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ASYMPTOTIC STABILITY AND SEMI-CLASSICAL LIMIT FOR
BIPOLAR QUANTUM HYDRODYNAMIC MODEL∗

HAIFENG HU† , MING MEI‡ , AND KAIJUN ZHANG§

Abstract. In this paper, the initial-boundary value problem of a 1-D bipolar quantum semicon-
ductor hydrodynamic model is investigated under a non-linear boundary condition which means the
quantum effect vanishes on the boundary. First of all, the existence and uniqueness of the correspond-
ing stationary solution are established. Then the exponentially asymptotic stability of the stationary
solution and the semi-classical limits are further studied. The adopted approach is the elementary
energy method but with some new developments.
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1. Introduction
We consider the following bipolar isothermal quantum hydrodynamic (QHD for

abbreviation) model for semiconductors⎧⎪⎪⎨
⎪⎪⎩
nit+jix=0,

jit+
(
j2i n

−1
i +Kini

)
x
−ε2ni

[(√
ni

)
xx

/
√
ni

]
x
=(−1)i−1niφx−ji,

φxx=n1−n2−D(x), i=1,2, ∀(t,x)∈ (0,+∞)×Ω,

(1.1)

where Ω :=(0,1) is a bounded interval occupied by the semiconductor device, and the
quantum effects contribute to the dispersion terms based on the Bohm potential. The
unknown functions ni(t,x) and ji(t,x) stand for the charge density, current distribution
for electrons (i=1) and holes (i=2), respectively, and φ is the electrostatic potential.
Pi(ni)=Kini (i=1,2) are the pressure functions corresponding to ni. The positive con-
stants ε, K1, and K2 are the scaled Planck constant, temperature constant of electrons
and temperature constant of holes, respectively. The given function D(x) means the
nonconstant doping profile, the density of impurities in semiconductor devices.

The system (1.1) is derived from the bipolar quantum Boltzmann equations through
the momentum method developed in [3,4,18]. Mathematically, in the sense of quantum
corrections, it takes the form of the compressible fluids coupled with self-consistent Pois-
son equation, which leads to a hyperbolic-elliptic system with higher order dispersion
terms.

In the present paper, we are interested in the initial-boundary value problem (IBVP
for abbreviation) of the system (1.1). The initial data is given by

(ni,ji)(0,x)=(ni0,ji0)(x), x∈ [0,1] (1.2)
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and the physically motivated boundary data are prescribed as

ni(t,0)=nil>0, ni(t,1)=nir>0, (1.3a)

(
√
ni)xx (t,0)=(

√
ni)xx (t,1)=0, (1.3b)

φ(t,0)=0, φ(t,1)=φr>0, (1.3c)

where nil, nir, and φr are positive constants. The condition (1.3a) is the physical
contact boundary, and the nonlinear boundary condition (1.3b) represents the vanishing
quantum effect on the boundary, which, derived in [4,21], is also physically reasonable.
The boundary (1.3c) stands for the applied bias voltage. For the compatibility, we
further assume

ni0(0)=nil, ni0(1)=nir, ji0x(0)= ji0x(1)=(
√
ni0)xx (0)=(

√
ni0)xx (1)=0. (1.4)

Through out this paper, the flow is considered as subsonic, namely,

velocity of the flow :=(u1,u2)=
( j1
n1

,
j2
n2

)
<
(√

p′1(n1),
√

p′2(n2)
)
=
(√

K1,
√

K2

)
=: sound speed.

This is equivalent to

inf
x∈Ω

Si[ni,ji]>0, with Si[ni,ji] :=Ki−j2i n
−2
i , (1.5a)

inf
x∈Ω

ni>0, (1.5b)

where condition (1.5a) is called the subsonic condition, and condition (1.5b) refers to
the positivity of the carrier density. Apparently, if we want to construct the solution
in the physical region where the conditions (1.5) hold, then the initial data (1.2) must
satisfy the same conditions

inf
x∈Ω

Si[ni0,ji0]>0, inf
x∈Ω

ni0>0. (1.6)

The QHD stationary problem of the IBVP (1.1)–(1.3) reads⎧⎪⎪⎨
⎪⎪⎩

j̃ix=0, (1.7a)

Si[ñi, j̃i]ñix−ε2ñi

[(√
ñi

)
xx

/√
ñi

]
x
=(−1)i−1ñiφ̃x− j̃i, (1.7b)

φ̃xx= ñ1− ñ2−D(x), i=1,2, ∀x∈Ω, (1.7c)

with the boundary data

ñi(0)=nil>0, ñi(1)=nir>0, (1.8a)(√
ñi

)
xx

(0)=
(√

ñi

)
xx

(1)=0, (1.8b)

φ̃(0)=0, φ̃(1)=φr>0. (1.8c)

Formally, consider the quantum effect vanishing in Equation (1.1), we could expect
to reduce the IBVP (1.1)–(1.3) to the following IBVP of the bipolar HD model⎧⎪⎪⎨

⎪⎪⎩
n0
it+j0ix=0, (1.9a)

j0it+
[(
j0i
)2(

n0
i

)−1
+Kin

0
i

]
x
=(−1)i−1n0

iφ
0
x−j0i , (1.9b)

φ0
xx=n0

1−n0
2−D(x), i=1,2, ∀(t,x)∈ (0,+∞)×Ω, (1.9c)



H.F. HU, M. MEI, AND K.J. ZHANG 2333

with the initial and boundary data

(n0
i ,j

0
i )(0,x)=(ni0,ji0)(x), (1.10)

and

n0
i (t,0)=nil>0, n0

i (t,1)=nir>0, (1.11a)

φ0(t,0)=0, φ0(t,1)=φr>0. (1.11b)

The corresponding stationary problem of the bipolar HD model reads⎧⎪⎪⎨
⎪⎪⎩

j̃0ix=0, (1.12a)

Si[ñ
0
i , j̃

0
i ]ñ

0
ix=(−1)i−1ñ0

i φ̃
0
x− j̃0i , (1.12b)

φ̃0
xx= ñ0

1− ñ0
2−D(x), i=1,2, ∀x∈Ω, (1.12c)

with the same boundary conditions (1.11).
Over the past two decades, the research on the hydrodynamic model for semicon-

ductors makes an attractive progress. One of the hot spots is to study the device filled
within quantum material, because the quantum function makes the semiconductor de-
vice working more effective but makes the device more expensive. For the unipolar
hydrodynamic system of semiconductor devices with quantum effect (called, unipolar
QHD), the relevant studies are prolific and intensive. Among them, Jüngel [11] first
considered a unipolar stationary QHD model for potential flows in multi-dimensional
bounded domain. The existence of solutions was proved under the assumption that the
electric energy was small compared to the thermal energy, where Dirichlet boundary
conditions were addressed. This result was then generalized and developed by Gyi and
Jüngel [5], Hao, Jia, and Li [6], and Jüngel and Li [12]. Furthermore, the convergence of
the original time-dependent QHD solutions to their corresponding stationary solutions
(we also call them as stationary waves) were intensively studied by Jüngel and Li [13],
and Huang, Li, and Matsumura [8], respectively. The semi-classic limits of QHD model
to HD model was technically showed by Nishibata and Suzuki in [20], and the relaxation
time limit of both stationary and transient unipolar QHD model over the whole space
R

3 was further derived by Jüngel, Li, and Matsumura [14].
Regarding the unipolar QHD model for irrotational fluid in spatial periodic domain,

the global existence of the nD solutions and the exponential convergence to their equi-
libria were artfully proved by Li and Marcati in [15]. Remarkably, the weak solutions
with large initial data for the quantum hydrodynamic system in multiple dimensions
were further obtained by Antonelli and Marcati in [1, 2]. For the bipolar case of QHD
models, the studies are very limited and challenging due to much more complexity of
the systems themselves. The first frame work on the existence and semi-classical limit of
the isothermal solutions of the bipolar stationary QHD model in the multi-dimensional
bounded domain was given by Unterreiter [22] by the variational approach.

Later, Liang and Zhang [16] generalized the result in [11] to the bipolar case and
also obtained the relaxation time limit and dispersive limit on the bipolar and unipolar
equations respectively. G. Zhang and K. Zhang [23] established the existence of a
unique thermal equilibrium solution of the bipolar multidimensional QHD model over
the whole space and obtained the relevant semi-classical limit and a combined Planck–
Debye length limit. Furthermore, Li, G. Zhang, and K. Zhang [17] investigated the
large-time behavior of solutions to the initial value problem of the QHD model in R

3

and obtained the algebraic time-decay rate, and further showed in [24] the global in time
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semi-classical and relaxation limits of the same problem. For other interesting research,
we refer to [3, 4] and in particular, the survey paper [7].

The main goal of the present paper is to investigate the asymptotic behavior of the
bipolar QHD model (1.1) with the physical initial-boundary conditions (1.2) and (1.3).
We first prove the existence and uniqueness of both the time-dependent QHD solutions
(ni,ji,φ)(t,x) of the system (1.1)–(1.3) and the stationary QHD solutions (ñi, j̃i,φ̃)(x)
of (1.7)–(1.8). Then we prove the time-asymptotic convergence of the time-dependent
QHD solutions (ni,ji,φ)(t,x) of the system (1.1)–(1.3) to their corresponding stationary
QHD solutions (ñi, j̃i,φ̃)(x) of the system (1.7)–(1.8) as t→∞. Furthermore, we prove
the semi-classical limit of the time-dependent QHD solutions (nε

i ,j
ε
i ,φ

ε)(t,x) of the
sysetm (1.1)–(1.3) to the corresponding time-dependent HD solutions (n0

i ,j
0
i ,φ

0)(t,x)
of the system (1.9)–(1.11) as ε→0, namely, the vanishing effect of quantum in the
device. The idea of the proof is inspired by [20] for the unipolar QHD case, but with
some new techniques and developments. Now we outline it as follows, particularly, the
technical points.

First, the existence of the stationary waves for the QHD model (see Theorem 1.1
below) can be proved using a new approach developed in our previous work [9], which is
based on the regular perturbation, linearization, and Banach fixed point argument. The
quantum effect makes us to have to handle a strongly elliptic system with a singular
parameter ε. The main difficulty is that we must refine the elliptic estimate which is
essentially important for the long time behavior and the semi-classical limit analysis.
However, we have to fix the boundary information of the nonconstant doping profile in
order to obtain the desired sharp elliptic estimate. Secondly, a standard argument (the
same to unipolar problem [13, 20]) gives the local existence of our bipolar problem. In
order to obtain the global existence and the exponential decay rate, we must establish the
uniform a priori estimate. However, the quantum effect and the bipolar coupled effect
make this task more difficult. Through a detailed analysis, we find that the quantum
effect not only boosts the regularity of the estimate but also makes the bipolar effect
terms more complex.

Fortunately, we also find that all the bipolar effect terms can be decomposed into a
well-controlled structure: nonnegative terms plus cubic nonlinearity. These observations
together with the Poincaré inequality then help us to get the desired decay estimate.
Finally, comparing with the unipolar problem [20], we choose some new multipliers and
weights to overcome the influence of the bipolar effect during establishing the semi-
classical limit of the stationary solution.

Before stating our main results, we firstly list the notations and settings used in
this paper,

• Bl(Ω): The space of l-times bounded differentiable functions on Ω with the

norm | · |l :=
∑l

m=0 supx∈Ω |∂m
x · | (integer l≥0). The stationary solution will be

found in this class of function spaces.

• H l(Ω): The usual L2-Sobolev space over Ω of integer order l with the norm
‖·‖l (l≥0). In particular, ‖·‖0=‖·‖.

• Cl([0,T ];Hm(Ω)): The space of l-times continuously differentiable functions on
time interval [0,T ] with values in Hm(Ω). The non-stationary solution will be
constructed in this class of function spaces.

The solution spaces used in QHD problem:

X̄l
m([0,T ]) :=

[m/2]⋂
k=0

Ck([0,T ];H l+m−2k(Ω)), X̄m := X̄0
m,
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Y([0,T ]) :=C2([0,T ];H2(Ω)),

and in HD problem:

Xl
m([0,T ]) :=

m⋂
k=0

Ck([0,T ];H l+m−k(Ω)), Xm :=X0
m.

• Assume the doping function to be D∈H :=
{
D∈H2(Ω)

∣∣ D(0)= d̄, D(1)= d̃
}
,

where d̄ :=n1l−n2l and d̃ :=n1r−n2r.

• The strength parameter of the given data is defined as

δ :=

2∑
i=1

|nil−nir|+ |φr|+‖D− d̄‖2,

and the assumption δ	1 will play an important role in what follows.

• C denotes the generic positive constant andN , γk, Ck, Ckl, and Ckr (k=1,2, . . .)
stand for the specific positive constants. It is worth mentioning that all these
constants only depend on the state constants n1l, n2l, K1, and K2 throughout
the paper. This fact allows us to establish the semi-classical limits.

In addition, we also need to introduce the existence, uniqueness and long-time stability
of the stationary solution to the corresponding bipolar HD model, which were proved
in the previous work [9, 19]. Seeing that they will be used in the present paper, it is
better for us to review them briefly.

We first state the known results on the existence of both the time-dependent HD
solutions (1.9)–(1.11) and the stationary HD solutions (1.12) and (1.11).

