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ASYMPTOTIC STABILITY AND SEMI-CLASSICAL LIMIT FOR
BIPOLAR QUANTUM HYDRODYNAMIC MODEL*

HAIFENG HU, MING MEIf, AND KAIJUN ZHANGS

Abstract. In this paper, the initial-boundary value problem of a 1-D bipolar quantum semicon-
ductor hydrodynamic model is investigated under a non-linear boundary condition which means the
quantum effect vanishes on the boundary. First of all, the existence and uniqueness of the correspond-
ing stationary solution are established. Then the exponentially asymptotic stability of the stationary
solution and the semi-classical limits are further studied. The adopted approach is the elementary
energy method but with some new developments.
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1. Introduction
We consider the following bipolar isothermal quantum hydrodynamic (QHD for
abbreviation) model for semiconductors

Nt + Jiz =0,
Jie+ (§2n; +Kini)  —e°n; [(\/n»z)u /i) .= (=1)"'n;py — ji, (1.1)
Gpz=n1—no—D(x), =12, V(t,z)€(0,400)xQ,

where Q:=(0,1) is a bounded interval occupied by the semiconductor device, and the
quantum effects contribute to the dispersion terms based on the Bohm potential. The
unknown functions n;(t,z) and j;(¢,2) stand for the charge density, current distribution
for electrons (i=1) and holes (i=2), respectively, and ¢ is the electrostatic potential.
P;(n;) = K;n; (i=1,2) are the pressure functions corresponding to n;. The positive con-
stants ¢, K1, and Ko are the scaled Planck constant, temperature constant of electrons
and temperature constant of holes, respectively. The given function D(x) means the
nonconstant doping profile, the density of impurities in semiconductor devices.

The system (1.1) is derived from the bipolar quantum Boltzmann equations through
the momentum method developed in [3,4,18]. Mathematically, in the sense of quantum
corrections, it takes the form of the compressible fluids coupled with self-consistent Pois-
son equation, which leads to a hyperbolic-elliptic system with higher order dispersion
terms.

In the present paper, we are interested in the initial-boundary value problem (IBVP
for abbreviation) of the system (1.1). The initial data is given by

(n4,74)(0,2) = (n40,Ji0)(x), x€[0,1] (1.2)
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2332 BIPOLAR QUANTUM HYDRODYNAMIC MODEL

and the physically motivated boundary data are prescribed as

n;(t,0) =mn; >0, n;(t,1) =mn; >0, (1.3a)
(V1) 5 (£:0) = (V) 4, (£,1) =0, (1.3b)
¢(t70):0’ ¢(t,1):¢7.>0, (13C)

where n;, n;-., and ¢, are positive constants. The condition (1.3a) is the physical
contact boundary, and the nonlinear boundary condition (1.3b) represents the vanishing
quantum effect on the boundary, which, derived in [4,21], is also physically reasonable.
The boundary (1.3c) stands for the applied bias voltage. For the compatibility, we
further assume

nio(0) =n4, nio(1) =nir, Jiox(0) =Jjiox(1) = (V7i0) 4, (0) = (V/1i0) ., (1) =0.  (1.4)

Through out this paper, the flow is considered as subsonic, namely,

velocity of the flow: = (uy,us) = (3—1,3—2)
ny nNg
< (y/p’l(nl),\/pé(ng)) = (\/Kl,\/IQ) =:sound speed.
This is equivalent to
iggsi [n:,5:] >0, with S;[n;,j;]:= K; —j2n; 2, (1.5a)
inf n; >0, (1.5b)
€N

where condition (1.5a) is called the subsonic condition, and condition (1.5b) refers to
the positivity of the carrier density. Apparently, if we want to construct the solution
in the physical region where the conditions (1.5) hold, then the initial data (1.2) must
satisfy the same conditions

zII€1§2 S; [nio,jio] >0, zllelgnzo >0. (16)

The QHD stationary problem of the IBVP (1.1)—(1.3) reads

Jiz =0, (1.7a)
Si[fi, jilfvia — €% [(ﬁ) M/\/E} = (—1)" by —Ji, (1.7b)
Gpz =11 —Ta—D(x), i=1,2, VreQ, (1.7¢)
with the boundary data
7;(0)=ny >0,  7;(1)=n; >0, (1.8a)
(V&) 0= (@), w=s 1
#(0)=0,  ¢(1)=¢,>0. (1.8¢)

Formally, consider the quantum effect vanishing in Equation (1.1), we could expect
to reduce the IBVP (1.1)—(1.3) to the following IBVP of the bipolar HD model

gy + gy =0, (1.9a)
. .0\ 2 —1 i .

Jht | G9)7 () T+ Kim? | = (=) et 57, (1.9b)
0. =n{—nd—D(x), i=1,2, Y(t,z)€(0,4+00)xQ, (1.9¢)

rxr
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with the initial and boundary data

and
nd(t,0)=ny>0,  nd(t,1)=n; >0, (1.11a)
¢°(t,0)=0,  ¢°(t,1)=¢, >0. (1.11b)

The corresponding stationary problem of the bipolar HD model reads

Jts =0, (1.12a)
Sl 391G, = (1) 'Rl 60 — 57, (1.12b)
0, =m0 —AY—D(z), i=12, YreQ, (1.12¢)

with the same boundary conditions (1.11).

Over the past two decades, the research on the hydrodynamic model for semicon-
ductors makes an attractive progress. One of the hot spots is to study the device filled
within quantum material, because the quantum function makes the semiconductor de-
vice working more effective but makes the device more expensive. For the unipolar
hydrodynamic system of semiconductor devices with quantum effect (called, unipolar
QHD), the relevant studies are prolific and intensive. Among them, Jingel [11] first
considered a unipolar stationary QHD model for potential flows in multi-dimensional
bounded domain. The existence of solutions was proved under the assumption that the
electric energy was small compared to the thermal energy, where Dirichlet boundary
conditions were addressed. This result was then generalized and developed by Gyi and
Jingel [5], Hao, Jia, and Li [6], and Jiingel and Li [12]. Furthermore, the convergence of
the original time-dependent QHD solutions to their corresponding stationary solutions
(we also call them as stationary waves) were intensively studied by Jiingel and Li [13],
and Huang, Li, and Matsumura [8], respectively. The semi-classic limits of QHD model
to HD model was technically showed by Nishibata and Suzuki in [20], and the relaxation
time limit of both stationary and transient unipolar QHD model over the whole space
R3 was further derived by Jiingel, Li, and Matsumura [14].

Regarding the unipolar QHD model for irrotational fluid in spatial periodic domain,
the global existence of the nD solutions and the exponential convergence to their equi-
libria were artfully proved by Li and Marcati in [15]. Remarkably, the weak solutions
with large initial data for the quantum hydrodynamic system in multiple dimensions
were further obtained by Antonelli and Marcati in [1,2]. For the bipolar case of QHD
models, the studies are very limited and challenging due to much more complexity of
the systems themselves. The first frame work on the existence and semi-classical limit of
the isothermal solutions of the bipolar stationary QHD model in the multi-dimensional
bounded domain was given by Unterreiter [22] by the variational approach.

Later, Liang and Zhang [16] generalized the result in [11] to the bipolar case and
also obtained the relaxation time limit and dispersive limit on the bipolar and unipolar
equations respectively. G. Zhang and K. Zhang [23] established the existence of a
unique thermal equilibrium solution of the bipolar multidimensional QHD model over
the whole space and obtained the relevant semi-classical limit and a combined Planck—
Debye length limit. Furthermore, Li, G. Zhang, and K. Zhang [17] investigated the
large-time behavior of solutions to the initial value problem of the QHD model in R3
and obtained the algebraic time-decay rate, and further showed in [24] the global in time
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semi-classical and relaxation limits of the same problem. For other interesting research,
we refer to [3,4] and in particular, the survey paper [7].

The main goal of the present paper is to investigate the asymptotic behavior of the
bipolar QHD model (1.1) with the physical initial-boundary conditions (1.2) and (1.3).
We first prove the existence and uniqueness of both the time-dependent QHD solutions
(ni,4i,d)(t, ) of the system (1.1)-(1.3) and the stationary QHD solutions (7;,;,)(x)
of (1.7)—(1.8). Then we prove the time-asymptotic convergence of the time-dependent
QHD solutions (n;,j;,¢)(t,z) of the system (1.1)—(1.3) to their corresponding stationary
QHD solutions (7;,;,¢)(z) of the system (1.7)-(1.8) as t— co. Furthermore, we prove
the semi-classical limit of the time-dependent QHD solutions (n$,jf,¢)(t,z) of the
sysetm (1.1)—(1.3) to the corresponding time-dependent HD solutions (nY,;j?,¢%)(t,z)
of the system (1.9)—(1.11) as £ —0, namely, the vanishing effect of quantum in the
device. The idea of the proof is inspired by [20] for the unipolar QHD case, but with
some new techniques and developments. Now we outline it as follows, particularly, the
technical points.

