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COMPARISON OF SEVERAL REACTION AND DIFFUSION MODELS
OF GROWTH FACTORS IN ANGIOGENESIS∗

FANG LI† AND XIAOMING ZHENG‡

Abstract. We compare three types of mathematical models of growth factor reaction and diffusion
in angiogenesis: one describes the reaction on the blood capillary surface, one on the capillary volume,
and one on the capillary centerline. Firstly, we explore the analytical properties of these models,
including solution regularity and positivity. We prove that the surface-reaction models have smooth
and positive solutions and that the volume-reaction models have continuous and positive solutions.
The line-reaction models utilize distributions on the capillary centerline to represent the reaction line
source. The line-reaction model-Iemploys the Dirac delta function and the mean value of the growth
factor around the centerline, which gives a valid model. The line-reaction model-IIand -IIIuse the local
value of the growth factor, which either creates a singularity or decouples the reaction from diffusion,
thus being invalid invalid. Secondly, we compare the programming complexity and computational cost
of these models in numerical implementations. The surface-reaction model is the most complicated
and suitable for small domains, while the volume-reaction and line-reaction models are simpler and
suitable for large domains with a large number of blood capillaries. Finally, we quantitatively compare
these models in the prediction of the growth factor dynamics. It turns out that the volume-reaction
and line-reaction model-Iagree well with the surface-reaction model for most parameters used in the
literature but may differ significantly when the diffusion constant is small.
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1. Introduction
Angiogenesis, the formation of new blood vessels, is crucial to many processes such

as wound healing and cancer. It is controlled by growth factors such as Vascular En-
dothelial Growth Factor (VEGF). VEGF is released by injured tissue or hypoxic cancer
cells and diffuses in the tissue. Once reaching blood vessels, VEGF binds to recep-
tors such as VEGFR2 on endothelial cells that line the blood vessel. The activation of
VEGFR2 triggers a sequence of intracellular events resulting in cell proliferation and
migration. These new blood vessels are called capillaries because they are very thin.
Their radius ranges from 2 to 20μm [26], but the length can extend to the size of the
tissue (for example, 2mm in diameter of a rat cornea [26] or a dormant tumor [7]).
The reaction (binding kinetics) occurs only on the thin capillaries, while the diffusion
happens in the tissue domain.

The purpose of this work is to compare the existing reaction and diffusion models
of growth factors in angiogenesis. There exist mainly four types of models, depending
on where the binding reaction is modeled. The first type describes the reaction on
the capillary surface, such as [5, 13–15, 17]. We call these the surface-reaction models.
The second type treats the reaction occurring in the whole capillary volume, such as
[3, 6, 10, 16, 19, 28], which is called the volume-reaction model in this paper. The third
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2 REACTION AND DIFFUSION MODELS IN ANGIOGENESIS

type models the reaction only on the capillary centerline, such as [27,29,33], which are
called line reaction models. More details of these models will be discussed in Section 2.
In the fourth type of models, the endothelial cells and thus the capillaries are defined
as densities in the whole tissue domain. Therefore, the binding reactions are defined
everywhere in the tissue (for example see [1, 2, 8, 11, 18, 21, 22, 24, 30]). Compared with
the first three types of models, the fourth type is less appealing because it smears out
the delicate spatial structure of the capillary network. The analysis of the fourth type
is simpler and actually contained in the analysis for the volume-reaction models (see
Remark 2.2). Therefore, we will only study the first three types of models in this work.

Among all these models, we are most interested in the line-reaction models be-
cause of the following reasons. First, geometrically, the thin capillary looks like a zero-
thickness curve in a large domain. Therefore, it is tempting to model the reaction on
the capillary as a line source. The sources with a Dirac delta function and some given
strength have been extensively used in physical and engineering problems. However,
the line-reaction models [32, 33] use the unknown solution itself with the Dirac delta
function to represent the line source, which is novel in the literature. In addition, there
are no rigorous analyses available of these novel models except the work [12] in a reduced
case. Therefore, it is of great interest to investigate the analytical features of these full
models, such as whether the solution develops singularity.

Although some of these models are popular in the literature, their relations and
differences have never been studied. To better illustrate our viewpoints, the comparison
will be launched from three aspects: qualitative features, numerical implementations,
and quantitative predictions. First, we will study the well-posedness/ill-posedness of
each selected model and analyze the qualitative properties of solutions, including reg-
ularity and positivity. Next, we will briefly discuss the differences in computational
implementations between these models. Finally, we will quantitatively compare one
surface-reaction model, one volume-reaction model, and one line-reaction model, the
first two of which are popular in existing literature, to find out the parameter regimes
where these models agree well.

This paper is organized as follows. The qualitative studies are included in Section
2, which is the main part of this work. The comparison in computer implementations is
given in Section 3, while Section 4 is about the comparison in the prediction of growth
factor dynamics. Finally, the conclusions are given in Section 5.

2. Comparison in qualitative features

The qualitative features include existence, regularity, and positivity of solutions.
In order to determine whether a model is valid or not, we propose the following two
criteria:

(C1) Positivity: all the quantities used in reactions must be finite and non-negative.

(C2) Coupling: the reaction and diffusion processes cannot be independent of each
other.

The criterion (C1) is very natural because these quantities are reactant concen-
trations. Note that, as for the growth factor, the quantity used in reactions is not
necessarily the local value. For example, in the line-reaction model-Iin Section 2.3, it
is the mean value in the capillary volume that is used in reactions. The criterion (C2)
prevents the cases where the reaction is rendered completely irrelevant to the diffusion.
In reality, the reaction consumes the growth factor molecules delivered by the diffu-
sion process and also releases some of them back to the diffusion. We set the criterion
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(C2) because some models seemingly couple these two processes by writing them in the
same equation. However, a rigorous analysis indicates that they are actually decoupled
(see Section 2.4). A valid model should satisfy both criteria. The main results of the
qualitative comparison of several models are briefly summarized in Table 2.1.

Type Main equations Full
model

Solution u

surface-reaction ∂u
∂t =DΔu−μu in ΩT ,

D ∂u
∂n =f2d(u) on ∂ΩC

(2.6) positive and smooth, Theorem 2.1

volume-reaction ∂u
∂t =DΔu−μu+χΩC

f3d(u)
in Ω

(2.15) positive and continuous, Theorem
2.2

line-reaction-I ∂u
∂t =DΔu−μu+δΣf3d(ū) in Ω (2.22) u has a logrithmic singularity on Σ

but ū is positive, Theorem 2.3 and
2.4

line-reaction-II ∂u
∂t =DΔu−μu+χΣf3d(u) in Ω (2.37) invalid, Section 2.4

line-reaction-III ∂u
∂t =DΔu−μu+δΣf3d(u) in Ω (2.38) invalid, Theorem 2.5, Section 2.4

Table 2.1. Qualitative comparison of reaction and diffusion models in angiogenesis.

Consider a domain Ω that contains two disjoint open subdomains: the tissue domain
ΩT and the capillary domain ΩC , which are shown in Figure 2.1. Denote the boundary
between ΩT and ΩC as ∂ΩC , which is the capillary surface. Therefore, Ω=ΩT ∪ΩC ∪
∂ΩC and ∂ΩT =∂Ω∪∂ΩC . In this work, we assume that ΩT and ΩC are smooth.
When multiple capillaries form a complex network through branching and anastomosis,
it is still reasonable to assume the ΩT and ΩC are smooth, because branching and
anastomosis regions can be treated as smooth surfaces. Denote the capillary centerline
as Σ. Let r be the radius of the capillary, whose value is between 2∼20μm [26].

Fig. 2.1. The tissue domain ΩT , the capillary domain ΩC , and the whole domain Ω=ΩT ∪ΩC ∪
∂ΩC .

2.1. A surface-reaction model. The surface-reaction models study the con-
centration of receptors on the capillary surface and the concentration of growth factor
in the tissue domain. Such models include the VEGF model of Popel’s group [5,13–15]
and epidermal growth factor receptor (EGFR) in [17]. A typical model is as follows.
Denote u as the volume concentration of the free growth factor in ΩT , and R2d and C2d

as the surface concentrations of free receptors and growth factor/receptor complexes,
respectively, on the capillary surface. Therefore, the unit of u is mole

volume , while the unit

of R2d and C2d is mole
area . In general, the governing equations of R2d and C2d are

∂R2d

∂t
=−konuR2d+koffC2d+kpC2d, (2.1)

∂C2d

∂t
=konuR2d−koffC2d−kpC2d, (2.2)

where the constants kon, koff, and kp are the association rate, the dissociation rate, and
the internalization rate, respectively. In this presentation, the diffusion, insertion, and
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decay of receptors in the cell are neglected for clarity. The mass transport rate of u
from the capillary ΩC to the tissue ΩT is

f2d(u,P)�−konuR2d+koffC2d, (2.3)

where P denotes all other proteins participating, in this reaction and in this case P=
{R2d,C2d}. The unit of f2d(u,P) is mole

area·time . For simplicity, we denote f2d(u,P) as
f2d(u) hereafter, and similarly for f3d(u).