Lemma 1.1 (see [9, 19]). Assume that D∈H, for arbitrary constants nil,Ki>0,
there exist two constants δ1,C >0 such that if δ≤ δ1, then there is a unique solution(
ñ0
1, j̃

0
1 ,ñ

0
2, j̃

0
2 ,φ̃

0
)∈ [B2(Ω)

]5
of the stationary problem (1.12) satisfying the condition

(1.5) and the estimates

0<
1

4
nil≤ ñ0

i (x)≤4nil, ∀x∈Ω, i=1,2, (1.13a)

2∑
i=1

(
|ñ0

i −nil|2+ |j̃0i |
)
+ |φ̃0|2≤Cδ. (1.13b)

Lemma 1.2 (see [9, 19]). Suppose that D∈H, the initial data ni0,ji0∈H2(Ω) sat-
isfy the condition (1.6) and are compatible with the boundary data (1.11). For ar-
bitrary constants nil,Ki>0, there exist three constants δ2,γ1,C >0 such that if δ+∑2

i=1‖(ni0− ñ0
i ,ji0− j̃0i )‖2≤ δ2, then there is a unique global solution

(
n0
1,j

0
1 ,n

0
2,j

0
2 ,φ

0
)∈[

(X2)
4×Y

]
([0,+∞)) of the IBVP (1.9)–(1.11) satisfying the condition (1.5), the addi-

tional regularity φ0− φ̃0∈X2
2([0,+∞)), and the decay estimate

2∑
i=1

‖(n0
i − ñ0

i ,j
0
i − j̃0i )(t)‖2+‖(φ0− φ̃0)(t)‖4

≤C

2∑
i=1

‖(ni0− ñ0
i ,ji0− j̃0i )‖2 e−γ1t, ∀t∈ [0,+∞). (1.14)
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Now we can state the main results in the present paper as follows.

Theorem 1.1 (Existence and uniqueness of stationary wave). Assume that D∈H,
for arbitrary constants nil,Ki>0, there exist two constants δ3,C >0 such that if δ≤ δ3,
then for all 0<ε≤1 there is a unique solution

(
ñε
1, j̃

ε
1 ,ñ

ε
2, j̃

ε
2 ,φ̃

ε
)∈ [(B4)4×B3

]
(Ω) of the

BVP (1.7)–(1.8) satisfying the condition (1.5) and the estimates

0<
1

4
nil≤ ñε

i (x)≤4nil, ∀x∈Ω, i=1,2, (1.15a)

2∑
i=1

(
ε2‖∂4

xñ
ε
i‖+ε‖∂3

xñ
ε
i‖+‖ñε

i −nil‖2+ |j̃εi |
)
+‖φ̃ε‖3≤Cδ. (1.15b)

Theorem 1.2 (Stability of stationary wave). Suppose that D∈H, the initial
data (ni0,ji0)∈ (H4×H3)(Ω) satisfy the condition (1.6) and the compatible condi-
tion (1.4) with boundary data (1.3). For arbitrary constants nil,Ki>0, there exist

three constants δ4,γ2,C >0 such that if δ+
∑2

i=1

(‖(ni0− ñε
i ,ji0− j̃εi )‖2+‖(ε∂3

x(ni0−
ñε
i ),ε∂

3
x(ji0− j̃εi ),ε

2∂4
x(ni0− ñε

i ))‖
)≤ δ4, then for all 0<ε≤1 there is a unique global

solution
(
nε
1,j

ε
1 ,n

ε
2,j

ε
2 ,φ

ε
)∈ [(X̄4× X̄3)

2×Y
]
([0,+∞)) of the IBVP (1.1)–(1.3) satisfy-

ing the condition (1.5), the additional regularity φε− φ̃ε∈ X̄2
4([0,+∞)) and the decay

estimate

2∑
i=1

(
‖(nε

i − ñε
i ,j

ε
i − j̃εi )(t)‖2

+‖(ε∂3
x(n

ε
i − ñε

i ),ε∂
3
x(j

ε
i − j̃εi ),ε

2∂4
x(n

ε
i − ñε

i ))(t)‖
)
+‖(φε− φ̃ε)(t)‖4

≤Ce−γ2t
2∑

i=1

(
‖(ni0− ñε

i ,ji0− j̃εi )‖2

+‖(ε∂3
x(ni0− ñε

i ),ε∂
3
x(ji0− j̃εi ),ε

2∂4
x(ni0− ñε

i ))‖
)
, (1.16)

for t∈ [0,+∞).

Theorem 1.3 (Semi-classical limit of QHD stationary wave to HD stationary wave).
Under the conditions of Lemma 1.1 and Theorem 1.1 , let (ñε

i , j̃
ε
i )(x) be the stationary

solution of the QHD model (1.7) and (1.8), and (ñ0
i , j̃

0
i )(x) be the stationary solution

for the HD model (1.12) and (1.11), then for arbitrary constants nil,Ki>0, there exist
two constants δ5,C >0 such that if δ≤ δ5, such that, for all 0<ε≤1, the following
convergence estimates hold:

2∑
i=1

(
‖ñε

i − ñ0
i ‖1+ |j̃εi − j̃0i |

)
+‖φ̃ε− φ̃0‖3≤Cε, (1.17a)

and there exists a subsequence {εk>0} of ε>0 such that the following semi-classic limits
hold:

2∑
i=1

(
‖∂2

x(ñ
εk
i − ñ0

i )‖+εk‖∂3
xñ

εk
i ‖+ε2k‖∂4

xñ
εk
i ‖

)
+‖∂4

x(φ̃
εk− φ̃0)‖→0, as εk→0+.

(1.17b)
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Theorem 1.4 (Semi-classical limit of QHD to HD for time-dependent solutions).
Under the conditions of Lemma 1.2 and Theorem 1.2, let (nε

i ,j
ε
i )(t,x) be the time-

dependent solution of the QHD model (1.1) and (1.3), and (n0
i ,j

0
i )(t,x) be the time-

dependent solution for the HD model (1.9) and (1.11), then for arbitrary constants
nil,Ki>0, there exist four constants δ6,γ3,γ4,C >0 such that if

εk+δ+

2∑
i=1

(
‖(ni0− ñεk

i ,ji0− j̃εki )‖2

+‖(εk∂3
x(ni0− ñεk

i ),εk∂
3
x(ji0− j̃εki ),ε2k∂

4
x(ni0− ñεk

i )
)‖)

≤ δ6, (1.18)

then the following convergence estimates hold

2∑
i=1

‖(nεk
i −n0

i ,j
εk
i −j0i )(t)‖1+‖(φεk−φ0)(t)‖3≤Ceγ3tε

1/2
k , ∀t∈ [0,+∞), (1.19)

and

sup
t∈[0,+∞)

( 2∑
i=1

‖(nεk
i −n0

i ,j
εk
i −j0i )(t)‖1+‖(φεk−φ0)(t)‖3

)
≤Cεγ4

k , (1.20)

where εk→0+ is the subsequence given in Theorem 1.3 and 0<γ4≤1/4.

The paper is organized as follows. In Section 2, we prove the existence and unique-
ness of a stationary solution. Subsection 3.1 devotes to the reformulation of the original
evolution problem and the local existence theorem. In Subsections 3.2–3.4, we show
the asymptotic stability of the stationary solution. In Section 4, we establish the semi-
classical limits for the stationary solution and the global solution in Subsection 4.1 and
Subsection 4.2, respectively.

2. Existence and uniqueness of a stationary solution
In this section, we prove the existence and uniqueness of a stationary solution of

the BVP (1.7)–(1.8) (i.e. Theorem 1.1). For simplicity, the solution
(
ñε
1, j̃

ε
1 ,ñ

ε
2, j̃

ε
2 ,φ̃

ε
)

will be denoted by the notations
(
ñ1, j̃1,ñ2, j̃2,φ̃

)
in what follows.

Based on the idea of rationalization, it is convenient to introduce the new variables

w̃i :=
√
ñi, i=1,2. (2.1)

Then the conditions (1.5) transform to

inf
x∈Ω

Si[w̃
2
i , j̃i]>0, inf

x∈Ω
w̃i>0, (2.2)

and the above BVP (1.7)–(1.8) can be written as⎧⎪⎨
⎪⎩

j̃ix=0, (2.3a)

2Si[w̃
2
i , j̃i]w̃iw̃ix−ε2w̃2

i (w̃ixx/w̃i)x=(−1)i−1w̃2
i φ̃x− j̃i, (2.3b)

φ̃xx= w̃2
1− w̃2

2−D(x), i=1,2, ∀x∈Ω, (2.3c)

with the boundary data

w̃i(0)=wil :=
√
nil>0, w̃i(1)=wir :=

√
nir>0, (2.4a)
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w̃ixx(0)= w̃ixx(1)=0, (2.4b)

φ̃(0)=0, φ̃(1)=φr>0. (2.4c)

In order to treat the third-order dispersion terms, we perform the following procedure∫ x

0

(2.3b)/w̃2
i dy, (2.5)

and by using the boundary conditions (2.4b), we have

ε2
w̃ixx

w̃i
=Fi(w̃

2
i , j̃i)−Fi(nil, j̃i)+(−1)iφ̃+ j̃i

∫ x

0

w̃−2
i (y)dy, (2.6a)

where

Fi(a,b) :=
b2

2a2
+Ki lna. (2.6b)

Furthermore, let x=1 in Equation (2.6a) and by using the boundary conditions (2.4)
again, we obtain an important relationship in semiconductor equations, namely, the
current-voltage characterization,

(−1)i−1φr=Fi(nir, j̃i)−Fi(nil, j̃i)+ j̃i

∫ 1

0

w̃−2
i dx, i=1,2. (2.7)

Based on the conditions (2.2) and the assumption δ	1, we can uniquely and explicitly
solve the stationary current densities from Equation (2.7) as follows

j̃i=Ji[w̃
2
i ] :=2Bib

⎛
⎝∫ 1

0

w̃−2
i dx+

√(∫ 1

0

w̃−2
i dx

)2

+2Bib

(
n−2
ir −n−2

il

)⎞⎠−1

, (2.8a)

where

Bib := (−1)i−1φr−Ki(lnnir− lnnil). (2.8b)

It is easy to see that j̃i�0 if and only if Bib�0. Multiply Equation (2.6a) by w̃i, we
can obtain a new boundary value problem⎧⎨

⎩ ε2w̃ixx= w̃i

(
Fi(w̃

2
i , j̃i)−Fi(nil, j̃i)+(−1)iφ̃+ j̃i

∫ x

0

w̃−2
i (y)dy

)
, (2.9a)

φ̃xx= w̃2
1− w̃2

2−D(x), i=1,2, ∀x∈Ω, (2.9b)

with the boundary data

w̃i(0)=wil>0, w̃i(1)=wir>0, (2.9c)

φ̃(0)=0, φ̃(1)=φr>0, (2.9d)

where j̃i=Ji[w̃
2
i ] is given by Equation (2.8a). In addition, for the classical solution

satisfying the conditions (2.2), we have the following equivalent relationships

BVP (1.7)–(1.8)⇐⇒BVP (2.3)–(2.4)⇐⇒BVP (2.9) with (2.8),
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thanks to the current-voltage characterization (2.7).
In the rest of this section, we focus on the BVP (2.9) and summarize the existence

theorem in the following lemma.

Lemma 2.1. Assume that D∈H, for arbitrary constants nil,Ki>0, there exist
two constants δ3,C >0 such that if δ≤ δ3, then for all ε>0 there is a unique solu-
tion

(
w̃1, j̃1,w̃2, j̃2,φ̃

)∈ [(B4)4×B3
]
(Ω) of the BVP (2.9) satisfying the condition (2.2)

and the estimates

0<
1

2
wil≤ w̃i(x)≤2wil, ∀x∈Ω, i=1,2, (2.10a)

2∑
i=1

(
ε2‖∂4

xw̃i‖+ε‖∂3
xw̃i‖+‖w̃i−wil‖2+ |j̃i|

)
+‖φ̃‖3≤Cδ. (2.10b)

Proof.
Step I. Reformulation of the problem. Our proof starts with the observation that

there is a unique constant subsonic solution
(
w1l,0,w2l,0,0

)
of the BVP (2.9) provided

δ=0. Therefore, we can naturally regard the subsonic solution of the BVP (2.9) with
δ>0 as a perturbation around the above constant state

(
w1l,0,w2l,0,0

)
, because we

have assumed that the doping profile D is a perturbation of the constant d̄.
In order to implement the above idea of the regular perturbation, we introduce the

perturbation variables

w̃δ
i (x) := w̃i(x)−wil, j̃δi := j̃i−0= j̃i,

φ̃δ(x) := φ̃(x)−0= φ̃(x). (2.11)

Substituting Equation (2.11) into the BVP (2.9) and linearizing the resultant equations
around the above constant state. In matrix notation, we obtain the equivalent boundary
value problem { −(AεUx)x+BU =F (U)+G(x), x∈Ω, (2.12a)

U |∂Ω=H(x), (2.12b)

satisfied by the perturbations, where the vector-valued unknown is

U :=
(
w̃δ

1,w̃
δ
2,φ̃

)T

, (2.13)

the coefficient matrices are

Aε :=

⎛
⎝ε2 0 0

0 ε2 0
0 0 1/2

⎞
⎠ , B :=

⎛
⎝2K1 0 −w1l

0 2K2 w2l

w1l −w2l 0

⎞
⎠ , (2.14)

the quadratic nonlinearity and the well-estimated nonlocal terms are

F (U) :=
(
f1(U),f2(U),f3(U)

)T

, (2.15)

fi(U) :=−w̃i

(
j̃2i /(2w̃

4
i )− j̃2i /(2n

2
il)+ j̃i

∫ x

0

w̃−2
i (y)dy

)
−2Kiw̃i

(
lnw̃i− lnwil− w̃δ

i /wil

)
−2Ki(w̃

δ
i )

2/wil+(−1)i−1w̃δ
i φ̃, (2.16a)
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f3(U) :=−(w̃δ
1)

2/2+(w̃δ
2)

2/2, (2.16b)

where j̃i=Ji[(w̃
δ
i +wil)

2]. The inhomogeneous term

G(x) :=
(
0,0,(D(x)− d̄)/2

)T

, (2.17)

and the H4(Ω)-extension of the boundary data

H(x) :=
(
h1(x),h2(x),h3(x)

)T

, (2.18a)

hi(x) :=(wir−wil)x, h3(x) :=φrx. (2.18b)

For all ε>0, we note that

λε :=min
{
ε2,1/2

}
>0. (2.19)

It means that the linear differential operator LεU :=−(AεUx)x+BU is a parameter-
dependent strongly elliptic operator of second order.

