

τ

e−δ1λ1(t−θ)
(‖F (θ)‖2

̂V ∗

δ1
+LG‖w(m)

θ ‖2γ
)
dθ.

(3.20)

Using Gronwall’s inequality on Equation (3.20) yields

‖w(m)
t ‖2γ≤ e−(δ1λ1−2LG)(t−τ)‖φ(s)‖2γ +

2

δ1

∫ t

τ

e−(δ1λ1−2LG)(t−θ)‖F (θ)‖2
̂V ∗dθ, (3.21)

which implies that for any given R>0, there corresponds a constant C1(τ,T,R) (de-
pending on the quantities τ , T , R, as well as on the constants δ1, λ1, LG and the given
function F ) such that

‖w(m)
t ‖2γ≤C1(τ,T,R), ∀t∈ [τ,T ], ‖φ(s)‖γ≤R, ∀m≥1. (3.22)

Together, Equations (3.11) and (3.22) imply that

{w(m)(·)}m≥1 is bounded inL∞(τ,T ;Ĥ). (3.23)

We also can get from Equations (3.15) and (3.22) that

δ1
2
e−δ1λ1(t−τ)

∫ t

τ

‖w(m)(θ)‖2
̂V

dθ

≤‖w(m)(τ)‖2 +2

∫ t

τ

e−δ1λ1(t−θ)
(‖F (θ)‖2

̂V ∗

δ1
+LG‖w(m)

θ ‖2γ
)
dθ

≤R2 +2

∫ t

τ

e−δ1λ1(t−θ)
(‖F (θ)‖2

̂V ∗

δ1
+LGC1(τ,T,R)

)
dθ. (3.24)

Similar to Equation (3.22), we see from Equation (3.24) that there exists another con-
stant C2(τ,T,R) such that

‖w(m)(·)‖2
L2(τ,T ;̂V )

≤C2(τ,T,R), ∀m≥1. (3.25)
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Now, using Equation (3.8) and the argument of denseness, we get for any ψ∈ V̂ that

〈(w(m))′(t),ψ〉+〈Aw(m)(t),ψ〉+〈B(u(m)(t),w(m)(t)),ψ〉+〈N(w(m)(t)),ψ〉
= 〈F (t),ψ〉+(G(t,w

(m)
t ),ψ),

which, together with Equations (2.2), (2.4), and (2.6), gives

|〈(w(m))′(t),ψ〉|
≤ |〈Aw(m)(t),ψ〉|+ |〈B(u(m)(t),w(m)(t)),ψ〉|+ |〈N(w(m)(t)),ψ〉|

+|〈F (t),ψ〉|+ |(G(t,w
(m)
t ),ψ)|

≤C3(λ,νr)
(‖w(m)(t)‖

̂V +‖u(m)(t)‖ 1
2 ‖∇u(m)(t)‖ 1

2 ‖w(m)(t)‖ 1
2 ‖∇w(m)(t)‖ 1

2

+‖F (t)‖
̂V ∗ +‖G(t,w

(m)
t )‖)‖ψ‖

̂V

≤C3(λ,νr)
(‖w(m)(t)‖

̂V +‖w(m)(t)‖‖w(m)(t)‖
̂V +‖F (t)‖

̂V ∗

+‖G(t,w
(m)
t )‖)‖ψ‖

̂V , (3.26)

where the positive constant C3(λ,νr) depends only on λ and c(νr), which are as in
Lemma 2.1. Then (3.26) implies

‖(w(m))′(t)‖
̂V ∗

≤C3(λ,νr)
(‖w(m)(t)‖

̂V +‖w(m)(t)‖‖w(m)(t)‖
̂V +‖F (t)‖

̂V ∗ +‖G(t,w
(m)
t )‖). (3.27)

Hence, it follows from Equations (3.6), (3.23), (3.25), and (3.27) that there exists a
constant C4(τ,T,R) such that∫ T

τ

‖(w(m))′(θ)‖2
̂V ∗dθ≤C4(τ,T,R), ∀m≥1, (3.28)

and consequently,

{(w(m))′(·)}m≥1 is bounded inL2(τ,T ;V̂ ∗). (3.29)

By (Equations 3.22)–(3.23), (3.25), (3.29), and the local existence obtained in step one,
we get the global existence of the Galerkin approximate solutions for all time t∈ [τ,T ].

Step Three: Existence of the global weak solutions. We will prove that the limit
function of the Galerkin approximate solutions is a weak solution of problem (3.1)–
(3.2). Using the diagonal procedure, we deduce from Equations (3.22), (3.23), (3.25)
and (3.29) that there exists a subsequence (which is still denoted by) {w(m)}, an element

w∈L∞(τ,T ;Ĥ)∩L2(τ,T ;V̂ ) with w′∈L2(τ,T ;V̂ ∗), and some ξ(t)∈L2(τ,T ;(L2(Ω))3),
such that

w(m) ⇀∗ w weakly star in L∞(τ,T ;Ĥ), m→∞, (3.30)

w(m) ⇀ w weakly in L2(τ,T ;V̂ ), m→∞, (3.31)

(w(m))′ ⇀ w′ weakly in L2(τ,T ;V̂ ∗), m→∞, (3.32)

w(m)−→w strongly in L2(τ,T ;Ĥ), m→∞, (3.33)

G(t,w
(m)
t ) ⇀ ξ(t) weakly in L2(τ,T ;(L2(Ω)3), m→∞. (3.34)