Let the Fickian diffusive flux through any surface in ΩT be JF (u)=−D∇u, where
D is the diffusion constant. The growth factor diffuses and decays naturally in the tissue
domain, which is modeled by

∂u

∂t
=DΔu−μu in ΩT , (2.4)

where μ is the decay constant. It is a general practice to assume that the normal Fickian
flux is equal to the negative growth factor transport rate on the capillary surface, that
is,

JF (u) ·n=−f2d(u) or D
∂u

∂n
=f2d(u) on∂ΩC , (2.5)

as in [5, 15, 17]. Here, n is the unit normal vector on ∂ΩC pointing to the interior of
ΩC . Indeed, Equations (2.5) can be rigorously proven (see Appendix A). To close this
system, another boundary condition has to be imposed on the outer boundary of ΩT ,
∂Ω, such as the no-flux or Dirichlet condition.

To show the qualitative features of the surface-reaction model, we investigate the
following full model:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂t =DΔu−μu forx∈ΩT , t>0,
∂R2d

∂t =−konuR2d+koffC2d+kpC2d forx∈∂ΩC , t>0,
∂C2d

∂t =konuR2d−koffC2d−kpC2d forx∈∂ΩC , t>0,

D ∂u
∂n =−konuR2d+koffC2d forx∈∂ΩC , t>0,

∂u
∂n =0 forx∈∂Ω, t>0,

(2.6)

with initial values u(x,0) forx∈ Ω̄T and R2d(x,0), C2d(x,0) forx∈∂ΩC .

Because ∂
∂t [R2d(x,t)+C2d(x,t)]=0,

R2d(x,t)+C2d(x,t)=R2d(x,0)+C2d(x,0)
.
=m(x). (2.7)

Note that this model is a coupled system of parabolic and ordinary differential
equations with nonlinear boundary conditions studied in [20]. We have the following
result.

Theorem 2.1. Suppose the domain ΩT is smooth and the constants D>0, μ≥0,
kon>0, koff≥0, kp≥0, and koff+kp>0. Let u(x,0), R2d(x,0), and C2d(x,0) be non-
negative smooth functions, u(x,0) �≡0, and m(x)>0. There exists a unique solution (u,
R2d, C2d) of the model (2.6) which is smooth and positive in Ω̄T ×(0,∞).



F. LI AND X. ZHENG 5

Proof. First, note that the model (2.6) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t =DΔu−μu forx∈ΩT , t>0,
∂R2d

∂t =−konuR2d+koffC2d+kpC2d forx∈ΩT , t>0,
∂C2d

∂t =konuR2d−koffC2d−kpC2d forx∈ΩT , t>0,

D ∂u
∂n =−konuR2d+koffC2d forx∈∂ΩC , t>0,

∂u
∂n =0 forx∈∂Ω, t>0,

u(x,0)=u0(x), R2d(x,0)=R0(x), C2d(x,0)=C0(x) forx∈ Ω̄T ,

(2.8)

where the reaction of R2d and C2d have been extended to the whole domain ΩT because
they do not affect u in Ω̄T . Using Equation (2.7), the system (2.8) can be reduced to
the following equivalent system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂t −DΔu=−μu forx∈ΩT , t>0,
∂C2d

∂t =konum(x)−(koff+kp+konu)C2d forx∈ΩT , t>0,

D ∂u
∂n =−konu ·(m(x)−C2d)+koffC2d forx∈∂ΩC , t>0,

∂u
∂n =0 forx∈∂Ω, t>0,

u(x,0)=u0(x), C2d(x,0)=C0(x) forx∈ Ω̄T .

(2.9)

We will employ [20, Theorem 3.2] to show the existence and uniqueness of solutions to
the system (2.9). To this aim, we will first construct a pair of ordered lower and upper
solutions of the system (2.9).

Let (u,C2d) denote the solution to the following linear system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂t −DΔu=−μu forx∈ΩT , t>0,
∂C2d

∂t =−[koff+kp+konmaxx∈ΩT
u0(x)]C2d forx∈ΩT , t>0,

D ∂u
∂n =−konum(x) forx∈∂ΩC , t>0,

∂u
∂n =0 forx∈∂Ω, t>0,

u(x,0)=u0(x), C2d(x,0)=C0(x) forx∈ Ω̄T .

(2.10)

For u, we can apply the maximum principles of parabolic equations (for example see [23,
Prop. 52.6 and 52.7] to find that 0<u≤maxx∈ΩT

u0(x) on Ω̄T ×(0,∞). For C2d, it is
clear that m(x)≥C2d≥0 on Ω̄T ×(0,∞). Hence, it is easy to verify that (u,C2d) is a
lower solution of the system (2.9).

An upper solution can be constructed as follows. Consider

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ũ
∂t −DΔũ=−μũ forx∈ΩT , t>0,
∂C̃2d

∂t =0 forx∈ΩT , t>0,

D ∂ũ
∂n =−konũ(m(x)− C̃2d)+koffC̃2d forx∈∂ΩC , t>0,

∂ũ
∂n =0 forx∈∂Ω, t>0,

ũ(x,0)=u0(x), C̃2d(x,0)=m(x) forx∈ Ω̄T .

(2.11)

It is easy to see that this system admits a unique solution (ũ,C̃2d) with C̃2d(x,t)≡m(x)
and ũ>0 on Ω̄T ×(0,∞) by the maximum principles. Similarly, it is easy to check that
(ũ,C̃2d) is an upper solution of the system (2.9).
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Moreover, notice that w
.
=u− ũ satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂w
∂t −DΔw=−μw forx∈ΩT , t>0,

D ∂w
∂n <−konmw forx∈∂ΩC , t>0,

∂w
∂n =0 forx∈∂Ω, t>0,

w(x,0)=0 forx∈ Ω̄T .

Again by the maximum principles, w=u− ũ<0 in Ω̄T ×(0,∞). Therefore, we have
obtained a pair of ordered lower and upper solutions of the system (2.9).

Next, denote S={(u,C2d)∈C(ΩT ) :u≤u≤ ũ,C2d≤C2d≤ C̃2d}. One easily sees
that the assumption (H2) in [20, Theorem 3.2] is satisfied. The assumption that ΩT is
smooth satisfies the domain regularity requirement of Theorem 3.2 of [20]. Therefore,
the system (2.9) has a unique solution in S, denoted by (u,C2d), which is smooth and
non-negative on Ω̄T ×(0,∞). Because u is strictly positive, so is u.

Finally, we show the strict positivity of R2d and C2d. In fact, by Equation (2.9)2,
it is easy to derive that

C2d(x,t)=C0(x)exp

(
−
∫ t

0

(konu(x,τ)+koff+kp)dτ

)

+konm(x)

∫ t

0

exp

(
−
∫ t

τ

(konu(x,s)+koff+kp)ds

)
u(x,τ)dτ.

Thus, clearly C2d>0 for x∈ Ω̄T , t>0. Similarly, according to the system (2.6) and
Equation (2.7), R2d can be solved to obtain that

R2d(x,t)=R0(x)exp

(
−
∫ t

0

(konu(x,τ)+koff+kp)dτ

)

+(koff+kp)m(x)

∫ t

0

exp

(
−
∫ t

τ

(konu(x,s)+koff+kp)ds

)
dτ.

Hence, it follows that R2d>0 for x∈ Ω̄T , t>0.

2.2. A volume-reaction model. In the surface-reaction models, the free
receptors and complexes are surface concentrations defined on the capillary surface
∂ΩC . However, in the volume-reaction models, the free receptors and complexes become
volume concentrations defined in the volume ΩC . Therefore, it is helpful to derive a
relation between the surface and volume concentrations of these quantities in order to
better understand the relations between these two types of models.