Step II. The sharp elliptic estimate. Because we discuss both the existence of the
stationary solution and its semi-classical limit, we have to sharpen the elliptic estimate
of the strong solution to the linear Dirichlet problem{ −(AεUx)x+BU =M(x), x∈Ω, (2.20a)

U |∂Ω=H(x). (2.20b)

The proof strongly depends on the assumption that the inhomogeneous term must
satisfy

M ∈M :=
{
M ∈H2(Ω)

∣∣ M(0)=BH(0)=0, M(1)=BH(1)
}
. (2.21)

It follows from Equation (2.21) immediately that the strong solution (if it exists) satisfies

U ∈H4(Ω), Uxx(0)=Uxx(1)=0. (2.22)

In fact, according to the Fredholm alternative (uniqueness implies existence) and
the L2-regularity theory of the Dirichlet problem of the linear strongly elliptic system,
we can conclude that the above strong solution U to the linear problem (2.20) indeed
uniquely exists. To this end, we need only consider the corresponding homogeneous
problem { −(AεUx)x+BU =0, x∈Ω, (2.23a)

U |∂Ω=0. (2.23b)

Applying
∫ 1

0
(2.23a) ·U dx and integrating by parts yields U(x)≡0.

Assume that the condition

M ∈M, H ∈H4(Ω), and ∂k
xH≡0, k=2,3,4, (2.24)

holds, we will establish the desired elliptic estimate step by step. For simplicity of
notations, we write

U :=
(
u(1),u(2),u(3)

)T

, (2.25a)
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UH :=U−H=
(
u
(1)
H ,u

(2)
H ,u

(3)
H

)T

, (2.25b)

in the present step only. First, substituting UH into the linear BVP (2.20), we have⎧⎪⎨
⎪⎩
−Aε(UH)xx+BUH =M(x)−BH(x), x∈Ω, (2.26a)

UH(0)=UH(1)=0, (2.26b)

(UH)xx(0)=(UH)xx(1)=0. (2.26c)

Here we have adopted the assumption (2.24) and utilized Equation (2.22). Secondly,
performing the following procedure(

2∑
l=0

∫ 1

0

∂l
x(2.26a) ·∂l

xUH dx

)1/2

, (2.27)

we can obtain the estimate

2∑
i=1

(
ε‖∂3

xu
(i)
H ‖+‖u(i)

H ‖2
)
+‖u(3)

H ‖3≤C
(
‖M‖2+‖H‖1

)
, ∀ε>0, (2.28)

by using the integration by parts and Yong’s inequality, where the generic positive
constant C is independent of the parameter ε. Thirdly, we solve the quantity Aε∂

4
xUH

from the system ∂2
x(2.26a) and obtain

Aε∂
4
xUH =B∂2

xUH−∂2
xM(x). (2.29)

Taking the L2-norm on the both sides of Equation (2.29) directly, we have

2∑
i=1

ε2‖∂4
xu

(i)
H ‖+‖∂4

xu
(3)
H ‖≤C

(
‖M‖2+‖H‖1

)
, ∀ε>0, (2.30)

again, the generic positive constant C is independent of the parameter ε. Finally,
we summarize the above unique solvability result and the estimates (2.28) and (2.30)
together and can obtain the following important fact:

(Sharp elliptic estimate.) If the assumption (2.24) holds, then there is a unique

strong solution U =
(
u(1),u(2),u(3)

)T ∈H4(Ω) of the linear BVP (2.20) satisfying the
sharp elliptic estimate

2∑
i=1

(
ε2‖∂4

xu
(i)‖+ε‖∂3

xu
(i)‖+‖u(i)‖2

)
+‖u(3)‖4≤C

(
‖M‖2+‖H‖1

)
, ∀ε>0, (2.31)

where the generic positive constant C is independent of the parameter ε.

Step III. Banach fixed point argument. On account of the above fact (2.31) in step
II and the observation of the nonlinearity (2.16), we introduce a metric space

U[N ] :=
{
U ∈H2(Ω)

∣∣ ‖U‖2≤Nδ, U |∂Ω=H
}

(2.32)

equipped with the metric associated with the norm ‖·‖2. Here the positive constant N
will be determined later. In fact, it follows from the trace theorem that U[N ] is a closed
subspace of H2(Ω) for any N >0 and δ≥0. Thus U[N ] is a complete metric space.
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Next, for all V =
(
ṽδ1, ṽ

δ
2,ϕ̃

)T ∈U[N ], let k̃i :=Ji[(ṽ
δ
i +wil)

2], we have F (V )∈H2(Ω)
by Equations (2.15) and (2.16). Moreover, let M :=F (V )+G, one can easily see that
M ∈M if D∈H. Then we can define a solution operator S :U[N ]→H4(Ω), V �→U =:
SV by solving the linear BVP (2.20).

Now we tend to determine the positive constant N to ensure that the operator S
is a contraction mapping on U[N ] if δ	1. To this end, we separately show that S is
onto and contractive below.

S is onto. Apparently, the boundary data (2.18a) and M =F (V )+G, ∀V ∈U[N ]
satisfy the assumption (2.24), then we get the elliptic estimate by using Equation (2.31)
directly

‖SV ‖2=‖U‖2≤C
(
‖F (V )+G‖2+‖H‖1

)
≤C

(
‖F (V )‖2+‖G‖2+‖H‖1︸ ︷︷ ︸

O(1)δ

)

≤C
(
‖F (V )‖2+δ

)
. (2.33)

Next, we need to estimate ‖F (V )‖2. Before doing so, we have to estimate k̃i :=Ji[(ṽ
δ
i +

wil)
2]. By using Equation (2.8a) and the a priori assumption Nδ	1, we have

|k̃i|≤Cδ, V ∈U[N ]. (2.34)

Because of the estimate (2.34), we can easily control the nonlocal terms in F (V ). On
the other hand, the quadratic nonlinear terms in F (V ) can also be estimated as well by
Sobolev embedding theorem. Through the same methods in [9], we get the estimate

‖F (V )‖2≤C
((

N2+N
)
δ+1

)
δ. (2.35)

Substituting Equation (2.35) into Equation (2.33), we have

‖SV ‖2≤
(
C1

(
N2+N

)
δ+C2

)
δ. (2.36)

Define

N :=2C2>0. (2.37)

If

δ≤C2

/(
4C1C

2
2 +2C1C2

)
, (2.38)

then

‖SV ‖2≤2C2δ=Nδ. (2.39)

S is contractive. For ∀V1,V2∈U[N ], we need to estimate the difference U :=
SV1−SV2. To this end, we define M :=F (V1)−F (V2), by the definition of the solution
operator S, we know that the difference U satisfies the following BVP{ −(AεUx)x+BU =M, x∈Ω, (2.40a)

U |∂Ω=0. (2.40b)
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Therefore, applying the sharp elliptic estimate (2.31) to the difference U =SV1−SV2,
we have

‖SV1−SV2‖2≤C‖F (V1)−F (V2)‖2. (2.41)

Our next goal is to estimate ‖F (V1)−F (V2)‖2. In fact, form the mean value theorem,
Equation (2.8a), and the a priori assumption Nδ	1, we get

|k̃i1− k̃i2|≤Cδ‖ṽδi1− ṽδi2‖≤Cδ‖V1−V2‖, i=1,2. (2.42)

Based on Equation (2.42), by using the same method in [9], we have

‖F (V1)−F (V2)‖2≤Cδ‖V1−V2‖2. (2.43)

Here N has been defined in Equation (2.37). Substituting Equation (2.43) into Equation
(2.41), we obtain

‖SV1−SV2‖2≤C3δ‖V1−V2‖2, ∀V1,V2∈U[N ]. (2.44)

If

δ≤1
/(

2C3

)
>0, (2.45)

then S is contractive.
Note that we have actually proved that there are positive constants δ3 and N such

that if δ≤ δ3, then S :U[N ]→U[N ] is a contraction mapping. According to the Banach

fixed point theorem, we get a unique fixed point U =
(
w̃δ

1,w̃
δ
2,φ̃

)T ∈U[N ]∩H4(Ω) of the
solution operator S. It is obvious that this fixed point U is our desired solution of the
perturbation problem (2.12). Moreover, it also satisfies the sharp elliptic estimate

2∑
i=1

(
ε2‖∂4

xw̃
δ
i ‖+ε‖∂3

xw̃
δ
i ‖+‖w̃δ

i ‖2
)
+‖φ̃‖4≤Nδ, ∀ε>0, (2.46)

which follows from Equations (2.31) and (2.33)–(2.39). Analysis similar to that in
Equation (2.34) shows that j̃i=Ji[(w̃

δ
i +wil)

2] satisfies the estimate |j̃i|≤Cδ. Hence
the inequality (2.10b) is proved. On the other hand, the inequality (2.10a) follows from
Equation (2.46) and Sobolev’s embedding theorem.

Step IV. More regularity. We conclude from Equations (2.17) and (2.16a), the
first two equations of the elliptic system (2.12a) and Sobolev embedding theorem that
fi(U)∈H4(Ω), hence that the above strong solution has the additional regularity U =(
w̃δ

1,w̃
δ
2,φ̃

)T ∈ (H6×H6×H4
)
(Ω), and finally that U ∈ (B5×B5×B3

)
(Ω) which implies

the desired regularity in Lemma 2.1. This completes the proof.

Remark 2.1. Once Lemma 2.1 is proven, Theorem 1.1 immediately follows by using
the transformation ñi= w̃2

i . From the proof, we can also see that we have to fix the
boundary information of the doping profile D(x) in order to obtain the sharper elliptic
estimate independent of the parameter ε.

3. Asymptotic stability of the stationary solution
To simplify notations, we let (n1,j1,n2,j2,φ) stand for the solution

(
nε
1,j

ε
1 ,n

ε
2,j

ε
2 ,φ

ε
)

of the IBVP (1.1)–(1.3) in this section.
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3.1. Reformulation and local existence. To consider the IBVP (1.1)–(1.3),
it is convenient to rewrite the problem in terms of (w1,j1,w2,j2,φ), where

wi :=
√
ni, i=1,2. (3.1)

Then the conditions (1.5) become

inf
x∈Ω

Si[w
2
i ,ji]>0, inf

x∈Ω
wi>0, (3.2)

and the IBVP (1.1)–(1.3) can be written as⎧⎪⎨
⎪⎩

2wiwit+jix=0, (3.3a)

jit+2Si[w
2
i ,ji]wiwix+2jiw

−2
i jix−ε2w2

i (wixx/wi)x=(−1)i−1w2
i φx−ji, (3.3b)

φxx=w2
1−w2

2−D(x), i=1,2, ∀(t,x)∈ (0,+∞)×Ω, (3.3c)

with the initial data

(wi,ji)(0,x)=(wi0,ji0)(x) :=(
√
ni0,ji0)(x), (3.4)

and the boundary data

wi(t,0)=wil>0, wi(t,1)=wir>0, (3.5a)

wixx(t,0)=wixx(t,1)=0, (3.5b)

φ(t,0)=0, φ(t,1)=φr>0. (3.5c)

The compatibility (1.4) between the initial data and boundary data transforms to

wi0(0)=wil, wi0(1)=wir, ji0x(0)= ji0x(1)=wi0xx(0)=wi0xx(1)=0. (3.6)

Let the stationary solution
(
w̃1, j̃1,w̃2, j̃2,φ̃

)
(x) be given by Lemma 2.1. It satisfies

the BVP (2.3)–(2.4). We denote the perturbation by

ψi(t,x) :=wi(t,x)− w̃i(x), ηi(t,x) := ji(t,x)− j̃i,

σ(t,x) :=φ(t,x)− φ̃(x). (3.7)

From

(3.3a)−−(2.3a), (3.3b)
/
w2

i −(2.3b)
/
w̃2

i , (3.3c)−−(2.3c), (3.8a)

(3.5)−−(2.4), (3.8b)

we thus deduce that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(
ψi+ w̃i

)
ψit+ηix=0, (3.9a)[(

ηi+ j̃i
)/(

ψi+ w̃i

)2]
t
+

1

2

{[(
ηi+ j̃i

)/(
ψi+ w̃i

)2]2−(j̃i/w̃2
i

)2}
x

+Ki

[
ln
(
ψi+ w̃i

)2− lnw̃2
i

]
x
−ε2

[(
ψi+ w̃i

)
xx

/(
ψi+ w̃i

)− w̃ixx/w̃i

]
x

+(−1)iσx+
(
ηi+ j̃i

)/(
ψi+ w̃i

)2− j̃i/w̃
2
i =0, (3.9b)

σxx=
(
ψ1+2w̃1

)
ψ1−

(
ψ2+2w̃2

)
ψ2, i=1,2, (3.9c)
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with the initial data

(ψi,ηi)(0,x)=(ψi0,ηi0)(x) :=(wi0− w̃i,ji0− j̃i)(x), (3.10)

and the boundary data

ψi(t,0)=ψi(t,1)=0, ψixx(t,0)=ψixx(t,1)=0, σ(t,0)=σ(t,1)=0. (3.11)

The task is now to find the local-in-time solution of the IBVP (3.9)–(3.11) in the
subsonic region. In fact, the local existence result of unipolar problem has been proved
by the iteration method and compactness argument in [20] for nonlinear boundary
condition (and in [13] for linear boundary condition). The methods employed in [13,20]
can be applied to our bipolar problem directly. The proof is straightforward, and we
have

Lemma 3.1 (Local existence). Suppose that the initial data (ψi0,ηi0)∈ (H4×
H3)(Ω) and (ψi0+ w̃i,ηi0+ j̃i) satisfy the conditions (3.2) and (3.6). Then there ex-
ists a finite time T∗>0 such that the IBVP (3.9)–(3.11) has a unique local solution
(ψ1,η1,ψ2,η2,σ)∈

[
(X̄4× X̄3)

2× X̄2
4

]
([0,T∗]) and (ψi+ w̃i,ηi+ j̃i) also satisfy the condi-

tion (3.2).