By Equations (3.31)–(3.32) and the compact embedding theorem (see, e.g., [5, 22, 39]),
we have

w(m)∈C([τ,T ];Ĥ), w∈C([τ,T ];Ĥ). (3.35)
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In order to pass to the limit in Equation (3.8) to obtain a weak solution, it is sufficient
to prove the following convergent relations of the nonlinear terms:

lim
m→∞

T∫
τ

〈B(u(m)(t),w(m)(t)),ψ〉dt=

T∫
τ

〈B(u(t),w(t)),ψ〉dt, ∀ψ∈ V̂ , (3.36)

lim
m→∞

T∫
τ

(
G(t,w

(m)
t ),ψ

)
=

T∫
τ

(
G(t,wt),ψ

)
dt, ∀ψ∈ V̂ . (3.37)

Proof. (Proof of Equation (3.36).) By the definition of the operator B(·, ·) and
Equation (2.4), we have

|〈B(u(m),w(m)),ψ〉−〈B(u,w),ψ〉|
= |〈B(u(m)−u,w(m)),ψ〉+〈B(u,w(m)−w),ψ〉|
≤λ‖u(m)−u‖ 1

2 ‖∇(u(m)−u)‖ 1
2 ‖w(m)‖ 1

2 ‖∇w(m)‖ 1
2 ‖∇ψ‖

+λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖w(m)−w‖ 1
2 ‖∇(w(m)−w)‖ 1

2 ‖∇ψ‖, ∀ψ∈ V̂ . (3.38)

Therefore, by Equations (3.25), (3.33), and (3.38), we obtain

∣∣∣∫ T

τ

(〈B(u(m),w(m)),ψ〉−〈B(u,w),ψ〉)dt
∣∣∣

≤λ‖∇ψ‖
∫ t

τ

‖u(m)−u‖ 1
2 ‖∇(u(m)−u)‖ 1

2 ‖w(m)‖ 1
2 ‖∇w(m)‖ 1

2 dt

+λ‖∇ψ‖
∫ t

τ

‖u‖ 1
2 ‖∇u‖ 1

2 ‖w(m)−w‖ 1
2 ‖∇(w(m)−w)‖ 1

2 dt

≤λ‖u(m)−u‖ 1
4

L2(τ,t;H)‖w(m)‖ 1
2

L2(τ,t; ̂H)
‖(u(m)−u)‖ 1

4

L2(τ,t;V )‖w(m)‖ 1
4

L2(τ,t;̂V )
‖ψ‖

̂V

+λ‖u‖ 1
4

L2(τ,t;H)‖w(m)−w‖ 1
4

L2(τ,t; ̂H)
‖u‖ 1

4

L2(τ,t;V )‖(w(m)−w)‖ 1
4

L2(τ,t;̂V )
‖ψ‖

̂V

−→0, as m→∞,

hence Equation (3.36) follows.

Proof. (Proof of Equation (3.37)). From Equations (3.30) and (3.33), we get

w(m)(t)−→w(t) strongly in Ĥ, a.e. t∈ [τ,T ]. (3.39)

Since

w(m)(s2)−w(m)(s1) =

∫ s2

s1

(w(m))′(r)dr in V̂ ∗, ∀s1, s2∈ [τ,T ], (3.40)

we conclude from Equations (3.29) and (3.40) that {w(m)} is equicontinuous on the

interval [τ,T ] with values in V̂ ∗. Note that the injections V̂ ↪→ Ĥ ↪→ V̂ ∗ are dense and

compact. Thus, Equation (3.39), the equicontinuity in V̂ ∗ and the Ascoli–Arzelá theo-
rem give

w(m)(·)−→w(·) strongly in C([τ,T ];V̂ ∗). (3.41)
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It then follows from Equations (3.11), (3.22), (3.35), and (3.41) that for any sequence
{tm}⊆ [τ,T ] with tm→ t as m→∞, it holds that

w(m)(tm)⇀w(t) weakly in Ĥ. (3.42)

In the sequel, we still denote w the function in (−∞,τ ] concatenated with the above
limit in [τ,T ]. We next prove

w(m)(·)−→w(·) strongly in C([τ,T ];Ĥ). (3.43)

If Equation (3.43) is not true, then, by Equation (3.35), there would exists an ε0, a
value t∗∈ [τ,T ] and subsequences (denoted by the same) {w(m)} and {tm}⊆ [τ,T ] with
tm→ t∗, such that

‖w(m)(tm)−w(t∗)‖≥ ε0, ∀m≥1. (3.44)

We shall prove that Equation (3.44) does not hold true. To this end, we shall prove

w(m)(tm)−→w(t∗) strongly in Ĥ as m→∞. (3.45)

Since Equation (3.42) and the lower semicontinuity of the norm yield

‖w(t∗)‖≤ liminf
m→∞ ‖w(m)(tm)‖, (3.46)

and notice that Ĥ is a Hilbert space, it is sufficient to prove that

‖w(t∗)‖≥ limsup
m→∞

‖w(m)(tm)‖. (3.47)

In fact, Equations (3.30)–(3.33) give∫ tm

τ

〈F (r),w(m)(r)〉dr−→
∫ t∗

τ

〈F (r),w(r)〉dr. (3.48)

Also, from Equations (3.6), (3.22), and (3.23), we see that for any s≤ t with s,t∈ [τ,T ]
there corresponds a constant C5 depending on LG,δ1,λ1 and C1(τ,T,R) such that

∣∣∣∫ t

s

(
G(r,w(m)

r ),w(m)(r)
)
dr

∣∣∣≤∫ t

s

( 1

2δ1λ1
‖G(r,w(m)

r )‖2 +
δ1λ1

2
‖w(m)(r)‖2

)
dr

≤
∫ t

s

( L2
G

2δ1λ1
‖w(m)

r ‖2γ +
δ1λ1

2
‖w(m)(r)‖2

)
dr

≤C5(t−s)+
δ1λ1

2

∫ t

s

‖w(m)(r)‖2dr. (3.49)