One way to connect the surface concentration g2d (representing R2d, C2d, etc.) of
some quantity to its volume concentration g3d (say, R3d, C3d, etc.) is based on the mass
conservation. On a cross-section of the capillary volume with radius r, we that assume
the concentration is a constant on it. The mass conservation implies g3dπr

2=g2d2πr,
which leads to

g3d=
2

r
g2d. (2.12)

Therefore, the area transfer rate f2d can be converted to the volume transfer rate
as

f3d=
2

r
f2d=

2

r
(−konuR2d+koffC2d)=−konuR3d+koffC3d. (2.13)
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In the volume-reaction models, the growth factor equation is typically written as

∂u

∂t
=DΔu−μu+χΩC

f3d(u) in Ω, (2.14)

where χΩC
is the characteristic function of the capillary cylinder, which is 1 in the

capillary volume and 0 otherwise. This equation has been used in [3, 6, 10, 16, 19, 28].
However, receptors are lacking in these models except in [6]. Indeed, the receptor
equations of R3d and C3d can be derived by simply replacing R2d by R3d and C2d by
C3d in Equations (2.1) and (2.2). Hence, a full volume-reaction model can be written
as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u
∂t =DΔu−μu+χΩC

(−konuR3d+koffC3d) forx∈Ω, t>0,
∂R3d

∂t =−konuR3d+koffC3d+kpC3d forx∈ΩC , t>0,
∂C3d

∂t =konuR3d−koffC3d−kpC3d forx∈ΩC , t>0,
∂u
∂n =0 forx∈∂Ω, t>0,

u(x,0),R3d(x,0),C3d(x,0) are smooth,

(2.15)

where Ω is a smooth bounded domain in R
3 and n is the unit outward normal vector

on ∂Ω. Notice that ∂
∂t [R3d(x,t)+C3d(x,t)]=0. Thus,

R3d(x,t)+C3d(x,t)=R3d(x,0)+C3d(x,0)
.
=m(x). (2.16)

Here we have abused the use of symbol m(x) compared with Equation (2.7), where they
differ by a constant multiplication factor.

For convenience, let us recall the definition of the Banach space W 2,1
p (Ω×(0,T )),

1≤p≤∞ here. For u∈Lp(Ω×(0,T )), define

‖u‖W 2,1
p (Ω×(0,T ))=

⎛
⎝ ∑

0≤r+2s≤2

‖Ds
tD

r
xu‖pLp(Ω×(0,T ))

⎞
⎠

1/p

.

We say u∈W 2,1
p (Ω×(0,T )) if ‖u‖W 2,1

p (Ω×(0,T ))<∞.

Theorem 2.2. Suppose the domain Ω is smooth and the constants D>0, μ≥0,
kon>0, koff≥0, kp≥0, and koff+kp>0. Let u(x,0), R3d(x,0), and C3d(x,0) be non-
negative smooth functions, u(x,0) �≡0 and R3d(x,0)+C3d(x,0)>0. Then the solution
u(x,t) of the system (2.15) belongs to W 2,1

p (Ω×(0,T )), where p>1 and T >0, and u,
R3d, and C3d are positive at any time t>0.

Proof. As in the proof of Theorem 2.1, the reactions of R3d and C3d can be
extended to the whole domain Ω, and R3d can be eliminated. Hence, the system (2.15)
can be reduced to the following equivalent system:⎧⎪⎨

⎪⎩
∂u
∂t −DΔu=−μu+χΩC

(−konu ·(m(x)−C3d)+koffC3d) forx∈Ω, t>0,
∂C3d

∂t =konum(x)−(koff+kp+konu)C3d forx∈Ω, t>0,

D ∂u
∂n =0 forx∈∂Ω, t>0.

(2.17)

Next for any fixed p>1, we replace χΩC
with a smooth function χε

ΩC
≥0, which

converges to χΩC
in Lp(Ω) as ε→0. Then we obtain⎧⎪⎨

⎪⎩
∂uε

∂t −DΔuε=−μuε+χε
ΩC

(−konuε ·(m(x)−Cε
3d)+koffC

ε
3d) forx∈Ω, t>0,

∂Cε
3d

∂t =konu
εm(x)−(koff+kp+konu

ε)Cε
3d forx∈Ω, t>0,

D ∂u
∂n =0 forx∈∂Ω, t>0.

(2.18)
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We will find a solution (uε,Cε
3d) of the system (2.18) and then let ε→0 to obtain the

solution of the system (2.17).
Similar to Theorem2.1, the lower solution (uε,Cε

2d) can be constructed from the
following linear system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂uε

∂t −DΔuε=−μuε+χε
ΩC

(−konuε ·m(x)) forx∈Ω, t>0,
∂Cε

3d

∂t =−(koff+kp+konmaxx∈Ωu0(x))C
ε
3d forx∈Ω, t>0,

∂u
∂n =0 forx∈∂Ω, t>0,

uε(x,0)=u(x,0), Cε
3d(x,0)=C3d(x,0) forx∈Ω.

Also, the upper solution (ũε,C̃ε
3d) can be constructed from the following system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ũε

∂t −DΔũε=−μũε+χε
ΩC

(−konũε ·(m(x)− C̃ε
3d)+koffC̃

ε
3d) forx∈Ω, t>0,

∂C̃ε
3d

∂t =0 forx∈Ω, t>0,
∂ũε

∂n =0 forx∈∂Ω, t>0,

ũε(x,0)=u(x,0), C̃ε
3d(x,0)=m(x) forx∈Ω.

Therefore, the system (2.18) has a unique positive classical solution (uε,Cε
3d) in Ω̄×

(0,∞) for any ε>0.
Let ε→0. Then, it is routine to check that, by passing to a subsequence if neces-

sary, the sequence (uε,Cε
3d) converges to the unique weak solution of the system (2.17).

Then by parabolic regularity, we obtain that for any p>1, u(x,t)∈W 2,1
p (Ω×(0,T )) for

any T >0. Moreover, the positivity of u(x,t) follows easily from the strong maximum
principle. Similar to the proof of Theorem 2.1, we can prove that R3d and C3d are
strictly positive for any t>0.

Remark 2.1. The regularity of the solution u(x,t) in Theorem2.2 is optimal because
of the characteristic function χΩC

in the system (2.17). Moreover, according to the
parabolic embedding theorem, the solution u(x,t) is C1 continuous in x and continuous
in t.

Remark 2.2. In the fourth type of models mentioned in Section 1, the blood vessel
capillaries are represented as a smooth density function, ρ(x), defined in the whole
domain. Its model can be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t =DΔu−μu+ρ(−konuR3d+koffC3d) forx∈Ω, t>0,
∂R3d

∂t =−konuR3d+koffC3d+kpC3d forx∈Ω, t>0,
∂C3d

∂t =konuR3d−koffC3d−kpC3d forx∈Ω, t>0,
∂u
∂n =0 forx∈∂Ω, t>0,

where the initial values u(x,0),R3d(x,0),C3d(x,0) are smooth. Applying the analysis for
the system (2.18), we obtain that the above system has a smooth and positive solution
(u,R3d,C3d).

2.3. Line-reaction model-I. Zheng et al. [32] proposed a model with the
reactions on the capillary centerline,

∂u

∂t
=DΔu−μu+δΣf3d(ū). (2.19)

We call this line-reaction model-I. In this model, ū is the mean value of u in a cross-
section of the capillary. The distribution coefficient δΣ is the line Dirac delta function
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associated with a smooth one-dimensional curve Σ=γ(
), 
∈ [0,1], which is defined as
follows. For any test function φ(x)∈S(R3) (the Schwartz space or space of rapidly
decreasing functions),∫

R3

δΣ(x)φ(x)dx=

∫ 1

0

|C(s)||γ′(s)|φ(γ(s))ds, (2.20)

where C(s) is the area of the capillary cross-section at γ(s). If the radius of the blood
vessel capillary is a constant of value r, then C(s)=πr2. In [32], the receptor equations
for R3d and C3d on Σ are

∂R3d

∂t
=−konūR3d+koffC3d+kpC3d,

∂C3d

∂t
=konūR3d−koffC3d−kpC3d. (2.21)

For simplicity, we consider a cross-section of the capillary in the infinitely large
tissue plane R2 and assume the center of the capillary is at x=0. For any function g(x)
defined on this plane, we denote its mean value in the capillary as

ḡ=
1

πr2

∫
Br(0)

g(x)dx,

where Br(0)={x∈R2 : |x|<r}. In this case, this model can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t =DΔu−μu+πr2δ2D(x)(−konūR3d+koffC3d) for x∈R2, t>0,
dR3d

dt =−konūR3d+koffC3d+kpC3d for t>0,
dC3d

dt =konūR3d−koffC3d−kpC3d for t>0,

u(x,0)=u0(x)≥0, R3d(0)=R0>0, C3d(0)=C0>0,

(2.22)

where R0 and C0 are constants. Note that both R3d and C3d are only defined at x=0.
Thus, their notations become R3d=R3d(t) and C3d=C3d(t).