Owing to Lemma 3.1, it suffices to use the standard continuation argument together
with an uniform a priori estimate in order to show the existence of the global solution.
For this purpose, it is convenient to use notations

nε(t) :=

2∑
i=1

(
‖(ψi,ηi)(t)‖2+‖(ε∂3

xψi,ε∂
3
xηi,ε

2∂4
xψi)(t)‖

)
, ∀t∈ [0,T ], (3.12a)

Nε(T ) := sup
t∈[0,T ]

nε(t). (3.12b)

We conclude from Sobolev’s embedding theorem and Equation (3.12) that for all 0<
ε≤1 we have

2∑
i=1

(
|(ψi,ηi)(t)|1+ |(εψixx,εηixx,ε

2∂3
xψi)(t)|0

)
≤CNε(T ), ∀t∈ [0,T ]. (3.13)

What left now is to establish the uniform a priori estimate as follows

Lemma 3.2 (Uniform a priori estimate). Let (ψ1,η1,ψ2,η2,σ)∈
[
(X̄4× X̄3)

2×
X̄2

4

]
([0,T ]) be a local solution on a finite time interval [0,T ] of the IBVP (3.9)–(3.11).

For arbitrary constants nil,Ki>0, there exist three constants δ4,γ2,C >0 such that if
Nε(T )+δ≤ δ4, then for all 0<ε≤1 it holds that

nε(t)≤Cnε(0)e
−γ2t, t∈ [0,T ]. (3.14)

Remark 3.1. Once Lemma 3.2 is proven, Theorem 1.2 immediately holds true by
using the transformations ñi= w̃2

i and ni=w2
i .

Actually, we can prove Lemma 3.2 via a series of estimates in Subsection 3.2, Sub-
section 3.3 and Subsection 3.4. However, we also need the auxiliary estimate of the
stationary solution

2∑
i=1

(
|w̃i−wil|1+ |(εw̃ixx,ε

2∂3
xw̃i)|0

)
≤Cδ, ∀ 0<ε≤1, (3.15)

which follows from Sobolev embedding theorem and Equation (2.10).
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3.2. Basic estimate. In this subsection, we derive the basic energy estimate.
To this end, we employ an energy form E defined by

E(t,x) := 1

2
(σx)

2+

2∑
i=1

(
1

2
η2iw

−2
i +Ψi

(
w2

i ,w̃
2
i

)
+ε2(ψix)

2

)
, (3.16)

where

Ψi

(
w2

i ,w̃
2
i

)
:=Ki

∫ w2
i

w̃2
i

(
lnξ− lnw̃2

i

)
dξ, (3.17)

and we can easily prove that Ψi

(
w2

i ,w̃
2
i

)
is equivalent to ψ2

i provided Nε(T )+δ	1.

Lemma 3.3. Under the same hypotheses of Lemma 3.2, we have

‖∂l
tσ(t)‖2≤C

(
‖(∂l

tψ1,∂
l
tψ2)(t)‖+ l(l−1)

2
Nε(T )‖(ψ1t,ψ2t)(t)‖

)
, l=0,1,2, (3.18)

‖σxt(t)‖≤C‖(η1,η2)(t)‖, (3.19)

2∑
i=1

|(ψit,ηit)(t)|0≤CNε(T ), t∈ [0,T ], 0<ε≤1. (3.20)

Proof. A slight change in the proof of Lemma 3.5 in [9] actually shows the estimates
(3.18), (3.19), and (3.20).

Now the basic estimate is as follows.

Lemma 3.4 (Basic estimate). Under the same hypotheses of Lemma 3.2, for all
t∈ [0,T ] and 0<ε≤1, we get

d

dt

∫ 1

0

E(t,x)dx+
∫ 1

0

2∑
i=1

η2i w̃
−2
i dx=

∫ 1

0

R2 dx, (3.21a)

and there exist the positive constants C,C1l,C1r such that

∣∣∣∣
∫ 1

0

R2 dx

∣∣∣∣≤C(Nε(T )+δ)

2∑
i=1

‖(ψi,ηi)(t)‖21, (3.21b)

C1l

2∑
i=1

‖(ψi,ηi,εψix)(t)‖2≤
∫ 1

0

E(t,x)dx≤C1r

2∑
i=1

‖(ψi,ηi,εψix)(t)‖2, (3.21c)

provided Nε(T )+δ	1.

Proof. From

2∑
i=1

(3.9b)ηi, (3.22)

we deduce that
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IV1︷ ︸︸ ︷
2∑

i=1

(
jiw

−2
i

)
t
ηi

IV2︷ ︸︸ ︷
+

2∑
i=1

1

2

(
j2i w

−4
i − j̃2i w̃

−4
i

)
x
ηi

IV3︷ ︸︸ ︷
+

2∑
i=1

Ki

(
lnw2

i − lnw̃2
i

)
x
ηi

−
2∑

i=1

ε2
(
wixxw

−1
i − w̃ixxw̃

−1
i

)
x
ηi︸ ︷︷ ︸

IV4: quantum effect

+

2∑
i=1

(−1)iσxηi︸ ︷︷ ︸
IV5: bipolar effect

+

2∑
i=1

(
jiw

−2
i − j̃iw̃

−2
i

)
ηi︸ ︷︷ ︸

IV6

=0. (3.23)

By Leibniz’s formula and Equation (3.9a), we thus get

IV1=

(
2∑

i=1

1

2
η2iw

−2
i

)
t

−
2∑

i=1

(
1

2
ηiw

−4
i −jiw

−4
i

)
ηiηix, (3.24)

IV2 keeps intact, (3.25)

IV3=

(
2∑

i=1

Ψi

(
w2

i ,w̃
2
i

))
t

+

(
2∑

i=1

Ki

(
lnw2

i − lnw̃2
i

)
ηi

)
x

, (3.26)

IV6=

2∑
i=1

η2i w̃
−2
i −

2∑
i=1

ji (w̃i+wi)(w̃iwi)
−2

ψiηi. (3.27)

Since we focus on both the quantum effect and the bipolar effect, we give the detailed
computations of I4 and I5 by Leibniz’s formula, Equation (3.9a), and Equation (3.9c)
as follows:

IV4=−
2∑

i=1

ε2
{ IV4,1︷ ︸︸ ︷[(

wixxw
−1
i − w̃ixxw̃

−1
i

)
ηi
]
x
−(wixxw

−1
i − w̃ixxw̃

−1
i

)
ηix

}

=−
2∑

i=1

ε2
{
IV4,1+

(
wixxw

−1
i − w̃ixxw̃

−1
i

)
(w2

i )t

}

=−
2∑

i=1

ε2
{
IV4,1+(ψixxw̃i− w̃ixxψi)(w̃iwi)

−1(w2
i )t

}

=−
2∑

i=1

ε2
{
IV4,1+2ψixxψit+ w̃ixx(w̃iwi)

−1ψiηix︸ ︷︷ ︸
IV(2)

4

}

=−
2∑

i=1

ε2
{
IV4,1+(2ψixψit)x− [(ψix)

2]t+IV4,2

}

=
[ 2∑
i=1

ε2(ψix)
2
]
t
−

2∑
i=1

ε2w̃ixx(w̃iwi)
−1ψiηix

−
{ 2∑

i=1

ε2
[
(wixxw

−1
i − w̃ixxw̃

−1
i )ηi+2ψixψit

]}
x
, (3.28)

IV5=

2∑
i=1

(−1)i
[
(σηi)x−σηix

]
=

IV5,1︷ ︸︸ ︷
−
[
σ(η1−η2)

]
x
+σ(η1x−η2x)
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=IV5,1−σ(w2
1−w2

2)t=IV5,1−σσxxt=IV5,1−
[
(σσxt)x−σxσxt

]
=−

[
σ(η1−η2)+σσxt

]
x
+

[
1

2
(σx)

2

]
t

. (3.29)

Substituting Equations (3.24)–(3.29) into Equation (3.23), we obtain

Et+
2∑

i=1

η2i w̃
−2
i =R1x+R2, (3.30a)

where

R1 :=σ(η1−η2)+σσxt−
2∑

i=1

{
Ki

(
lnw2

i − lnw̃2
i

)
ηi

−ε2
[
(wixxw

−1
i − w̃ixxw̃

−1
i )ηi+2ψixψit

]}
, (3.30b)

R2 :=

2∑
i=1

[(
1

2
ηiw

−4
i −jiw

−4
i

)
ηiηix− 1

2

(
j2i w

−4
i − j̃2i w̃

−4
i

)
x
ηi

+ji (w̃i+wi)(w̃iwi)
−2

ψiηi+ε2w̃ixx(w̃iwi)
−1ψiηix

]
. (3.30c)

Applying the boundary condtions (2.4), (3.5), and (3.11), we can assert that
∫ 1

0
R1x dx=

0. For this reason, integrating Equation (3.30a) over Ω yields Equation (3.21a). Com-
bining the inequalities (2.10), (3.15), (3.13), and the Cauchy–Schwarz inequality with
Equation(3.30c), we obtain the estimate

|R2(t,x)|≤C(Nε(T )+δ)

2∑
i=1

|(ψi,ψix,ηi,ηix)(t,x)|2, 0<ε≤1, (3.31)

if Nε(T )+δ	1. Note that we have actually proved the estimate (3.21b) by integrat-
ing Equation (3.31) over Ω. Based on the elliptic estimate (3.18) with l=0 and the
equivalent relationship below (3.17), a trivial verification gives the equivalence estimate
(3.21c).

3.3. Higher order estimates. This subsection is devoted to the derivation of
the higher order estimates. Before stating the main results to be proved, we indicate
that the computations of the higher order estimates in several steps are formal since the
regularity of the local solution is insufficient. However, we can rigorously justify these
formal computations by using the mollifier with respect to t. Because the argument is
standard, we omit the detailed verification.

In order to use the homogeneous boundary condition (3.11), only the operation ∂k
t

is legitimate. Therefore, it is convenient to introduce notations

A2
−1(t) :=

2∑
i=1

‖(ψi,ηi)(t)‖2, (3.32a)

A2
k(t) :=A2

−1(t)+

k∑
l=0

2∑
i=1

‖(∂l
tψit,∂

l
tψix,ε∂

l
tψixx)(t)‖2, k=0,1. (3.32b)
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Next, we derive the working equations which are used to obtain the higher order
estimates. From

−∂k
t

[
∂x(3.3b)/wi−∂x(2.3b)/w̃i

]
, i=1,2, k=0,1, (3.33)

together with Equations (3.3a) and (2.3a), we deduce that

2∂k
t ψitt−2Ki∂

k
t ψixx+ε2∂4

x∂
k
t ψi+2∂k

t ψit

=2jiw
−3
i ∂k

t ηixx−2j2i w
−4
i ∂k

t ψixx+ε2
[
(k+1)ψixx+2w̃ixx

]
w−1

i ∂k
t ψixx

+(−1)i∂k
t (σxxwi)︸ ︷︷ ︸

bipolar effect

+∂k
t Fi+Gik, i=1,2, k=0,1, (3.34a)

where

Fi :=2(ηix)
2w−3

i −2(ψit)
2w−1

i +2Ki(wix)
2(w−1

i − w̃−1
i )

+2Ki(wix+ w̃ix)w̃
−1
i ψix−8jiηixw

−4
i wix+6(wix+ w̃ix)j

2
i w
−5
i ψix

+6(w̃ix)
2(ji+ j̃i)w

−5
i ηi+6(w̃ix)

2j̃2i (w
−5
i − w̃−5

i )

+ε2(w̃ixx)
2(w−1

i − w̃−1
i )+(−1)i(φ̃xxψi+2wixσx+2φ̃xψix)

−2w̃ixx(ji+ j̃i)w
−4
i ηi−2w̃ixxj̃

2
i (w

−4
i − w̃−4

i ), (3.34b)

and

Gi0 :=0, Gi1 :=2(jiw
−3
i )tηixx−2(j2i w

−4
i )tψixx−ε2(wixx+ w̃ixx)w

−2
i ψitψixx. (3.34c)

To deal with ∂k
t Fi and Gik, we need to use the inequalities (2.10), (3.13), (3.15),

(3.18), (3.19), and the mean value theorem. Through a tedious but straightforward
computation, we get

‖∂k
t Fi‖≤C(Nε(T )+δ)‖∂k

t (ψ1,ψ2,ψix,ψit,ηi,ηix)‖, (3.35a)

‖Gi1‖≤C(Nε(T )+δ)‖(ψixx,ηixx)‖, 0<ε≤1. (3.35b)

It is worth mentioning that the quantum effect will make the bipolar effect in the
working Equations (3.34a) more difficult to handle.

Moreover, based on the previous estimates (2.10), (3.13), (3.15), and (3.20) and
Equations (3.9a), (3.9b), and (3.34a)|k=0, the similar proof in unipolar problem [20]
works for our bipolar problem, we thus obtain

∂k
t ηixx=−2wi∂

k
t ψixt+Hik, i=1,2, k=0,1, (3.36a)

where Hi0 :=−2wixψit, Hi1 :=−4ψitψixt−2wixψitt, (3.36b)

‖Hik‖≤CAk(t), (3.36c)

‖ηit(t)‖1≤CA1(t), (3.36d)

and

C2lA1(t)≤nε(t)≤C2rA1(t), ∀0<ε≤1, (3.37)

provided Nε(T )+δ	1.

Lemma 3.5 (Higher order estimates). Under the same hypotheses of Lemma 3.2, for
all t∈ [0,T ] and 0<ε≤1, we have

d

dt
IIIk(t)+VIIk(t)=XIIk(t), k=0,1, (3.38a)
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where IIIk(t), VIIk(t), and XIIk(t) are defined in Equations (3.54b), (3.54c), and
(3.54d), respectively. Moreover, there exists a positive constant C such that∣∣∣IIIk(t)∣∣∣≤CA2

k(t),
∣∣∣XIIk(t)

∣∣∣≤C(Nε(T )+δ)A2
k(t), k=0,1, (3.38b)

provided Nε(T )+δ	1.

Proof. Actually, based on the homogeneous boundary conditions

(ψi,∂
k
t ψit,∂

k
t ψixx)(t,0)=(ψi,∂

k
t ψit,∂

k
t ψixx)(t,1)=0, i=1,2, k=0,1, (3.39)

Lemma 3.5 can be proved by using the procedure

2∑
i=1

∫ 1

0

(3.34a)(∂k
t ψi+2∂k

t ψit)dx, k=0,1. (3.40)

However, due to the complexity, the proof will be divided into three steps.