Now Equations (3.10) and (3.49) yield

1

2
‖w(m)(t)‖2 +

δ1
2

∫ t

s

‖w(m)(r)‖2
̂V

dr

≤ 1

2
‖w(m)(s)‖2 +

∫ t

s

〈F (r),w(m)(r)〉dr+C5(t−s), ∀τ ≤s≤ t≤T. (3.50)

By Equations (3.30)–(3.34), (3.36), and the convergent relation (see [36, (11)])

Pmφ(s)−→φ(s) strongly in Cγ(Ĥ), (3.51)
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we conclude that w∈C([τ,T ];Ĥ) is a solution of the following problem

d

dt
(w(t),v)+〈Aw(t),v〉+〈B(u(t),w(t)),v〉+〈N(w(t)),v〉

=〈F (t),v〉+(ξ(t),v), ∀v∈ V̂ ,

w(τ) =φ(0).

Also, one can check that w(t) satisfies the inequality for any s, t∈ [τ,T ]

1

2
‖w(t)‖2 +δ1

∫ t

s

‖w(r)‖2
̂V

dr

≤ 1

2
‖w(s)‖2 +

∫ t

s

〈F (r),w(r)〉dr+
1

2δ1λ1

∫ t

s

‖ξ(r)‖2dr+
δ1λ1

2

∫ t

s

‖w(r)‖2dr

≤ 1

2
‖w(s)‖2 +

∫ t

s

〈F (r),w(r)〉dr+
1

2δ1λ1

∫ t

s

‖ξ(r)‖2dr+
δ1
2

∫ t

s

‖w(r)‖2
̂V

dr. (3.52)

By Equatins (3.34) and (3.49), and the lower semi-continuity of the norm, we obtain
that ∫ t

s

‖ξ(r)‖2dr≤ liminf
m→∞

∫ t

s

‖G(r,w(m)
r )‖2dr≤2δ1λ1C5(t−s), ∀s, t∈ [τ,T ]. (3.53)

So w also satisfies Equation (3.50).
Now, let’s define two functions Hm(t),H(t) : [τ,T ] �→R as

Hm(t) :=
1

2
‖w(m)(t)‖2−

∫ t

τ

〈F,w(m)(r)〉dr−C5t, (3.54)

H(t) :=
1

2
‖w(t)‖2−

∫ t

τ

〈F,w(r)〉dr−C5t, (3.55)

where C5 comes from Equation (3.49). From Equation (3.50), we deduce for any t′,t′′∈
[τ,T ] with t′≤ t′′ that

1

2
‖w(m)(t′′)‖2≤ 1

2
‖w(m)(t′)‖2 +

∫ t′′

t′
〈F (r),w(m)(r)〉dr+C5(t′′− t′), (3.56)

which implies Hm(t) is a non-increasing function. Moreover, Equation (3.35) implies
Hm(t) is a continuous function for t∈ [τ,T ]. Similarly, H(t) is also a non-increasing and
continuous function with respect to t∈ [τ,T ]. By these facts and Equation (3.39), we
can conclude that

Hm(t)−→H(t), a.e. t∈ [τ,T ]. (3.57)

If t∗ = τ , Equation (3.47) can be trivially obtained from Equations (3.50) and (3.51).
Thus, we can suppose that t∗>τ , and there exists a monotonous increasing sequence
{t̃k}⊆ [τ,T ] such that lim

k→∞
t̃k = t∗ and

lim
m→∞Hm(t̃k) =H(t̃k) for all k∈N. (3.58)

The continuity of H shows that for any ε>0 there corresponds some kε such that

|H(t̃k)−H(t∗)|< ε

2
, for all k≥kε. (3.59)
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Note that Hm is non-increasing and the convergent relation Equation (3.58) holds for
all t̃k, we can take m>m(kε) such that tm>t̃k and have

Hm(tm)−H(t∗)≤Hm(t̃k)−H(t∗)≤|Hm(t̃k)−H(t̃k)|+ |H(t̃k)−H(t∗)|
<

ε

2
+

ε

2
= ε. (3.60)

Therefore, Equations (3.48) and (3.60) yield

limsup
m→∞

Hm(tm) = limsup
m→∞

(1

2
‖w(m)(tm)‖2−

∫ tm

τ

〈F,w(m)(r)〉dr−C5tm

)

=
1

2
limsup
m→∞

‖w(m)(tm)‖2−
∫ t∗

τ

〈F,w(r)〉dr−C5t∗

≤H(t∗) =
1

2
‖w(t∗)‖2−

∫ t∗

τ

〈F,w(r)〉dr−C5t∗, (3.61)

which shows that Equation (3.47) holds. Thus Equation (3.45) follows and Equation
(3.44) does not hold true. Consequently, Equation (3.43) is proved.

Now, from Equations (3.9), (3.43), and (3.51), we deduce that

sup
s≤0

eγs‖w(m)(t+s)−w(t+s)‖

= max
{

sup
s∈(−∞,τ−t]

eγs‖Pmφ(s+ t−τ)−φ(s+ t−τ)‖,

sup
s∈[τ−t,0]

eγs‖w(m)(t+s)−w(t+s)‖
}

≤max
{
eγ(τ−t)‖Pmφ−φ‖γ , max

s∈[τ,t]
‖w(m)(s)−w(s)‖

}
−→0 as m→∞,

which implies

w
(m)
t −→wt in Cγ(Ĥ), ∀t≤T. (3.62)

Then Equation (3.62) and Assumption (II)(iii) show that

G(t,w
(m)
t )−→G(t,wt) strongly in L2(τ,T ;(L2(Ω))3). (3.63)

So Equation (3.37) follows immediately from Equation (3.63).