Remark 2.3. A simplified version of the system (2.22) has been analyzed in [12]:
when (−konūR3d+koffC3d) is replaced with the Michaelis–Menten kinetics:

∂u

∂t
=DΔu−μu+δ2D(x)K(ū) in R

2,

where K(ū)=−πr2 kmaxū
kn+ū , kmax=kpRT , kn=

koff+kp

kon
.

Theorem 2.3. Assume that D, R0, and C0 are positive constants and u0(x)∈
L∞(R2)

⋂
C(R2) is non-negative with ū0>0. Then, the system (2.22) admits a unique

solution when t>0 is small. Moreover, u(x,t) is locally integrable and analytic in R
2 \

{0}. In fact, u(x,t) satisfies

u(x,t)=
e−μt

4Dπt

∫
R2

exp

(
−|x−y|2

4Dt

)
u0(y)dy

+r2
∫ t

0

e−μ(t−τ)

4D(t−τ)
exp

(
− |x|2
4D(t−τ)

)
(−konū(τ)R3d(τ)+koffC3d(τ))dτ, (2.23)

where ū is a positive continuous function satisfying

ū(t)=
e−μt

4Dπt

1

πr2

∫
Br(0)

∫
R2

exp

(
−|x−y|2

4Dt

)
u0(y)dydx



10 REACTION AND DIFFUSION MODELS IN ANGIOGENESIS

+

∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
e−μ(t−τ)(−konū(τ)R3d(τ)+koffC3d(τ))dτ. (2.24)

Proof. The main idea is to employ the Banach fixed point theorem. To this aim,
some preliminary calculations will be prepared first.

Assume that h(t) is a positive continuous function with h(0)= ū0>0. Let
(Rh(t),Ch(t)) denote the solution of the following system of ODEs:⎧⎪⎨

⎪⎩
dRh

dt =−konh(t)Rh+koffCh+kpCh for t>0,
dCh

dt =konh(t)Rh−koffCh−kpCh for t>0,

Rh(0)=R0>0, Ch(0)=C0>0.

(2.25)

Then, it will be shown that the solution (Rh(t),Ch(t)) can be expressed explicitly.
Notice that

d

dt
(Rh+Ch)=0.

Thus, Rh(t)+Ch(t)=R0+C0
.
=M , which gives Rh(t) satisfying{

dRh

dt =(koff+kp)M−(konh(t)+koff+kp)Rh for t>0,

Rh(0)=R0>0.

It is standard to derive that

Rh(t)=R0 exp

(
−
∫ t

0

(konh(τ)+koff+kp)dτ

)

+(koff+kp)M

∫ t

0

exp

(
−
∫ t

τ

(konh(s)+koff+kp)ds

)
dτ. (2.26)

Similarly, Ch(t) can be expressed explicitly as

Ch(t)=C0 exp

(
−
∫ t

0

(konh(τ)+koff+kp)dτ

)

+konM

∫ t

0

exp

(
−
∫ t

τ

(konh(s)+koff+kp)ds

)
h(τ)dτ. (2.27)

Note that Equations (2.26) and (2.27) clearly indicate that

0<Rh(t), Ch(t)<M, for t>0. (2.28)

Next, denote

Kh(t)=−konh(t)Rh+koffCh

and consider the following problem:{
∂u
∂t =DΔu−μu+πr2δ2D(x)Kh(t) for x∈R2, t>0,

u(x,0)=u0 for x∈R2.
(2.29)

Similar to the computation in [12], by the Fourier transform, we derive that

u(x,t)=
e−μt

4Dπt

∫
R2

exp

(
−|x−y|2

4Dt

)
u0(y)dy
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+r2
∫ t

0

e−μ(t−τ)

4D(t−τ)
exp

(
− |x|2
4D(t−τ)

)
Kh(τ)dτ.

For simplicity, we denote

I(x,t)=
1

4Dπt

∫
R2

exp

(
−|x−y|2

4Dt

)
u0(y)dy.

Direct calculation yields that

ū(t)=
1

πr2

∫
Br(0)

u(x,t)dx

= e−μtĪ(t)+
1

π

∫
Br(0)

∫ t

0

e−μ(t−τ)

4D(t−τ)
exp

(
− |x|2
4D(t−τ)

)
Kh(τ)dτdx

= e−μtĪ(t)+

∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
e−μ(t−τ)Kh(τ)dτ. (2.30)

Now, we are ready to define the following mapping

(Fh)(t)=e−μtĪ(t)+

∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
e−μ(t−τ)Kh(τ)dτ. (2.31)

To show the local solvability of the problem (2.22), it suffices to show that the mapping
F has a fixed point in some suitable set of positive continuous functions in small time
intervals.

To be more specific, denote

SC ={h(t)∈C([0,∞)) | h(0)= ū0>0, 0<h≤C}

and

ST
C ={h(t)∈C([0,T ]) | h(0)= ū0>0, ū0/2≤h≤C} .

Then, in order to apply the Banach fixed point theorem, we will demonstrate that, for
certain positive constants C and T , we have the following:

(A) F maps ST
C into itself;

(B) F is a contraction mapping.
The choice of C and T will be designated later.

Proof. ( Proof of (A).) It suffices to show that there exits t1>0 small enough such
that F maps St1

C into itself, where C
.
=2ū0+M .

First, since u0∈L∞(R2)
⋂
C(R2), one sees that Ī(t) is continuous in t. Thus, there

exists t0 such that 3ū0/4<Ī(t)<2ū0 for 0<t<t0.
Now, on the one hand, we show that, for any positive continuous function h(t),

(Fh)(t)<2ū0e
−μt+M for 0<t<t0.

Notice that

Kh(t)=
dRh

dt
−kpCh.
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Then, by Equations (2.28) and (2.31), it is straightforward to check that

(Fh)(t)= e−μtĪ(t)+

∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
e−μ(t−τ)

(
dRh

dτ
−kpCh

)
dτ

<e−μtĪ(t)+Rh(t)−
[
1−exp

(
− r2

4Dt

)]
e−μtRh(0)

−
∫ t

0

Rh(τ)

[
1−exp

(
− r2

4D(t−τ)

)]
μe−μ(t−τ)dτ

−
∫ t

0

Rh(τ)
r2

4D(t−τ)2
exp

(
− r2

4D(t−τ)

)
e−μ(t−τ)dτ

<2ū0+M.

On the other hand, we need show that, for h(t)∈SC , (Fh)(t)>ū0/2 when t is small.
By Equation (2.31), we have for 0<t<t0

(Fh)(t)>e−μtĪ(t)−
∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
e−μ(t−τ)konh(τ)Rhdτ

>e−μt3ū0/4−konCMt.

Hence, for h(t)∈SC , (Fh)(t)≥ ū0/2 when t<t∗, where t∗ denotes the unique root of

e−μt3ū0/4−konCMt= ū0/2.

Therefore, F :St1
C −→St1

C when t1≤ t∗. Thus, (A) is verified by choosing

C
.
=2ū0+M, T = t1≤ t∗. (2.32)

Proof. (Proof of (B).) We will show that F is a contraction mapping when t is
small. Choose hi∈SC∗ , i=1,2 and define

‖h1−h2‖t= max
τ∈[0,t]

|h1(τ)−h2(τ)|.

Then,

|(Fh1)(t)−(Fh2)(t)|

=

∣∣∣∣
∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
e−μ(t−τ) [Kh1(τ)−Kh2(τ)]dτ

∣∣∣∣
≤kon

∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
Rh1

(τ)|h1(τ)−h2(τ)|dτ

+kon

∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
h2(τ)|Rh1

(τ)−Rh2
(τ)|dτ

+koff

∫ t

0

[
1−exp

(
− r2

4D(t−τ)

)]
|Ch1

(τ)−Ch2
(τ)|dτ. (2.33)

Note that 0<Rhi
<M and Rhi

+Chi
=M , i=1,2. Moreover, due to Equation (2.26),

it is routine to derive that, for any t>0,

|Rh1
(t)−Rh2

(t)|
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≤R0kone
−(koff+kp)tt‖h1−h2‖t+(koff+kp)Mkon

∫ t

0

e−(koff+kp)(t−τ)(t−τ)dτ‖h1−h2‖t
≤ c1‖h1−h2‖t,

where c1 is a constant independent of t. Because Chi =M−Rhi , i=1,2, it follows
immediately that for any t>0,

|Ch1(t)−Ch2(t)|≤ c1‖h1−h2‖t.

Hence, by Equation (2.33), we have

|(Fh1)(t)−(Fh2)(t)|≤ (konM+konCc1+koffc1)t‖h1−h2‖t.