First, the existence of the stationary waves for the QHD model (see Theorem 1.1
below) can be proved using a new approach developed in our previous work [9], which is
based on the regular perturbation, linearization, and Banach fixed point argument. The
quantum effect makes us to have to handle a strongly elliptic system with a singular
parameter €. The main difficulty is that we must refine the elliptic estimate which is
essentially important for the long time behavior and the semi-classical limit analysis.
However, we have to fix the boundary information of the nonconstant doping profile in
order to obtain the desired sharp elliptic estimate. Secondly, a standard argument (the
same to unipolar problem [13,20]) gives the local existence of our bipolar problem. In
order to obtain the global existence and the exponential decay rate, we must establish the
uniform a priori estimate. However, the quantum effect and the bipolar coupled effect
make this task more difficult. Through a detailed analysis, we find that the quantum
effect not only boosts the regularity of the estimate but also makes the bipolar effect
terms more complex.

Fortunately, we also find that all the bipolar effect terms can be decomposed into a
well-controlled structure: nonnegative terms plus cubic nonlinearity. These observations
together with the Poincaré inequality then help us to get the desired decay estimate.
Finally, comparing with the unipolar problem [20], we choose some new multipliers and
weights to overcome the influence of the bipolar effect during establishing the semi-
classical limit of the stationary solution.

Before stating our main results, we firstly list the notations and settings used in
this paper,

e B(Q): The space of I-times bounded differentiable functions on Q with the
norm |- | ::Zin:() sup, . |05 -| (integer [>0). The stationary solution will be
found in this class of function spaces.

e H'(Q): The usual L2-Sobolev space over  of integer order [ with the norm
Il (1>0). In particular, |- o=

e C!([0,T); H™(Q)): The space of I-times continuously differentiable functions on
time interval [0,7] with values in H™ (). The non-stationary solution will be
constructed in this class of function spaces.

The solution spaces used in QHD problem:
- [m/2]
%,(0,7]):= () C*(0.THT™2%(Q)), X=X
k=0
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2([0,T1) :=C*([0,T]; H*(2)),

and in HD problem:

xlm([ovT]): ﬁck([OvT];Hl+mik(Q))a xm::}:gn'
k=0

e Assume the doping function to be D e H := {D €H*(Q) | D(0)=d, D(1) :J},
where d:=nq;, —ny and d:=nq, —no,..

e The strength parameter of the given data is defined as

2
5::Z|nil*nir|+‘¢r|+ ”D*JHQ»

i=1
and the assumption d < 1 will play an important role in what follows.

e (' denotes the generic positive constant and N, v, Ck, Cii, and Cy, (k=1,2,...)
stand for the specific positive constants. It is worth mentioning that all these
constants only depend on the state constants ny;, ny;, K1, and Ko throughout
the paper. This fact allows us to establish the semi-classical limits.

In addition, we also need to introduce the existence, uniqueness and long-time stability
of the stationary solution to the corresponding bipolar HD model, which were proved
in the previous work [9,19]. Seeing that they will be used in the present paper, it is
better for us to review them briefly.

We first state the known results on the existence of both the time-dependent HD
solutions (1.9)—(1.11) and the stationary HD solutions (1.12) and (1.11).

LEMMA 1.1 (see [9,19]). Assume that DEH, for arbitrary constants n;, K; >0,
there exist two constants d1,C >0 such that if 6 <&y, then there is a unique solution
(ﬁ?j?,ﬁg,jg,(ﬁo) S [82(5)]5 of the stationary problem (1.12) satisfying the condition
(1.5) and the estimates

1 _
O<inil§ﬁ?(x)§4nil, VeeQ, i=1,2, (1.13a)
2 ~
> (199 =nal2 +1301) +16%2 < Co. (1.13)
=1

LEMMA 1.2 (see [9,19]). Suppose that D €M, the initial data nio,j:0 € H*(R) sat-
isfy the condition (1.6) and are compatible with the boundary data (1.11). For ar-
bitrary constants n;, K; >0, there exist three constants ds,71,C >0 such that if 6+
2?21 [ (nio — 7, jio — 39) |2 < 62, then there is a unique global solution (n9,j?,n3,59,¢°) €
[(X2)* x Q] ([0,+00)) of the IBVP (1.9)~(1.11) satisfying the condition (1.5), the addi-
tional reqularity ¢° — ¢° €X%([0,4+00)), and the decay estimate

2
Do lnd =72, =3 Ol +1(6° —6%) (8)la
i=1

2
<O l(nio =i jio—=37)ll2 e, Vte[0,400). (1.14)
i=1



2336 BIPOLAR QUANTUM HYDRODYNAMIC MODEL

Now we can state the main results in the present paper as follows.

THEOREM 1.1 (Existence and uniqueness of stationary wave).  Assume that D € H,
for arbitrary constants ny, K; >0, there exist two constants d3,C >0 such that if 6 <d3,
then for all 0 <e <1 there is a unique solution (ﬁi,jf,ﬁg,jg,@e) € [(13’4) X 83}( ) of the
BVP (1.7)—(1.8) satisfying the condition (1.5) and the estimates

1 _
O<Znil§ﬁf(aﬁ)§4nil, Ve, i=1,2, (1.15a)
2 ~
> (cBloas 1 +eloias |+ 35 = malla +1f ) +116°s <€ (1.15b)
i=1
THEOREM 1.2 (Stability of stationary wave). Suppose that D eH, the initial

data (nio,ji0) € (H*x H®)(Q) satisfy the condition (1.6) and the compatible condi-
tion (1.4) with boundary data (1.3). For arbitrary constants n;,K; >0, there exist
three constants 64,72,C >0 such that if 3+, (1m0 — 735, jio — 35 ) ||2 + || (€02 (rio —
71),e03 (jio — j£),€20%(nio —15))||) < b4, then for all 0<e<1 there is a unique global
solution (nf,j5,n5,j5,0%) € [(.’{4><.’£3) x 2] ([0,+00)) of the IBVP (1.1)~(1.3) satisfy-
ing the condition (1.5), the additional regularity ¢° —¢° € X3([0,400)) and the decay
estimate

>~ (lws =535 = 3Ol

i=1

(020 — 25,0275 — 75),2202 (05 = D)D) + (67 = 6)(B)a
2
<Ce Y (1 nio = fio — 35) o

+11(202 (nio — 75),202 (Gio — 5 ), €20 (nio *ﬁf))H)v (1.16)

for te[0,400).

THEOREM 1.3 (Semi-classical limit of QHD stationary wave to HD stationary wave).
Under the conditions of Lemma 1.1 and Theorem 1. 1 let (R%,55)(x) be the stationary
solution of the QHD model (1.7) and (1.8), and (n Z,jz 9 (z) be the stationary solution
for the HD model (1.12) and (1.11), then for arbitrary constants n;, K; >0, there exist
two constants d5,C >0 such that if 0 <05, such that, for all 0<e<1, the following
convergence estimates hold:

2
> (115 =l +135 = 701) +116° — 8°lls < Ce, (1.17a)

i=1

and there exists a subsequence {ey, >0} of e >0 such that the following semi-classic limits
hold:

2
>~ (1020 =)+ erlliis™ | +202a5 1) + 192 (3 = 6°)| 0, as e 0.
=1

(1.17b)
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THEOREM 1.4 (Semi-classical limit of QHD to HD for time-dependent solutions).
Under the conditions of Lemma 1.2 and Theorem 1.2, let (ng,jS)(t,x) be the time-
dependent solution of the QHD model (1.1) and (1.3), and (n,j9)(t,z) be the time-
dependent solution for the HD model (1.9) and (1.11), then for arbitrary constants
n;1, K; >0, there exist four constants d¢,v3,74,C >0 such that if

2
ek +0+ 3 (i =5 Gio—77*) 2
i=1
11 (203 (ni0 — 75,802 (jao — J£*), 20 (mig — 7)) )
<6, (1.18)

then the following convergence estimates hold
2
Dl —nf g5 =)@l + (6™ =) (B) s < Ce'e/?, e [0, +00),  (1.19)
i=1

and

2

sup (D lm5t =, et =il + (6~ 6") )l ) < Ce, (1.20)
te[0,4+00) i—1

where e, — 07 is the subsequence given in Theorem 1.8 and 0 <y, <1/4.

The paper is organized as follows. In Section 2, we prove the existence and unique-
ness of a stationary solution. Subsection 3.1 devotes to the reformulation of the original
evolution problem and the local existence theorem. In Subsections 3.2-3.4, we show
the asymptotic stability of the stationary solution. In Section 4, we establish the semi-
classical limits for the stationary solution and the global solution in Subsection 4.1 and
Subsection 4.2, respectively.