Step I. From

2∑
i=1

∫ 1

0

(3.34a)∂k
t ψi dx, k=0,1, (3.41)

we have

2∑
i=1

∫ 1

0

2∂k
t ψitt∂

k
t ψi dx︸ ︷︷ ︸

Ik1

−
2∑

i=1

∫ 1

0

2Ki∂
k
t ψixx∂

k
t ψi dx︸ ︷︷ ︸

Ik2

+

2∑
i=1

∫ 1

0

ε2∂4
x∂

k
t ψi∂

k
t ψi dx︸ ︷︷ ︸

Ik3

+

2∑
i=1

∫ 1

0

2∂k
t ψit∂

k
t ψi dx︸ ︷︷ ︸

Ik4

=

2∑
i=1

∫ 1

0

2jiw
−3
i ∂k

t ηixx∂
k
t ψi dx︸ ︷︷ ︸

Ik5

−
2∑

i=1

∫ 1

0

2j2i w
−4
i ∂k

t ψixx∂
k
t ψi dx︸ ︷︷ ︸

Ik6

+

2∑
i=1

∫ 1

0

ε2
[
(k+1)ψixx+2w̃ixx

]
w−1

i ∂k
t ψixx∂

k
t ψi dx︸ ︷︷ ︸

Ik7

+

2∑
i=1

∫ 1

0

(−1)i∂k
t (σxxwi)∂

k
t ψi dx︸ ︷︷ ︸

Ik8 : bipolar effect

+

2∑
i=1

∫ 1

0

(∂k
t Fi+Gik)∂

k
t ψi dx︸ ︷︷ ︸

Ik9

, (3.42)

By integration by parts, we can easily obtain

Ik1 =
d

dt

∫ 1

0

2∑
i=1

2∂k
t ψit∂

k
t ψi dx−

∫ 1

0

2∑
i=1

2(∂k
t ψit)

2 dx, (3.43a)



H.F. HU, M. MEI, AND K.J. ZHANG 2351

Ik2 =

∫ 1

0

2∑
i=1

2Ki(∂
k
t ψix)

2 dx, (3.43b)

Ik3 =

∫ 1

0

2∑
i=1

(ε∂k
t ψixx)

2 dx, (3.43c)

Ik4 =
d

dt

∫ 1

0

2∑
i=1

(∂k
t ψi)

2 dx, (3.43d)

Ik5 =−
∫ 1

0

2∑
i=1

2(jiw
−3
i ∂k

t ψi)x∂
k
t ηix dx, (3.43e)

Ik6 =

∫ 1

0

2∑
i=1

2(j2i w
−4
i ∂k

t ψi)x∂
k
t ψix dx. (3.43f)

Let Ik7 and Ik9 keep intact. Since the main difficulties arise from the bipolar effect,
we need to pay more attention to Ik8 ,

bipolar effect: Ik8 =

∫ 1

0

2∑
i=1

(−1)i∂k
t (σxxwi)∂

k
t ψi dx

=−
∫ 1

0

[
∂k
t (σxxw1)∂

k
t ψ1−∂k

t (σxxw2)∂
k
t ψ2

]
dx, k=0,1. (3.44a)

From Equation (3.9c), we get

σxx=(w1+ w̃1)ψ1−(w2+ w̃2)ψ2, (3.44b)

σxxt=2w1ψ1t−2w2ψ2t. (3.44c)

Our next goal is to deal with I08 and I18 in Equation (3.44a), respectively.

I08=−
∫ 1

0

(
σxxw1ψ1−σxxw2ψ2

)
dx=−

∫ 1

0

σxx

(
w1ψ1−w2ψ2

)
dx

=−
∫ 1

0

[
(w1+ w̃1)ψ1−(w2+ w̃2)ψ2

](
w1ψ1−w2ψ2

)
dx

=−
∫ 1

0

[
(w1ψ1−w2ψ2)+(w̃1ψ1− w̃2ψ2)

](
w1ψ1−w2ψ2

)
dx

=−
∫ 1

0

[
(w1ψ1−w2ψ2)

2︸ ︷︷ ︸
I08,1

+(w̃1ψ1− w̃2ψ2)(w1ψ1−w2ψ2)
]
dx

=−
∫ 1

0

{
I08,1+(w̃1ψ1− w̃2ψ2)

[
(ψ1+ w̃1)ψ1−(ψ2+ w̃2)ψ2

]}
dx

=−
∫ 1

0

{
I08,1+(w̃1ψ1− w̃2ψ2)

[
(w̃1ψ1− w̃2ψ2)+(ψ2

1−ψ2
2)
]}

dx

=−
∫ 1

0

[
(w1ψ1−w2ψ2)

2+(w̃1ψ1− w̃2ψ2)
2︸ ︷︷ ︸

nonnegative

+(w̃1ψ1− w̃2ψ2)(ψ
2
1−ψ2

2)︸ ︷︷ ︸
I08,2: cubic nonlinearity

]
dx, (3.44d)
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I18=−
∫ 1

0

[
(σxxw1)tψ1t−(σxxw2)tψ2t

]
dx

=−
∫ 1

0

[
(σxxtw1+σxxψ1t)ψ1t−(σxxtw2+σxxψ2t)ψ2t

]
dx

=−
∫ 1

0

{
σxxt(w1ψ1t−w2ψ2t)+σxx

[
(ψ1t)

2−(ψ2t)
2
]}

dx

=−
∫ 1

0

{
2(w1ψ1t−w2ψ2t)

2︸ ︷︷ ︸
nonnegative

+
[
(w1+ w̃1)ψ1−(w2+ w̃2)ψ2

][
(ψ1t)

2−(ψ2t)
2
]︸ ︷︷ ︸

I18,1: cubic nonlinearity

}
dx.

(3.44e)

We indicate that the bipolar effect in Equation (3.44a) will only influence the final
dissipation rate F̃ (t) in the next subsection.

Substituting Equations (3.43) and (3.44) into Equation (3.42), we have

d

dt
Ik(t)+Vk(t)=Xk(t), k=0,1, (3.45a)

where

Ik(t) :=

∫ 1

0

2∑
i=1

[
2∂k

t ψit∂
k
t ψi+(∂k

t ψi)
2
]
dx, (3.45b)

Vk(t) :=

∫ 1

0

2∑
i=1

[
2Ki(∂

k
t ψix)

2+(ε∂k
t ψixx)

2−2(∂k
t ψit)

2
]
dx− Ik8(t), (3.45c)

Xk(t) :=−
∫ 1

0

2∑
i=1

2(jiw
−3
i ∂k

t ψi)x∂
k
t ηix dx

+

∫ 1

0

2∑
i=1

2(j2i w
−4
i ∂k

t ψi)x∂
k
t ψix dx+Ik7(t)+Ik9(t), (3.45d)

and by using the estimates (2.10), (3.13), (3.15), (3.20) and (3.35) together with the
Cauchy–Schwarz inequality and Equation (3.36), for all 0<ε≤1, we obtain∣∣∣∣

∫ 1

0

I08,2(t,x)dx

∣∣∣∣≤CNε(T )‖(ψ1,ψ2)(t)‖2, (3.46a)∣∣∣∣
∫ 1

0

I18,1(t,x)dx

∣∣∣∣≤CNε(T )‖(ψ1t,ψ2t)(t)‖2, (3.46b)∣∣∣Ik(t)∣∣∣≤CA2
k(t),

∣∣∣Xk(t)
∣∣∣≤C(Nε(T )+δ)A2

k(t), k=0,1, (3.46c)

provided Nε(T )+δ	1.

Step II. From

2∑
i=1

∫ 1

0

(3.34a)∂k
t ψit dx, k=0,1, (3.47)
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we obtain

2∑
i=1

∫ 1

0

2∂k
t ψitt∂

k
t ψit dx︸ ︷︷ ︸

IIk1

−
2∑

i=1

∫ 1

0

2Ki∂
k
t ψixx∂

k
t ψit dx︸ ︷︷ ︸

IIk2

+

2∑
i=1

∫ 1

0

ε2∂4
x∂

k
t ψi∂

k
t ψit dx︸ ︷︷ ︸

IIk3

+

2∑
i=1

∫ 1

0

2(∂k
t ψit)

2 dx

︸ ︷︷ ︸
IIk4

=
2∑

i=1

∫ 1

0

2jiw
−3
i ∂k

t ηixx∂
k
t ψit dx︸ ︷︷ ︸

IIk5

−
2∑

i=1

∫ 1

0

2j2i w
−4
i ∂k

t ψixx∂
k
t ψit dx︸ ︷︷ ︸

IIk6

+

2∑
i=1

∫ 1

0

ε2
[
(k+1)ψixx+2w̃ixx

]
w−1

i ∂k
t ψixx∂

k
t ψit dx︸ ︷︷ ︸

IIk7

+

2∑
i=1

∫ 1

0

(−1)i∂k
t (σxxwi)∂

k
t ψit dx︸ ︷︷ ︸

IIk8 : bipolar effect

+

2∑
i=1

∫ 1

0

(∂k
t Fi+Gik)∂

k
t ψit dx︸ ︷︷ ︸

IIk9

, (3.48)

By integration by parts and Equation (3.36a), we can easily obtain

IIk1 =
d

dt

∫ 1

0

2∑
i=1

(∂k
t ψit)

2 dx, (3.49a)

IIk2 =
d

dt

∫ 1

0

2∑
i=1

Ki(∂
k
t ψix)

2 dx, (3.49b)

IIk3 =
d

dt

∫ 1

0

2∑
i=1

1

2
(ε∂k

t ψixx)
2 dx, (3.49c)

IIk4 =

∫ 1

0

2∑
i=1

2(∂k
t ψit)

2 dx, (3.49d)

IIk5 =

∫ 1

0

2∑
i=1

2(jiw
−2
i )x(∂

k
t ψit)

2 dx+

∫ 1

0

2∑
i=1

2jiw
−3
i Hik∂

k
t ψit dx, (3.49e)

IIk6 =
d

dt

∫ 1

0

2∑
i=1

j2i w
−4
i (∂k

t ψix)
2 dx

+

∫ 1

0

2∑
i=1

2(j2i w
−4
i )x∂

k
t ψit∂

k
t ψix dx−

∫ 1

0

2∑
i=1

(j2i w
−4
i )t(∂

k
t ψix)

2 dx. (3.49f)

Let IIk7 and IIk9 keep intact. Since the main difficulties arise from the bipolar effect,
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we need to pay more attention to IIk8 ,

bipolar effect: IIk8 =

∫ 1

0

2∑
i=1

(−1)i∂k
t (σxxwi)∂

k
t ψit dx, k=0,1. (3.50a)

Our next goal is to deal with II08 and II18 in Equation (3.50a), respectively.

II08=

∫ 1

0

2∑
i=1

(−1)i(σxxwi)ψit dx

=

∫ 1

0

2∑
i=1

(−1)i[(σxxwiψi)t−(σxxwi)tψi

]
dx

=
d

dt

∫ 1

0

2∑
i=1

(−1)iσxxwiψi dx︸ ︷︷ ︸
II08,1

−
∫ 1

0

2∑
i=1

(−1)i(σxxwi)tψi dx

=II08,1−
∫ 1

0

2∑
i=1

(−1)i(σxxtwi+σxxψit)ψi dx

=II08,1−
∫ 1

0

2∑
i=1

(−1)iσxxtwiψi dx −
∫ 1

0

2∑
i=1

(−1)iσxxψitψi dx︸ ︷︷ ︸
II08,2

=II08,1+

∫ 1

0

σxxt(w1ψ1−w2ψ2)dx+II08,2

=II08,1+

∫ 1

0

2(w1ψ1t−w2ψ2t)(w1ψ1−w2ψ2)dx+II08,2

=II08,1+

∫ 1

0

2
[
(w1ψ1−w2ψ2)t−(ψ1tψ1−ψ2tψ2)

]
(w1ψ1−w2ψ2)dx+II08,2

=II08,1+
d

dt

∫ 1

0

(w1ψ1−w2ψ2)
2 dx−

∫ 1

0

2(w1ψ1−w2ψ2)(ψ1tψ1−ψ2tψ2)dx+II08,2

=
d

dt

∫ 1

0

2∑
i=1

(−1)iσxxwiψi dx︸ ︷︷ ︸
=I08 by (3.44d)

+
d

dt

∫ 1

0

(w1ψ1−w2ψ2)
2 dx−

∫ 1

0

2(w1ψ1−w2ψ2)(ψ1tψ1−ψ2tψ2)dx

−
∫ 1

0

2∑
i=1

(−1)iσxxψitψi dx

=− d

dt

∫ 1

0

[
(w̃1ψ1− w̃2ψ2)

2+(w̃1ψ1− w̃2ψ2)(ψ
2
1−ψ2

2)
]
dx

−
∫ 1

0

[
2(w1ψ1−w2ψ2)−σxx

]
(ψ1tψ1−ψ2tψ2)dx
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=− d

dt

∫ 1

0

[
(w̃1ψ1− w̃2ψ2)

2+(w̃1ψ1− w̃2ψ2)(ψ
2
1−ψ2

2)
]
dx

−
∫ 1

0

(ψ2
1−ψ2

2)(ψ1tψ1−ψ2tψ2)dx

=− d

dt

∫ 1

0

[
1

4
(ψ2

1−ψ2
2)

2+(w̃1ψ1− w̃2ψ2)
2︸ ︷︷ ︸

nonnegative

+(w̃1ψ1− w̃2ψ2)(ψ
2
1−ψ2

2)︸ ︷︷ ︸
=I08,2: cubic nonlinearity; (3.46a)

]
dx, (3.50b)

and

II18=

∫ 1

0

2∑
i=1

(−1)i(σxxwi)tψitt dx

=

∫ 1

0

2∑
i=1

(−1)i(σxxtwi+σxxψit)ψitt dx

=

∫ 1

0

2∑
i=1

(−1)iσxxtwiψitt dx︸ ︷︷ ︸
II18,1

+

∫ 1

0

2∑
i=1

(−1)iσxxψitψitt dx

=II18,1−
∫ 1

0

σxx(ψ1tψ1tt−ψ2tψ2tt)dx

=II18,1−
∫ 1

0

[
(w1+ w̃1)ψ1−(w2+ w̃2)ψ2

]
(ψ1tψ1tt−ψ2tψ2tt)dx︸ ︷︷ ︸

II18,2: cubic nonlinearity

=

∫ 1

0

2∑
i=1

(−1)iσxxtwiψitt dx− II18,2

=−
∫ 1

0

σxxt(w1ψ1tt−w2ψ2tt)dx− II18,2

=−
∫ 1

0

σxxt(w1ψ1t−w2ψ2t)t dx+

∫ 1

0

σxxt

[
(ψ1t)

2−(ψ2t)
2
]
dx− II18,2

=− d

dt

∫ 1

0

(w1ψ1t−w2ψ2t)
2 dx+

∫ 1

0

2(w1ψ1t−w2ψ2t)
[
(ψ1t)

2−(ψ2t)
2
]
dx︸ ︷︷ ︸

II18,3: cubic nonlinearity

−II18,2

=− d

dt

∫ 1

0

(w1ψ1t−w2ψ2t)
2︸ ︷︷ ︸

nonnegative

dx +II18,3− II18,2︸ ︷︷ ︸
cubic nonlinearity

. (3.50c)

From Equations (3.50b) and (3.50c), we can also see that the bipolar effect in
Equation (3.50a) will influence not only the final dissipation rate F̃ (t) but also the final
energy Ẽ(t) in the next subsection. However, due to the structure found in Equations
(3.44d), (3.44e), (3.50b), and (3.50c), the bipolar effects Ik8 in Equation (3.44a) and IIk8
in Equation (3.50a) can be well controlled.