Thus, F is a contraction mapping when

t< (konM+konCc1+koffc1)
−1

. (2.34)

(B) is proved.

In summary, by Equations (2.32) and (2.34), one easily sees that, for fixed

0<T <min
{
t0, t

∗, (konM+konCc1+koffc1)
−1

}
,

F :ST
C −→ST

C is a contraction mapping. According to the Banach Fixed Point Theo-
rem, there exists a unique fixed point h(t)∈ST

C of the mapping F , namely Fh=h. In
particular, due to Equation (2.30), we have the local existence of the positive solution
to the problem (2.22). More specifically, based on previous calculations, one easily sees
that the solution u can be expressed as in Equation (2.23), where ū is a positive function
satisfying Equation (2.24). Thus, it is standard to verify that u(x,t) is locally integrable
and analytic in R

2 \{0}. The proof is complete.

Theorem 2.4. Assume that the radius of the blood vessel capillary r is small, u0(x)∈
L∞(R2)

⋂
C(R2) and u0(x)≥ c>0 in R

2.

(i) If konū0R3d(0)−koffC3d(0) is positive, then, for t>0 small, u(x,t)=O(log |x|)
for x close to 0 and u(x,t)>0 for |x|>r.

(ii) If konū0R3d(0)−koffC3d(0) is negative, then, for t>0 small, u(x,t)=
−O(log |x|) for x close to 0 and u(x,t)>ce−μt in R

2.

The proof is similar to that of [12, Theorem 2.3]. We include the details for the
convenience of the reader.

Proof. According to Theorem2.3,

u(x,t)=
e−μt

4Dπt

∫
R2

exp

(
−|x−y|2

4Dt

)
u0(y)dy+U(ρ,t), (2.35)

where ρ= |x| and

U(ρ,t)= r2
∫ t

0

e−μ(t−τ)

4D(t−τ)
exp

(
− ρ2

4D(t−τ)

)
(−konū(τ)R3d(τ)+koffC3d(τ))dτ.

Note that for t>0, u(x,t)−U(ρ,t) is smooth in x. Hence, it suffices to analyze the
singularity of U(ρ,t) for ρ≈0.
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From Theorem2.3, we have

Uρ(ρ,t)=
1

ρ

r2

2D

∫ t

0

− ρ2

4D(t−τ)2
exp

(
− ρ2

4D(t−τ)

)
e−μ(t−τ)

·(−konū(τ)R3d(τ)+koffC3d(τ))dτ

=
1

ρ

r2

2D

∫ t

0

[
exp

(
− ρ2

4D(t−τ)

)]
τ

e−μ(t−τ)(−konū(τ)R3d(τ)+koffC3d(τ))dτ

=
1

ρ

r2

2D
(−konū(ξ)R3d(ξ)+koffC3d(ξ))e

−μ(t−ξ)

∫ t

0

[
exp

(
− ρ2

4D(t−τ)

)]
τ

dτ

=
1

ρ

r2

2D
(konū(ξ)R3d(ξ)−koffC3d(ξ))e

−μ(t−ξ) exp

(
− ρ2

4Dt

)
,

where 0≤ ξ≤ t. We will analyze two cases separately.

(i) Assume that konū0R3d(0)−koffC3d(0) is positive. Then, konū(t)R3d(t)−
koffC3d(t) remains positive for t>0 small due to continuity. Thus,

c1(t)
1

ρ
≤Uρ(ρ,t)≤ c2(t)

1

ρ
,

where ci(t)>0, i=1,2. This yields that Uρ(ρ,t)>0 and

c1(t)lnρ≤U(ρ,t)−U(1,t)≤ c2(t)lnρ. (2.36)

Moreover, it is routine to verify that U(1,t) is continuous in t. Therefore, by
Equation (2.36), u(x,t)=O(log |x|) for x close to the origin.
Furthermore, on the one hand, U(ρ,t)>U(r,t) for ρ>r since Uρ(ρ,t)>0. On
the other hand, it is standard to verify that for t small, |U(r,t)|<Cr2 with
C independent of t. Hence, due to Equation (2.35) and the assumption that
u0≥ c>0, one easily sees that, for |x|>r,

u(x,t)=
e−μt

4Dπt

∫
R2

exp

(
−|x−y|2

4Dt

)
u0(y)dy+U(|x|,t)

≥ ce−μt+U(r,t)≥ ce−μt−Cr2>0

provided that r and t are small.

(ii) Assume that konū0R3d(0)−koffC3d(0) is negative. Similarly, konū(t)R3d(t)−
koffC3d(t) remains negative for t>0 small and thus

U(1,t)+ c̃1(t)lnρ≤U(ρ,t)≤U(1,t)+ c̃2(t)lnρ,

where c̃i(t)<0, i=1,2. Hence u(x,t)=−O(log |x|) for x close to 0. At the end,
due to the assumption that konū(0)R3d(0)−koffC3d(0) is negative, by Equation
(2.23), one easily sees that, for t>0 small, u(x,t)>ce−μt in R

2.
The proof is complete.

At first glance, the line-reaction model-Iseems non-physical because of the logarith-
mic singularity of u. However, according to Theorem2.4, the solution u(x,t) is positive
in the diffusion domain (that is, when |x|>r). Furthermore, according to Theorem2.3,
the mean value of u in a capillary cross-section, or ū, is always positive. Note that it
is the mean value that is used in all the reactions on the capillary, including Equations
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(2.21) and (2.22) and the last term of Equation (2.19). All these facts show that the
line-reaction model-Iis physical. In addition, the reaction and diffusion processes are
coupled together (see Equation (2.23)), so this model satisfies criteria (C1) and (C2).
Therefore, it is a valid model.

In the general case where the capillary Σ is of arbitrary shape and the tissue domain
is bounded, we hypothesize that these conclusions are also true because the Dirac delta
function only captures the local behavior around Σ. That is, the solution would have a
logarithmic singularity on the curve Σ, and the value ū would be a positive function at
all time.

2.4. Two invalid models: line-reaction model-IIand -III. Sometimes, it is
tempting to write the reaction-diffusion equation as (see [27])

∂u

∂t
=DΔu−μu+χΣf3d(u). (2.37)

We call this line-reaction model-II. In this equation, χΣ is the Σ-indicator function, 1
on the one-dimensional curve Σ and 0 otherwise. This equation models the reaction
only on the capillary centerline Σ. Because u is used in the reaction, it should be finite
on Σ according to the criterion (C1) in Section 2. Thus, if Equation (2.37) is integrated
over the whole domain Ω, the last term will disappear because Σ is of zero measure in
Ω. This suggests that the reaction term has no contribution to the ligand rate of change
in Ω at all. Therefore, this equation is invalid according to the criterion (C2).

Compared with Equation (2.19) and Equation (2.37), it is more tempting to write
an equation (e.g., [33])

∂u

∂t
=DΔu−μu+δΣf3d(u) for x∈R3, t>0. (2.38)

We call this line-reaction model-III. In this equation, the reaction also occurs on the
capillary centerline only. This model seems better than Equation (2.37) because the
integration over the whole domain does not seem to eliminate the reaction term. Ac-
cording to the criterion (C1), it is expected that u is finite on Σ. Furthermore, we expect
u to be continuous in space and time because it is awkward to see a finite but discontin-
uous growth factor concentration. However, this could not be achieved by model (2.38),
which can be seen from the following analysis.

For simplicity, we assume that the capillary radius is a constant, say r, then the
definition of the line delta function (2.20) becomes, ∀φ(x)∈S(R3),∫

R3

δΣ(x)φ(x)dx=πr2
∫ 1

0

|γ′(s)|φ(γ(s))ds,

where Σ=γ([0,1]).

Theorem 2.5. Given a continuous function f in R and a bounded and continuous
function u0(x)≥0 in R

3, assume that u0∈L1(R3) and f(u0(x)) is not identically zero
on Σ. Then the model (2.38) does not admit a solution u(x,t)∈C(R3× [0,T ]), T >0
with u(x,0)=u0(x) in R

3.