2. Existence and uniqueness of a stationary solution

In this section, we prove the existence and uniqueness of a stationary solution of
the BVP (1.7)—(1.8) (i.e. Theorem 1.1). For simplicity, the solution (ﬁf,jf,ﬁ;,jg,qgg)
will be denoted by the notations (ﬁ1751,ﬁ2,52,g§) in what follows.

Based on the idea of rationalization, it is convenient to introduce the new variables

W=, i=1,2. (2.1)
Then the conditions (1.5) transform to

inf S;[w?,7; inf w; 2.2
;IGIQSZ[UJZ ,Ji] >0, ;29w1>0, (2.2)

and the above BVP (1.7)-(1.8) can be written as

Jiz =0, (2.3a)
28, (02, i) Wi — €207 (Wi /0:) , = (1) " 02 hy — Ji, (2.3b)
Gpe =W —w2—D(z), i=1,2, Vre, (2.3¢)

with the boundary data

@i(O):wﬂzz v/ni >0, u?,»(l):ww:: N >0, (24&)
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#(0)=0,  $(1)=¢,>0. (2.4¢)

In order to treat the third-order dispersion terms, we perform the following procedure

/O " (2.30) /@ dy, (2.5)

and by using the boundary conditions (2.4b), we have

wimx ~9 ~ i1, w~,
0 (@)~ Filnn )+ (-1)'6+ 5 [ 07 0) do (2.6a)
% 0
where
b2
Fi(a,b)::ﬁ—i—K}-lna. (2.6b)

Furthermore, let =1 in Equation (2.6a) and by using the boundary conditions (2.4)
again, we obtain an important relationship in semiconductor equations, namely, the
current-voltage characterization,

1

(—1)i_1¢T:Fz~(nir,5i)—Fi(nil,ji)—i—}i/ ’u~);2dl‘, 1=1,2. (27)
0

Based on the conditions (2.2) and the assumption 6 < 1, we can uniquely and explicitly
solve the stationary current densities from Equation (2.7) as follows

-1

2

1 1
Ji = Ji[w?] := 2By, /wﬂdﬂ\/(/ 1Di2dx> +2By (n,;—n3%) | . (2.8a)
0 0

where
Bip:=(—1)"1¢, — K;(Inn —Inny). (2.8b)
It is easy to see that 5120 if and only if Bisz. Multiply Equation (2.6a) by w;, we

can obtain a new boundary value problem

2 Wiga = Wi (Fz(lblzafz)—Fz(nzl,jz)+(—1)l<l~5+3z/ @ZQ(y)dy) (2.9a)
0
Gpe =W —02—D(z), i=1,2, Vre, (2.9b)
with the boundary data

’Lbl(O) =W; >0, ’l])l(l)zww >O, (290)

(/;(O):O’ ¢(1):¢r>07 (2'9d)

where j; =J;[w?] is given by Equation (2.8a). In addition, for the classical solution

satisfying the conditions (2.2), we have the following equivalent relationships

BVP (1.7)—(1.8) <= BVP (2.3)—(2.4) <= BVP (2.9) with (2.8),
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thanks to the current-voltage characterization (2.7).
In the rest of this section, we focus on the BVP (2.9) and summarize the existence
theorem in the following lemma.

LEMMA 2.1. Assume that D eH, for arbitrary constants n;,K; >0, there exist
two constants d3,C' >0 such that if 6 <3, then for all € >0 there is a unique solu-
tion (11)1,51,1])2,32,(;3) € [(BY)* x B () of the BVP (2.9) satisfying the condition (2.2)
and the estimates

1 _
O<§wil§u~1i(w)§2wil, VreQ, i=1,2, (2.10a)

(221081 +2)023 | + 105 — wall2 +13:) +1Blls <Co. (2.10b)
i=1

Proof.

Step 1. Reformulation of the problem. Our proof starts with the observation that
there is a unique constant subsonic solution (wu,O,wgl,0,0) of the BVP (2.9) provided
0=0. Therefore, we can naturally regard the subsonic solution of the BVP (2.9) with
6 >0 as a perturbation around the above constant state (wll,O,wgl,0,0), because we
have assumed that the doping profile D is a perturbation of the constant d.

In order to implement the above idea of the regular perturbation, we introduce the
perturbation variables

W () := 1 (2) — wy, 3= —0=1Jji,

¢’ (2):= () —0=(x). (2.11)
Substituting Equation (2.11) into the BVP (2.9) and linearizing the resultant equations

around the above constant state. In matrix notation, we obtain the equivalent boundary
value problem

{ —(AU),+BU=F{U)+G(z), z€Q, (2.12a)
Ulpo=H (), (2.12D)

satisfied by the perturbations, where the vector-valued unknown is

s -5 7L
U= (af,a8.6) (2.13)
the coefficient matrices are
62 0 0 2K1 0 —wqy
A.:=(0€2 0 |, B:=| 0 2K, wy |, (2.14)
00 1/2 wy; —Wp 0

the quadratic nonlinearity and the well-estimated nonlocal terms are
T
F(U)i= (£(U). £20).£5(0)) (2.15)
)= (322t~ /) + 3 [ )y
0

9K, (lnu?i —Inwj — u}f/wﬂ) 2K (@002 Jwi + (—1) @l p,  (2.16a)
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Fs(U) == (1) 2+ (@5)* /2, (2.16b)
where j; = J;[(0¢ +w;;)?]. The inhomogeneous term
_\T
G(z):= (0,0,(D(:p) —d)/z) : (2.17)

and the H*(£2)-extension of the boundary data

H(x) = (hl(m),hg(x),hg(x)>T, (2.18a)
hi(@) = (wir —wa)z,  hy(z):=pya. (2.18b)

For all € >0, we note that
Ac :==min{e*,1/2} > 0. (2.19)

It means that the linear differential operator L.U:=—(A.U,),+ BU is a parameter-
dependent strongly elliptic operator of second order.

Step II. The sharp elliptic estimate. Because we discuss both the existence of the
stationary solution and its semi-classical limit, we have to sharpen the elliptic estimate
of the strong solution to the linear Dirichlet problem

{ —(AU)e +BU=M(x), z€Q, (2.20a)
Uloa=H(z). (2.20b)

The proof strongly depends on the assumption that the inhomogeneous term must
satisfy

MeM:= {M €H*(Q) | M(0)=BH(0)=0, M(1)= BH(1)}. (2.21)
It follows from Equation (2.21) immediately that the strong solution (if it exists) satisfies
UcHYQ), Uuu(0)=U,.(1)=0. (2.22)

In fact, according to the Fredholm alternative (uniqueness implies existence) and
the L2-regularity theory of the Dirichlet problem of the linear strongly elliptic system,
we can conclude that the above strong solution U to the linear problem (2.20) indeed
uniquely exists. To this end, we need only consider the corresponding homogeneous
problem

{ —(A:Uy), +BU =0, z€f, (2.23a)
Ulga=0. (2.23b)

Applying fol (2.23a)-U dx and integrating by parts yields U(x)=0.
Assume that the condition

MeM, HeH*Q), and 0FH=0, k=2,34, (2.24)

holds, we will establish the desired elliptic estimate step by step. For simplicity of
notations, we write

T
U:= (u(l),u(z),u(g)) , (2.25a)
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T
Un=U~H=(uf uf uiy) (2.25b)

in the present step only. First, substituting Uy into the linear BVP (2.20), we have

—A:(Un)zz+BUg=M(x)—BH(z), z€Q, (2.26a)
Un(0)=Un(1)=0, (2.26b)

Here we have adopted the assumption (2.24) and utilized Equation (2.22). Secondly,
performing the following procedure

9 1 1/2
(Z / 8;(2.26a)-aiUde> , (2.27)
1=0"0

we can obtain the estimate

2

7 7 3
>~ (clou I+ [ la) + 1 s < C (Il + |1H1 ), ve>o0, (2.28)
i=1

by using the integration by parts and Yong’s inequality, where the generic positive
constant C' is independent of the parameter . Thirdly, we solve the quantity A.0:Uy
from the system 92(2.26a) and obtain

A0tUg =Bo2Uy — 0> M (x). (2.29)

Taking the L2-norm on the both sides of Equation (2.29) directly, we have
2 .
Sootulfl+Iotuf | <O (1Ml +1H] ), Ve>o0, (2.30)
i—1

again, the generic positive constant C' is independent of the parameter . Finally,
we summarize the above unique solvability result and the estimates (2.28) and (2.30)
together and can obtain the following important fact:

(Sharp elliptic estimate.) If the assumption (2.24) holds, then there is a unique
strong solution U = (u(l),u(Q),u(3))TeH4(Q) of the linear BVP (2.20) satisfying the
sharp elliptic estimate

2

> (102D + e O2u@ )+ [u@2) + [u® < C (Ml +1H]L ), Ve>0, (2:31)
i=1
where the generic positive constant C' is independent of the parameter €.