Substituting Equations (3.49) and (3.50) into Equation (3.48), we get

d

dt
IIk(t)+VIk(t)=XIk(t), k=0,1, (3.51a)



2356 BIPOLAR QUANTUM HYDRODYNAMIC MODEL

where

IIk10(t) :=

∫ 1

0

2∑
i=1

[
(∂k

t ψit)
2+

=Si[w
2
i ,ji]︷ ︸︸ ︷

(Ki−j2i w
−4
i )(∂k

t ψix)
2+

1

2
(ε∂k

t ψixx)
2

]
dx, (3.51b)

II0(t) :=II010(t)

+

∫ 1

0

[
1

4
(ψ2

1−ψ2
2)

2+(w̃1ψ1− w̃2ψ2)
2+(w̃1ψ1− w̃2ψ2)(ψ

2
1−ψ2

2)

]
dx

︸ ︷︷ ︸
II0b(t): bipolar effect

, (3.51c)

II1(t) := II110(t)

II1b(t): bipolar effect︷ ︸︸ ︷
+

∫ 1

0

(w1ψ1t−w2ψ2t)
2 dx, (3.51d)

VIk(t) :=

∫ 1

0

2∑
i=1

2(∂k
t ψit)

2 dx, (3.51e)

XIk(t) :=

∫ 1

0

2∑
i=1

2(jiw
−2
i )x(∂

k
t ψit)

2 dx+

∫ 1

0

2∑
i=1

2jiw
−3
i Hik∂

k
t ψit dx

+

∫ 1

0

2∑
i=1

2(j2i w
−4
i )x∂

k
t ψit∂

k
t ψix dx−

∫ 1

0

2∑
i=1

(j2i w
−4
i )t(∂

k
t ψix)

2 dx

+IIk7+IIk9+k
(
II18,3− II18,2

)
, (3.51f)

and by using the estimates (2.10), (3.13), (3.15), (3.20), (3.35), and (3.46a) together
with the Cauchy–Schwarz inequality and Equation (3.36), for all 0<ε≤1, we have∣∣∣IIk(t)∣∣∣≤CA2

k(t),
∣∣∣XIk(t)

∣∣∣≤C(Nε(T )+δ)A2
k(t), k=0,1, (3.52)

provided Nε(T )+δ	1.

Step III. From

(3.45a)+2(3.51a), (3.53)

namely Equation (3.40), we obtain

d

dt
IIIk(t)+VIIk(t)=XIIk(t), k=0,1, (3.54a)

where

IIIk(t) :=Ik(t)+2IIk(t)

=Ik(t)+2
(
IIk10(t)+IIkb (t)

)
=
(
Ik(t)+2IIk10(t)

)
+2IIkb (t)

=

∫ 1

0

2∑
i=1

[
(∂k

t ψi+∂k
t ψit)

2︸ ︷︷ ︸
nonnegative

+(∂k
t ψit)

2+2Si[w
2
i ,ji]︸ ︷︷ ︸

≥Ki>0

(∂k
t ψix)

2+(ε∂k
t ψixx)

2
]
dx
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+2IIkb (t), (3.54b)

VIIk(t) :=Vk(t)+2VIk(t)

=

∫ 1

0

2∑
i=1

[
2Ki(∂

k
t ψix)

2+(ε∂k
t ψixx)

2+2(∂k
t ψit)

2
]
dx− Ik8(t), (3.54c)

XIIk(t) :=Xk(t)+2XIk(t). (3.54d)

We note that Equation (3.54a) follows from Equation (3.38a). According to the
estimates (3.46) and (3.52), obviously, the estimate (3.38b) is followed. This completes
the proof.

3.4. Decay estimate. In this subsection, we can combine the basic estimate
with the higher order estimates to prove Lemma 3.2 as follows.

Proof. From

(3.21a)+

1∑
k=0

(3.38a), (3.55)

we get the final energy equality

d

dt
Ẽ(t)+ F̃ (t)=0, (3.56a)

where

Ẽ(t) :=

∫ 1

0

E(t,x)dx+III0(t)+III1(t), (3.56b)

F̃ (t) :=

∫ 1

0

2∑
i=1

η2i w̃
−2
i dx+VII0(t)+VII1(t)−

∫ 1

0

R2 dx−XII0(t)−XII1(t). (3.56c)

Now we claim an important fact which reveals the dissipation mechanism in our bipolar
problem:

Equivalence. There are four positive constants C3l,C3r,C4l,C4r such
that for all 0<ε≤1 if Nε(T )+δ	1, then we have the equivalent rela-
tionships

C3lA
2
1(t)≤ Ẽ(t)≤C3rA

2
1(t), (3.57a)

C4lA
2
1(t)≤ F̃ (t)≤C4rA

2
1(t), ∀t∈ [0,T ]. (3.57b)

In fact, by 0<ε≤1 and the previous estimates (3.21b), (3.21c), (3.38b), a standard
argument gives the upper bound estimates in Equation (3.57) under the a priori as-
sumption Nε(T )+δ	1.

The key point is how to establish the lower bound estimates in Equation (3.57). To
this end, we first recall an optimal Poincaré inequality

‖f‖2≤ 1

4
‖fx‖2, ∀f ∈H1

0 (Ω). (3.58)
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It will be very useful in estimating the lower bound of the final dissipation rate F̃ (t).
Precisely, with the help of the Poincaré inequality (3.58), we can create the zero order
dissipation rate ‖(ψ1,ψ2)(t)‖2 from the higher order estimate VII0(t), which is lost in
the basic estimate by bipolar effect.

Based on the structure analysis of the bipolar effect terms Ik8 in Equation (3.44)
and IIk8 in Equation (3.50), namely,

bipolar effect terms=nonnegative terms+cubic nonlinearities, (3.59)

we can abandon some certain nonnegative terms in Ẽ(t) and F̃ (t) in order to get the
desired lower bound.

Ẽ(t)=

∫ 1

0

E(t,x)dx+III0(t)+III1(t)

≥C1l

2∑
i=1

‖(ψi,ηi,εψix︸︷︷︸
≥0

)(t)‖2

+

1∑
k=0

∫ 1

0

2∑
i=1

[
(∂k

t ψi+∂k
t ψit)

2︸ ︷︷ ︸
≥0

+(∂k
t ψit)

2+2Si[w
2
i ,ji](∂

k
t ψix)

2+(ε∂k
t ψixx)

2
]
dx

+

1∑
k=0

2IIkb (t)

≥C1l

2∑
i=1

‖(ψi,ηi)(t)‖2+
1∑

k=0

∫ 1

0

2∑
i=1

[
(∂k

t ψit)
2+Ki(∂

k
t ψix)

2+(ε∂k
t ψixx)

2
]
dx

+

∫ 1

0

[
1

4
(ψ2

1−ψ2
2)

2+(w̃1ψ1− w̃2ψ2)
2︸ ︷︷ ︸

≥0

+(w̃1ψ1− w̃2ψ2)(ψ
2
1−ψ2

2)

]
dx

+

∫ 1

0

(w1ψ1t−w2ψ2t)
2︸ ︷︷ ︸

≥0

dx

≥C1l

2∑
i=1

‖(ψi,ηi)(t)‖2+
1∑

k=0

∫ 1

0

2∑
i=1

[
(∂k

t ψit)
2+Ki(∂

k
t ψix)

2+(ε∂k
t ψixx)

2
]
dx

−CNε(T )

2∑
i=1

‖ψi(t)‖2

≥C3lA
2
1(t), (3.60a)

and

F̃ (t)=

∫ 1

0

2∑
i=1

η2i w̃
−2
i dx+

1∑
k=0

VIIk(t)−
∫ 1

0

R2 dx−
1∑

k=0

XIIk(t)

≥C
2∑

i=1

‖ηi(t)‖2

+

1∑
k=0

{∫ 1

0

2∑
i=1

[
2Ki(∂

k
t ψix)

2+(ε∂k
t ψixx)

2+2(∂k
t ψit)

2
]
dx− Ik8(t)

}
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−
∣∣∣∣
∫ 1

0

R2 dx

∣∣∣∣− 1∑
k=0

∣∣∣XIIk(t)
∣∣∣

≥C
2∑

i=1

‖ηi(t)‖2+
2∑

i=1

1∑
k=0

[
2Ki‖∂k

t ψix(t)‖2+‖ε∂k
t ψixx(t)‖2+2‖∂k

t ψit(t)‖2
]

−
1∑

k=0

Ik8(t)−C(Nε(T )+δ)

2∑
i=1

‖(ψi,ηi)(t)‖21−C(Nε(T )+δ)

1∑
k=0

A2
k(t)

≥
2∑

i=1

(
Ki‖ψix(t)‖2︸ ︷︷ ︸

by(3.58)

+Ki‖ψix(t)‖2
)

+
2∑

i=1

[
C‖ηi(t)‖2+2Ki‖∂1

t ψix(t)‖2+
1∑

k=0

(‖ε∂k
t ψixx(t)‖2+2‖∂k

t ψit(t)‖2
)]

−C(Nε(T )+δ)

2∑
i=1

‖(ψi,ηi)(t)‖21−C(Nε(T )+δ)

1∑
k=0

A2
k(t)

+

∫ 1

0

[
(w1ψ1−w2ψ2)

2+(w̃1ψ1− w̃2ψ2)
2︸ ︷︷ ︸

≥0

+(w̃1ψ1− w̃2ψ2)(ψ
2
1−ψ2

2)
]
dx

+

∫ 1

0

{
2(w1ψ1t−w2ψ2t)

2︸ ︷︷ ︸
≥0

+
[
(w1+ w̃1)ψ1−(w2+ w̃2)ψ2

][
(ψ1t)

2−(ψ2t)
2
]}

dx

≥
2∑

i=1

(
4Ki‖ψi(t)‖2+Ki‖ψix(t)‖2+C‖ηi(t)‖2+2Ki‖∂1

t ψix(t)‖2
)

+
2∑

i=1

1∑
k=0

(‖ε∂k
t ψixx(t)‖2+2‖∂k

t ψit(t)‖2
)

−C(Nε(T )+δ)

2∑
i=1

‖(ψi,ηi)(t)‖21−C(Nε(T )+δ)

1∑
k=0

A2
k(t)

−CNε(T )

2∑
i=1

‖ψi(t)‖2−CNε(T )

2∑
i=1

‖ψit(t)‖2

≥C4lA
2
1(t). (3.60b)

From Equation (3.57), we know that Ẽ(t) and F̃ (t) are also equivalent to each other.
Therefore, there exists a positive constant C5 such that

C5Ẽ(t)≤ F̃ (t), ∀t∈ [0,T ]. (3.61)

Substituting Equation (3.61) into Equation (3.56a), we obtain the ordinary differential
inequality

d

dt
Ẽ(t)+C5Ẽ(t)≤0, ∀t∈ [0,T ]. (3.62)

Gronwall’s inequality argument yields that

Ẽ(t)≤ Ẽ(0)e−C5t, ∀t∈ [0,T ]. (3.63)
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By Equations (3.37), (3.57a), and (3.63), there is a positive constant C such that

n2
ε(t)≤Cn2

ε(0)e
−C5t, ∀t∈ [0,T ]. (3.64)

Let γ2 :=C5/2, then we complete the proof.

4. Semi-classical limits
In this section, we discuss the semi-classical limit from the QHD model to the HD

model. First, we show the semi-classical limit for the stationary solution in Subsection
4.1. And then, we study the semi-classical limit for the global solution in Subsection
4.2.

4.1. Stationary solution case. We let (ñε
1, j̃

ε
1 ,ñ

ε
2, j̃

ε
2 ,φ̃

ε) stand for the solution
of the QHD boundary value problem (1.7)–(1.8), and continue to write (ñ0

1, j̃
0
1 ,ñ

0
2, j̃

0
2 ,φ̃

0)
for the solution of the HD boundary value problem (1.12).

It is worth mentioning that a similar result for unipolar problem has already been
proved under the exponential transformation in [20]. However, the multiplier (lnñε

i −
lnñ0

i )x used for unipolar problem are not applicable to our bipolar problem.
Through a careful observation on the bipolar structure of our problem, we can

successfully overcome the main difficulty caused by the bipolar effect by choosing some
new multipliers and estimating the error variables in terms of their original form. Now,
we can prove Theorem 1.3 as follows.

