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ENTROPY-DISSIPATING SEMI-DISCRETE RUNGE–KUTTA
SCHEMES FOR NONLINEAR DIFFUSION EQUATIONS∗

ANSGAR JÜNGEL† AND STEFAN SCHUCHNIGG‡

Abstract. Semi-discrete Runge–Kutta schemes for nonlinear diffusion equations of parabolic type
are analyzed. Conditions are determined under which the schemes dissipate the discrete entropy lo-
cally. The dissipation property is a consequence of the concavity of the difference of the entropies at two
consecutive time steps. The concavity property is shown to be related to the Bakry–Emery approach
and the geodesic convexity of the entropy. The abstract conditions are verified for quasilinear parabolic
equations (including the porous-medium equation), a linear diffusion system, and the fourth-order quan-
tum diffusion equation. Numerical experiments for various Runge–Kutta finite-difference discretizations
of the one-dimensional porous-medium equation show that the entropy-dissipation property is in fact
global.
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1. Introduction
Evolution equations often contain some structural information reflecting inherent

physical properties such as positivity of solutions, conservation laws, and entropy dis-
sipation. Numerical schemes should be designed in such a way that these structural
features are preserved on the discrete level in order to obtain accurate and stable algo-
rithms. In the last decades, concepts of structure-preserving schemes, geometric inte-
gration, and compatible discretization have been developed [7], but much less is known
about the preservation of entropy dissipation and large-time asymptotics.

Entropy-stable schemes were derived by Tadmor already in the 1980s [23] in
the context of conservation laws, thus without (physical) diffusion. Later, entropy-
dissipative schemes were developed for (finite-volume) discretizations of diffusion equa-
tions in [2, 10, 11]. In [5], a finite-volume scheme which preserves the gradient-flow
structure and hence the entropy structure is proposed. All these schemes are based on
the implicit Euler method and are of first order (in time) only.

Higher-order schemes which diminish the total variation were developed for hyper-
bolic conservation laws, and they are often based on flux or slope limiters [22]. More
general approaches are known under the name of strong stability preserving schemes
ensuring stability in the same norm as the forward Euler scheme. They are used,
for instance, for method-of-lines approximations of partial differential equations. For
Runge–Kutta discretizations with this property, we refer to [12, 14].

Further numerical approaches of higher-order entropy-dissipating schemes include
the second-order predictor-corrector approximation of [21] and the higher-order semi-
implicit Runge–Kutta (DIRK) method of [3], together with a spatial fourth-order central
finite-difference discretization. In [4,19], multistep time approximations were employed,
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but they can be at most of second order, and they dissipate only one entropy (and
not all functionals dissipated by the continuous equation). In this paper, we remove
these restrictions by investigating time-discrete Runge–Kutta schemes of order p≥1 for
general diffusion equations.

We stress the fact that we are interested in the analysis of entropy-dissipating
schemes by “translating” properties for the continuous equation to the semi-discrete
level, i.e. we study the stability of the schemes. However, we will not investigate con-
vergence, stiffness, or computational issues here (see e.g. [3]).

More precisely, we consider time discretizations of the abstract Cauchy problem

∂tu(t)+A[u(t)]=0, t>0, u(0)=u0, (1.1)

where A :D(A)→X ′ is a (differential) operator defined on D(A)⊂X and X is a Banach
space with dual X ′. In this paper, we restrict ourselves to diffusion operators A[u]
defined on some Sobolev space with solutions u :Ω×(0,∞)→R

n, which may be vector-
valued. A typical example is A[u]=div(a(u)∇u) defined on X=L2(Ω) with domain
D(A)=H2(Ω), where a :R→R is a smooth function (see Section 3). Equation (1.1)
often possesses a Lyapunov functional H[u]=

∫
Ω
h(u)dx (here called entropy), where

h :Rn→R, such that

dH

dt
[u]=

∫
Ω

h′(u)∂tudx=−
∫
Ω

h′(u)A[u]dx≤0,

at least when the entropy production
∫
Ω
h′(u)A[u]dx is nonnegative. Here, h′ is the

derivative of h and h′(u)A[u] is interpreted as the inner product of h′(u) and A[u] in R
n.

Furthermore, if h is convex, the convex Sobolev inequality
∫
Ω
h′(u)A[u]dx≥κH[u] for

some κ>0 may hold [6], which implies that dH/dt≤−κH and hence implies exponential
convergence ofH[u] to zero with rate κ. The aim is to design a higher-order time-discrete
scheme which preserves this entropy-dissipation property.

To this end, we propose the following semi-discrete Runge–Kutta approximation of
problem (1.1). Given uk−1∈X, define

uk=uk−1+τ

s∑
i=1

biKi, Ki=−A
[
uk−1+τ

s∑
j=1

aijKj

]
, i=1, . . . ,s, (1.2)

where tk are the time steps, τ = tk− tk−1>0 is the uniform time step size, uk approx-
imates u(tk), and s≥1 denotes the number of Runge–Kutta stages. Since the Cauchy
problem is autonomous, the knots c1, . . . ,cs are not needed here. In concrete examples
(see below), uk are functions from Ω to R

n. If aij =0 for j≥ i, the Runge–Kutta scheme
is explicit; otherwise, it is implicit and a nonlinear system of size s has to be solved to
compute Ki. We assume that scheme (1.2) is solvable for uk :Ω→R

n.

Given h :Rn→R, we wish to determine conditions under which the functional

H[uk]=

∫
Ω

h(uk(x))dx (1.3)

is dissipated by the numerical scheme (1.2),

H[uk]+τ

∫
Ω

A[uk]h′(uk)dx≤H[uk−1], k∈N. (1.4)
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In many examples (see below),
∫
Ω
A[uk]h′(uk)dx≥0 and, thus, the function k 	→H[uk] is

decreasing. Such a property is the first step in proving the preservation of the large-time
asymptotics of the numerical scheme (see Remark 1.1).

Our main results, stated on an informal level, are as follows:

(i) We determine an abstract condition under which the discrete entropy-dissipation
inequality (1.4) holds for sufficiently small τ >0. This condition is made explicit
for special choices of A and h, yielding entropy-dissipative implicit or explicit
Runge–Kutta schemes of any order.

(ii) Numerical experiments for the porous-medium equation indicate that τ may be
chosen independent of the time step k, thus yielding discrete entropy dissipation
for all discrete times.

(iii) We show that, for Runge–Kutta schemes of order p≥2, the abstract condition in
(i) is exactly the criterion of Liero and Mielke [20] to conclude geodesic 0-convexity
of the entropy. In particular, it is related to the Bakry–Emery condition [1].

Let us describe the main results in more detail. We recall that the Runge–Kutta
scheme (1.2) is consistent if

∑s
j=1aij = ci and

∑s
i=1 bi=1. Furthermore, if

∑s
i=1 bici=

1
2 ,

it is at least of order two [13, Chap. II]. We introduce the number

CRK=2

s∑
i=1

bi(1−ci), (1.5)

which takes only three values:

CRK=0 for the implicit Euler scheme,

CRK=1 for any Runge–Kutta scheme of order p≥2, or

CRK=2 for the explicit Euler scheme.

The first main result is an abstract entropy-dissipation property of scheme (1.2) for
entropies of type (1.3).

Theorem 1.1 (Entropy-dissipation structure I). Let h∈C2(Rn), let A :D(A)→X ′ be
Fréchet differentiable with Fréchet derivative DA[u] :X→X ′ at u∈D(A), and let (uk)
be the Runge–Kutta solution to scheme (1.2). Suppose that

Ik0 :=

∫
Ω

(
CRKh

′(uk)DA[uk](A[uk])+h′′(uk)(A[uk])2
)
dx>0. (1.6)

Then there exists τk>0 such that, for all 0<τ ≤ τk,

H[uk]+τ

∫
Ω

A[uk]h′(uk)dx≤H[uk−1]. (1.7)

Compared to strong stability preserving Runge–Kutta schemes [12, 14], we obtain
not only a time-discrete dissipation property but also an estimate for A[uk]h′(uk), which
usually provides gradient bounds. Another difference is that we study semi-discrete
problems, while the works [12,14] are rather concerned with ordinary differential equa-
tions derived from method-of-lines approximations.

We assume that the solutions to scheme (1.2) are sufficiently regular such that the
integral (1.6) can be defined. In the vector-valued case, h′′(uk) is the Hessian matrix
and we interpret h′′(uk)(A[uk])2 as the product A[uk]�h′′(uk)A[uk]. For Runge–Kutta
schemes of order p≥2 (for which CRK=1), the integral (1.6) corresponds exactly to the
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second-order time derivative of H[u(t)] for solutions u(t) to the continuous equation
(1.1). Observe that the entropy-dissipation estimate (1.7) is only local, since the time
step restriction depends on the time step k. For implicit Euler schemes (and convex
entropies h), it is known that τk can be chosen independent of k. For general Runge–
Kutta methods, we cannot prove rigorously that τk stays bounded from below as k→∞.
However, our numerical experiments in Section 7 indicate that inequality (1.7) holds for
sufficiently small τ >0 uniformly in k.

Remark 1.1 (Exponential decay of the discrete entropy). If the convex Sobolev in-
equality

∫
Ω
A[uk]h′(uk)dx≥κH[uk] holds for some constant κ>0 and if there exists

τ∗>0 such that τk≥ τ∗>0 for all k∈N, we infer from the estimate (1.7) that for
τ := τ∗,

H[uk]≤ (1+κτ)−kH[u0]=exp(−ηκtk)H[u0], where η=
log(1+κτ)

κτ
<1,

which implies exponential decay of the discrete entropy with rate ηκ. This rate converges
to the continuous rate κ as τ→0, and therefore it is asymptotically sharp.