Proof. Suppose the conclusion is not true, i.e., that Equation (2.38) admits a
solution u(x,t)∈C(R3× [0,T ]) for some T >0 with u(x,0)=u0(x) in R

3 and that f and
u0 satisfy the conditions in Theorem2.5. Similar to the computation in [12], by the
Fourier transform, the solution of the model (2.38) can be expressed as follows:

u(x,t)=e−μt

∫
R3

1

(4πDt)3/2
exp

(
−|x−y|2

4Dt

)
u0(y)dy
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+

∫ t

0

∫
R3

e−μ(t−τ)

(4πD(t−τ))3/2
exp

(
− |x−y|2
4D(t−τ)

)
δΣ(y)f3d(u(y,τ))dydτ

= e−μt

∫
R3

1

(4πDt)3/2
exp

(
−|x−y|2

4Dt

)
u0(y)dy

+

∫ t

0

∫ 1

0

πr2e−μ(t−τ)

(4πD(t−τ))3/2
exp

(
−|x−γ(s)|2

4D(t−τ)

)
|γ′(s)|f3d(u(γ(s),τ))dsdτ,

for 0<t<T .
According to the conditions in Theorem2.5, without loss of generality assume that

there exist 
∈ (0,1), ε>0, and δ>0 such that [
−ε,
+ε]⊂ [0,1] and |γ(
)−γ(s)|≥ δ for
|
−s|>ε and

f3d(u(γ(s),t))>c0 for s∈ [
−ε,
+ε], 0≤ t≤ t0,

where 0<t0<T and c0>0. Denote

c1= min
0≤s≤1

|γ′(s)|, c2= max
0≤s≤1

|γ′(s)|.

It is clear that 0<c1<c2<∞ since Σ=γ([0,1]) is a smooth curve. Then, we have for
0≤ t≤ t0

u(γ(
),t)

≥ e−μt

∫
R3

1

(4πDt)3/2
exp

(
−|γ(
)−y|2

4Dt

)
u0(y)dy

+c0c1

∫ t

0

∫ 	+ε

	−ε

πr2e−μ(t−τ)

(4πD(t−τ))3/2
exp

(
−|γ(
)−γ(s)|2

4D(t−τ)

)
dsdτ

−c2
∫ t

0

(∫ 	−ε

0

+

∫ 1

	+ε

)
πr2e−μ(t−τ)

(4πD(t−τ))3/2
exp

(
− δ2

4D(t−τ)

)
|f3d(u(γ(s),τ))|dsdτ. (2.39)

Now, by Equation (2.39), one sees that, to derive a contradiction, it suffices to show
that ∫ t

0

∫ 	+ε

	−ε

1

(4πD(t−τ))3/2
exp

(
−|γ(
)−γ(s)|2

4D(t−τ)

)
dsdτ =+∞. (2.40)

Direct computation yields that∫ t

0

∫ 	+ε

	−ε

1

(4πD(t−τ))3/2
exp

(
−|γ(
)−γ(s)|2

4D(t−τ)

)
dsdτ

=

∫ t

0

∫ ε

−ε

1

(4πDτ)3/2
exp

(
−|γ

′(ξ)|2s2
4Dτ

)
dsdτ

=

∫ t

0

∫ |γ′(ξ)|√
4Dτ

ε

− |γ′(ξ)|√
4Dτ

ε

1

|γ′(ξ)|√π

1

4πDτ
exp

(−η2)dηdτ
≥
∫ t

0

1

|γ′(ξ)|
1

4πDτ

√
1−exp

(
−|γ

′(ξ)|2
4Dτ

ε2
)
dτ =+∞

where ξ∈ [
−ε,
+ε]. Therefore, Equation (2.40) is verified and the proof is complete.
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This proof shows that, if the reaction rate f3d(u) becomes nonzero on some point
of Σ at one moment, then the local value u there will blow up immediately. In general,
the reaction rate is nonzero in the biological process. Therefore, this model creates
singularity on the capillary centerline. Because the local value of u on the centerline is
used in the reactions, this model is invalid according to the criterion (C1). On the other
hand, if f3d(u) is identically zero on Σ for all time, then this singularity will disappear.
However, this is equivalent to removing the reaction term δΣf3d(u) from the modeling
Equation (2.38). In this case, the function f3d(u)=0 itself indicates the value u on Σ
and the diffusion has no effects on it at all. According to the criterion (C2), the model
is also invalid. Therefore, no matter what the f3d(u) value is (either identically zero or
not) this model is invalid.

In contrast, although the local value u is also singular in the line-reaction model-I,
the mean value on the capillary cross-section is finite and positive, and it is the mean
value that is utilized in the reactions. Consequently, the line-reaction model-Iis valid.

3. Comparison in numerical implementation

In numerical implementations, the volume-reaction and line-reaction models are
superior to the surface-reaction models in programming complexity and computational
cost when handling large domains and a large number of blood capillaries of complex
shapes. This is mainly because the surface-reaction models require us to explicitly
construct the capillary surface but the volume-reaction and line-reaction models do
not.

Among surface-reaction models, there exist two numerical approaches to construct
the blood capillary surface. The first approach directly generates a mesh on the capillary
surface, as in [5, 15, 17]. These models just study one single cell and its nearby region
whose domain size is a few dozen microns. Another approach uses intersections of the
diffusion mesh lines and capillary surface whose analytic form is given, as in [13, 14].
In these two works, the domain is 200×200×800μm3, the capillary diameter is 6μm
and the mesh size is 1μm in each spatial coordinate, which lead to roughly 3×107

mesh points. When the domain size is increased to millimeters, capturing the surface
of very thin capillaries and implementing surface boundary conditions become very
challenging. Comparing with the work of [13, 14], if the the domain is enlarged to
2000×2000×800μm3 with the same mesh size, then it requires 3×109 mesh points,
which would be too expensive to implement. Furthermore, the surface-reaction models
have to identify the tissue domain outside the capillaries to discretize the diffusion
term. The flux boundary condition has to be applied on the capillary surface mesh
points. If the surface mesh points do not coincide with the diffusion mesh points, then
a special treatment of the finite differencing of the diffusion term around the capillary
has to be designed (for example see [4,13]). All these increase the difficulty in computer
programming of the surface-reaction models.

In contrast, the volume-reaction and line-reaction models do not need to track the
capillary surface. In all these models, a sequence of discrete points is used to denote
the capillary centerline and a radius is assigned to the capillaries, as in [3, 6, 10, 16,
19, 28, 29, 31, 33]. The (mollified) Heaviside function or (mollified) Dirac delta function
is spread over diffusion mesh points according to the capillary centerline location and
radius. In this manner, these models not only save the construction of capillary surface
or volume but allow rather coarse meshes of the tissue domain, which could significantly
reduce the computational cost. For instance, comparing with the work of [13,14], if the
the domain is enlarged to 2000×2000×800μm3 with the mesh size 10μm, then the
volume-reaction and line-reaction models can still capture the contribution from the
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capillaries through the use of the mollified Heaviside or delta function, but they keep
the mesh points down to 3×107. The surface-reaction models would have trouble with
this mesh resolution because a capillary of diameter 6μm might not be intersected by
mesh lines 10μm apart. Therefore, the volume-reaction and line-reaction models can
handle domains as large as a few millimeters or larger in diameter where hundreds
to thousands of tortuous capillaries form a dense network. Furthermore, there is no
boundary condition or special finite differencing required around the capillary, and the
diffusion term is discretized everywhere the same. Thus, the computer programming of
the volume-reaction and line-reaction models is far easier.

4. Comparison in prediction of growth factor dynamics
To study the quantitative differences between the surface-reaction models and the

volume/line-reaction models, we construct a simple radially symmetric two-dimensional
problem. We take a cross-section of a capillary of radius r and the surrounding tissue of
radius R, where r�R. We impose the no-flux boundary condition on the outer circle.
The solution is denoted as u(ρ,t)=u(x,t), where x=(x1,x2) and the radius coordinate
ρ=

√
x2
1+x2

2. The surface-reaction model for this problem is written as

Problem 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = D 1

ρ
∂
∂ρ

(
ρ∂u
∂ρ

)
−μu, r<ρ<R,

D ∂u
∂ρ |ρ=r = −f2d(u,R2d,C2d)=konuR2d−koffC2d,

D ∂u
∂ρ |ρ=R = 0,
dR2d

dt = −konuR2d+koffC2d+kpC2d,
dC2d

dt = konuR2d−koffC2d−kpC2d,

u(ρ,t=0) = U, 0≤ρ≤R,

R2d(t=0) = r
2RT , C2d(t=0)=0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

Note that in Problem 1, the quantities R2d and C2d are only defined on ρ= r. Since
the volume-reaction model and line-reaction model-Iare equivalent under the numerical
method used in this study (see Appendix B), we only list the volume-reaction model
below.