Note that all terms in Equation (3.8) are linear with respect to w(m) or w
(m)
t except

the terms 〈B(u(m)(t),w(m)(t)),vj〉 and (G(t,w
(m)
t ),vj). Fortunately, we have proved

Equations (3.36) and (3.37). Therefore, taking Equations (3.30)–(3.33) and Equations
(3.36)–(3.37) into account, we can pass to the limit in Equation (3.8), concluding that

w∈C([τ,T ];Ĥ) is a weak solution of problem (3.1)–(3.2). The proof of Theorem 3.1 is
complete.

We are going to investigate the uniqueness of the weak solution.

Theorem 3.2 (Uniqueness). Let the conditions of Theorem 3.1 hold, then for any

given initial datum φ(s)∈Cγ(Ĥ) and for any T >τ , there corresponds at most one weak
solution to problem (3.1)–(3.2) in the interval (−∞,T ].
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Proof. Let w(1) = (u(1),ω(1)) and w(2) = (u(2),ω(2)) be two solutions in the interval
(−∞,T ] of problem (3.1)–(3.2), with the same initial datum w(1)(τ) =w(2)(τ) =φ(s).
Denote w= (u,ω) =w(1)−w(2). Then w satisfies

∂w

∂t
+Aw+B(u(1),w(1))−B(u(2),w(2))+N(w) =G(t,w

(1)
t )−G(t,w

(2)
t ) (3.64)

for t∈ (τ,T ], and

w(θ) = 0, ∀θ≤ τ. (3.65)

Multiplying Equation (3.64) by w(t), we can get

1

2

d

dt
‖w(t)‖2 +〈Aw(t),w(t)〉+〈B(u(1)(t),w(1)(t))−B(u(2)(t),w(2)(t)),w(t)〉

+〈N(w(t)),w(t)〉= (
G(t,w

(1)
t )−G(t,w

(2)
t ),w(t)

)
, t∈ (τ,T ]. (3.66)

By Equations (2.4) and (2.11) and the obvious facts that

‖u(t)‖≤‖w(t)‖ and ‖∇u(t)‖≤‖∇w(t)‖,

we see

|〈B(u(1)(t),w(1)(t))−B(u(2)(t),w(2)(t)),w(t)〉|
= |〈B(u(1)(t)−u(2)(t),w(1)(t)),w(t)〉+〈B(u(2)(t),w(t)),w(t)〉|
= |〈B(u(t),w(1)(t)),w(t)〉|≤λ‖u(t)‖ 1

2 ‖∇u(t)‖ 1
2 ‖w(t)‖ 1

2 ‖∇w(t)‖ 1
2 ‖∇w(1)(t)‖

≤λ‖w(t)‖‖w(t)‖
̂V ‖w(1)(t)‖

̂V . (3.67)

Combining Equations (2.8) and (3.67), and Assumption (II)(iii), we get from Equation
(3.66) that

1

2

d

dt
‖w(t)‖2 +δ1‖w(t)‖2

̂V

≤ 1

2

d

dt
‖w(t)‖2 +〈Aw(t),w(t)〉+〈N(w(t)),w(t)〉

≤ (G(t,w
(1)
t )−G(t,w

(2)
t ),w(t))+ |〈B(u(1)(t),w(1)(t))−B(u(2)(t),w(2)(t)),w(t)〉|

≤LG‖wt‖γ‖w(t)‖+λ‖w(t)‖‖w(t)‖
̂V ‖w(1)(t)‖

̂V . (3.68)

Now Equation (3.65) implies

‖wθ‖γ = sup
s≤0

eγs‖w(θ+s)‖≤ sup
s∈[τ,θ]

‖w(s)‖, τ ≤θ≤T. (3.69)

Hence, integrating Equation (3.68) gives

‖w(t)‖2 +2δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ−‖w(τ)‖2

=‖w(t)‖2 +2δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ

≤2LG

∫ t

τ

‖wθ‖γ‖w(θ)‖dθ+2λ

∫ t

τ

‖w(θ)‖‖w(θ)‖
̂V ‖w(1)(θ)‖

̂V dθ
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≤2LG

∫ t

τ

sup
r∈[τ,θ]

‖w(r)‖‖w(θ)‖dθ+2λ

∫ t

τ

‖w(θ)‖‖w(θ)‖
̂V ‖w(1)(θ)‖

̂V dθ

≤2LG

∫ t

τ

sup
r∈[τ,θ]

‖w(r)‖2dθ+2δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ+
λ2

2δ1

∫ t

τ

‖w(θ)‖2‖w(1)(θ)‖2
̂V

dθ

≤ (2LG +
λ2

2δ1
)

∫ t

τ

(1+‖w(1)(θ)‖2
̂V

) sup
r∈[τ,θ]

‖w(r)‖2dθ+2δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ, (3.70)

which implies

sup
r∈[τ,t]

‖w(r)‖2≤ (2LG +
λ2

2δ1
)

∫ t

τ

(1+‖w(1)(θ)‖2
̂V

) sup
r∈[τ,θ]

‖w(r)‖2dθ. (3.71)

Using Gronwall’s inequality on Equation (3.71) yields

sup
r∈[τ,t]

‖w(r)‖= 0, ∀t∈ [τ,T ], (3.72)

which finishes the proof of Theorem 3.2.

We now verify the stability of the weak solutions with respect to the initial data.