Theorem 1.1 can be generalized to a larger class of entropies, namely to so-called
first-order entropies

F [uk]=

∫
Ω

|∇f(uk)|2dx, (1.8)

where, for simplicity, we consider only the scalar case with f :R→R. An important
example is the Fisher information with f(u)=

√
u.

Theorem 1.2 (Entropy-dissipating structure II). Let f ∈C2(R), let A :D(A)→X ′ be
Fréchet differentiable, and let (uk) be the Runge–Kutta solution to the scheme (1.2).
Assume that the boundary condition ∇f(uk) ·ν=0 on ∂Ω is satisfied. Furthermore,
suppose that

Ik1 :=

∫
Ω

(
|∇(f ′(uk)A[uk]|2−CRKΔf(uk)f ′(uk)DA[uk](A[uk])

−Δf(uk)f ′′(uk)(A[uk])2
)
dx>0. (1.9)

Then there exists τk>0 such that, for all 0<τ ≤ τk,

F [uk]+τ

∫
Ω

A[uk]f ′(uk)dx≤F [uk−1].

The key idea of the proof of Theorem 1.1 (and similarly for Theorem 1.2) is a
concavity property of the difference of the entropies at two consecutive time steps with
respect to the time step size τ . To explain this idea, let u :=uk be fixed and introduce
v(τ) :=uk−1. Clearly, v(0)=u. A formal Taylor expansion of G(τ) :=H[u]−H[v(τ)]
yields

H[uk]−H[uk−1]=G(τ)=G(0)+τG′(0)+
τ2

2
G′′(ξk),

where 0<ξk<τ . A computation, made explicit in Section 2, shows that G′(0)=∫
Ω
A[uk]h′(uk)dx and G′′(0)=−Ik0 . Now, if G′′(0)<0, there exists τk>0 such that
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G′′(τ)≤0 for τ ∈ [0,τk] and in particular G′′(ξk)≤0. Consequently, G(τ)≤ τG′(0),
which equals Equation (1.4). The definition of v(τ) assumes implicitly that the scheme
(1.2) is backward solvable. We prove in Proposition 2.1 below that this property holds
if the operator A is a smooth self-mapping on X.

Remark 1.2 (Discussion of τk). Since (uk) is expected to converge to the stationary
solution, limk→∞ Ik0 =0. Thus, in principle, for larger values of k, we expect that τk

becomes smaller and smaller, thus restricting the choice of time step sizes τ . However,
practically, the situation is better. For instance, for the implicit Euler scheme, if h is
convex, we obtain

H[uk]−H[uk−1]≤
∫
Ω

h′(uk)(uk−uk−1)dx=−τ
∫
Ω

h′(uk)A[uk]dx

for any value of τ >0. Moreover, for other (higher-order) Runge–Kutta schemes, the
numerical experiments in Section 7 indicate that there exists τ∗>0 such that G′′(τ)≤0
holds for all τ ∈ [0,τ∗] uniformly in k∈N. In this situation, the inequality (1.7) holds for
all 0<τ ≤ τ∗, and thus our estimate is global. In fact, the function G′′ is numerically
even nonincreasing in some interval [0,τ∗], but we are not able to prove this analytically.

The second main result is the specification of the abstract conditions (1.6) and (1.9)
for a number of examples: a quasilinear diffusion equation, porous-medium or fast-
diffusion equations, a linear diffusion system, and the fourth-order Derrida–Lebowitz–
Speer–Spohn equation (see sections 3–6 for details). For instance, for the porous-
medium equation

∂tu=Δ(uβ) in Ω, t>0, ∇uβ ·ν=0 on ∂Ω, u(0)=u0,

we show that the Runge–Kutta scheme scheme satisfies

H[uk]+τβ

∫
Ω

(uk)α+β−2|∇uk|2dx≤H[uk−1], where H[u]=
1

α(α+1)

∫
Ω

uα+1dx

for 0<τ ≤ τk and all (α,β) belonging to some region in [0,∞)2 (see Figure 4.1 below).
For α=0, we write H[u]=

∫
Ω
u(logu−1)dx. In one space dimension and for Runge–

Kutta schemes of order p≥2, this region becomes −2<α−β<1, which is the same
condition as for the continuous equation (except the boundary values). Furthermore,
the first-order entropy (1.8) is dissipated for Runge–Kutta schemes of order p≥2, in
one space dimension,

F [uk]+τCα,β

∫
Ω

(uk)α+β−2(uk)2xxdx≤F [uk−1], where F [u]=

∫
Ω

(uα/2)2xdx

for 0<τ ≤ τk and all (α,β) belonging to the region shown in Figure 4.2 below, and
Cα,β >0 is some constant. This region is smaller than the region of admissible values
(α,β) for the continuous entropy. The borders of that region are indicated in the figure
by dashed lines.

The proof of the above results, and namely of G′′(0)<0, is based on systematic
integration by parts [16]. The idea of the method is to formulate integration by parts
as manipulations with polynomials and to conclude the inequality G′′(0)<0 from a
polynomial decision problem. This problem can be solved directly or by using computer
algebra software.
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Our third main result is the relation to geodesic 0-convexity of the entropy and the
Bakry–Emery approach when CRK=1 (Runge–Kutta scheme of order p≥2). Liero and
Mielke formulate in [20] the abstract Cauchy problem (1.1) as the gradient flow

∂tu=−K[u]DH[u], t>0, u(0)=u0,

where the Onsager operator K[u] describes the sum of diffusion and reaction terms. For
instance, if A[u]=div(a(u)∇u), we can write A[u]=div(a(u)h′′(u)−1∇h′(u)), and thus,
identifying h′(u) and DH[u], we have K[u]ξ=div(a(u)h′′(u)−1∇ξ). It is shown in [20]
that the entropy H is geodesic λ-convex if the inequality

M(u,ξ) := 〈ξ,DA[u]K[u]ξ〉− 1

2
〈ξ,DK[u]A[u]ξ〉≥λ〈ξ,K[u]ξ〉 (1.10)

holds for all suitable u and ξ. We will prove in Section 2 that

G′′(0)=2M(uk,h′(uk)).

Hence, if G′′(0)≤0 then Equation (1.10) with λ=0 is satisfied for u=uk and ξ=
h′(uk), yielding geodesic 0-convexity for the semi-discrete entropy. Moreover, if
G′′(0)≤−λG′(0) then we obtain geodesic λ-convexity. Since G′(0)=−dH[u]/dt and
G′′(0)=−d2H[u]/dt2 in the continuous setting, the inequality G′′(0)≤−λG′(0) can be
written as

d2H

dt2
[u]≥−λdH

dt
[u],

which corresponds to a variant of the Bakry–Emery condition [1], yielding exponential
convergence of H[u] (if τk≥ τ∗>0 for all k). Thus, our results constitute a first step
towards a discrete Bakry–Emery approach.

The paper is organized as follows. The abstract method, i.e. the proof of backward
solvability and of theorems 1.1 and 1.2, is presented in Section 2. The method is
applied in the subsequent sections to a scalar diffusion equation (Section 3), the porous-
medium equation (Section 4), a linear diffusion system (Section 5), and the fourth-order
Derrida–Lebowitz–Speer–Spohn equation (Section 6). Finally, Section 7 is devoted to
some numerical experiments showing that G′′ is negative in some interval [0,τ∗].

2. The abstract method
In this section, we show that the Runge–Kutta scheme is backward solvable if A is

a self-mapping and we prove theorems 1.1 and 1.2.

Proposition 2.1 (Backward solvability). Let (τ,uk)∈ [0,∞)×X, where X is some
Banach space, and let A∈C2(X,X) be a self-mapping. Then there exist τ0>0, a
neighborhood V ⊂X of uk, and a function v∈C2([0,τ0);X) such that (1.2) holds for
uk−1 :=v(τ). Moreover,

v(0)=0, v′(0)=A[u], and v′′(0)=CRKDA[u](A[u]). (2.1)

The self-mapping assumption is strong for differential operators A but it is somehow
natural in the context of Runge–Kutta methods and valid for smooth solutions.

Proof. The idea of the proof is to apply the implicit function theorem in Banach
spaces (see [8, Corollary 15.1]). To this end, we set u :=uk and define the mapping
J =(J0, . . . ,Js) :R×Xs+1→Xs+1 by

J0(τ,y)=v−u+τ

s∑
i=1

biki, wherey=(k1, . . . ,ks,v),
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Ji(τ,y)=ki+A

[
v+τ

s∑
j=1

aijkj

]
, i=1, . . . ,s.

The Fréchet derivative of J in the direction of (τh,yh), where yh=(kh1, . . . ,khs,vh), reads
as

DJ0(τ,y)(τh,yh)=vh+τh

s∑
i=1

biki+τ

s∑
i=1

bikhi,

DJi(τ,y)(τh,yh)=khi+DA

[
v+τ

s∑
j=1

aijkj

](
vh+τh

s∑
j=1

aijkj+τ

s∑
j=1

aijkhj

)
,

where i=1, . . . ,s. Let τ0=0 and y0=(−A[u], . . . ,−A[u],u). Then J(τ0,y0)=0 and

DJ0(τ0,y0)(0,yh)=vh, DJi(τ0,y0)(0,yh)=khi+DA[u](vh), i=1, . . . ,s.