Proof. First, we introduce the error variables between the QHD model and the
HD model as follows

Ñ ε
i := ñε

i − ñ0
i , J̃ ε

i := j̃εi − j̃0i , Φ̃ε= φ̃ε− φ̃0, i=1,2. (4.1)

From

(1.12b)
/
ñ0
i , (1.7b)

/
ñε
i , (1.7b)

/
ñε
i −−(1.12b)

/
ñ0
i , (1.7c)−−(1.12c), i=1,2,

(4.2)
we deduce that

S̃0
i (ñ

0
i )
−1ñ0

ix+(−1)iφ̃0
x=−j̃0i (ñ0

i )
−1, (4.3a)

S̃ε
i (ñ

ε
i )
−1ñε

ix−ε2
[(√

ñε
i

)
xx

/√
ñε
i

]
x
+(−1)iφ̃ε

x=−j̃εi (ñε
i )
−1, (4.3b)

S̃ε
i (ñ

ε
i )
−1ñε

ix− S̃0
i (ñ

0
i )
−1ñ0

ix+(−1)iΦ̃ε
x−ε2

[(√
ñε
i

)
xx

/√
ñε
i

]
x

=−[j̃εi (ñε
i )
−1− j̃0i (ñ

0
i )
−1
]
, (4.3c)

Φ̃ε
xx= Ñ ε

1 −Ñ ε
2 , i=1,2, ∀x∈Ω, (4.3d)

where S̃ε
i :=Si[ñ

ε
i , j̃

ε
i ] and S̃0

i :=Si[ñ
0
i , j̃

0
i ].

By

2∑
i=1

∫ 1

0

(4.3c)Ñ ε
ix dx, (4.4)

we get
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Θ1︷ ︸︸ ︷
2∑

i=1

∫ 1

0

[
S̃ε
i (ñ

ε
i )
−1ñε

ix− S̃0
i (ñ

0
i )
−1ñ0

ix

]
Ñ ε

ix dx

Θ2: bipolar effect︷ ︸︸ ︷
+

2∑
i=1

∫ 1

0

(−1)iΦ̃ε
xÑ ε

ix dx

=ε2
2∑

i=1

∫ 1

0

[(√
ñε
i

)
xx

/√
ñε
i

]
x
Ñ ε

ix dx︸ ︷︷ ︸
Θ3

−
2∑

i=1

∫ 1

0

[
j̃εi (ñ

ε
i )
−1− j̃0i (ñ

0
i )
−1
]Ñ ε

ix dx︸ ︷︷ ︸
Θ4

. (4.5)

Secondly, from [9], we have j̃0i =Ji[ñ
0
i ] where Ji[·] is given by Equation (2.8a). Thus,

a standard argument gives

|J εk
i |= |Ji[ñε

i ]−Ji[ñ
0
i ]|≤Cδ‖Ñ ε

i ‖. (4.6)

Furthermore, we know that

Ñ ε
i ∈H1

0 (Ω), (4.7)

follows from the boundary conditions (1.8a) and (1.11a). Thus, the Poincaré inequality
(3.58) can also be used to estimate Ñ ε

i . Namely, by using Equations (1.13) and (1.15),
Hölder’s inequality, and integration by parts, for all 0<ε≤1, we get

Θ1=

2∑
i=1

∫ 1

0

{[
S̃ε
i (ñ

ε
i )
−1− S̃0

i (ñ
0
i )
−1
]
ñε
ix+ S̃0

i (ñ
0
i )
−1Ñ ε

ix

}
Ñ ε

ix dx

≥C6

2∑
i=1

‖Ñ ε
ix‖2+

2∑
i=1

∫ 1

0

[
S̃ε
i (ñ

ε
i )
−1− S̃0

i (ñ
0
i )
−1
]
ñε
ixÑ ε

ix dx

≥C6

2∑
i=1

‖Ñ ε
ix‖2−Cδ

2∑
i=1

(‖Ñ ε
i ‖+ |J̃ ε

i |)‖Ñ ε
ix‖

≥C6

2∑
i=1

‖Ñ ε
ix‖2−Cδ

2∑
i=1

‖Ñ ε
ix‖2

≥C6

2∑
i=1

‖Ñ ε
ix‖2, (4.8a)

Θ2=

2∑
i=1

∫ 1

0

(−1)i−1Φ̃ε
xxÑ ε

i dx=

∫ 1

0

Φ̃ε
xx

2∑
i=1

(−1)i−1Ñ ε
i dx

=

∫ 1

0

Φ̃ε
xx(Ñ ε

1 −Ñ ε
2 )dx=

∫ 1

0

(Φ̃ε
xx)

2 dx

≥0, (4.8b)

Θ3=−ε2
2∑

i=1

∫ 1

0

[(√
ñε
i

)
xx

/√
ñε
i

]
Ñ ε

ixx dx

=−ε2
2∑

i=1

∫ 1

0

(
w̃ixxw̃

−1
i

)Ñ ε
ixx dx≤ε2

2∑
i=1

‖w̃−1
i ‖∞‖w̃ixx‖‖Ñ ε

ixx‖

≤ε2
2∑

i=1

‖w̃−1
i ‖∞‖w̃ixx‖(‖ñε

ixx‖+‖ñ0
ixx‖)



2362 BIPOLAR QUANTUM HYDRODYNAMIC MODEL

≤Cε2, (4.8c)

we continue in the above fashion obtaining

Θ4≤Cδ

2∑
i=1

‖Ñ ε
ix‖2. (4.8d)

Substituting the estimates (4.8) into Equation (4.5), we obtain

2∑
i=1

‖Ñ ε
ix‖2≤Cε2. (4.9)

Combining Equation (4.9) with Equation (4.7), we get

2∑
i=1

‖Ñ ε
i ‖1≤Cε, ∀0<ε≤1. (4.10)

From Equations (4.10) and (4.6), and the elliptic estimate ‖Φ̃ε‖3≤C
∑2

i=1‖Ñ ε
i ‖1, we

can easily see that the convergence estimate (1.17a) holds true.
We are now in a position to show the convergence result (1.17b). From Equation

(1.15b) and δ<1, we have

‖ñε
ixx‖≤Cδ≤C, ∀0<ε≤1, i=1,2. (4.11)

Combining Equation (4.11) with Equation (4.10), we conclude that there exists a sub-
sequence {0<εk≤1} of {0<ε≤1} such that

ñεk
ixx⇀ñ0

ixx in L2 weakly as εk→0+, i=1,2. (4.12)

In order to improve the weak convergence (4.12) into the strong convergence, we have to
use a standard functional analysis argument in a certain weighted L2 space. Of course,
we also need to use Equations (4.3a) and (4.3b) to establish some necessary estimates
and limit results. Precisely, by using∫ 1

0

2∂x(4.3b)
(
√
ñε
i )xx√
ñε
i

dx, i=1,2, (4.13)

together with the homogeneous boundary condition (1.8b), we get

∫ 1

0

αε
i (ñ

ε
ixx)

2 dx+2ε2
∫ 1

0

{[(√
ñε
i

)
xx

/√
ñε
i

]
x

}2

dx︸ ︷︷ ︸
≥0

=Qε
i , (4.14a)

where

αε
i := S̃ε

i (ñ
ε
i )
−2, (4.14b)

Qε
i =Qi[ñ

ε
i , j̃

ε
i ,φ̃

ε] :=

∫ 1

0

{
1

2
S̃ε
i (ñ

ε
i )
−3(ñε

ix)
2ñε

ixx−2
[
S̃ε
ix(ñ

ε
i )
−1ñε

ix− S̃ε
i (ñ

ε
i )
−2(ñε

ix)
2
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+(−1)iφ̃ε
xx+

(
j̃εi (ñ

ε
i )
−1
)
x

] (√ñε
i )xx√
ñε
i

}
dx, i=1,2. (4.14c)

Let

α0
i :=αε

i |ε=0= S̃0
i (ñ

0
i )
−2, (4.15a)

Q0
i :=Qε

i |ε=0. (4.15b)

By ∫ 1

0

2∂x(4.3a)
(
√
ñ0
i )xx√
ñ0
i

dx, i=1,2, (4.16)

we can easily check that ∫ 1

0

α0
i (ñ

0
ixx)

2 dx=Q0
i . (4.17)

In addition, for the subsequence {εk} in Equation (4.12), we claim that the limit of the
number sequence

lim
εk→0+

Qεk
i =Q0

i , i=1,2, (4.18)

holds true. In fact, from what has already been proved, a standard argument yields

∣∣Qεk
i −Q0

i

∣∣≤C 2∑
i=1

‖Ñ εk
i ‖1+

∣∣∣∣∣
∫ 1

0

∈L2︷ ︸︸ ︷
1

2
S̃0
i (ñ

0
i )
−3(ñ0

ix)
2 (ñεk

ixx− ñ0
ixx)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

0

A0
i (ñ

0
i )
−1︸ ︷︷ ︸

∈L2

(ñεk
ixx− ñ0

ixx)dx

∣∣∣∣∣
→0, as εk→0+, (4.19a)

where

A0
i := S̃0

ix(ñ
0
i )
−1ñ0

ix− S̃0
i (ñ

0
i )
−2(ñ0

ix)
2+(−1)iφ̃0

xx+
(
j̃0i (ñ

0
i )
−1
)
x
, i=1,2. (4.19b)

Due to Equations (4.10), (1.13) and (1.15), a similar computation shows that

lim
ε→0+

∫ 1

0

(αε
i −α0

i )(ñ
ε
ixx)

2 dx=0, i=1,2. (4.20)

Actually, for all 0<ε≤1, we have∣∣∣∣
∫ 1

0

(αε
i −α0

i )(ñ
ε
ixx)

2 dx

∣∣∣∣
=

∣∣∣∣
∫ 1

0

{
(S̃ε

i − S̃0
i )(ñ

ε
i )
−2+ S̃0

i

[
(ñε

i )
−2−(ñ0

i )
−2
]}

(ñε
ixx)

2 dx

∣∣∣∣
≤C(|J̃ ε

i |+ |Ñ ε
i |0)‖ñε

ixx‖2
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≤Cδ‖Ñ ε
i ‖1

≤Cε→0+. (4.21)

Based on Equations (4.14a), (4.18), (4.17), and (4.20), and the properties of the limit
supremum of the number sequence, we have actually proved that

limsup
εk→0+

∫ 1

0

α0
i (ñ

εk
ixx)

2 dx=limsup
εk→0+

∫ 1

0

αεk
i (ñεk

ixx)
2 dx≤

∫ 1

0

α0
i (ñ

0
ixx)

2 dx, i=1,2. (4.22)

From Lemma 1.1, we know that the function α0
i =α0

i (x) defined in Equation (4.15a)
is strictly positive and continuous on the interval Ω=[0,1]. Then we choose α0

i as a
weight and introduce a weighted L2 space as follows

L2
α0

i
(Ω) :=

{
f :Ω→R is measurable

∣∣∣ ∫ 1

0

α0
i |f |2 dx<+∞

}
, (4.23a)

with the inner product

(f,g)L2

α0
i

:=

∫ 1

0

α0
i fg dx, (4.23b)

and the associated norm

‖f‖L2

α0
i

:=

(∫ 1

0

α0
i |f |2 dx

)1/2

, i=1,2. (4.23c)

We see at once that L2
α0

i
(Ω) is a Hilbert space.

Furthermore, Equation (4.22) implies that

limsup
εk→0+

‖ñεk
ixx‖L2

α0
i

≤‖ñ0
ixx‖L2

α0
i

, i=1,2, (4.24a)

and Equation (4.12) implies that

ñεk
ixx⇀ñ0

ixx in L2
α0

i
weakly as εk→0+, i=1,2. (4.24b)

We conclude from Equation (4.24) that

ñεk
ixx→ ñ0

ixx in L2
α0

i
strongly as εk→0+, (4.25)

hence that

lim
εk→0+

‖Ñ εk
ixx‖=0, i=1,2. (4.26)

Next, from Equations (4.20), (4.25), and (4.14a), we have

εk

∥∥∥∥
[(√

ñεk
i

)
xx

/√
ñεk
i

]
x

∥∥∥∥→0, as εk→0+, i=1,2. (4.27)

This together with Equation (1.15), we deduce that

εk‖∂3
xñ

εk
i ‖=εk

∥∥∥∥2ñεk
i

[(√
ñεk
i

)
xx

/√
ñεk
i

]
x

+2(ñεk
i )−1ñεk

ix ñ
εk
ixx−(ñεk

i )−2(ñεk
ix )

3

∥∥∥∥
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≤C
(
εk

∥∥∥∥
[(√

ñεk
i

)
xx

/√
ñεk
i

]
x

∥∥∥∥+εk

)
→0, as εk→0+, i=1,2. (4.28)

Finally, by ‖∂x(4.3b)|εk‖, we get

ε2k

∥∥∥∥
[(√

ñεk
i

)
xx

/√
ñεk
i

]
xx

∥∥∥∥= n̂εk
i , i=1,2, (4.29a)

where

n̂εk
i = n̂i[ñ

εk
i , j̃εki ,φ̃εk ] :=

∥∥∥[S̃εk
i (ñεk

i )−1ñεk
ix

]
x
+(−1)iφ̃εk

xx+
(
j̃εki (ñεk

i )−1
)
x

∥∥∥ . (4.29b)

Formally, let n̂0
i := n̂εk

i |εk=0. By ‖∂x(4.3a)‖, we rigorously obtain that n̂0
i =0, i=1,2.

Similar analysis to that in Equation (4.18) shows that

lim
εk→0+

n̂εk
i = n̂0

i =0, i=1,2. (4.30)

Combining Equation (4.29a) with Equation (4.30), we have

lim
εk→0+

ε2k

∥∥∥∥
[(√

ñεk
i

)
xx

/√
ñεk
i

]
xx

∥∥∥∥=0, i=1,2. (4.31)

We continue in the fashion of Equation (4.28) to obtain

ε2k‖∂4
xñ

εk
i ‖≤C

(
ε2k

∥∥∥∥
[(√

ñεk
i

)
xx

/√
ñεk
i

]
xx

∥∥∥∥+ε2k‖∂3
xñ

εk
i ‖+ε2k

)
→0, as εk→0+.