Step 1. Banach fized point argument. On account of the above fact (2.31) in step
IT and the observation of the nonlinearity (2.16), we introduce a metric space

UIN] = {U € H2(Q) | U2 <Nb, Ulon=H} (2.32)
equipped with the metric associated with the norm || -||2. Here the positive constant N

will be determined later. In fact, it follows from the trace theorem that U[N] is a closed
subspace of H?(2) for any N >0 and § >0. Thus U[N] is a complete metric space.
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Next, for all V= (17?,17‘257<,27)T € U[N], let k; :=J;[(0 +w;;)?], we have F(V)e H?(Q)
by Equations (2.15) and (2.16). Moreover, let M :=F(V)+G, one can easily see that
M e M if DeH. Then we can define a solution operator S:U[N]— H*(Q), VU =:
SV by solving the linear BVP (2.20).

Now we tend to determine the positive constant N to ensure that the operator S
is a contraction mapping on U[N] if § < 1. To this end, we separately show that S is
onto and contractive below.

S is onto. Apparently, the boundary data (2.18a) and M =F(V)+G, YV € U[N]
satisfy the assumption (2.24), then we get the elliptic estimate by using Equation (2.31)
directly

ISVlle=Ull2 < C (I F(V) +Gllo+|1H]1)

<C(IFW)lla+ |Gl +1H] )
0(1)8

SC(||F(V)||2+5). (2.33)

Next, we need to estimate ||F(V)]||2. Before doing so, we have to estimate k; := J;[(9 +
w;1)?]. By using Equation (2.8a) and the a priori assumption N§ <1, we have

k| <C6, VeU[N]. (2.34)

Because of the estimate (2.34), we can easily control the nonlocal terms in F(V'). On
the other hand, the quadratic nonlinear terms in F(V') can also be estimated as well by
Sobolev embedding theorem. Through the same methods in [9], we get the estimate

PVl <C((N2+N)a+1)s. (2.35)

Substituting Equation (2.35) into Equation (2.33), we have

18V |2 < (01 (N2+N)5+02)5. (2.36)
Define
N:=2C5>0. (2.37)
If
§<Cs/(4C1C5 +2C1Cs), (2.38)
then
1SV |2 <2C56 = N&. (2.39)

S is contractive. For VVi,V2€U[N], we need to estimate the difference U:=
SVi —SV,. To this end, we define M :=F (V) — F(V4), by the definition of the solution
operator S, we know that the difference U satisfies the following BVP

{ —(AU,),+BU=M, zcQ, (2.40a)
Uloa =0. (2.40D)
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Therefore, applying the sharp elliptic estimate (2.31) to the difference U= SV; —SVs,
we have

|SVi—SVala <C||F (Vi) — F(Va)]f2. (2.41)

Our next goal is to estimate ||F(V1)— F(V2)|l2. In fact, form the mean value theorem,
Equation (2.8a), and the a priori assumption N < 1, we get

|]~fi1_]~9i2|§05||77?1_77i2||SC(SHVI_VZHa i=1,2. (2.42)
Based on Equation (2.42), by using the same method in [9], we have
(V1) = F(Va)ll2 < C6[[Vi = V2 2. (2.43)

Here N has been defined in Equation (2.37). Substituting Equation (2.43) into Equation
(2.41), we obtain

||SV1_SVQHQSC:g(s”Vl_VQ”Q, VW,VQGU[N] (244)
If
§<1/(2C3) >0, (2.45)

then S is contractive.

Note that we have actually proved that there are positive constants d3 and /N such
that if § <d3, then S:U[N]—U[N] is a contraction mapping. According to the Banach
fixed point theorem, we get a unique fixed point U = (@}, @3, ~)T € U[N]NH*(Q) of the
solution operator S. It is obvious that this fixed point U is our desired solution of the
perturbation problem (2.12). Moreover, it also satisfies the sharp elliptic estimate

>~ (cBlokat | +elloal |+ 1all:) + 18l < N6, e >0, (2.46)

i=1

which follows from Equations (2.31) and (2.33)—(2.39). Analysis similar to that in
Equation (2.34) shows that j; = J;[(0? +w;y)?] satisfies the estimate |j;| <C§. Hence
the inequality (2.10b) is proved. On the other hand, the inequality (2.10a) follows from
Equation (2.46) and Sobolev’s embedding theorem.

Step IV. More regularity. We conclude from Equations (2.17) and (2.16a), the
first two equations of the elliptic system (2.12a) and Sobolev embedding theorem that
f:(U) € H*(Q), hence that the above strong solution has the additional regularity U =
(mf,wg,é)T € (H® x H5x H*) (), and finally that U € (B® x B® x %) (Q) which implies
the desired regularity in Lemma 2.1. This completes the proof. ]

REMARK 2.1. Once Lemma 2.1 is proven, Theorem 1.1 immediately follows by using
the transformation 71; =w?. From the proof, we can also see that we have to fix the

boundary information of the doping profile D(z) in order to obtain the sharper elliptic
estimate independent of the parameter €.

3. Asymptotic stability of the stationary solution
To simplify notations, we let (n1,71,n2,72,¢) stand for the solution (nf,jf,ni,jé,qﬁa)
of the IBVP (1.1)-(1.3) in this section.
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3.1. Reformulation and local existence. To consider the IBVP (1.1)-(1.3),
it is convenient to rewrite the problem in terms of (wy,j1,ws,j2,¢), where

wi= /i, i=1,2. (3.1)
Then the conditions (1.5) become
jrelg Silws,7:] >0, ;relgwl >0, (3.2)
and the IBVP (1.1)—(1.3) can be written as

2wiwig + Jiz =0, (3.3a)
it +28i[w?, il wiwiy +2jiw;2jm —e?w? (Wiga /wi), = (=1 'wip, —ji, (3.3b)
bpe =wi —wi—D(z), i=1,2, Y(t,z)€(0,4+00)xQ, (3.3¢)

with the initial data

(wi, i) (0,2) = (wio, Jio) () := (v/Mio, Jio) (%), (3.4)

and the boundary data
w; (t,0) =w; >0, w (¢, 1) wiy >0, (3.5a)
¢(t70):07 (b(t?l :¢T 0 (350)

The compatibility (1.4) between the initial data and boundary data transforms to
wio(0) =wi, wio(1) =wir, Jioz(0) = Jioz(1) =wiozz(0) =wiozz(1) =0. (3.6)

Let the stationary solution (12)1,31,1212,32,&) (z) be given by Lemma 2.1. It satisfies
the BVP (2.3)-(2.4). We denote the perturbation by

dilt,x)=wi(t,x)—wi(x),  milt,@):=ji(t,x) =i,
a(t,x) = @(t,x) — P(x). (3.7)
From
(3.3a) ——(2.3a), (3.3b)/w}—(2.3b)/®7, (3.3c)——(2.3¢), (3.8a)
(3.5) — —(2.4), (3.8b)

we thus deduce that

2(¢i+wi)¢it + iz =0, (3.9a)

[(ni+5i)/(wi+@i)2}t+;{ [(7714-51)/(1/}14-@1)2} = (51/11)12)2}
I (VD) ~ | =< (i), /(D) — i D]

(= Doy + (mi+ i) (i +@3)° = s 5?2 =0, (3.9b)
Oua = (114201 )1 — (Yo + 22 ) tha, i=1,2, (3.9¢)

€T




ILF. HU, M. MEI, AND K.J. ZHANG 2345

with the initial data

(%i,0:)(0,2) = (Yi0,mi0) (x) := (wio — Wi, jio — Ji) (), (3.10)
and the boundary data
¢i(t,0) Zwi(t, 1) = 0, wiww@,()) = ’lﬂmaj(t, 1) :O, O'(t,O) = O'(t, 1) =0. (3.11)

The task is now to find the local-in-time solution of the IBVP (3.9)—(3.11) in the
subsonic region. In fact, the local existence result of unipolar problem has been proved
by the iteration method and compactness argument in [20] for nonlinear boundary
condition (and in [13] for linear boundary condition). The methods employed in [13,20]
can be applied to our bipolar problem directly. The proof is straightforward, and we
have

LEMMA 3.1 (Local existence). Suppose that the initial data (io,mi0) € (H* x
H3)(Q) and (1io+w;,mi0+7:) satisfy the conditions (3.2) and (3.6). Then there ex-
ists a finite time Ty >0 such that the IBVP (3.9)—~(3.11) has a unique local solution
(1,m1,02,m2,0) € [(X4 x X3)? x X3]([0,T%]) and (v; +1@i,mi+ ;) also satisfy the condi-
tion (3.2).