The mapping yh 	→DJ(τ0,y0)(0,yh) is clearly an isomorphism from Xs+1 onto Xs+1.
By the implicit function theorem, there exist an interval U ⊂ [0,τ0), a neighbor-
hood V ⊂Xs+1 of y0, and a function (k,v)∈C2([0,τ0);V ) such that (k,v)(0)=
(−A[u], . . . ,−A[u],u) and J(τ,k(τ),v(τ))=0 for all τ ∈ [0,τ0).

Implicit differentiation of J(τ,k(τ),v(τ))=0 yields

0=v′(τ)+
s∑

i=1

biki(τ)+τ

s∑
i=1

bik
′
i(τ),

0=k′i(τ)+DA

[
v+τ

s∑
j=1

aijkj(τ)

](
v′(τ)+

s∑
j=1

aijkj(τ)+τ

s∑
j=1

aijk
′
j(τ)

)
,

where i=1, . . . ,s and τ ∈ [0,τ0). Using
∑s

i=1 bi=1 and
∑s

j=1aij = ci, we infer that

v′(0)=−
s∑

i=1

biki(0)=

s∑
i=1

biA[u]=A[u],

k′i(0)=−DA[u]

(
A[u]−

s∑
j=1

aijA[u]

)
=−(1−ci)DA[u](A[u]). (2.2)

Differentiating J0(τ,k(τ),v(τ))=0 twice leads to

0=v′′(τ)+2

s∑
i=1

bik
′
i(τ)+τ

s∑
i=1

bik
′′
i (τ).

Because of Equation (2.2), this reads at τ =0 as

v′′(0)=−2
s∑

i=1

bik
′
i(0)=2

s∑
i=1

bi(1−ci)DA[u](A[u])=CRKDA[u](A[u]).

This finishes the proof.

We prove now theorems 1.1 and 1.2.

Proof. (Proof of Theorem 1.1). We set u :=uk. By Proposition 2.1,
there exists a backward solution v∈C2([0,τ0)) such that v(0)=u, v′(0)=A[u], and
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v′′(0)=CRKDA[u](A[u]). Furthermore, the function G(τ)=
∫
Ω
(h(u)−h(v(τ)))dx satis-

fies G(0)=0,

G′(0)=−
∫
Ω

h′(v(0))v′(0)dx=−
∫
Ω

h′(u)A[u]dx,

G′′(0)=−
∫
Ω

(
h′(v(0))v′′(0)+h′′(v(0))v′(0)2

)
dx

=−
∫
Ω

(
CRKh

′(u)DA[u](A[u])+h′′(u)(A[u])2
)
dx=−Ik0 <0,

using the assumption. By continuity, there exists 0<τk<τ0 such that G′′(ξ)≤0 for 0≤
ξ≤ τk. Then the Taylor expansion G(τ)=G(0)+G′(0)τ+ 1

2G
′′(ξ)τ2≤G′(0)τ concludes

the proof.

Proof. (Proof of Theorem 1.2.) Following the lines of the previous proof, it is
sufficient to compute G′(0) and G′′(0), where now G(τ)=

∫
Ω
(|∇f(u)|2−|∇f(v(τ))|2)dx.

Using integration by parts and the boundary condition ∇f(v) ·ν=0 on ∂Ω, we compute

G′(0)=−
∫
Ω

∇f(v(0)) ·∇(
f ′(v(0))v′(0)

)
dx=

∫
Ω

Δf(u)f ′(v(τ))A[u]dx,

since v(0)=u and v′(0)=A[u]. Furthermore, again integrating by parts,

G′′(τ)=−
∫
Ω

(∣∣∇(
f ′(v(τ))v′(τ)

)∣∣2+∇f(v(τ)) ·∇(
f ′′(v(τ))(v′(τ))2

)

+∇f(v(τ)) ·∇(
f ′(v(τ))v′′(τ)

))
dx

=−
∫
Ω

(∣∣∇(
f ′(v(τ))v′(τ)

)∣∣2−Δf(v(τ))f ′′(v(τ))(v′(τ))2

−Δf(v(τ))f ′(v(τ))v′′(τ)
)
dx.

Since v′′(0)=CRKDA[u](A[u]), this reduces at τ =0 to

G′′(0)=−
∫
Ω

(
|∇(f ′(u)A[u])|2−Δf(u)f ′′(u)(A[u])2−CRKΔf(u)f ′(u)DA[u](A[u])

)
dx.

This expression equals −Ik1 , and the result follows.

Finally, we show that G′′(0) for entropies (1.3) is related to the geodesic convexity
condition of [20].

Lemma 2.1. Let A[u]=K(u)DH[u] for some symmetric operator K :D(A)→X and
Fréchet derivative DH[u], let G be defined as in the proof of Theorem 1.1 for a solution
uk to the Runge–Kutta scheme (1.2) of order p≥2, and let M(u,ξ) be given by Equation
(1.10). Then

G′′(0)=−2M(uk,DH[uk]).

Proof. The proof is just a (formal) calculation. Recall that for Runge–Kutta
schemes of order p≥2, we have CRK=1. Set u :=uk and identify DH[u] with ξ=h′(u).
Inserting the expression DA[u](v)=DK[u](v)h′(u)+K[u]h′′(u)v into the definition of
G′′(0), we find that

−G′′(0)= 〈ξ,DA[u](A[u])〉+〈A[u],h′′(u)A[u]〉
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=
〈
ξ,DK[u](A[u])ξ+K[u]h′′(u)A[u]

〉
+〈A[u],h′′(u)A[u]〉

= 〈ξ,DK[u](K[u]ξ)ξ〉+〈ξ,K[u]h′′(u)K[u]ξ〉+〈K[u]ξ,h′′(u)K[u]ξ〉
= 〈ξ,DK[u](K[u]ξ)ξ〉+2〈ξ,K[u]h′′(u)K[u]ξ〉,

since K[u] is assumed to be symmetric. Rearranging the terms, we obtain

−G′′(0)=2〈ξ,DK[u](K[u]ξ)ξ〉+2〈ξ,K[u]h′′(u)K[u]ξ〉−〈ξ,DK[u](K[u]ξ)〉
=2〈ξ,DA[u](K[u]ξ)ξ〉−〈ξ,DK[u](A[u])〉=2M(u,ξ),

which proves the claim.

3. Scalar diffusion equation
In this section, we analyze time-discrete Runge–Kutta schemes of the diffusion

equation

∂tu=div(a(u)∇u), t>0, u(0)=u0, (3.1)

with periodic or homogeneous Neumann boundary conditions. This equation, also in-
cluding a drift term, was analyzed in [20] in the context of geodesic convexity. Our
results are similar to those in [20], but we consider the time-discrete and not the con-
tinuous equation and we employ systematic integration by parts [16].

Setting μ(u)=a(u)/h′′(u), we can write the diffusion equation as a formal gradient
flow

∂tu=−A[u] :=div(μ(u)∇h′(u)), t>0.

We prove that the Runge–Kutta scheme (1.2) dissipates all convex entropies subject to
some conditions on the functions μ and h.

Theorem 3.1. Let Ω⊂R
d be convex with smooth boundary. Let (uk) be a sequence

of (smooth) solutions to the Runge–Kutta scheme (1.2) of the diffusion equation (3.1).
Let k∈N be fixed and uk be not equal to the constant steady state of Equation (3.1).
We suppose that, for all admissible u, it holds that a(u)≥0, h′′(u)≥0,

b(u) :=
2

3
(CRK+1)

∫ u

u0

μ(v)μ′(v)h′′(v)dv≥0, (3.2)

d−1

d
b(u)≤ (CRK+1)h′′(u)μ(u)2, (3.3)

(CRK+2)μ(u)μ′′(u)+(CRK−1)μ′(u)2<0. (3.4)

Then there exists τk>0 such that for all 0<τ <τk,

H[uk]+τ

∫
Ω

h′′(uk)a(uk)|∇uk|2dx≤H[uk−1].

Conditions (3.2)–(3.3) correspond to Equation (4.12) in [20]. Condition (3.4) is
satisfied for concave functions μ, except for the explicit Euler scheme (CRK=2), for
which we need additionally 4μμ′′+(μ′)2<0. For the implicit Euler scheme, we may
allow even for nonconcave mobilities μ, e.g. μ(u)=uγ for 1<γ<2.

Proof. According to Theorem 1.1, we only need to show that Ik0 =−G′′(0)>0.
To simplify, we set u :=uk. First, we observe that the boundary condition ∇u ·ν=0
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Abbreviation definition Abbreviation definition

ξ h′(u)

ξL Δξ ξG |∇ξ|
ξH |∇2ξ| ξGHG ∇ξ�∇2ξ∇ξ

ξS (d−1)−1ξ−2
G (ξGHG−ξLξ

2
G/d) ξ2R ξ2H−ξ2L/d−d(d−1)ξ2S

Table 3.1. Overview of the abbreviations for the proof of Theorem 3.1.

on Ω implies that 0=∂t∇u ·ν=∇∂tu ·ν=−∇A[u] ·ν on ∂Ω. Using DA[u](A[u])=
div(a′(u)A[u]∇u+a(u)∇A[u])=Δ(a(u)A[u]), the abbreviation ξ=h′(u), and integra-
tion by parts, we compute

G′′(0)=−
∫
Ω

(
CRKh

′(u)Δ(a(u)A[u])+h′′(u)
(
div(μ(u)∇h′(u))

)2)
dx

=

∫
Ω

(
CRK∇h′(u) ·∇(a(u)A[u])−h′′(u)

(
μ′(u)∇u ·∇h′(u)+μ(u)Δh′(u)

)2)
dx

=−
∫
Ω

(
CRKΔξa(u)A[u]+h′′(u)

(
μ′(u)
h′′(u)

|∇ξ|2+μ(u)Δξ

)2)
dx.