Theorem 3.3 (Stability). Assume that the conditions of Theorem 3.1 hold. Let w(i)

with i= 1,2 be two solutions of problem (3.1)–(3.2) in the interval (−∞,T ] with initial

data φ(i)(s)∈Cγ(Ĥ), respectively. Then

max
r∈[τ,t]

‖w(1)(r)−w(2)(r)‖2≤ (‖φ(1)(τ)−φ(2)(τ)‖2 +
LG

2γ
‖φ(1)(s)−φ(2)(s)‖2γ

)
·exp

[
C6

∫ t

τ

(2+‖w(1)(θ)‖2
̂V

)dθ
]
, ∀t∈ [τ,T ], (3.73)

‖w(1)
t −w

(2)
t ‖2γ≤ (2+

LG

2γ
)‖φ(1)(s)−φ(2)(s)‖2γ

·exp
[
C6

∫ t

τ

(2+‖w(1)(θ)‖2
̂V

)dθ
]
, ∀t∈ [τ,T ], (3.74)

where

C6 := max
{
λ2/2δ1, 2LG

}
. (3.75)

Proof. Let w(i) = (u(i),ω(i)) (i= 1,2) be two solutions in the interval (−∞,T ] of
problem (3.1)–(3.2) with the initial data w(i)(τ) =φ(i)(s) respectively. If we denote

u=u(1)−u(2), ω=ω(1)−ω(2), w= (u,ω) =w(1)−w(2), φ(·) =φ(1)(·)−φ(2)(·),

then it holds that

1

2

d

dt
‖w(t)‖2 +〈Aw(t),w(t)〉+〈N(w(t)),w(t)〉

+〈B(u(1)(t),w(1)(t))−B(u(2)(t),w(2)(t)),w(t)〉
=

(
G(t,w

(1)
t )−G(t,w

(2)
t ),w(t)

)
. (3.76)
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Similar to Equation (3.67), one can obtain

|〈B(u(1)(t),w(1)(t))−B(u(2)(t),w(2)(t)),w(t)〉|
= |〈B(u(t),w(1)(t)),w(t)〉|≤λ‖w(t)‖‖w(t)‖

̂V ‖w(1)(t)‖
̂V

≤ δ1‖w(t)‖2
̂V

+
λ2

4δ1
‖w(t)‖2‖w(1)(t)‖2

̂V
. (3.77)

We note that

‖wθ‖γ = sup
s≤0

eγs‖w(θ+s)‖

= max
{

sup
s∈(−∞,τ−θ]

eγs‖φ(θ−τ +s)‖, sup
s∈(τ−θ,0]

eγs‖w(θ+s)‖
}

≤max
{
eγ(τ−θ)‖φ(s)‖γ , max

s∈[τ,θ]
‖w(s)‖

}
, (3.78)

which together with Assumption (II)(iii) gives∫ t

τ

(
G(θ,w

(1)
θ )−G(θ,w

(2)
θ ),w(θ)

)
dθ≤

∫ t

τ

LG‖wθ‖γ‖w(θ)‖dθ

≤
∫ t

τ

LGe
γ(τ−θ)‖φ(s)‖γ‖w(θ)‖dθ+

∫ t

τ

LG‖w(θ)‖· max
s∈[τ,θ]

‖w(s)‖dθ. (3.79)

Integrating Equation (3.76), using Equations (2.8), (3.77), and (3.79), we see for any
t∈ [τ,T ] that

1

2
‖w(t)‖2 +δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ

≤ 1

2
‖w(t)‖2 +

∫ t

τ

〈Aw(θ),w(θ)〉dθ+

∫ t

τ

〈N(w(θ),w(θ)〉dθ

≤ 1

2
‖φ(τ)‖2 +

∫ t

τ

LGe
γ(τ−θ)‖φ(s)‖γ‖w(θ)‖dθ+

∫ t

τ

LG‖w(θ)‖· max
s∈[τ,θ]

‖w(s)‖dθ

+δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ+
λ2

4δ1

∫ t

τ

‖w(θ)‖2‖w(1)(θ)‖2
̂V

dθ,

which obviously yields

‖w(t)‖2≤‖φ(τ)‖2 +
λ2

2δ1

∫ t

τ

‖w(θ)‖2‖w(1)(θ)‖2
̂V

dθ+2LG‖φ(s)‖γ
∫ t

τ

eγ(τ−θ)‖w(θ)‖dθ

+2LG

∫ t

τ

‖w(θ)‖· max
s∈[τ,θ]

‖w(s)‖dθ. (3.80)

Observe that

2LG‖φ(s)‖γ
∫ t

τ

eγ(τ−θ)‖w(θ)‖dθ≤ LG

2γ
‖φ(s)‖2γ +2γLG

(∫ t

τ

eγ(τ−θ)‖w(θ)‖dθ)2
≤ LG

2γ
‖φ(s)‖2γ +2γLG

∫ t

τ

e2γ(τ−θ)dθ ·
∫ t

τ

‖w(θ)‖2dθ

≤ LG

2γ
‖φ(s)‖2γ +LG

∫ t

τ

max
r∈[τ,θ]

‖w(r)‖2dθ. (3.81)
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Replacing t with r of Equation (3.80), then taking the maximum for r∈ [τ,t] and using
Equation (3.81), we have

max
r∈[τ,t]

‖w(r)‖2

≤‖φ(τ)‖2 +
λ2

2δ1

∫ t

τ

‖w(θ)‖2‖w(1)(θ)‖2
̂V

dθ

+
LG

2γ
‖φ(s)‖2γ +LG

∫ t

τ

max
r∈[τ,θ]