Owing to Lemma 3.1, it suffices to use the standard continuation argument together
with an uniform a priori estimate in order to show the existence of the global solution.
For this purpose, it is convenient to use notations

2
ne(®):= 3 (I @em) Ol + | (cOwnc0in.2obe) @), Veelo.T)  (3.120)
) N.(T):= sup nc(t). (3.12b)
t€[0,T]

We conclude from Sobolev’s embedding theorem and Equation (3.12) that for all 0<
e <1 we have

Z(‘(wlvnl)(t)h+‘(szwzvgnzzw752ang)<t)|0) SONS(T), YVt e [O,T] (313)

i=1
What left now is to establish the uniform a priori estimate as follows
LEMMA 3.2 (Uniform a priori estimate). Let (1,m1,%2,m2,0) € [(1%4 x X3)? x
X2]([0,T)) be a local solution on a finite time interval [0,T] of the IBVP (3.9)~(3.11).

For arbitrary constants n;;, K; >0, there exist three constants 64,72,C >0 such that if
N (T)+06 <6y, then for all 0<e <1 it holds that

ne(t) <Cno(0)e 2t te€[0,T). (3.14)

REMARK 3.1. Once Lemma 3.2 is proven, Theorem 1.2 immediately holds true by
using the transformations n; =w? and n; =w?.

Actually, we can prove Lemma 3.2 via a series of estimates in Subsection 3.2, Sub-
section 3.3 and Subsection 3.4. However, we also need the auxiliary estimate of the
stationary solution

<|U~h — w1+ |(€@im,525’§@i)\o) <(C§, VO0<e<l, (3.15)
i=1

which follows from Sobolev embedding theorem and Equation (2.10).



2346 BIPOLAR QUANTUM HYDRODYNAMIC MODEL

3.2. Basic estimate. In this subsection, we derive the basic energy estimate.
To this end, we employ an energy form & defined by

£(t,z):=3(03) +Z< mjw; Vs (w] )+€2(1/Jix)2), (3.16)
where
i (w}, &7) = K; / * (ng-mna?) de, (3.17)

and we can easily prove that ¥, (w W; ) is equivalent to 17 provided N (T)+d < 1.

LEMMA 3.3.  Under the same hypotheses of Lemma 3.2, we have

jeta0le < (I@vr o) 01+ SN i) 0] ). 1=0.02, (318
o1 < Clom 1) 0], (3.19)
S 1(@iemi) (o SCN(T), te[0,T], 0<e<l. (3.20)

i=1

Proof. A slight change in the proof of Lemma 3.5 in [9] actually shows the estimates

(3.18), (3.19), and (3.20). O
Now the basic estimate is as follows.
LEMMA 3.4 (Basic estimate). Under the same hypotheses of Lemma 3.2, for all
t€]0,T] and 0<e <1, we get
d Et,x d:EJr/ anﬁ)dex/lR dz (3.21a)
dt — 7 1 o 2 9’ .

and there exist the positive constants C,Cy;,C4, such that

/ R2 dx

2
Cu Y1 misetbia) (1) S/O E(t,x)de < Ch-z (i m5,€%i) ()17, (3.21c)

SC(Ne(T)+9) ZII (i) (DI, (3.21b)

provided N.(T)+d < 1.
Proof. From

> (3:9b)m;, (3.22)

we deduce that
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v, 1V, 1V,

2 2
Z ), i +Z Fw; = gRa ) +ZKi<lnwi2_lnwi2)z77i
=1 1=1

2

*252 (wzrxwl_lfwwtﬁ)l_l)ivnz +Z(* Urnv +Z ]’L )771*0
=1 L=
IV4: quantum effect IV5: bipolar effect IV(,-

By Leibniz’s formula and Equation (3.9a), we thus get

2 2
1 -~ 1 _ L
IV, = <§ 5771'2% 2) - E (2777iwi t—jiw; 4) NiMizs
t

i=1 i=1
IV5 keeps intact,

2 2
IV = (Z\I/i(w?,zb?)) + <ZKZ- (mwf—lnuvf)m) 7
i=1 t T

i=1

2 2
IVe= 2771‘2“7@‘_2 - Zji (0 +w;) (i)~ bim.
=1

i=1
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(3.23)

(3.24)
(3.25)

(3.26)

(3.27)

Since we focus on both the quantum effect and the bipolar effect, we give the detailed
computations of Iy and I5 by Leibniz’s formula, Equation (3.9a), and Equation (3.9¢)

as follows:
IV4 1

2 wzzzw‘ wzzzwfl) 777,} z (wzzzw;1 - wzzzwfl) 777,:6}

2
_—262{1V41+ Wiz W, ~1 szww_l) (wf)t}
2
——ZEQ{IV41+ wzmzwz wzxmwz)(wzwz) 1(’[012)15}
2
= _252{1\/4 1 +2¢1Lszt+w1LL(wzwl) 1¢znul}
e

2
== 3 { Va2t~ (054 Vaa

[Zg (Vhiz) } Zs Wi (Diw;) ™ PiNia
_ { 252 [(wimwi_l fﬁ)imﬁ)i_l)ﬂi +2¢m%} }xa
i=1

IV5,1
2 —_—N

V=) (-1 {(Uﬁi)w - Uﬁiw} =- [U(m —772)} ) +0 (M —n22)

i=1

(3.28)
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=IV51—o(wi —w3);=1V51—0044=1V5 1 — [(Uaxt)x - Uaso';vt:|

- a(m—n2>+aawt]x+[;wﬁ]t. (3.20)

Substituting Equations (3.24)—(3.29) into Equation (3.23), we obtain
2
&+ miw;?=Riz+ Ry, (3.30a)
i=1

where

2
Ry:=0(m —n2)+00s — Z {Ki (hl’LU? —hub?) 7;

i=1

—¢? [(wimw;l — Wiy )M +2¢im1/}it] }7 (3.30b)

2
1 _ . _ 1 . _ ~9 o~
Ry := Z l<2mwi 4 jiw; 4) Nilliz — 5 (JFw; = Giw; 4>m77i
+ji(’£bi+wi)(u~)iwi)2wini+52wixr(wiwi)lwin“;|’ (3-30c)

Applying the boundary condtions (2.4), (3.5), and (3.11), we can assert that fol Ry dr=
0. For this reason, integrating Equation (3.30a) over {2 yields Equation (3.21a). Com-
bining the inequalities (2.10), (3.15), (3.13), and the Cauchy—Schwarz inequality with
Equation(3.30c), we obtain the estimate

2
|Ray(t,2)| S C(Ne(T)+6) Y [(thi, 10 mimia) (£,2)[, 0<e <1, (3.31)

i=1

if N.(T)+d< 1. Note that we have actually proved the estimate (3.21b) by integrat-
ing Equation (3.31) over 2. Based on the elliptic estimate (3.18) with =0 and the
equivalent relationship below (3.17), a trivial verification gives the equivalence estimate
(3.21c). 0

3.3. Higher order estimates. This subsection is devoted to the derivation of
the higher order estimates. Before stating the main results to be proved, we indicate
that the computations of the higher order estimates in several steps are formal since the
regularity of the local solution is insufficient. However, we can rigorously justify these
formal computations by using the mollifier with respect to t. Because the argument is
standard, we omit the detailed verification.

In order to use the homogeneous boundary condition (3.11), only the operation 9
is legitimate. Therefore, it is convenient to introduce notations

A% (1) :=Z\\(wi,n¢)(t)||2, (3.32a)

k2
AR (@)= A2 (04D ) (0 bie, 0z, €04 i) (B)]|?,  k=0,1. (3.32b)

1=01i=1
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Next, we derive the working equations which are used to obtain the higher order
estimates. From

faf[c’)m(3.3b)/wi—8m(2.3b)/u7i], i=1,2, k=01, (3.33)
together with Equations (3.3a) and (2.3a), we deduce that
20§ it — 2K;0f Viga + €203 0F V5 + 207 iy
(1) 0F (0 ppw;) +OFFi + Gy, i=1,2, k=0,1, (3.34a)

bipolar effect

where

Fi:=2(niz)?w; = 2(¢ie) 2wt 4+ 2K (wig ) (w; t — ;1)
+6 (i) (Ji + i )w; "0+ 6(wig) 257 (w] — ;)
+e? (Wiga)? (wy " =07 1) 4+ (—1) (Gaa i + 2Win 00 + 2000is)
— 2 (i + Ji Wi M — 2Wiw i (wy  — 0y 1), (3.34b)
and
Gio = 0’ Gil = 2(‘71“‘);3)”7%&0 - 2(122?0;4%%% - 52 (wzmx +u~)1xm)w:2'¢)ztwmm (3340)

To deal with 9FF; and Gj1, we need to use the inequalities (2.10), (3.13), (3.15),
(3.18), (3.19), and the mean value theorem. Through a tedious but straightforward
computation, we get

10F || < C(N=(T) +6)|10F (1,92, %z ie,niy i) | (3.35a)
[|Gi1]| < C(N(T) +0) || (Yiwas Miza) |, 0<e<1. (3.35D)

It is worth mentioning that the quantum effect will make the bipolar effect in the
working Equations (3.34a) more difficult to handle.