The boundary integrals vanish since ∇u ·ν=∇A[u] ·ν=0 on ∂Ω. Replacing A[u] by
div(μ(u)∇ξ)=μ(u)Δξ+μ′(u)|∇ξ|2/h′′(u) and expanding the square, we arrive at

G′′(0)=−
∫
Ω

((
CRKa(u)μ(u)+h′′(u)μ(u)2

)
(Δξ)2

+

(
CRKa(u)

μ′(u)
h′′(u)

+2μ(u)μ′(u)
)
Δξ|∇ξ|2+ μ′(u)2

h′′(u)
|∇ξ|4

)
dx

=−
∫
Ω

(
(CRK+1)h′′(u)μ(u)2ξ2L+(CRK+2)μ(u)μ′(u)ξLξ2G

+μ′(u)2h′′(u)−1ξ4G
)
dx, (3.5)

where we have employed the identity a(u)=μ(u)h′′(u) and the abbreviations ξG= |∇ξ|
and ξL=Δξ; see Table 3.1 for an overview of the various abbreviations.

We apply now the method of systematic integration by parts [16]. The idea is to
identify useful integration-by-parts formulas and to add them to G′′(0) without changing
the sign of G′′(0). The first formula is given by

∫
Ω

div
(
Γ1(u)(∇2ξ−ΔξI) ·∇ξ

)
dx=

∫
∂Ω

Γ1(u)∇ξ�(∇2ξ−ΔξI)νds, (3.6)

where Γ1(u)≤0 is an arbitrary (smooth) scalar function which still needs to be chosen
and I is the unit matrix in R

d×d. Computing the divergence and using the property
∇u=∇ξ/h′′(u), the left-hand side can be expanded as

∫
Ω

(
Γ′
1(u)∇u�(∇2ξ−ΔξI)∇ξ+Γ1(u)(∇2ξ−ΔξI) :∇2ξ

)
dx

=

∫
Ω

(
Γ′
1(u)

h′′(u)
∇ξ�∇2ξ∇ξ− Γ′

1(u)

h′′(u)
Δξ|∇ξ|2+Γ1(u)|∇2ξ|2−Γ1(u)(Δξ)2

)
dx
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=

∫
Ω

(
Γ1(u)

h′′(u)
ξGHG− Γ′

1(u)

h′′(u)
ξLξ

2
G+Γ1(u)ξ

2
H−Γ1(u)ξ

2
L

)
dx,

where we have set ξGHG=∇ξ�∇2ξ∇ξ and ξH = |∇2ξ|. The boundary integral in Equa-
tion (3.6) becomes

∫
∂Ω

Γ1(u)

(
1

2
∇(|∇ξ|2)−Δξ∇ξ

)
·νds= 1

2

∫
∂Ω

Γ1(u)∇(|∇ξ|2) ·νds≥0,

since Γ1(u)≤0, ∇ξ ·ν=0 on ∂Ω, and it holds that ∇(|∇ξ|2) ·ν≤0 on ∂Ω for all smooth
functions satisfying ∇ξ ·ν=0 on ∂Ω [20, Prop. 4.2]. Here, we need the convexity of Ω.
Thus, the first integration-by-parts formula becomes

J1 :=

∫
Ω

(
Γ′
1(u)

h′′(u)
ξGHG− Γ′

1(u)

h′′(u)
ξLξ

2
G+Γ1(u)ξ

2
H−Γ1(u)ξ

2
L

)
dx≥0. (3.7)

The second formula reads as

0=

∫
Ω

div
(
Γ2(u)|∇ξ|2∇ξ)dx

=

∫
Ω

(
Γ′
2(u)

h′′(u)
ξ4G+2Γ2(u)ξGHG+Γ2(u)ξLξ

2
G

)
dx=:J2, (3.8)

where Γ2 is an arbitrary scalar function. The goal is to find functions Γ1(u)≤0 and
Γ2(u) such that G′′(0)≤G′′(0)+J1+J2<0.

According to [17], the computations simplify if we introduce the variables ξR and
ξS satisfying

(d−1)ξ2GξS = ξGHG− 1

d
ξLξ

2
G, ξ2H =

1

d
ξ2L+d(d−1)ξ2S+ξ2R.

The existence of ξR follows from the inequality

ξ2H = |∇2ξ|2≥ 1

d
(Δξ)2+

d

d−1

(∇ξ�∇2ξ∇ξ

∇ξ2
−Δξ

d

)2

=
1

d
ξ2L+d(d−1)ξ2S ,

which is proven in [17, Lemma 2.1]. Then

G′′(0)≤G′′(0)+J1+J2=−
∫
Ω

(
a1ξ

2
L+a2ξLξ

2
G+a3ξ

4
G+a4ξSξ

2
G+a5ξ

2
R+a6ξ

2
S

)
dx,

(3.9)
where

a1=(CRK+1)h′′(u)μ(u)2+
(
1− 1

d

)
Γ1(u),

a2=(CRK+2)μ(u)μ′(u)+
(
1− 1

d

)
Γ′
1(u)

h′′(u)
−
(
2

d
+1

)
Γ2(u),

a3=
μ′(u)2−Γ′

2(u)

h′′(u)
, a4=−(d−1)

(
Γ′
1(u)

h′′(u)
+2Γ2(u)

)
,

a5=−Γ1(u), a6=−d(d−1)Γ1(u).

(3.10)

The aim now is to determine conditions on a1, . . . ,a6 such that the polynomial
P (ξ)=a1ξ

2
L+a2ξLξ

2
G+a3ξ

4
G+a4ξSξ

2
G+a5ξ

2
R+a6ξ

2
S is nonnegative, as this implies that
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G′′(0)≤0. In the general case, this leads to nonlinear ordinary differential equations for
Γ1 and Γ2 which cannot be easily solved. A possible solution is to require that the co-
efficients of the mixed terms vanish, i.e. a2=a4=0, and that the remaining coefficients
are nonnegative. With the case d=1 being simpler than the general case (since J1 is
not necessary), we assume that d>1. Then a4=0 implies that Γ′

1(u)/h
′′(u)=−2Γ2(u).

Replacing Γ′
1(u)/h

′′(u) by −2Γ2(u) in a2=0 gives

Γ2(u)=
CRK+2

3
μ(u)μ′(u).

On the other hand, replacing Γ2(u) by −Γ′
1(u)/(2h

′′(u)) in a2=0, we find that

Γ′
1(u)=−

2

3
(CRK+2)μ(u)μ′(u)h′′(u)

or, after integration,

Γ1(u)=−2

3
(CRK+2)

∫ u

u0

μ(v)μ′(v)h′′(v)dv.

These functions have to satisfy the conditions

a1≥0 or
d−1

d
Γ1(u)≥−(CRK+1)h′′(u)μ(u)2,

a3≥0 or (CRK+2)μ(u)μ′′(u)+(CRK−1)μ′(u)2≤0,

a5≥0 or Γ1(u)≤0 for all u.

Note that a1≥0 and a5≥0 correspond to Equations (3.3) and (3.2), respectively. This
shows that P (ξ)≥0 for all ξ∈R4 and G′′(0)≤0.

If G′′(0)=0, the nonnegative polynomial P , which depends on x∈Ω via ξ, has to
vanish. In particular, a3ξ

4
G=a3|∇u|4=0 in Ω. As a3>0 by assumption, u(x)=const.

for x∈Ω. This contradicts the hypothesis that u is not a steady state. Consequently,
G′′(0)<0, and we finish the proof by setting b(u)=−Γ1(u).

4. Porous-medium equation
The results of the previous section can be applied in principle to the Runge–Kutta

scheme for the porous-medium or fast-diffusion equation

∂tu=Δ(uβ) in Ω, t>0, ∇uβ ·ν=0 on ∂Ω, u(0)=u0, (4.1)

where β>0. It can be seen that conditions (3.2)–(3.4) are not optimal for particular
entropies. This is not surprising since we have neglected the mixed terms in the polyno-
mial in Equation (3.9) (i.e. a2=a4=0), which is not optimal. In this section, we make
a different approach by making an ansatz for the functions Γ1 and Γ2, considering both
zeroth-order and first-order entropies.

4.1. Zeroth-order entropies. We prove the following result.

Theorem 4.1. Let Ω⊂R
d be convex with smooth boundary. Let (uk) be a sequence of

(smooth) solutions to the Runge–Kutta scheme (1.2) for Equation (4.1). Let the entropy
be given by H[u]=α−1(α+1)−1

∫
Ω
uα+1dx with α>0, let k∈N, and let uk be not the

constant steady state of Equation (4.1). There exists a nonempty region R0(d)⊂ (0,∞)2

and τk>0 such that, for all (α,β)∈R0(d) and 0<τ ≤ τk,

H[uk]+τβ

∫
Ω

(uk)α+β−2|∇uk|2dx≤H[uk−1], k∈N.
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In one space dimension, we have the following:

implicit Euler: R0(1)=(0,∞)2,

Runge–Kutta of order p≥2 : R0(1)=
{
(α,β)∈ (0,∞)2 :−2<α−β<1},

explicit Euler: R0(1)=
{
(α,β)∈ (0,∞)2 :−1<α−β<1}.