‖w(r)‖2dθ+2LG

∫ t

τ

‖w(θ)‖· max
s∈[τ,θ]

‖w(s)‖dθ

≤‖φ(τ)‖2 +
λ2

2δ1

∫ t

τ

max
r∈[τ,θ]

‖w(r)‖2‖w(1)(θ)‖2
̂V

dθ+
LG

2γ
‖φ(s)‖2γ

+LG

∫ t

τ

max
r∈[τ,θ]

‖w(r)‖2dθ+2LG

∫ t

τ

max
r∈[τ,θ]

‖w(r)‖2dθ

≤‖φ(τ)‖2 +
LG

2γ
‖φ(s)‖2γ +C6

∫ t

τ

(2+‖w(1)(θ)‖2
̂V

) · max
r∈[τ,θ]

‖w(r)‖2dθ, (3.82)

where C6 is as in Equation (3.75). Obviously, Equation (3.82) gives

max
r∈[τ,t]

‖w(r)‖2≤‖φ(τ)‖2 +
LG

2γ
‖φ(s)‖2γ +C6

∫ t

τ

(2+‖w(1)(θ)‖2
̂V

) · max
r∈[τ,θ]

‖w(r)‖2dθ.

(3.83)

Using Gronwall’s inequality on Equation (3.83) yields Equation (3.73). Then, Equation
(3.74) follows easily from Equations (3.78) and (3.83). The proof of Theorem 3.3 is
complete.

4. Existence of the pullback attractors

Our goal in this section is to prove the existence of pullback attractor for the process
associated to problem (3.1)–(3.2). By Theorem 3.1, we see that the biparametric family

of maps of solutions operators {U(t,τ)}t≥τ :Cγ(Ĥ) �→Cγ(Ĥ) defined by

U(t,τ) : φ(s) �→U(t,τ)φ(s) =wt(s), t≥ τ, s∈ (−∞,0], (4.1)

generates a continuous process in Cγ(Ĥ), where w is the solution of problem (3.1)–(3.2)

corresponding to the initial datum φ(s)∈Cγ(Ĥ), and wt(s) is defined as in Equation
(1.10).

We first introduce some concepts related to the pullback attractors. For the abstract
concepts and results about these aspects, as well as the applications to some concrete
partial differential equations, one can refer to [8, 18–20,31,32,35,38,40,42,43].

Definition 4.1.

(1) A family B̂0 ={B0(t)|t∈R} of subsets of Cγ(Ĥ) is called pullback absorbing for

bounded sets if, for any bounded set B of Cγ(Ĥ) and each t, there corresponds
a time τ(B,t) such that U(t,τ)B⊆B0(t) for all τ ≤ τ(B,t).

(2) The process {U(t,τ)}t≥tτ is said to be pullback B̂0-asymptotically compact if,
for any t∈R, any sequences {τn}⊆ (−∞,t] with τn→−∞ as n→∞, and any

xn∈B0(τn), the sequence {U(t,τn)xn} is relatively compact in Cγ(Ĥ).
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(3) A family Â={A(t)|t∈R} is said to be a pullback attractor for the process

{U(t,τ)}t≥τ in Cγ(Ĥ) if it has the following properties:

◦ Compactness: for any t∈R,A(t) is a nonempty compact subset of Cγ(Ĥ);

◦ Invariance: U(t,τ)A(τ) =A(t), ∀t≥ τ ;

◦ Pullback attracting: for any bounded set B of Cγ(Ĥ), there holds

lim
τ→−∞distCγ( ̂H) (U(t,τ)B,A(t)) = 0, ∀t∈R,

where distX(Y,Z) := sup
y∈Y

inf
z∈Z

distX(y,z) means the Hausdorff semi-distance

from Y ⊆X to Z⊆X in the metric space X.

We next prove some estimates of the solutions, which will be used when proving
the existence of the pullback attractors.

Lemma 4.1. Assume that the conditions of Theorem 3.1 hold. Let w be the solution
of problem (3.1)–(3.2) with initial datum φ(s)∈Cγ(Ĥ), then for all t≥ τ ,

‖wt‖2γ≤ e(−δ1λ1+2LG)(t−τ)‖φ(s)‖2γ +
2

δ1

∫ t

τ

e(−δ1λ1+2LG)(t−θ)‖F (θ)‖2
̂V ∗dθ,

(4.2)

δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ≤2eδ1λ1(t−τ)‖w(τ)‖2 +5δ−1
1 e−δ1λ1τ

∫ t

τ

eδ1λ1θ‖F (θ)‖2
̂V ∗dθ

+2e2LG(t−τ)‖φ(s)‖2γ +4δ−1
1 e2LGt−δ1λ1τ

∫ t

τ

e(δ1λ1−2LG)θ‖F (θ)‖2
̂V ∗dθ.

(4.3)

Proof. The proof of Equation (4.2) is almost the same as that of Equation (3.21),
so we omit the details here. We next prove Equation (4.3). Similar to Equation (3.24),
one can obtain

δ1

∫ t

τ

‖w(θ)‖2
̂V

dθ

≤2eδ1λ1(t−τ)‖w(τ)‖2 +4eδ1λ1(t−τ)

∫ t

τ

e−δ1λ1(t−θ)
(‖F (θ)‖2

̂V ∗

δ1
+LG‖wθ‖2γ

)
dθ

= 2eδ1λ1(t−τ)‖w(τ)‖2 +4δ−1
1 e−δ1λ1τ

∫ t

τ

eδ1λ1θ‖F (θ)‖2
̂V ∗dθ

+4LGe
−δ1λ1τ

∫ t

τ

eδ1λ1θ‖wθ‖2γdθ. (4.4)