Problem 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = D 1

ρ
∂
∂ρ

(
ρ∂u
∂ρ

)
−μu+χΩC

f3d(u,R3d,C3d),0<ρ<R,

f3d(u,R3d,C3d) = −konuR3d+koffC3d,

D ∂u
∂ρ |ρ=0 = D ∂u

∂ρ |ρ=R=0,
∂R3d

∂t = −konūR3d+koffC3d+kpC3d, 0≤ρ≤ r,
∂C3d

∂t = konūR3d−koffC3d−kpC3d, 0≤ρ≤ r,

u(ρ,t=0) = U, 0≤ρ≤R,

R3d(ρ,t=0) = RT , C3d(ρ,t=0)=0, 0≤ρ≤ r.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)
We denote the solution of Problem 1 as (u1,R1,2d,C1,2d) and that of Problem 2 as

(u2,R2,C2) and then define R1=
2
rR1,2d and C1=

2
rC1,2d. To estimate the difference

between Problem 1 and Problem 2, we introduce the following errors:

||Eu||max,T = max
ρ∈[r,R]

|u1(ρ,T )−u2(ρ,T )|
|u1(ρ,T )| , ||Eu||max,r= max

t∈[0,T ]

|u1(r,t)−u2(r,t)|
|u1(r,t)| , (4.3)

||ER||max,r= max
t∈[0,T ]

|R1(t)−R2(t)|
|R1(t)| , ||EC ||max,r= max

t∈[0,T ]

|C1(t)−C2(t)|
|C1(t)| . (4.4)
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The numerical methods of Problem 1 and Problem 2 are shown in Appendix B. In
our test, we set T =4.8 hours. All the parameter values are given in Table 4.1. Note
the control values and the ranges of parameters are not only valid for VEGF, but also
used for epidermal growth factor (EGF) (see [17]).

Parameter Variable Control Value Range Source

Capillary radius r 10μm 2∼20μm [26]

Tissue radius R 2mm fixed [7, 26]

Diffusion constant D 10−6cm2s−1 10−10 ∼10−3 cm2s−1 [15, 17]

Decay rate μ 1.8×10−4s−1 1.8×10−7 ∼3.6×10−4s−1 [25]

Association rate kon 1.2×106M−1s−1 1.2×105 ∼1.2×108M−1s−1 [15, 17]

Dissociation rate koff 4.1×10−4s−1 4.1×10−6 ∼4.1×10−2s−1 [15, 17]

Internalization rate kp 2.8×10−4s−1 10−6 ∼10−2s−1. [15]

VEGF reference value U 2.22×10−3μM 10−6 ∼10−1μM [15]

VEGFR2 concentration RT 1.3×10−3μM 4×10−4 ∼4×10−3μM [5, 9, 15]

Table 4.1. Parameters

First, we pick up eight parameters to study their effects on the difference between
Problem 1 and Problem 2: diffusion constant D, decay rate μ, association rate kon,
disassociation rate koff, internalization rate kp, capillary radius r, VEGF reference value
U (used as the initial value), and VEGFR2 total concentration RT . When testing each
of these parameters, we fix all other parameters as the control values in Table 4.1 and
choose some values of the tested parameter well spread in its range. The results are
shown in Figure 4.1. Among all these eight parameters, the diffusion constant has
the most remarkable impact on the difference between these two models. When D is
reduced to 10−10cm2s−1, the smallest value in its range, the solution of Problem 2 differs
significantly from that of Problem 1 near the capillary (Figure 4.1[a]): the maximum
relative errors reach about 37%. Among three kinetics parameters, the association rate
kon is most significant: the difference is larger when kon is increased, but it is still less
than 1% (Figure 4.1[c]). Although the differences are larger when the capillary radius r
and the total VEGFR2 concentration RT are enlarged, the magnitude of the differences
is less than 0.1% (Figure 4.1[f][h]). The decay rate μ and VEGF reference value U have
negligible effects on the difference between the two models (Figure 4.1[b][g]).

Next, we focus on the diffusion constant and show the details of results when D=
10−6cm2s−1 and 10−10cm2s−1 in Figure 4.2 and Figure 4.3, respectively. All other
parameters are of the control values in Table 4.1. When D=10−6cm2s−1, the solutions
of Problem 1 and Problem 2 almost coincide (Figure 4.2), but, when D=10−10cm2s−1,
the solutions differ significantly (Figure 4.3). One may notice the decrease of u when D
is reduced (comparing Figure 4.2[a] and Figure 4.3[a]). This is because the compensation
of the loss of growth factor due to reaction is less when the diffusion constant is smaller.

Although the parameters are chosen for VEGF, the comparison results are similar
for many other growth factors in angiogenesis, such as Platelet-derived growth factor
(PDGF) and angiopoietins, (see models in [32]) and growth factors in general cell biol-
ogy, such as epidermal growth factor (EGF) ( [17]).

5. Conclusions
This work is the first time when a comprehensive comparison of existing reaction

and diffusion models of growth factors in angiogenesis has been presented. These models
include one surface-reaction model, one volume-reaction model, and three line-reaction
models, which have represented all current mathematical models using partial differ-
ential equations in this research field. The reactions in these models are the binding
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Fig. 4.1. Errors for various values of D, μ, kon, koff, kp, r, U , and RT . The legends are the
same for all these figures.
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Fig. 4.2. [a]&[b]: D=10−6cm2s−1. [a]: u at t=4.8 hours. [b]: Solutions at ρ= r. Note the
solution curves of the same variables in different problems are indistinguishable in these figures.
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Fig. 4.3. [a]&[b]: D=10−10cm2s−1. [a]: u at t=4.8 hours. [b]: Solutions at ρ= r.

kinetics between growth factors and receptors on the capillary surface. Therefore, the
precise location of reactions is the capillary surface. In this sense, the surface-reaction
model is the most realistic and accurate one, while the volume-reaction and line-reaction
models lump the reactions to the capillary volume or centerline, which can be regarded
as approximations or simplified models of the surface-reaction model. The complexity
of the surface-reaction model in computation justifies the development of these simpli-
fied models. An important contribution of this paper is to point out that some of the
simplified models in the literature may be problematic mathematically. We compared
these models in the following three aspects.

First, we mainly studied the qualitative features of these models, including solution
existence, regularity and positivity. The qualitative features of these models are briefly
summarized in Table 2.1. The solution of the surface-reaction model is smooth and
positive and has higher regularity than any other valid models studied in this work. In
the volume-reaction model, a Heaviside (characteristic) function is used to represent the
capillary volume, and the solution is positive and has second order spatial derivatives
in the weak sense.

In terms of modeling simplicity, the line-reaction models are most attractive because
the reactions are only occurring on a one-dimensional curve (capillary centerline). It
is especially interesting to study the qualitative features of the line-reaction model-
Iand -IIIbecause they use the unknown solution with the Dirac delta function as the
line source, which is new in the literature. The model-IIIuses the local value of the
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unknown solution, which either blows up or annihilates the line source. Thus, the model-
IIIis invalid. In contrast, the model-Iuses the mean value of the unknown solution in
a region around the capillary centerline. We prove that this mean value is finite and
positive and the reaction and diffusion processes are coupled together. Thus, the model-
Iis valid. This comparison implies that using the local value of the unknown solution
is too demanding for the Dirac delta line source, while the mean value relaxes this
stringency.

Second, we briefly compared the computer implementations of these models. In
the current literature, the surface-reaction model has only been applied to domains
from a few dozen microns to a few hundred microns in size. When the domain size
is increased to a few millimeters or above, the volume-reaction models or line-reaction
models take over. This is mainly because the surface-reaction models require us to
identify and resolve the capillary surface, which increases the programming complexity
and computational cost.

Third, we quantitatively compared the prediction in growth factor dynamics of
these models using one typical reaction diffusion problem. It turns out that the volume-
reaction model and the line-reaction model-Iare satisfactory approximations of the
surface-reaction model in most parameter value ranges. However, when the diffusion
constant is very small, these two models present significant deviation from the surface-
reaction model.

As theoretical models, the surface-reaction model is the most accurate and delicate,
the line-reaction model-Iis the simplest, and the volume-reaction model lies in between.
As numerical models, the surface-reaction model is the most complicated and suitable
for small domains, while the volume-reaction model and line-reaction model-Iare simpler
and recommended for large domains with a large number of capillaries.

Appendix A. Proof of boundary condition JF (u) ·n=−f2d(u).
Theorem A.1. If u is smooth and |dudt | and |∇u| are bounded, then JF ·n=−f2d(u)
on ∂ΩC where n is the unit normal vector on ∂ΩC pointing to the interior of ΩC .

Proof. At any point x∈∂ΩC , select a control volume V ⊂ΩT whose lower surface
Sl belongs to ∂ΩC and centers around x, and the upper surface Su is obtained by shifting
the lower surface outward by a distance ε (see Figure A.1). Denote the side surface of
V as Ss. Suppose the area of Sl is equal to A and the perimeter of Sl is less than 10

√
A.