For the implicit Euler scheme, the theorem shows that any positive values for (α,β)
is admissible, which corresponds to the continuous situation. For the Runge–Kutta case
with CRK=1, our condition is more restrictive. As expected, the explicit Euler scheme
requires the most restrictive condition. The set R0(d) is illustrated in Figure 4.1 for
d=2 and d=10.

Proof. Since k∈N is fixed, we set u :=uk. We choose the functions

Γ1(u)= c1β
2u2β−α−1, Γ2(u)= c2β

2u2β−2α−1.

It holds that h′′(u)=uα−1 and μ(u)=βuβ−α. Then the coefficients in Equation (3.10)
are as follows:

a1=β2
(
(CRK+1)+(1− 1

d )c1
)
u2β−α−1,

a2=β2
(
(CRK+2)(β−α)+(1− 1

d )(2β−α−1)c1−( 2d +1)c2
)
u2β−2α−1,

a3=β2
(
(β−α)2−(2β−2α−1)c2

)
u2β−3α−2,

a4=−β2(d−1)
(
(2β−α−1)c1+2c2

)
u2β−2α−1,

a5=−β2c1u
2β−α−1, a6=−β2d(d−1)c1u

2β−α−1.

Introducing the variables ηj = ξj/u
α for j∈{G,L,R,S}, we can write Equation (3.9) as

G′′(0)≤G′′(0)+J1+J2=−β2

∫
Ω

u2β+α−1Q(η)dx,

where Q(η)= b1η
2
L+b2ηLη

2
G+b3η

4
G+b4ηSη

2
G+b5η

2
R+b6η

2
S

with coefficients

b1=(CRK+1)+(1− 1
d )c1,

b2=(CRK+2)(β−α)+(1− 1
d )(2β−α−1)c1−( 2d +1)c2,

b3=(β−α)2−(2β−2α−1)c2,

b4=−(d−1)
(
(2β−α−1)c1+2c2

)
,

b5=−c1, b6=−d(d−1)c1.

We need to determine all (α,β) such that there exist c1≤0, c2∈R such that Q(η)≥0
for all η=(ηG,ηL,ηR,ηS). Without loss of generality, we exclude the cases b1= b2=0
and b4= b6=0 since they lead to parameters (α,β) included in the region calculated
below. Thus, let b1>0 and b6>0. These inequalities give the bound −(CRK+1)/(1−
1/d)<c1<0. Thus, we may introduce the parameter λ∈ (0,1) by setting c1=−λ(CRK+
1)/(1−1/d). The polynomial Q(η) can be rewritten as

Q(η)= b1

(
ηL+

b2
2b1

η2G

)2

+b6

(
ηS+

b4
2b6

η2G

)2

+b5η
2
R+η4G

(
b3− b22

4b1
− b24

4b6

)
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Fig. 4.1. Set R0(d) of all (α,β) for which the zeroth-order entropy is dissipating. Left column:
d=2; right column: d=10. Top row: explicit Euler scheme with CRK=2; middle row: implicit Euler
scheme with CRK=1; bottom row: Runge–Kutta scheme of order p≥2 with CRK=0.

≥η4G

(
b3− b24

4b6
− b22

4b1

)
=:

η4G(CRK+1)

4b1b6
R(c2;λ,α,β),

where R(c2;λ,α,β) is a quadratic polynomial in c2 with the nonpositive leading term
−d2(4−3λ)+4(2−3λ)d−4. The polynomial R(c2;λ,α,β) is nonnegative for some c2
if and only if its discriminant 4d2λ(1−λ)S(λ;α,β) is nonnegative. Here, S(λ;α,β) is
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a quadratic polynomial in λ. In order to derive the conditions on (α,β) such that
S(λ;α,β)≥0 for some λ∈ (0,1), we employ the computer-algebra system Mathematica.
The result of the command

Resolve[Exists[LAMBDA, S[LAMBDA] >= 0 && LAMBDA > 0

&& LAMBDA < 1], Reals]

gives all (α,β)∈R2 such that there exist c1≤0, c2∈R such that Q(η)≥0. The interior
of this region equals the set R0(d), defined in the statement of the theorem. This shows
that G′′(0)≤0 for all (α,β)∈R0(d).

If G′′(0)=0, the nonnegative polynomial Q has to vanish. In particular, b1η
2
L=0.

If ηL=0 in Ω, the boundary conditions imply that u is constant, which contradicts our
assumption that u is not the steady state. Thus b1=0. Similarly, b2= b3= b4=0. This
gives a system of four inhomogeneous linear equations for (c1,c2) which is unsolvable.
Consequently, G′′(0)<0.

The set R0(d) is nonempty since e.g. (1,1)∈R0(d). Indeed, choosing c1=−1 and
c2=0, we find that Q(η)=(CRK+ 1

d )η
2
L+η2R+d(d−1)η2S≥0.

In one space dimension, the situation simplifies since the Laplacian coincides with
the Hessian, and thus the integration-by-parts formula (3.7) is not needed. Then (see
Equation (3.8))

G′′(0)=G′′(0)+J1=−β2

∫
Ω

u2β+α−1
(
a1ξ

2
L+a2ξLξ

2
G+a3ξ

4
G

)
dx,

where

a1=CRK+1, a2=(CRK+2)(β−α)−3c2, a3=(β−α)2−(2β−2α−1)c2.

The polynomial P (ξ)= ξ4G(a1y
2+a2y+a3) with y= ξL/ξ

2
G is nonnegative if and only if

a1≥0 and 4a1a3−a22≥0, which is equivalent to

−9c22+2
(
(CRK−2)(α−β)+2(CRK+1)

)
c2−C2

RK(α−β)2≥0. (4.2)

This inequality has a solution c2∈R if and only if the quadratic polynomial has real
roots, i.e. if its discriminant is nonnegative,

0≤ (
(CRK−2)(α−β)+2(CRK+1)

)2−9C2
RK(α−β)2

=4(CRK+1)
(−(2CRK−1)(α−β)2+(CRK−2)(α−β)+(CRK+1)

)
.

The polynomial −(2CRK−1)z2+(CRK−2)z+(CRK+1) with z=α−β is always non-
negative if CRK=0 (implicit Euler). For CRK=1 and CRK=2, this property holds if
and only if −(CRK+1)/(2CRK−1)≤α−β≤1. This concludes the proof.

4.2. First-order entropies. We consider the one-dimensional case and first-
order entropies with f(u)=uα/2, α>0.

Theorem 4.2. Let Ω⊂R be a bounded interval. Let (uk) be a sequence of (smooth)
solutions to the Runge–Kutta scheme (1.2) of order p≥2 for Equation (4.1) in one space
dimension. Let the entropy be given by F [u]=

∫
Ω
(uα/2)2xdx with α>0, let k∈N be fixed,

and let uk be not the constant steady state of Equation (4.1). There exists a nonempty
region R1∈ [0,∞)2 and τk>0 such that, for all (α,β)∈R1, there is a constant Cα,β >0
such that, for all 0<τ ≤ τk,

F [uk]+τCα,β

∫
Ω

(uk)α+β−3(uk
xx)

2dx≤F [uk−1], k∈N.
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Figure 4.2 illustrates the set R1. The set of admissible value (α,β) for the continuous
equation is given by {−2≤α−2β<1} (the borders of this set are depicted in the figure
by the dashed lines).

Fig. 4.2. Set of all (α,β) for which the discrete first-order entropy for solutions to the one-
dimensional porous-medium equation is dissipating. The continuous first-order entropy is dissipated
for −2≤α−2β<1. The borders of this set is indicated in the figure by dashed lines.

Proof. First, we compute G′(0) according to Theorem 1.2

G′(0)=−α
∫
Ω

uα/2−1(uα/2)xx(u
β)xxdx.

We show that G′(0) is nonpositive in a certain range of values (α,β). We formulate
G′(0) as

G′(0)=−α2β

4

∫
Ω

uα+β−1
(
(α−2)(β−1)ξ41+(α+2β−4)ξ21ξ2+2ξ22

)
dx,

where ξ1=ux/u, ξ2=uxx/u. We employ the integration-by-parts formula

0=

∫
Ω

(uα+β−4u3
x)xdx=

∫
Ω

uα+β−1
(
(α+β−4)ξ41+3ξ21ξ2

)
dx=:J.

Therefore,

G′(0)=G′(0)− α2β

4
cJ =−α2β

4

∫
Ω

uα+β−1P (ξ)dx,

where

P (ξ)=
(
(α−2)(β−1)+(α+β−4)c

)
ξ41+

(
α+2β−4+3c

)
ξ21ξ2+2ξ22 .

This polynomial is nonnegative if and only if

8
(
(α−2)(β−1)+(α+β−4)c

)−(α+2β−4+3c)2≥0,
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which is equivalent to

g(c) :=−9c2+2(α−2β−4)c−(α−2β)2≥0.

The maximizing value c∗=(α−2β−4)/9, obtained from g′(c)=0, yields

g(c∗)=−8

9
(α−2β−1)(α−2β+2)≥0

and consequently G′(0)≤0 if −2≤α−2β≤1. This condition is the same as in [6,
Theorem 13] for the continuous equation.

Next, we turn to the proof of G′′(0)<0. The proof of Theorem 1.2 shows that

G′′(0)=−α

2

∫
Ω

(
α

2

(
uα/2−1(uβ)xx

)2
x
−
(
α

2
−1

)
uα/2−2(uα/2)xx(u

β)2xx

−βCRKu
α/2−1(uα/2)xx

(
uβ−1(uβ)xx

)
xx

)
dx.