Moreover, based on the previous estimates (2.10), (3.13), (3.15), and (3.20) and
Equations (3.9a), (3.9b), and (3.34a)|x—o, the similar proof in unipolar problem [20]
works for our bipolar problem, we thus obtain

O Nigw = =200 iy + Hype, 1=1,2, k=0,1, (3.36a)
where H;g:=—2w;. i, Hi1:=—40i1int — 2Wizpise, (3.36b)
| Hik | < CA(t), (3.36¢)
[mie ()1 <CA1(2), (3.36d)
and
CyA1(t) <n.(t) <Co.A1(t), V0<e<l, (3.37)

provided N (T)+ < 1.
LEMMA 3.5 (Higher order estimates).  Under the same hypotheses of Lemma 3.2, for
all t€[0,T] and 0<e <1, we have

%III’“(t)JrVIIk(t) =XII*(t), k=0,1, (3.38a)
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where T11%(t), VII®(t), and XII*(t) are defined in Equations (3.54b), (3.54c), and
(3.54d), respectively. Moreover, there exists a positive constant C' such that

‘HI’c ‘<C’A2 ’XIIk ‘<0( L(T)+8)A2(t), k=01, (3.38h)

provided N.(T)+d < 1.

Proof. Actually, based on the homogeneous boundary conditions
($1,0F Wit O ina) (1,0) = (i, 07 ie, O i) (1,1) =0, i=1,2, k=0,1,  (3.39)

Lemma 3.5 can be proved by using the procedure

2 1
Z/ (3.34a) (Of i + 207 yy) dw,  k=0,1. (3.40)
i=170
However, due to the complexity, the proof will be divided into three steps.
Step 1. From
2 1
Z/ (3.342)0f; dz, k=0,1, (3.41)
i=170
we have

2 1 2 1
S [ 20kvwdtvide -3 [ 2Kifvi0bvida
i=170 i=170

Iy I;

2 1 2 1
3 [ ototvotide 3 [ 20kvudtvida
=1 =1

It It
2 1 2 1
=> / 2jiw; O NigaOf i d — ) / 2j7w; Of VignOf 1) dac
=179 =170
It It

I

+Z/ 1)/ 0 (040w;)O wtdx—&—z:/ (OFFy 4+ Ga)of i de,  (3.42)

Ig: bipolar effect Ig

By integration by parts, we can easily obtain

d ('S
Ilfz% > 20f i 0f i da— / o) d, (3.43a)
0 =1
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1 2
115:/ > 2K (0fia)? da, (3.43b)
0 =1
1 2
I3 = / > (e0fthiza)? da, (3.43¢)
0 =1
1 2
Z(afz/}f d, (3.43d)
/ ZQ Jiw _33k¢1)m tnimdx, (3436)
Ig = / Zz Jiw; 0 )2 0f iy da. (3.43f)

Let 15 and I¥ keep intact. Since the main difficulties arise from the bipolar effect,
we need to pay more attention to I’g,

1 2
bipolar effect: I]SC:/ Z(—l)iaf(amwi)afwi dx

1
=— / [8,{“ (omwl)afwl — 8tk (amwg)afz/}ﬂ dr, k=0,1. (3.44a)
0
From Equation (3.9¢), we get

O = (W1 +1W1)1h1 — (w2 +W2)Pa, (3.44b)
Ogat = 2W1 Y1 — 2W2tas. (3.44c)

Our next goal is to deal with Ig and Ié in Equation (3.44a), respectively.

1 1
Ig:_/ (szwldjl _UIIwZ,l/JQ) d(E:—/ Ogxx (wﬂ/h —’LU21/12> dx
0 0

[(wi +11 )1 — (w2 +d2) 2] (w131 —wa2ips) dz

[(w1th1 —warhe)? +(W11h1 — Wah2) (withy —watho)] da

—_————

0
Ig,l

/
= _/o (w131 —w2tpe) + (W11 — Watha) | (w1thy —wathz) da
J

{Is |+ (W1th1 —Warha) [(1h1 41 )y — (1o +2) s } dx

/01
:7/0 {Ig,1+(u~)11/11*ﬁ)21/12)[(@1¢1*w2¢2)+(¢%7w§)]}dz
J

—

(w1th —watha)? + (W1thy — Wath2)? +(W1thy —Wathe) (1] —w%)} dx, (3.44d)

nonnegative

0 . . .
18.2 : cubic nonlinearity
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[(O2wwr) 1t — (Owpws) 2] dac
[(sztwl +0—zz¢1t)wlt - (Uzmtw2 + O—mmw%)w%} dl‘
{Umt(wﬂ/)lt —wathar) + Oue [ (V12)* — (Y2¢)?] } dx

{2(w1¢1t —wathar)? +[(w1 1)1 — (wa+W2)h2] [(¥V1¢) — (¥21)?] } dx

nonnegative

I} .. cubic nonlinearit
8,1° Yy

(3.44e)

We indicate that the bipolar effect in Equation (3.44a) will only influence the final
dissipation rate F'(t) in the next subsection.
Substituting Equations (3.43) and (3.44) into Equation (3.42), we have

d

%Ik()JrVk(t):Xk(t), k=0,1, (3.45a)
where
/ Z (205 pudfvi+ (0Fvi)?] d, (3.45b)
/ Z (2K O P (D) — 2000 de—Ta(0), (3.450)
- / 22 (ow; 30 4;) e OF i e
/ Zz 2w ) b d 4 TE () +15(0), (3.45d)

and by using the estimates (2.10), (3.13), (3.15), (3.20) and (3.35) together with the
Cauchy—Schwarz inequality and Equation (3.36), for all 0 <e <1, we obtain

1
[ Batta) o] <cn @, (3.460)

1
’/ I3 1 (t,2) dz| < CN(T)|| (1, 902) (1) |1, (3.46b)
’Ik ‘<CA2 ‘Xk ’<o( (T)+68)A%(t), k=0,1, (3.46c)

provided N.(T)+ < 1.
Step II. From
2 1
> / (3.34a)0F ¢ dz, k=0,1, (3.47)
0

i=1
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we obtain

2 1 2 1
> / 20f PineOfthis dax = / 2K 0f Ping Of iy dav
i=170 =170

¥ 11}
+Z/ 234aszak7j}zt dx +Z/ 1/%1‘
11k 1T’
2 1 2 1
= [ 2 ok db i de =3 [ 252 0k a0 v de
i=170 i=170
11t 11}

I

2 1 2 1
3 [Cvotommotvder Y- [ (04Fi+Gaokv
i=1 =1

II:: bipolar effect II’;

By integration by parts and Equation (3.36a), we can easily obtain

1y = Z (Ofhir)? da,
d
k__ (ak. 2
112_£/ ZKz(at 1/%1) da:,
II3 Z 5aszzz z,

IIZ:/ 22(5f¢it)2d137
H’g:/ 22 Jiw; ) (OF i )? dx+/ 22]1 ik Of iy d,
Ik = Zyz H(0F i) d

0 =1 0 =1

2353

(3.48)

(3.49a)

(3.49b)

(3.49c¢)

(3.49d)

(3.49¢)

(3.49f)

Let IT¥ and II% keep intact. Since the main difficulties arise from the bipolar effect,
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we need to pay more attention to H’g,
12 ‘
bipolar effect: I :/ Z(—l)’@f(amwi)afwit dr, k=01 (3.50a)

Our next goal is to deal with II3 and II§ in Equation (3.50a), respectively.

119 —/ V(0 prw; )2 dac
/ O':L’zwzw ) (O—waz)th] dx
1
- Z(_ Uxa:wzwz dx _/ (Uwawz)t¢z dx
0 =1
Hg N

:II Uzwth + Uzwwlt)wz dx

I,

=121+ [ Opar(withy —wats) da+113,

*Ilg 1 / a_at:ttwﬂ;[}z dx */ Jraﬂ/htdh dx
/1
1
=113, +/ 2(wy 1 — wathay) (withy —wathe) da+11
0
1
:Hgl +/ 2[ (w11 — watha)y — (Y1491 — Y2 ]| (w1thy — wath) dx+H§72
0

1

1
—Hgl+jt | o= do— [ 2t =) ) do+ T

d 7
:%/0 ;(—1) OpzWith; dx

=I2 by (3.44d)

1 1
+% (w1¢1—w2¢2)2d33—/ 2(with1 —wathe) (Y111 —1h2siho) da
0
/ szwztwl d.’IJ
-2 [(wlwl—wm) o+ (s — o) (67— 3) | de
0

1
_/ [2(w1t1 — wath2) — Opg | (V10001 — harths) da
0
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1
:_% [(wﬂ/h —Watha)? + (W1th1 — Watho) (VT —¥3) | da
0