Then, the volume of V is ≤2εA and the area of Ss is ≤10ε
√
A. Let the outward unit

normal vector on ∂V be n, which is the same as that of ∂Ωc when restricted on Sl.

Fig. A.1. Control volume V intersects with ∂Ωc at the surface Sl.

The mass conservation equation of u in V is

d

dt

∫
V

udV =−
∫
Su∪Ss

JF ·ndS+

∫
Sl

f2ddS.
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Suppose |dudt | and |∇u| are bounded by a constant M>0. Then the mean value

theorem suggests that | ddt
∫
V
udV |≤ εADM ,

∫
Su

JF ·ndS=A(JF ·n)(ξ1),
∫
Sl
f2d(u)dS=

Af2d(u(ξ2)), |
∫
Ss

JF ·ndS|≤10εM
√
A, where ξ1∈Su and ξ2∈Sl. Let ε→0. Then, we

obtain

JF ·n(ξ1)=−f2d(u(ξ2)).

Note the limit of ξ1 lies on Sl and therefore the normal vector at ξ1 switches direction
when going from Su to Sl. Let A→0, then ξ1→x, and ξ2→x, so JF ·n=−f2d(u) at
x.

Appendix B. Finite volume method for Problem 1 and Problem 2. The
only difference between the volume-reaction model and the line-reaction model-Ilies
in the equation of the growth factor, namely Equation (2.14) and Equation (2.19).
Although these two equations are distinct in their differential forms and positivity of u,
there is not much difference in numerical implementations. Indeed, it can be proven that
they are identical in the following finite volume method. LetM be a finite family of non-
empty connected open disjoint subsets of Ω (the finite volumes) such that Ω=∪V ∈MV .
On each V ∈M, a general reaction diffusion equation

∂u

∂t
=DΔu−μu+F (u)

is integrated over V to obtain∫
V

∂u

∂t
dx=

∫
∂V

ĴF ·ndS−μ

∫
V

udx+

∫
V

F (u)dx

where ĴF is the numerical Fickian flux on ∂V . Denote the mean value on each finite
volume V as ūV , namely ūV � 1

|V |
∫
V
udx. If we approximate

∫
V
F (u)dx by

∫
V
F (ūV )dx,

then the finite volume method is

dūV

dt
=

1

|V |
∫
∂V

ĴF ·ndS−μūV +
1

|V |
∫
V

F (ūV )dx.

We choose one special type of finite volumes which satisfies the following condition.

Definition B.1. A finite volume discretization {M} satisfies the capillary segmen-
tation condition if any finite volume V ∈M intersecting with the capillary is a seg-
ment of the capillary, that is, its two ends are two cross-sections of the capillary and
the side boundary belongs to the capillary surface ∂ΩC .

In Equation (2.14), F (u)=χΩC
f3d(u), so 1

|V |
∫
V
χΩC

f3d(ūV )dx=f3d(ūV ) if V

is a capillary segment and 0 otherwise. In Equation (2.19), f(u)= δΣf3d(ū), so
1

|V |
∫
V
δΣf3d(ūV )dx=f3d(ūV ) if V is a capillary segment and 0 otherwise. Therefore,

the finite volume discretizations are identical for these two models. This result can be
summarized below.

Proposition B.1. In the finite volume method satisfying the capillary segmentation
condition, the modeling equations (2.14) and (2.19) have the same form:

dūV

dt
=

1

|V |
∫
∂V

ĴF ·ndS−μūV +

{
f3d(ūV ), if V is a capillary segment;

0, otherwise.
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Note that this finite volume method only computes the mean value in an entire
capillary segment or cross-section. According to Theorem2.3, this mean value is always
positive. Therefore, this numerical method will not capture the negative value or the
singularity near the capillary centerline in the line-reaction model-I. However, if a
sufficient numerical discretization is utilized inside the capillary segment or cross-section,
then the negative value of the line-reaction model-Ican be captured, as in [12]. The
reason why we only compute the mean value in this work is that only the mean value
is required in the reactions on the capillary in the line-reaction model-I(see equations
in (2.19)).

The details of numerical implementation of Problem 1 and Problem 2 are as follows.
The forward Euler scheme with time step size Δt is applied for the temporal discretiza-
tion. Along the radial direction, an n-subdivision with n+1 mesh points ρ1< · · ·<ρn+1

is assigned. For Problem 1, ρ1= r, ρn+1=R, and the mesh size ρi+1−ρi=
R−r
n ,i=

1, . . . ,n. For Problem 2, ρ1=0, ρ2= r, ρn+1=R, ρi+1−ρi=
R−r
n−1 ,i=2, . . . ,n.

For a finite volume Vi=(ρi,ρi+1)×(0,2π), we define the mean value of u as

ūi=
1

π(ρ2i+1−ρ2i )

∫ ρi+1

ρi

∫ 2π

0

ρu(ρ,θ,t)dρdθ=
2

(ρ2i+1−ρ2i )

∫ ρi+1

ρi

ρu(ρ,t)dr.

Denote the solution at tk as ūk
i , and we are going to solve ūk+1

i ,i=1, · · · ,n. The numer-
ical scheme is the same for Problem 1 and Problem 2 when i=2, . . . ,n. In Vi,i=2, . . . ,n,

for both Problem 1 and Problem 2, we have ∂u
∂t =D 1

ρ
∂
∂ρ

(
ρ∂u
∂ρ

)
−μu. Thus,

dūi

dt
=

2

(ρ2i+1−ρ2i )

(
D

(
ρi+1

∂u

∂ρ
|ρi+1−ρi

∂u

∂ρ
|ρi

)
−μ

∫ ρi+1

ρi

ρudρ

)
.

We approximate dūi

dt by
ūk+1
i −ūk

i

Δt , ∂u
∂ρ |ρi

by
ūk+1
i −ūk+1

i−1

(ρi+1−ρi−1)/2
and

∫ ρi+1

ρi
ρudρ by

ρ2
i+1−ρ2

i

2 ūk+1
i .

The numerical scheme for i=2, . . . ,n−1 is

−4DρiΔt

(ρ2i+1−ρ2i )(ρi+1−ρi−1)
ūk+1
i−1

+

(
1+

4DρiΔt

(ρ2i+1−ρ2i )(ρi+1−ρi−1)
+

4Dρi+1Δt

(ρ2i+1−ρ2i )(ρi+2−ρi)
+μΔt

)
ūk+1
i

+
−4Dρi+1Δt

(ρ2i+1−ρ2i )(ρi+2−ρi)
ūk+1
i+1 = ūk

i .

When i=n, using the boundary condition ∂u
∂r |ρn+1

=0, we get

−4DρnΔt

(ρ2n+1−ρ2n)(ρn+1−ρn−1)
ūk+1
n−1+

(
1+

4DρnΔt

(ρ2n+1−ρ2n)(ρn+1−ρn−1)
+μΔt

)
ūk+1
n = ūk

i .

For Problem 1, when i=1, using the boundary condition D ∂u
∂r |r=−f2d, we achieve(

1+
4Dρ2Δt

(ρ22−ρ21)(ρ3−ρ1)
+μΔt

)
ūk+1
1 +

−4Dρ2Δt

(ρ22−ρ21)(ρ3−ρ1)
ūk+1
2

= ūk
1+

2ρ1Δt

ρ22−ρ21
f2d(ū

k
1 ,R

k
2d,C

k
2d).
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For Problem 2, when i=1, the integration of χΩC
f3d over V1 is π(ρ

2
2−ρ21)f3d. There-

fore,(
1+

4Dρ2Δt

(ρ22−ρ21)(ρ3−ρ1)
+μΔt

)
ūk+1
1 +

−4Dρ2Δt

(ρ22−ρ21)(ρ3−ρ1)
ūk+1
2 = ūk

1+Δtf3d(ū
k
1 ,R

k
3d,C

k
3d).

The free and bound receptors are solved using the same scheme in these two prob-
lems:

Rk+1
2d =Rk

2d+Δt
(−konūk

1R
k
2d+(koff+kp)C

k
2d

)
,

Ck+1
2d =Ck

2d−Δt
(−konūk

1R
k
2d+(koff+kp)C

k
2d

)
,

Rk+1
3d =Rk

3d+Δt
(−konūk

1R
k
3d+(koff+kp)C

k
3d

)
,

Ck+1
3d =Ck

3d−Δt
(−konūk

1R
k
3d+(koff+kp)C

k
3d

)
.

In the examples of Section 4, r=0.01mm, R=2mm, n=2000 for Problem 1 and
n=2001 for Problem 2, and Δt=10−6days.
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