We integrate by parts in the last term and use (βuβ−1(uβ)xx)x=0 on ∂Ω

G′′(0)=−1

8
α2β2

∫
Ω

uα+2β−2

×(
a1ξ

6
1+a2ξ

4
1ξ2+a3ξ

3
1ξ3+a4ξ

2
1ξ

2
2+a5ξ1ξ2ξ3+a6ξ

3
2+a7ξ

2
3

)
dx,

where ξ1=ux/u, ξ2=uxx/u, ξ3=uxxx/u, and

a1=(β−1)
(
2CRKα

2β−3CRKα
2+2αβ2−2(5CRK+3)αβ+(15CRK+4)α

+2β3−14β2+4(3CRK+7)β−2(9CRK+8)
)
,

a2=(β−1)
(
4CRKα

2+(8CRK+7)αβ−(32CRK+9)α+12β2−2(8CRK+25)β

+6(8CRK+7)
)
,

a3=CRKα
2+2αβ−(5CRK+2)α+4(CRK+1)β2−2(5CRK+8)β+12(CRK+1),

a4=2(β−1)
(
2(4CRK+1)α+9β−(16CRK+13)

)
,

a5=2(2CRK+1)α+4(2CRK+3)β−16(CRK+1),

a6=2−α, a7=2(CRK+1).

We employ three integration-by-parts formulas

0=

∫
Ω

(
uα+2β−5u2

xxux

)
x
dx=

∫
Ω

uα+2β−2
(
(α+2β−5)ξ21ξ

2
2+2ξ1ξ2ξ3+ξ32

)
dx=:J1,

0=

∫
Ω

(
uα+2β−6uxxu

3
x

)
x
dx=

∫
Ω

uα+2β−2
(
(α+2β−6)ξ41ξ2+ξ31ξ3+3ξ21ξ

2
2

)
dx=:J2,

0=

∫
Ω

(
uα+2β−7u5

x

)
x
dx=

∫
Ω

uα+2β−2
(
(α+2β−7)ξ61+5ξ41ξ2

)
dx=:J3.

Then

G′′(0)=G′′(0)− 1

8
α2β2(c1J1+c2J2+c3J3)=−1

8
α2β2

∫
Ω

uα+2β−2P (ξ)dx,

where

P (ξ)= b1ξ
6
1+b2ξ

4
1ξ2+b3ξ

3
1ξ3+b4ξ

2
1ξ

2
2+b5ξ1ξ2ξ3+b6ξ

3
2+b7ξ

2
3
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and the coefficients are given by

b1=a1+(α+2β−7)c3, b2=a2+(α+2β−6)c2+5c3,

b3=a3+c2, b4=a4+(α+2β−5)c1+3c2,

b5=a5+2c1, b6=a6+c1,

b7=a7.

Choosing c1=−a6, we eliminate the cubic term ξ32 . Furthermore, setting, x= ξ2/ξ
2
1 and

y= ξ3/ξ
3
1 , we can write the polynomial P as a quadratic polynomial in (x,y)

Q(x,y)= ξ61P (ξ)= b1+b2x+b3y+b4x
2+b5xy+b7y

2.

The following lemma is a consequence of the proof of Lemma 2.2 in [18].

Lemma 4.1. The polynomial p(x,y)=A+Bx+Cy+Dx2+Exy+Fy2 with F >0 is
nonnegative for all (x,y)∈R2 if and only if

(i) 4DF −E2>0 and A(4DF −E2)−B2F −C2D+BCE≥0, or

(ii) 4DF −E2=0 and 2BF −CE=0 and 4AF −C2≥0.

Note that in case 4DF −E2=0 and E =0, we may replace 2BF −CE=0 by the
condition 2BEF =CE2=4CDF or (since F >0) BE=2CD.

The first inequality in case (i),

0<4b4b7−b25=−(CRK+1)(2CRK+1)α2+(2CRK+2)(4CRK−3)αβ+(9CRK+9)α

−2CRK(4CRK+3)β2+(8CRK+12)β+(3CRK+3)c2−(12CRK+14),

is linear in c2 and provides a lower bound for c2

c2>
1

3(CRK+1)

(
(CRK+1)(2CRK+1)α2−(2CRK+2)(4CRK−3)αβ−(9CRK+9)α

+2CRK(4CRK+3)β2−(8CRK+12)β+(12CRK+14)
)
=: c∗2.

The second inequality in case (i) becomes

0≤ b1(4b4b7−b25)−b22b7−b23b4+b2b3b5=−50(CRK+1)c23+p1(α,β,c2)c3+p2(α,β,c2),

where p1 and p2 are some polynomials in α, β, and c2. This quadratic expression in c3
is nonnegative if and only if its discriminant is nonnegative,

0≤−200(CRK+1)p2(α,β,c2)−p1(α,β,c2)
2

=−8(4b4b7−b25
)(
25c22+p3(α,β)c2+p4(α,β)

)
,

where p3(α,β) and p4(α,β) are some polynomials in α and β. The factor 4b4b7−b25 is
positive, so we have to ensure that Rα,β(c2)=25c22+p3(α,β)c2+p4(α,β)≤0 for some
c2>c∗2. Therefore, we must ensure that the rightmost root of Rα,β(c2) is greater than

or equal to the lower bound for c2, i.e., −p3(α,β)+
√
p23(α,β)−100p4(α,β)≥50c∗2. For

CRK=1, the values (α,β) for which there exists c2>c∗2 such that Rα,β(c2)≤0 is depicted
in Figure 4.2. In case (ii), we may immediately calculate c2 and c3, but this results in
a region which is already contained in the first one. This shows that G′′(0)≤0.

If G′′(0)=0, the polynomial Q vanishes. Thus, either ux/u= ξ1=0 or P (ξ)=0 in Ω.
The first case is impossible since u is not constant in Ω. As b7=a7=2(CRK+1)>0, the
second case P (ξ)=0 implies that ξ3=0. Hence, u is a quadratic polynomial. In view
of the boundary conditions, u must be constant, but this contradicts our assumption.
Hence, G′′(0)<0.
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5. Linear diffusion system
We consider the following linear diffusion system:

∂tu1−ρ1Δu1=μ(u2−u1) ∂tu2−ρ2Δu2=μ(u1−u2), (5.1)

with initial and homogeneous Neumann boundary conditions, ρ1,ρ2,μ>0, and the en-
tropy

H[u]=

∫
Ω

h(u)dx=

∫
Ω

2∑
i=1

ui(logui−1)dx, (5.2)

where u=(u1,u2). If the initial data is nonnegative, the maximum principle shows that
the solutions to Equation (5.1) are nonnegative, too.

Theorem 5.1. Let (uk) be a sequence of (smooth) nonnegative solutions to the Runge–
Kutta scheme (1.2) for Equation (5.1) with CRK=1 and ρ :=ρ1=ρ2. Let the entropy
H be given by Equation (5.2). Let k∈N be fixed and let uk be not the steady state of
the scheme (1.2). Then there exists τk>0 such that, for all 0<τ <τk,

H[uk]+τ

∫
Ω

(
ρ

2∑
i=1

|∇uk
i |2

uk
i

+μ(loguk
1− loguk

2)(u
k
1−uk

2)

)
dx≤H[uk−1].

Note that we need equal diffusivities ρ1=ρ2 and higher-order schemes (CRK=1).
These conditions are in accordance with [20], where the continuous equation was studied.
In order to highlight the step where these conditions are needed, the following proof is
slightly more general than actually needed.

Proof. We fix k∈N and set u :=uk. Let A[u]= (A1[u],A2[u])=(ρ1Δu1+μ(u2−
u1),ρ2Δu2+μ(u1−u2)). Since A is linear, DA[u](h)=A[h]. Thus,

G′′(0)=−
∫
Ω

(
CRKh

′(u)�A[A[u]]+A[u]�h′′(u)A[u]
)
dx=−G1−G2.

In the following, we set ∂ih=∂h/∂ui for i=1,2. We integrate by parts twice, using the
boundary conditions ∇ui ·ν=0 and ∇Ai[u] ·ν=0 on ∂Ω, and collect the terms

G1=CRK

∫
Ω

(
∂1h(u)

(
ρ1ΔA1[u]+μ(A2[u]−A1[u])

)

+∂2h(u)
(
ρ2ΔA2[u]+μ(A1[u]−A2[u])

))
dx

=CRK

∫
Ω

(
ρ1Δ∂1h(u)A1[u]+ρ2Δ∂2h(u)A2[u]

+μ(∂1h(u)−∂2h(u))(A2[u]−A1[u])
)
dx

=CRK

∫
Ω

(
ρ1
(
∂2
1h(u)Δu1+∂3

1h(u)|∇u1|2
)(
ρ1Δu1+μ(u2−u1)

)
+ρ2

(
∂2
2h(u)Δu2+∂3

2h(u)|∇u2|2
)(
ρ2Δu2+μ(u1−u2)

)
+μ(∂2h(u)−∂1h(u))

(
ρ1Δu1−ρ2Δu2+2μ(u2−u1)

))
dx

=CRK

∫
Ω

(
ρ21∂

2
1h(u)(Δu1)

2+ρ22∂
2
2h(u)(Δu2)

2+ρ21∂
3
1h(u)Δu1|∇u1|2
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+ρ22∂
3
2h(u)Δu2|∇u2|2+ρ1μ

(
∂2
1h(u)(u2−u1)+∂2h(u)−∂1h(u)

)
Δu1

+ρ2μ
(
∂2
2h(u)(u1−u2)+∂1h(u)−∂2h(u)

)
Δu2+ρ1μ∂

3
1h(u)(u2−u1)|∇u1|2

+ρ2μ∂
3
2h(u)(u1−u2)|∇u2|2+2μ2(∂2h(u)−∂1h(u))(u2−u1)

)
dx.