1
- / (42 —42) (rths — ortin) do

d ! _ } _ _
T [ (V2 — 03+ (@11 — Tat)? (b1 — ) (03 — ) ] dr, (3.500)
nonnegative :Ig’zz cubic nonlinearity; (3.46a)
an
IIs */ erwz) dJm dx
/ wath + 0ww¢zt>¢ztt dl‘
/ 1)/ 0pprwitiss d +/ 1) 0pethirtine da

H; L
1
=H§ 1 / Oz (V160141 — Vorthor) da
0

1
:Hé 1 /0 (w1 411 )11 — (w2 + W) o] (Y1eth1ee — Yoo ) da

1 . . .
II&2 : cubic nonlinearity

/ O—xzthwztt dx — IIS ,2

- / Ozt (W11t — Wohogy) d — Hslg,z
0

1

1
—/ Jmt(wﬂ/iu—wz?,/}zt)tdff-F/ Ot [(V10)% — (V20)?] dz — 11§ ,
0 0

1 1
- % (w1th1e — wathar)? dﬂH—/ 2(w1thre — warhay) [(Y10)? — (thae)?] da —11g ,
0 0

II;S: cubic nonlinearity
d 1

(w1t —wathyy)® da +115 5 — 11§, . (3.50¢)

nonnegative cubic nonlinearity
From Equations (3.50b) and (3.50c), we can also see that the bipolar effect in
Equation (3.50a) will influence not only the final dissipation rate F(t) but also the final
energy FE(t) in the next subsection. However, due to the structure found in Equations
(3.44d), (3.44¢), (3.50b), and (3.50c), the bipolar effects If in Equation (3.44a) and IT%
in Equation (3.50a) can be well controlled.
Substituting Equations (3.49) and (3.50) into Equation (3.48), we get

%Hk( )+ VIF@#) =XT*(t), k=0,1, (3.51a)
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where

=Si[w} ji]

/_./\—
)=/ Zlaszt jiwi4)(afwm)2+;(saf¢m)2] dz,  (3.51b)
I1°(¢) =119, (1)

1
+/
0

i(w%—wé)%(wlwl—w2w2)2+(w1w1—wzwa)(w%—wé)] dr, (3.51c)

IIg(t): bipolar effect

II,I) (t): bipolar effect

1
I (8) =12 (1) / (wrtpre — watpns)? d, (3.51d)
VIF(t) / 22 (OF ) da, (3.51e)
XIk / 22 Jz akz/]zt d.’L’+/ Zzhw sza ¢ztd$

¥ / szz )08 Ol i d / Z<j3w;4>t<af%>2dx
=1
FITE T+ & (118,3 - 11;2) , (3.51f)

and by using the estimates (2.10), (3.13), (3.15), (3.20), (3.35), and (3.46a) together
with the Cauchy—Schwarz inequality and Equation (3.36), for all 0<e <1, we have

‘11’@ ’<CA2 ‘XI’“ ‘<C( L(T)+8)A%(t), k=0,1, (3.52)

provided N.(T)+ < 1.
Step 111. From

(3.45a) +2(3.51a), (3.53)

namely Equation (3.40), we obtain

%III’“(t) +VITF (1) =XT1*(t), k=0,1, (3.54a)

where
ITT% (¢) :=TF (t) + 211" (¢)
=1¥(t) + 211 (1) + 115 (1))
= (1" (6) + 215 (1)) + 2115 (1)

-[ Z (001 +0b i+ @k )+ 28,02 (OF i)+ (0 s ]
——

nonnegmtlve >K;>0
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+ 2117 (t), (3.54b)

VITF (1) :=VF (¢ ) +2VIF (1)

/ Z 2K (0850 )2 + (€08 hina )2+ 2(0F iy )? | dx —TE (1), (3.54c)

XTT%(t) := X" (1) 4 2XT1#(¢). (3.54d)

We note that Equation (3.54a) follows from Equation (3.38a). According to the
estimates (3.46) and (3.52), obviously, the estimate (3.38b) is followed. This completes
the proof. ]

3.4. Decay estimate. In this subsection, we can combine the basic estimate
with the higher order estimates to prove Lemma 3.2 as follows.

Proof. From
1
(3.21a)+ ) (3.38a), (3.55)
k=0
we get the final energy equality
d - -
@E(t) + F(t)=0, (3.56a)
where
R 1
E(t):= / E(t,x) da+TT10(2) +-1IT (1), (3.56b)
0

F(t):= / an ;2 da+ VIO (t)+ VIT' (¢ / Rydx —XII°(t) - XII'(t).  (3.56¢)

Now we claim an important fact which reveals the dissipation mechanism in our bipolar
problem:
FEquivalence. There are four positive constants Cs;,C's,.,Cyy, Cy, such
that for all 0<e <1if N.(T)+0 < 1, then we have the equivalent rela-
tionships

Cy A3 (t) < E(t) < Cs, AL (1), (3.57a)
CuAi(t) <F(t)<CyA(t), VtE[0,T). (3.57h)
In fact, by 0<e<1 and the previous estimates (3.21b), (3.21c), (3.38b), a standard
argument gives the upper bound estimates in Equation (3.57) under the a priori as-
sumption N (T)+J < 1.

The key point is how to establish the lower bound estimates in Equation (3.57). To
this end, we first recall an optimal Poincaré inequality

1712 < 3152, v e HY(@). (359)
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It will be very useful in estimating the lower bound of the final dissipation rate F(t).
Precisely, with the help of the Poincaré inequality (3.58), we can create the zero order
dissipation rate ||(11,%2)(t)||? from the higher order estimate VIIY(t), which is lost in
the basic estimate by bipolar effect.

Based on the structure analysis of the bipolar effect terms If in Equation (3.44)
and II§ in Equation (3.50), namely,

bipolar effect terms=nonnegative terms+ cubic nonlinearities, (3.59)

we can abandon some certain nonnegative terms in E(t) and F(t) in order to get the
desired lower bound.

1
E(t)= / E(t,x) do +T110(t) + 11T (¢)

>Ollz | 7/’1;77175wm)( )”2

i=1 >0

+Z / Z Ok + j%n) (i) 4+ 25 [, i) O bia) + (0 i)

1
+Z2H’;(t)
>OllZH ¢z;772 ||2+Z/ Z ak¢zt +K (8k7/)zx) (gatk"r/)mz)Q] dz
1
),

1
+/ (w11/)1t—w21/)2t)2 dx
0 ——

>0

>CuZH (o) (¢ ||2+Z / Z (OF )+ KO0 10)? + (20 6i00)?]

%(wf —3)? + (W1thy — Warhe)® + (W1h1 — Wah2) (V] —1#%)] dx

>0

—CNE(T)ZH%‘@)”Q

>C3A%(t), (3.60a)

and

/an 2dx+ZVHk /1R2daz—ZXHk(t)
0 k=0
ZCZIIm(t)H2
+Z{/ Z 2K (OFthin)* + (eamm)QH(afW)?} dx—I’g(t)}
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1
-y ‘XH’“(t)‘

1
—/Rgdl‘
k=0

>CZIIm 259> (2110 i (8)1 + |0 iz (8)] + 21108 10 (1)

= i=1k=0
—Zlé“(t)— T)+96) ZII bina) (IF = e(T)+5)ZAi(t)
= k=0
2
Ki T 2
; 2 (1) [ ()117)
by(3.58)

2 1
+ 3 [ClIm O +2K 19} ia )2+ (10 iz (1) 2+ 201080 (8)]?)]
i=1 k=0
2

—C(NAT)+0) D (i) (DI = C(NAT) +8) Y AR (1)
k=0

=1

1
b [~ w4 (1 — 8200 001~ o) (4~ 03) | da
0

>0

+/0 {2(w11/11t —Wwothar)® + [(w1 41 )1 — (wa + W2 )2 (V1) — (20)?] } dx

>0

2
Z (4Kl )N + Killvia (0] + Cllme ()1 + 2105 ia (1))

2 1

+ > (0 biaa )P+ 2010 vie (1))

i=1k=0

—C(N(T)+9) Z” (i, mi) (2t ”1 E(T)+5)ZA%(t)
k=0

—CON.( an (O =CN(T) Y Ilae(D)]?

i=1

>CyAf(t). (3.60Db)

From Equation (3.57), we know that E(t) and F(t) are also equivalent to each other.
Therefore, there exists a positive constant Cs such that

CsE(t)<F(t), Ytel0,T). (3.61)

Substituting Equation (3.61) into Equation (3.56a), we obtain the ordinary differential
inequality

d - .

B +CsB() <0, Wel0,T]. (3.62)

Gronwall’s inequality argument yields that

E(t)<E(0)e~ %, vtelo,T). (3.63)
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By Equations (3.37), (3.57a), and (3.63), there is a positive constant C' such that
n?(t) <Cn?(0)e~ %!, vte[0,T]. (3.64)

Let ~9:=C5/2, then we complete the proof. 1]

4. Semi-classical limits

In this section, we discuss the semi-classical limit from the QHD model to the HD
model. First, we show the semi-classical limit for the stationary solution in Subsection
4.1. And then, we study the semi-classical limit for the global solution in Subsection
4.2.