(4.32)
Combining Equations (4.26), (4.28), and (4.32), and using the elliptic estimate ‖∂4

xΦ̃
ε‖≤∑2

i=1‖Ñ ε
ixx‖, we thus prove that the convergence result (1.17b) holds true.

4.2. Global solution case. We let (nε
1,j

ε
1 ,n

ε
2,j

ε
2 ,φ

ε) stand for the global so-
lution of the QHD initial-boundary value problem (1.1)–(1.3), and continue to write
(n0

1,j
0
1 ,n

0
2,j

0
2 ,φ

0) for the global solution of the HD initial-boundary value problem (1.9)–
(1.11).

In order to prove Theorem 1.4, we have to use Lemma 1.2, Theorem 1.2, and
Theorem 1.3 simultaneously. Therefore, the semi-classical limit of the global solution is
based on the subsequence {εk} in Theorem 1.3. Below, we give the proof of Theorem
1.4.

Proof. We first choose the appropriate initial data to ensure that there are the
global solution of QHD problem and that of the HD problem at the same time. To this
end, we let

δ0 :=
1

2
min{δ2, δ4}>0, (4.33)

where δ2 is given in Lemma 1.2 and δ4 in Theorem 1.2. By Theorem 1.3, for the above
δ0, there is a positive constant ε0 such that if εk≤ε0, then

2∑
i=1

(
‖ñεk

i − ñ0
i ‖1+ |j̃εki − j̃0i |

)
≤ δ0. (4.34)
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Now, we define

δ6 :=min{δ5, ε0, δ0}>0. (4.35)

It is obvious that the condition (1.18) in Theorem 1.4 implies

δ+

2∑
i=1

‖(ni0− ñ0
i ,ji0− j̃0i )‖2≤2δ0≤ δ2. (4.36)

Secondly, for 0<εk≤ δ6, we introduce the error variables as follows

N εk
i :=nεk

i −n0
i , J εk

i := jεki −j0i , Φεk :=φεk−φ0, ∀(t,x)∈ [0,+∞)×Ω. (4.37)

From

(1.1)−−(1.9), (1.3a)−−(1.11a), (1.3c)−−(1.11b), (4.38)

we deduce that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N εk
it +J εk

ix =0, (4.39a)

J εk
it +KiN εk

ix +2
[
jεki jεkix (n

εk
i )−1−j0i j

0
ix(n

0
i )
−1
]

−[(jεki )2(nεk
i )−2nεk

ix −(j0i )
2(n0

i )
−2n0

ix

]
+(−1)i(N εk

i φεk
x +n0

iΦ
εk
x

)
+J εk

i =ε2kn
εk
i

[(√
nεk
i

)
xx

/√
nεk
i

]
x

, (4.39b)

Φεk
xx=N εk

1 −N εk
2 , i=1,2, ∀(t,x)∈ [0,+∞)×Ω, (4.39c)

with the homogeneous boundary conditions

N εk
i (t,0)=N εk

i (t,1)=N εk
it (t,0)=N εk

it (t,1)=Φεk(t,0)=Φεk(t,1)=0. (4.40)

From −∂x(4.39b) together with Equation (4.39a), we get

N εk
itt −KiN εk

ixx−2
[
jεki jεkix (n

εk
i )−1−j0i j

0
ix(n

0
i )
−1
]
x

+
[
(jεki )2(nεk

i )−2nεk
ix −(j0i )

2(n0
i )
−2n0

ix

]
x
+(−1)i−1

(N εk
i φεk

x +n0
iΦ

εk
x

)
x

+N εk
it =−ε2k

{
nεk
i

[(√
nεk
i

)
xx

/√
nεk
i

]
x

}
x

, i=1,2. (4.41)

Repeated application of Lemma 1.1 and Lemma 1.2 enables us to write

n0
i (t,x), S

0
i :=Si[n

0
i ,j

0
i ]≥C7>0, i=1,2, ∀(t,x)∈ [0,+∞)×Ω, (4.42a)

2∑
i=1

(
‖(n0

i −nil,j
0
i )(t)‖2+‖(n0

it,j
0
it)(t)‖1

)
+‖φ0(t)‖2≤Cδ2≤C, ∀t∈ [0,+∞). (4.42b)

Based on Theorem 1.1 and Theorem 1.2, we continue in the above fashion obtaining

nεk
i (t,x), Sεk

i :=Si[n
εk
i ,jεki ]≥C8>0, i=1,2, ∀(t,x)∈ [0,+∞)×Ω, (4.43a)

2∑
i=1

(
‖(nεk

i −nil,j
εk
i )(t)‖2+‖(nεk

it ,j
εk
it )(t)‖1
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+‖(εk∂3
xn

εk
i ,εk∂

3
xj

εk
i ,ε2k∂

4
xn

εk
i )(t)‖

)
+‖φεk(t)‖3≤Cδ6≤C, ∀t∈ [0,+∞), (4.43b)

for ∀0<εk≤ δ6, where C8,C,δ6 are independent of εk.

The remaining part of the proof will be divided into three steps.

Step I. From

2∑
i=1

∫ 1

0

(4.39b)J εk
i dx, (4.44)

we obtain

d

dt

∫ 1

0

2∑
i=1

1

2
(J εk

i )2 dx+

∫ 1

0

2∑
i=1

(J εk
i )2 dx

=−
2∑

i=1

∫ 1

0

KiN εk
ix J εk

i dx−
2∑

i=1

∫ 1

0

2
[
jεki jεkix (n

εk
i )−1−j0i j

0
ix(n

0
i )
−1
]J εk

i dx

+
2∑

i=1

∫ 1

0

[
(jεki )2(nεk

i )−2nεk
ix −(j0i )

2(n0
i )
−2n0

ix

]J εk
i dx

+
2∑

i=1

∫ 1

0

(−1)i−1
(N εk

i φεk
x +n0

iΦ
εk
x

)J εk
i dx

+ε2k

2∑
i=1

∫ 1

0

nεk
i

[(√
nεk
i

)
xx

/√
nεk
i

]
x

J εk
i dx

=Γ1+Γ2+Γ3+Γ4+Γ5, (4.45)

By using Equations (4.42) and (4.43), we estimate Γ1–Γ5 as follows

Γ1≤C
2∑

i=1

‖(N εk
ix ,J εk

i )(t)‖2, (4.46a)

Γ2≤C
2∑

i=1

∫ 1

0

(|J εk
i |+ |J εk

ix |+ |N εk
i |)|J εk

i |dx

≤C
2∑

i=1

‖(J εk
i ,J εk

ix ,N εk
i )(t)‖2, (4.46b)

Γ3≤C
2∑

i=1

∫ 1

0

(|J εk
i |+ |N εk

i |+ |N εk
ix |)|J εk

i |dx

≤C
2∑

i=1

‖(J εk
i ,N εk

i ,N εk
ix )(t)‖2, (4.46c)

Γ4≤C
2∑

i=1

∫ 1

0

(|N εk
i |+ |Φεk

x |)|J εk
i |dx≤C

2∑
i=1

‖(N εk
i ,Φεk

x ,J εk
i )(t)‖2

≤C
2∑

i=1

‖(N εk
i ,J εk

i )(t)‖2, (4.46d)
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Γ5=ε2k

2∑
i=1

∫ 1

0

[(√
nεk
i

)
xx

/√
nεk
i

]
x

nεk
i J εk

i dx

=−ε2k

2∑
i=1

∫ 1

0

[(√
nεk
i

)
xx

/√
nεk
i

]
(nεk

i J εk
i )x dx

≤ε2k
2∑

i=1

∣∣∣∣1/√nεk
i

∣∣∣∣
0

∥∥∥∥
(√

nεk
i

)
xx

∥∥∥∥(|nεk
ix |0‖J εk

i ‖+ |nεk
i |0‖J εk

ix ‖
)

≤Cε2k

2∑
i=1

∥∥∥∥
(√

nεk
i

)
xx

∥∥∥∥‖(J εk
i ,J εk

ix )(t)‖≤Cε2k. (4.46e)

Substituting Equation (4.46) into Equation (4.45), we get

d

dt

2∑
i=1

1

2
‖J εk

i (t)‖2+
2∑

i=1

‖J εk
i (t)‖2≤C

( 2∑
i=1

‖(N εk
i ,J εk

i )(t)‖21+ε2k

)
. (4.47)

Step II. From

2∑
i=1

∫ 1

0

(4.41)N εk
it dx, (4.48)

repeated application of Equations (4.42) and (4.43) together with the above standard
argument gives

d

dt

∫ 1

0

1

2

2∑
i=1

[
(N εk

it )2+S0
i (N εk

ix )2
]
dx+

2∑
i=1

‖N εk
it (t)‖2=B(t), (4.49a)

where

B(t) :=
2∑

i=1

∫ 1

0

2
{[

jεki (nεk
i )−1−j0i (n

0
i )
−1
]
jεkix

}
x
N εk

it dx

−
2∑

i=1

∫ 1

0

[
j0i (n

0
i )
−1
]
x
(N εk

it )2 dx−
2∑

i=1

∫ 1

0

1

2

[
(j0i )

2(n0
i )
−2
]
t
(N εk

ix )2 dx

−
2∑

i=1

∫ 1

0

{[
(jεki )2(nεk

i )−2−(j0i )
2(n0

i )
−2
]
nεk
ix

}
x
N εk

it dx

+

2∑
i=1

∫ 1

0

(−1)i(N εk
i φεk

x +n0
iΦ

εk
x

)
x
N εk

it dx

+ε2k

2∑
i=1

∫ 1

0

nεk
i

[(√
nεk
i

)
xx

/√
nεk
i

]
x

N εk
ixt dx (4.49b)

≤C
( 2∑

i=1

‖(N εk
i ,J εk

i )(t)‖21+εk

)
. (4.49c)

Substituting Equation (4.49c) into Equation (4.49a), we have

d

dt

∫ 1

0

1

2

2∑
i=1

[
(N εk

it )2+S0
i (N εk

ix )2
]
dx+

2∑
i=1

‖N εk
it (t)‖2≤C

( 2∑
i=1

‖(N εk
i ,J εk

i )(t)‖21+εk

)
.

(4.50)
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Step III. From

(4.47)+(4.50), (4.51)

we have

d

dt
Eεk(t)+

2∑
i=1

‖J εk
i (t)‖21︸ ︷︷ ︸

≥0

≤C
( 2∑

i=1

‖(N εk
i ,J εk

i )(t)‖21+εk

)
, (4.52a)

where

Eεk(t) :=

∫ 1

0

1

2

2∑
i=1

[
(J εk

i )2+(J εk
ix )2+S0

i (N εk
ix )2

]
dx. (4.52b)

Here we have used Equation (4.39a) and 0<εk<1. By Equation (4.42a) and Equation
(3.58), we can easily check the equivalence

C9l

2∑
i=1

‖(N εk
i ,J εk

i )(t)‖21≤Eεk(t)≤C9r

2∑
i=1

‖(N εk
i ,J εk

i )(t)‖21, ∀t∈ [0,+∞). (4.53)

Combining Equation (4.52a) with Equation (4.53), we obtain the ordinary differential
inequality

d

dt
Eεk(t)≤C10E

εk(t)+Cεk, ∀t∈ [0,+∞). (4.54)

Applying Gronwall’s inequality to Equation (4.54) and noting that Eεk(0)=0, we get

Eεk(t)≤CeC10tεk, ∀t∈ [0,+∞). (4.55)

Substituting Equation (4.53) into Equation (4.55), we have

2∑
i=1

‖(N εk
i ,J εk

i )(t)‖1≤CeC10t/2ε
1/2
k , ∀t∈ [0,+∞). (4.56)

Let γ3 :=C10/2>0, by using the elliptic estimate ‖Φεk(t)‖3≤
∑2

i=1‖N εk
i (t)‖1 together

with Equation (4.56), we see that Equation (1.19) is true.
Finally, we show the convergence estimate (1.20). For this purpose, fix 0<εk<1,

define

Tk=T (εk) :=− lnεk
4γ3

>0, (4.57)

Substituting (4.57) into (4.56), we get

2∑
i=1

‖(N εk
i ,J εk

i )(t)‖1≤Ceγ3tε
1/2
k ≤Ceγ3Tkε

1/2
k =Cε

1/4
k , ∀t∈ [0,Tk]. (4.58)

For ∀t≥Tk, using the estimates (1.14), (1.16), and (1.17a), we obtain

2∑
i=1

‖(N εk
i ,J εk

i )(t)‖1≤
2∑

i=1

(
‖(nεk

i − ñεk
i ,jεki − j̃εki )(t)‖1
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+‖(ñεk
i − ñ0

i , j̃
εk
i − j̃0i )(t)‖1+‖(n0

i − ñ0
i ,j

0
i − j̃0i )(t)‖1

)
≤Cδ4e

−γ2t+Cεk+Cδ2e
−γ1t

≤C(e−γ1Tk +e−γ2Tk +εk
)

=C
(
ε
γ1/(4γ3)
k +ε

γ2/(4γ3)
k +εk

)
≤Cεγ4

k , (4.59)

where

γ4 :=min

{
γ1
4γ3

,
γ2
4γ3

,
1

4

}
>0. (4.60)

Since γ4≤1/4 and 0<εk<1, combining Equation (4.58) with Equation (4.59), we hence
have

2∑
i=1

‖(N εk
i ,J εk

i )(t)‖1+‖Φεk(t)‖3≤Cεγ4

k , ∀t∈ [0,+∞). (4.61)

Here we have used the elliptic estimate ‖Φεk(t)‖3≤
∑2

i=1‖N εk
i (t)‖1 again. Note that the

right-hand side of Equation (4.61) is independent of time t∈ [0,+∞), this immediately
implies Equation (1.20).
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