Furthermore,

G2=

∫
Ω

(
∂2
1h(u)

(
ρ1Δu1+μ(u2−u1)

)2
+∂2

2h(u)
(
ρ2Δu2+μ(u1−u2)

)2)
dx

=

∫
Ω

(
ρ21∂

2
1h(u)(Δu1)

2+ρ22∂
2
2h(u)(Δu2)

2+2ρ1μ∂
2
1h(u)(u2−u1)Δu1

+2ρ2μ∂
2
2h(u)(u1−u2)Δu2+μ2(∂2

1h(u)+∂2
2h(u))(u1−u2)

2
)
dx.

Adding G1 and G2, we arrive at

G′′(0)=−
2∑

i=1

∫
Ω

(
ρ2i (CRK+1)∂2

i h(u)(Δui)
2+ρ2iCRK∂

3
i h(u)Δui|∇ui|2

)
dx

−
∫
Ω

(
ρ1μ

(
(CRK+2)∂2

1h(u)(u2−u1)+CRK(∂2h(u)−∂1h(u))
)
Δu1

+ρ2μ
(
(CRK+2)∂2

2h(u)(u1−u2)+CRK(∂1h(u)−∂2h(u))
)
Δu2

+ρ1μCRK∂
3
1h(u)(u2−u1)|∇u1|2+ρ2μCRK∂

3
2h(u)(u1−u2)|∇u2|2

)
dx

−
∫
Ω

μ2
(
2(∂1h(u)−∂2h(u))+(∂2

1h(u)+∂2
2h(u))(u1−u2)

)
(u1−u2)dx

=−I2−I1−I0.

The idea of [20] is to show that each integral Ii, involving only derivatives of order
i, is nonnegative. In contrast to [20], we employ systematic integration by parts, which
allows for a simpler and more general proof in our context. For the term I2, we use the
following integration-by-parts formula:

0=

∫
Ω

div
(
u−2
i |∇ui|3

)
dx=

∫
Ω

(−2u−3
i |∇ui|4+3u−2

i Δui|∇ui|2
)
dx=:Ji.

Then, for ε>0,

I2−c

2∑
i=1

ρ2iJi−ε

2∑
i=1

u−3
i |∇ui|4dx

=
2∑

i=1

ρ2i

∫
Ω

(
(CRK+1)u−1

i (Δui)
2−(3c+CRK)u

−2
i Δui|∇ui|2+(2c−ε)u−3

i |∇ui|4
)
dx.

The integrand defines a quadratic polynomial in the variables Δui and |∇ui|2 and is
nonnegative if its discriminant satisfies 4(2c−ε)(CRK+1)−(3c+CRK)

2≥0. It turns
out that this inequality holds true for CRK∈{0,1} if we choose c=2/3 and ε>0 suffi-
ciently small. When CRK=2, we can show only that I2≥0, which is not sufficient to
prove that G′′(0)<0 (see below). We conclude that

I2≥ε

2∑
i=1

∫
Ω

u−3
i |∇ui|4dx. (5.3)
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Integrating by parts in I1 in order to obtain only first-order derivatives, we find
after some rearrangements that

I1=μ

∫
Ω

(
a1|∇ logu1|2+a2∇ logu1 ·∇ logu2+a3|∇ logu2|2

)
dx,

where

a1=2ρ1(CRKu1+u2), a3=2ρ2(CRKu2+u1),

a2=−(CRK(ρ1+ρ2)+2ρ2)u1−(CRK(ρ1+ρ2)+2ρ1)u2.

The integrand is nonnegative if and only if 4a1a3−a22≥0 for all (u1,u2). We compute

CRK=0 : 4a1a3−a22=−4(ρ1u2−ρ2u1)
2,

CRK=1 : 4a1a3−a22=(ρ1−ρ2)
(
ρ1(u

2
1+6u1u2+9u2

2)−ρ2(9u
2
1+6u1u2+u2

2)
)
,

CRK=2 : 4a1a3−a22=−4
(
ρ1(u1+2u2)−ρ2(2u1+u2)

)
.

Thus, 4a1a3−a22≥0 is possible only if ρ1=ρ2 and CRK=1.
Finally, we see immediately that the remaining term

I0=μ2

∫
Ω

(
2(logu1− logu2)(u1−u2)+

(
1

u1
+

1

u2

)
(u1−u2)

2

)
dx

is nonnegative. This shows that G′′(0)≤0. If G′′(0)=0, we infer from (5.3) that
ui=const., but this contradicts our hypothesis that ui is not a steady state.

6. The Derrida–Lebowitz–Speer–Spohn equation
Consider the one-dimensional fourth-order equation

∂tu=−(u(logu)xx)xx in Ω, t>o, u(0)=u0 (6.1)

with periodic boundary conditions. This equation appears as a scaling limit of the
so-called (time-discrete) Toom model, which describes interface fluctuations in a two-
dimensional spin system [9]. The variable u is the limit of a random variable related to
the deviation of the spin interface from a straight line. The multi-dimensional version
of Equation (6.1) models the electron density u in a quantum semiconductor, and the
equation is the zero-temperature, zero-field approximation of the quantum drift-diffusion
model [15]. For existence results for Equation (6.1), we refer to [17] and references
therein.

To simplify our calculations, we analyze only the logarithmic entropy H[u]=∫
Ω
u(logu−1)dx. It is possible to verify condition (1.6) also for entropies of the

form
∫
Ω
uαdx, but it turns out that only sufficiently small α>0 are admissible (about

0<α<0.15 . . .) and the computations are very tedious. Therefore, we restrict ourselves
to the case α=0.

Theorem 6.1. Let (uk) be a sequence of (smooth) solutions to the Runge–Kutta
scheme (1.2) with CRK=1 for Equation (6.1). Let the entropy be given by H[u]=∫
Ω
u(logu−1)dx, let k∈N be fixed, and let uk be not a steady state. Then there exists

τk>0 such that, for all 0<τ <τk,

H[uk]+τq

∫
Ω

u(logu)8xdx+τ

∫
Ω

u(logu)2xxdx≤H[uk−1], q≈0.0045.
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Proof. First, we observe that G′(0)=−∫
Ω
(u(logu)xx)xx logudx=−

∫
Ω
u(logu)2xxdx.

With A[u]= (u(logu)xx)xx and DA[u](h)=
(
hxx−2(logu)xhx+(logu)2xh

)
xx
, we can

write G′′(0)=−Ik0 according to Equation (1.6) as

G′′(0)=−
∫
Ω

(
logu

(
A[u]xx−2(logu)xA[u]x+(logu)2xA[u]

)
xx

+
1

u
A[u]2

)
dx

=−
∫
Ω

(
(logu)xx

(
A[u]xx−2(logu)xA[u]x+(logu)2xA[u]

)
+

1

u
A[u]2

)
dx

=−
∫
Ω

((
vxxxx+2(vxvxx)x+v2xvxx

)
A[u]+

1

u
A[u]2

)
dx,

where we have integrated by parts several times and have set v=logu. Then A[u]=
u(v2xvxx+2vxvxxx+v2xx+vxxxx) and, with the abbreviations ξ1=vx, . . . ,ξ4=vxxxx,

G′′(0)=−
∫
Ω

u
(
2ξ41ξ

2
2+8ξ31ξ2ξ3+5ξ21ξ

3
2+4ξ21ξ2ξ4+8ξ21ξ

2
3+10ξ1ξ

2
2ξ3

+8ξ1ξ3ξ4+3ξ42+5ξ22ξ4+2ξ24

)
dx.

We employ the following integration-by-parts formulas:

0=

∫
Ω

(uv7x)xdx=

∫
Ω

u(ξ81+7ξ61ξ2)dx=:J1,

0=

∫
Ω

(uvxxv
5
x)xdx=

∫
Ω

u(ξ61ξ2+ξ51ξ3+5ξ41ξ
2
2)dx=:J2,

0=

∫
Ω

(uvxxxv
4
x)xdx=

∫
Ω

u(ξ51ξ3+ξ41ξ4+4ξ31ξ2ξ3)dx=:J3,

0=

∫
Ω

(uv2xxv
3
x)xdx=

∫
Ω

u(ξ41ξ
2
2+2ξ31ξ2ξ3+3ξ21ξ

3
2)dx=:J4,

0=

∫
Ω

(uvxxvxxxv
2
x)xdx=

∫
Ω

u(ξ31ξ2ξ3+ξ21ξ2ξ4+ξ21ξ
2
3+2ξ1ξ

2
2ξ3)dx=:J5,

0=

∫
Ω

(uv2xxxvx)xdx=

∫
Ω

u(ξ21ξ
2
3+2ξ1ξ3ξ4+ξ2ξ

2
3)dx=:J6,

0=

∫
Ω

(uv3xxvx)xdx=

∫
Ω

u(ξ21ξ
3
2+3ξ1ξ

2
2ξ3+ξ42)dx=:J7,

0=

∫
Ω

(uvxxxv
2
xx)xdx=

∫
Ω

u(ξ1ξ
2
2ξ3+2ξ2ξ

2
3+ξ22ξ4)dx=:J8.