Now, by Equation (4.2),∫ t

τ

eδ1λ1θ‖wθ‖2γdθ

≤
∫ t

τ

eδ1λ1θ
[
e−(δ1λ1−2LG)(θ−τ)‖φ(s)‖2γ +

2

δ1

∫ θ

τ

e−(δ1λ1−2LG)(θ−s)‖F (s)‖2
̂V ∗ds

]
dθ

= e(δ1λ1−2LG)τ‖φ(s)‖2γ
∫ t

τ

e2LGθdθ+
2

δ1

∫ t

τ

e2LGθdθ ·
∫ θ

τ

e(δ1λ1−2LG)s‖F (s)‖2
̂V ∗ds
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≤ e(δ1λ1−2LG)τ+2LGt

2LG
‖φ(s)‖2γ +

e2LGt

LGδ1

∫ t

τ

e(δ1λ1−2LG)θ‖F (θ)‖2
̂V ∗dθ. (4.5)

Substituting Equation (4.5) into Equation (4.4) gives Equation (4.3). The proof is
complete.

To obtain the existence of the pullback absorbing set, we need some additional
assumptions. For the sake of brevity, we denote

ρ := δ1λ1−2LG.

Notice that we have assumed 2γ >δ1λ1 in Theorem 3.1, so 2γ >ρ.

Assumption (III): Assume 2LG<δ1λ1 and

∫ 0

−∞
eρθ‖F (θ)‖2

̂V ∗dθ<+∞. (4.6)

Note that if F (·)∈L2
loc(R;V̂ ∗), then the condition (4.6) is equivalent to (see, e.g.,

[43])

∫ t

−∞
e−ρ(t−θ)‖F (θ)‖2

̂V ∗dθ<+∞, ∀t∈R. (4.7)

Lemma 4.2. Let Assumption (III) and the conditions of Theorem 3.1 hold, then

the family B̂0 ={B0(t)|t∈R} with B0(t) =BCγ( ̂H)(0,R(t)) is pullback absorbing for the

process {U(t,τ)}t≥τ in Cγ(Ĥ), where BCγ( ̂H)(0,R(t)) is the closed ball in Cγ(Ĥ) with

center zero and radius R(t) given by

R2(t) := 1+
2

δ1

∫ t

−∞
e−ρ(t−θ)‖F (θ)‖2

̂V ∗dθ<+∞, (4.8)

Proof. The result is a direct consequence of Assumption (III) and Equation (4.2).

Lemma 4.3. Let the conditions of Lemma 4.2 hold, then the process {U(t,τ)}t≥τ is

pullback B̂0-asymptotically compact in Cγ(Ĥ).

Proof. Let’s fix some t∗∈R, and w(n)(·) be a sequence of solutions with initial
time τn and with initial data φ(n)(s)∈B0(τn) :=BCγ( ̂H)(0,R(τn)), where τn⊆ (−∞,t∗]

satisfying τn→−∞ as n→+∞. The task is to prove that the sequence {w(n)
t∗ (·)} defined

by

w
(n)
t∗ (·) :=w

(n)
t∗ (·;τn,wτn) =U(t∗,τn)wτn , (4.9)

is relatively compact in Cγ(Ĥ). We next divide the proofs into two steps.

Step one: We verify that {w(n)(t∗ + ·)} is relatively compact in C([−T,0];Ĥ), where
T >0 is an arbitrary time value. In fact, it follows from Equations (4.2) and (4.8) that
there exists an n(t∗,T ) such that

τn<t∗−T and ‖w(n)
t (s)‖2γ≤C7(t∗,T ), ∀t∈ [t∗−T,t∗], n>n(t∗,T ), (4.10)



C. ZHAO AND W. SUN 117

where

C7(t∗,T ) := 1+
2

δ1
e−ρ(t∗−T )

∫ t∗

−∞
eρθ‖F (θ)‖2

̂V ∗dθ. (4.11)

Then, analogously as we did in the proof of Equation (3.43), we can use the energy
method and compact embedding to establish

w(n)(·)−→w(·) stronglyin C([t∗−T,t∗];Ĥ) as n→∞. (4.12)

Evidently, Equation (4.12) gives

w(n)(t∗ +s)−→w(t∗ +s) strongly in C([−T,0];Ĥ) as n→∞. (4.13)

Step Two: We prove that the sequence {w(n)
t∗ (·)} converges strongly to wt∗(·) in

Cγ(Ĥ). To this end, we prove that for any ε>0 there corresponds an nε such that

‖w(n)
t∗ (s)−wt∗(s)‖γ = sup

s∈(−∞,0]

eγs‖w(n)(t∗ +s)−w(t∗ +s)‖≤ε, ∀n≥nε. (4.14)

By Equations (3.11) and (4.10), we see for n≥n(t∗,T ) that

‖w(n)(t)‖2≤‖w(n)(t)‖2γ≤C7(t∗,T ), ∀t∈ [t∗−T,t∗]. (4.15)

Since for any fixed T >0, w
(n)
t∗ (s) =w(n)(t∗ +s) with s∈ [−T,0] satisfies the estimate

(4.15) for n≥n(t∗,T ), so we also have from Equation (4.13) that

‖w(t∗ +s)‖2≤1+MeρT , ∀s∈ [−T,0], (4.16)

where

M :=
2e−ρt∗

δ1

∫ t∗

−∞
eρθ‖F (θ)‖2

̂V ∗dθ.