Then

G′′(0)=G′′(0)−4

8∑
i=1

ciJi=−
∫
Ω

u
(
a1ξ

8
1+a2ξ

6
1ξ2+a3ξ

5
1ξ3+a4ξ

4
1ξ

2
2+a5ξ

4
1ξ4

+a6ξ
3
1ξ2ξ3+a7ξ

2
1ξ

3
2+a8ξ

2
1ξ2ξ4+a9ξ

2
1ξ

2
3+a10ξ1ξ

2
2ξ3+a11ξ1ξ3ξ4+a12ξ

4
2

+a13ξ
2
2ξ4+a14ξ2ξ

2
3+a15ξ

2
4

)
dx,
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where

a1=4c1, a2=28c1+4c2, a3=4c2+4c3,

a4=2+20c2+4c4, a5=4c3, a6=8+16c3+8c4+4c5,

a7=5+12c4+4c7, a8=4+4c5, a9=8+4c5+4c6,

a10=10+8c5+12c7+4c8, a11=8+8c6, a12=3+4c7,

a13=5+4c8, a14=4c6+8c8, a15=2.

Next, we eliminate all terms involving ξ4 by formulating the following square:

G′′(0)=−
∫
Ω

u

[
a15

(
ξ4+

a5
2a15

ξ41+
a8
2a15

ξ21ξ2+
a11
2a15

ξ1ξ3+
a13
2a15

ξ22

)2

+

(
a1− a25

4a15

)
ξ81+

(
a2− a5a8

2a15

)
ξ61ξ2+

(
a3− a5a11

2a15

)
ξ51ξ3

+

(
a4− a28

4a15
− a5a13

2a15

)
ξ41ξ

2
2+

(
a6− a8a11

2a15

)
ξ31ξ2ξ3+

(
a7− a8a13

2a15

)
ξ21ξ

3
2

+

(
a9− a211

4a15

)
ξ21ξ

2
3+

(
a10− a11a13

2a15

)
ξ1ξ

2
2ξ3+

(
a12− a213

4a15

)
ξ42+a14ξ2ξ

2
3

]
dx.

We eliminate all terms involving ξ3 and set the corresponding coefficients to zero. From
a14=0, we conclude that c6=−2c8. Furthermore,

a9− a211
4a15

=0 gives c5=8c28−6c8,

a10− a11a13
2a15

=0 gives c7=−20

3
c28+

8

3
c8,

a6− a8a11
2a15

=0 gives c4=−2c3−16c38+16c28−5c8,

a3− a5a11
2a15

=0 gives c2= c3−4c3c8.

By these choices, we obtain

b12 :=a12− a211
4a15

=−86

3
c28+

17

3
c8− 1

8
.

This quadratic polynomial in c8 admits its maximal value at c∗8=17/172 with value
b12=20/129. The integral can now be written as

G′′(0)≤−
∫
Ω

u
(
b1ξ

8
1+b2ξ

6
1ξ2+b4ξ

4
1ξ

2
2+b7ξ

2
1ξ

3
2+b12ξ

4
2

)
dx,

where

b1=a1− a25
4a15

=4c1−2c23,

b2=a2− a5a8
2a15

=28c1−32c3c
2
8+8c3c8,

b4=a4− a28
4a15

− a5a13
2a15

=7c3−84c3c8−128c48+128c38−40c28+4c8,
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b7=a7− a8a13
2a15

=−24c3−244c38+
448

3
c28−

70

3
c8.

If b4=2b2b12/b7+b27/(4b12), we can write the integal as the sum of two squares, noting
that b12 is positive,

G′′(0)≤−
∫
Ω

u

(
b12

(
ξ22+

b7
2b12

ξ21ξ2+
b2
b7
ξ41

)2

+

(
b1− b22b12

b27

)
ξ81

)
dx.

The expression b4b7−2b2b12−b37/(4b12)=0 defines a polynomial in (c1,c3) which is lin-
ear in c1. Solving it for c1 gives

c1=
449307

175
c33+

741681

2150
c23+

35780649411

2393160700
c3+

34135130165539

163091166664200
.

It remains to show that p(c3) := b1−b22b12/b
2
7, which is a polynomial of fourth order in

c3, is positive. Choosing c∗3=−0.029, we find that p(c∗3)≈0.0045>0. This shows that

G′′(0)≤−q(c∗3)
∫
Ω

uξ81dx=−q(c∗3)
∫
Ω

u(logu)8xdx≤0.

Finally, if G′′(0)=0, we infer that u is constant which is excluded. Therefore, G′′(0)<0,
which ends the proof.

7. Numerical examples
The aim of this section is to explore the numerical behavior of the second-order

derivative of the function G(τ), defined in the introduction, for the porous-medium
equation (4.1) in one space dimension. The equation is discretized by standard finite
differences, and we employ periodic boundary conditions. The discrete solution uk

i

approximates the solution u(xi,t
k) to Equation (4.1) with xi= i�x, tk=kτ , and �x, τ

are the space and time step sizes, respectively. We choose the Barenblatt profile

u0(x)= t
−1/(β+1)
0 max

(
0,C− β−1

2β(β+1)

(x−1/2)2

t
2/(β+1)
0

)1/(β−1)

, 0≤x≤1, (7.1)

where

t0=0.01, C=
β−1

2β(β+1)

(xR−1/2)2

t
2/(β+1)
0

, xR=
1

4
,

as the initial datum. Its support is contained in [ 12−xR,
1
2 +xR]; see Figure 7.1 (left). We

choose the exponent β=2. The semi-logarithmic plot of the discrete entropy Hd[u
k]=∑N

i=0(u
k
i )

α�x with α=5 versus time is illustrated in Figure 7.1 (right), using the
implicit Euler scheme with parameters τ =10−4 and the number of grid points N =
1/�x=64. The decay is exponential for “large” times. The nonlinear discrete system
is solved by Newton’s method with the tolerance tol=10−15. We have highlighted four
time steps ti at which we will compute numerically the function G(τ) for the following
Runge–Kutta schemes:

explicit Euler scheme: uk−uk−1=−τA[uk−1],

implicit Euler scheme: uk−uk−1=−τA[uk],

second-order trapezoidal rule: uk−uk−1=−τ

2
(A[uk]+A[uk−1]),
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Fig. 7.1. Left: Evolution of the intial datum (7.1) for β=2 at various time steps ti, i=0,1,2,3;
right: Semi-logarithmic plot of the discrete entropy Hd[u

k] versus time.
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Fig. 7.2. Numerical evaluation of the discrete version of G′′(τ) for various Runge–Kutta schemes
at the time steps ti. Top left: explicit Euler scheme; top right: implicit Euler scheme; bottom left:
implicit trapezoidal rule; bottom right: Simpson’s rule.

third-order Simpson rule: uk−uk−1=−τ

6
(A[uk]+4A[(uk+uk−1)/2]+A[uk−1]).

We set as before u :=uk, v(τ) :=uk−1 and compute G(τ)=Hd[u]−Hd[v(τ)] and
the discrete second-order derivative ∂2G of G (using central differences). The result is
presented in Figure 7.2. As expected, the discrete derivative ∂2G is negative on a (small)
interval for all times ti, i=1,2,3. We observe that ∂2G is even slightly decreasing, but
we expect that it becomes positive for sufficiently large values of τ . Clearly, the values
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Fig. 7.3. Numerical evaluation of the discrete version of Q(τ), defined in Equation (7.2), for
various Runge–Kutta schemes at the time steps ti. Top left: explicit Euler scheme; top right: implicit
Euler scheme; bottom left: implicit trapezoidal rule; bottom right: Simpson’s rule.

for ∂2G tend to zero as we approach the steady state (see Remark 1.2). This experiment
indicates that τk from Theorem 1.1 is bounded from below by τ∗=3 ·10−4, for instance.

In order to understand the behavior of G(τ) in a better way, it is convenient to
study the discrete version of the quotient

Q(τ) :=
G′′(τ)

‖uα+2β−2u4
x‖L1

. (7.2)

Indeed, the analysis in Section 4 gives an estimate of the type G′′(0)≤
−C ∫

Ω
u2β+α−5u4

xdx for some constant C>0. Thus, we expect that for sufficiently
small τ >0, Q(τ) is bounded from above by some negative constant. This expectation
is confirmed in Figure 7.3. In the examples, Q(τ) is a decreasing function of τ and Q(0)
is decreasing with increasing time.

All these results indicate that the threshold parameter τk in Theorem 1.1 can be
chosen independently of the time step k.

REFERENCES

[1] D. Bakry and M. Emery, Diffusions hypercontractives, in: Séminaire de probabilités XIX, 1983/84,
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[19] A. Jüngel and J.-P. Milǐsić, Entropy dissipative one-leg multistep time approximations of nonlin-

ear diffusive equations, Numer. Meth. Part. Diff. Eqs., 31(4), 1119–1149, 2014.
[20] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems,

Phil. Trans. Royal Soc. A., 371, 20120346, 2013.
[21] H. Liu and H. Yu, Entropy/energy stable schemes for evolutionary dispersal models, J. Comput.

Phys., 256, 656–677, 2014.
[22] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9, 1073–

1084, 1988.
[23] E. Tadmor, Numerical viscosity of entropy stable schemes for systems of conservation laws I,

Math. Comp., 49, 91–103, 1987.