Notice that ρ<2γ. So, we can fix some Tε>0 such that

max{e−γTε ,M1/2eρ/2e(ρ−2γ)Tε/2}≤ ε

4
. (4.17)

Now Equation (4.13) shows that there exists an nε≥n(t∗,Tε) such that

eγs‖w(n)(t∗ +s)−w(t∗ +s)‖≤ε, ∀s∈ [−Tε,0] and τn≤ t∗−Tε, ∀n≥nε.

Hence, in order to prove Equation (4.14) we only need verify

sup
s∈(−∞,−Tε]

eγs‖w(n)(t∗ +s)−w(t∗ +s)‖≤ε, ∀n≥nε. (4.18)

Observe that,

sup
s∈(−∞,−Tε]

eγs‖w(n)(t∗ +s)−w(t∗ +s)‖

≤ sup
s∈(−∞,−Tε]

eγs‖w(t∗ +s)‖+ sup
s∈(−∞,−Tε]

eγs‖w(n)(t∗ +s)‖. (4.19)
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On the one hand, by Equation (4.16) and the choice of Tε in Equation (4.17), it is easy
to check that

eγs‖w(t∗ +s)‖≤ e−γ(Tε+k)
[
1+Meρ(Tε+k+1)

]1/2
≤ e−γTε +M1/2eρ/2e(ρ−2γ)Tε/2

≤ ε

4
+

ε

4
=

ε

2
, for s∈ [−(Tε +k+1),−(Tε +k)], ∀k∈N. (4.20)

On the other hand, according to Lemma 4.2 and the facts

w(n)(t∗ +s) =

{
φ(n)(t∗−τn +s), s∈ (−∞,τn− t∗)
w(n)(t∗ +s), s∈ [τn− t∗,0],

(4.21)

we get for n≥nε that

sup
s≤τn−t∗

eγs‖φ(n)(t∗−τn +s)‖= sup
s≤τn−t∗

eγ(t
∗−τn+s)eγ(τn−t∗)‖φ(n)(t∗−τn +s)‖

= eγ(τn−t∗)‖φ(n)(s)‖γ
≤ eγ(τn−t∗)R(τn)≤ eγ(τn−t∗) +M1/2e(2γ−ρ)(τn−t∗)/2

≤ e−γTε +M1/2e(ρ−2γ)Tε/2≤ ε

4
+

ε

4
=

ε

2
. (4.22)

Also, by the choice of nε, there holds

sup
s∈[τn−t∗,−Tε]

eγs‖w(n)(t∗ +s)‖= sup
θ∈[τn−t∗+Tε,0]

eγ(θ−Tε)‖w(n)(t∗−Tε +θ)‖

≤ e−γTε‖w(n)
t∗−Tε

(s)‖γ≤ e−γTε [C7(t∗,Tε)]
1/2

= e−γTε +M1/2e(ρ−2γ)Tε/2≤ ε

2
, (4.23)

where we have also used Equation (4.10) with T =Tε. Therefore, it follows from Equa-
tions (4.21)–(4.23) that

sup
s∈(−∞,−Tε]

eγs‖w(n)(t∗ +s)‖

≤max
{

sup
s∈(−∞,τn−t∗)

eγs‖φ(n)(t∗−τn +s)‖, sup
s∈[τn−t∗,−Tε]

eγs‖w(n)(t∗ +s)‖
}

≤ ε

2
, ∀n≥nε. (4.24)

Now, Equation 4.18) follows from Equations (4.19), (4.20), and (4.24). The proof is
complete.

At this stage, we can state the main result of this section.

Theorem 4.1. Let assumptions (I)–(III) hold and suppose 2γ >δ1λ1. Then the

process {U(t,τ)}t≥τ defined by Equation (4.1) has a pullback attractor Â={A(t)|t∈R}
satisfying the properties stated in Definition 4.1(3).

Proof. By [8, Theorem 7] or [36, Theorem 13], and lemmas 4.1–4.3, we have the
desired result.

In order to illustrate the extensions of Theorem 4.1, we need introduce another
definition called pullback D-attractors for a universe which is composed of families of
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time-dependent sets. Let there be given D, a nonempty class of sets parameterized in
time D̂={D(t)|t∈R} with D(t)⊂Cγ(Ĥ) for all t∈R.

Definition 4.2. A family of sets ÂD ={AD(t)|t∈R} is called a pullback D-attractor
for the process {U(t,τ)}t≥τ in Cγ(Ĥ) if it has the following properties:

◦ Compactness: for any t∈R, AD(t) is a nonempty compact subset of Cγ(Ĥ);

◦ Invariance: U(t,τ)AD(τ) =AD(t), ∀t≥ τ ;

◦ Pullback attracting: ÂD is pullback D-attracting in the following sense:

lim
τ→−∞distCγ( ̂H)

(
U(t,τ)D(τ),AD(t)

)
= 0, ∀D̂={D(t)| t∈R}∈D, t∈R.

We end the paper with two remarks.

Remark 4.1. We want to point out that, using the similar derivations as those
as in lemmas 4.1-4.3, one can obtain the existence of the pullback D-attractor ÂD =
{AD(t)|t∈R} for the process {U(t,τ)}t≥τ in Cγ(Ĥ). Furthermore, if

sup
r≤0

∫ r

−∞
e−ρ(r−θ)‖F (θ)‖2

̂V ∗dθ<+∞,

then A(t) =AD(t) for all t∈R.

Remark 4.2. There is still much work to be done concerning the micropolar fluid
flows. For example, we could consider the regularity of pullback attractors obtained in
Theorem 4.1 and Remark 4.1. Also one can investigate the well-posedness, as well as
the pullback asymptotic behaviors of the solutions on unbounded domains where the
usual Sobolev embedding is no longer compact. These issues will be the topics of some
other papers.
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