4.1. Stationary solution case. We let (75,55,75,75,¢°) stand for the solution
of the QHD boundary value problem (1.7)—(1.8), and continue to write (729, 79,79,79,6%)
for the solution of the HD boundary value problem (1.12).

It is worth mentioning that a similar result for unipolar problem has already been
proved under the exponential transformation in [20]. However, the multiplier (Inng —
lnﬁ?)x used for unipolar problem are not applicable to our bipolar problem.

Through a careful observation on the bipolar structure of our problem, we can
successfully overcome the main difficulty caused by the bipolar effect by choosing some
new multipliers and estimating the error variables in terms of their original form. Now,
we can prove Theorem 1.3 as follows.

Proof.  First, we introduce the error variables between the QHD model and the
HD model as follows

Remig—il, Jrm=ji—i0, & =¢-8, i=12 (4.1
From

(L12b)/Af, (1.7b)/@s, (L.7b)/f5——(1.12b)/ad, (1.7¢c)——(1.12¢), i=1,2,
(

2)
we deduce that
SP(RY) Al + (-1 = 5 (Ad) (4.3a)
Se()tas,—<t (V) [V (-0 ==Gi@) T (43b)
8e(s) g, — SP() l, + (—1)'ds —2 [ (VAT) [V
=— [ ) =Y, (4.3¢)
P =Ni-N§, i=12, VYzeQ, (4.3d)

where S¢:= S;[n5,55] and S?:=S,[n?,;9].
By

Z /O (4.3¢)NE, du, (4.4)

we get
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o, ©s: bipolar effect
i [ [t -t e +Z / VBN da
_522/ /\/>} NE, dx —Z/ JE(a5) T =R NG dr. (4.5)

@3 @4

Secondly, from [9], we have 7 = J;[20] where .J;[-] is given by Equation (2.8a). Thus,
a standard argument gives

| T+ = |Jil75) = Jilad]) < CS|INF . (4.6)

Furthermore, we know that
NF € Hy (), (4.7)
follows from the boundary conditions (1.8a) and (1.11a). Thus, the Poincaré inequality

(3.58) can also be used to estimate V7. Namely, by using Equations (1.13) and (1.15),
Holder’s inequality, and integration by parts, for all 0 <e <1, we get

2 1
01=Y" [ {[85(ue) 1 - S0 s, + 0N A, o
i=170
2 ~ 2 1 B ~ ~
>Co 3 IR IP+ Y [ [35(iE) - 80 E AT do
i=1 i=170
2 ~ 2 B B ~
>0 3 NG |12 08 S (1N + 17 IS |
=1 =1

2 2
>Coy INGIF=C8Y NG

=1 =1
2
>Cs YN, (4.82)
2 :11
@2:2/ (—1)"1®s _Nfde= / VTINE da
i=170
1 -~
=/ &2, (N —N) da /(@8 2 da
0 0
>0, (4.8b)
2 1
@3:_522/0 (V) [V Nead

1 2
=—622 / (Diza®; ) Ny dr <23 (107 oo [ Wi | N |
3 =1

<EQZIIw oo @i | (175eq |+ 178011
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<Ce?, (4.8¢)

we continue in the above fashion obtaining

2
0, <C8Y NG (4.8d)

i=1

Substituting the estimates (4.8) into Equation (4.5), we obtain

2
Y OINEIP<Ce (4.9)

i=1

Combining Equation (4.9) with Equation (4.7), we get

2
SOINFIh<Ce, VO<e<l. (4.10)

i=1

From Equations (4.10) and (4.6), and the elliptic estimate ||®¢|3 SCZ§:1 [NE|1, we
can easily see that the convergence estimate (1.17a) holds true.

We are now in a position to show the convergence result (1.17b). From Equation
(1.15b) and § <1, we have

75, ]| SCO<C, Vo<e<l, i=1,2. (4.11)

Combining Equation (4.11) with Equation (4.10), we conclude that there exists a sub-
sequence {0<ej <1} of {0<e<1} such that

~EL

~0
Nigw — Ty

1rT

in L? weakly as e — 07, i=1,2. (4.12)

In order to improve the weak convergence (4.12) into the strong convergence, we have to
use a standard functional analysis argument in a certain weighted L? space. Of course,
we also need to use Equations (4.3a) and (4.3b) to establish some necessary estimates
and limit results. Precisely, by using

1 N
/281(4.31{))@”@, i=1,2, (4.13)
0

n;

together with the homogeneous boundary condition (1.8b), we get

[t [{[(v) [ } w=ar i

where

af ==85(Rs) 2, (4.14b)

1
~ o~ 1~ ~ -
0
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(/1) az

+1)9+ () ™), 27

} dz, i=1,2. (4.14c)

=M

Let
0 = oo = SO(RY) 2, (4.152)
{ = Q5 |-=o- (4.15b)
By
1 ~0
/ 20, (4.30) VMaz oy o (4.16)
0 /1

we can easily check that

1
| a2 s =0, (.17
0

In addition, for the subsequence {¢} in Equation (4.12), we claim that the limit of the
number sequence

lim Q5% = i=1,2, (4.18)

E)c—>0+

holds true. In fact, from what has already been proved, a standard argument yields

er?
—_—
17
Q7+ — Q°!<CZ||NE"II1 50( D7 (00)? (), — i, da
—0, asgk—>0+7 (4.19a)

where
A =85, () g, = SR T2 (g, + (1) ég, + (7 (A7), i=12. (4.19b)
Due to Equations (4.10), (1.13) and (1.15), a similar computation shows that

1
lim [ (af —ad)(75,,)*dr=0, i=1,2. (4.20)

e—0t 0

Actually, for all 0 <e <1, we have

[ (et - a2

{80602+ 8016072 - )2 i) o
<O+ 1R o) 75,0 P
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<C3|INF[h

<Ce—07. (4.21)
Based on Equations (4.14a), (4.18), (4.17), and (4.20), and the properties of the limit

supremum of the number sequence, we have actually proved that

1 1 1
limsup/ ad(nsk,)? dm—hmsup/ ask (st )? dx</ (R ) dr, i=1,2. (4.22)
0 0 0

E}‘,—>0+ Ek—>0+

From Lemma 1.1, we know that the function a? =a?(x) defined in Equation (4.15a)
=[0,1

is strictly positive and continuous on the mterval Q [0, ]. Then we choose af as a
weight and introduce a weighted L? space as follows
1
L2,(Q):= {f :2— R is measurable ‘ / A fI?dx < +oo}, (4.23a)
‘ 0
with the inner product
1
(f:9)r2, :=/ ol fgdz, (4.23b)
4 0

and the associated norm

1 1/2
Ifllzz, = (/ a?|f|2dx> , i=12. (4.23¢)
al 0

We see at once that L2,(Q) is a Hilbert space.
Furthermore, Equation (4.22) implies that

hmsupHnZMHLa < ||nlm||L2 1=1,2, (4.24a)
Ek—>0

and Equation (4.12) implies that

1TrT 1rxT

gk, —nd,, in L2, weakly as e, =0T, i=1,2. (4.24b)

We conclude from Equation (4.24) that

Ask, =Y., in LZ? strongly as g, — 07, (4.25)
hence that
lim NG [=0, i=1,2. (4.26)
er—0

Next, from Equations (4.20), (4.25), and (4.14a), we have

(V) ] -

This together with Equation (1.15), we deduce that

i | (V) ] e, - )

€k 0, asep—0T, i=1,2. (4.27)

enl| O3 || =en




H.F. HU, M. MEI, AND K.J. ZHANG 2365

(V) Ve,

Finally, by ||0,(4.3b)|c,. ||, we get

<C <€k

+€k>—>07 as e, —0F, i=1,2. (4.28)

€2 K nE") / ff’*} —Ak, =12, (4.29a)
where
gt =ng[Rg J5t, 9% = H [ka (fzf’c)‘lﬁfﬂ () bk + (G (h?k)—l)mH. (4.29D)

Formally, let A0 :=75"|.,—o. By ||0.(4.3a)||, we rigorously obtain that 7)=0, i=1,2.
Similar analysis to that in Equation (4.18) shows that

lim A*=nY=0, i=1,2. (4.30)

Combining Equation (4.29a) with Equation (4.30), we have

() Ve

We continue in the fashion of Equation (4.28) to obtain
+sﬁ||8i’ﬁ§’“|+si> —0, asep—0".

Kﬁ) M/\/nTk} - Z (4.32)

Combining Equations (4.26), (4.28), and (4.32), and using the elliptic estimate [|92®°|| <
Z?Zl IVE .||, we thus prove that the convergence result (1.17b) holds true. o

TTT

lim &7
£k —0t

=0, i=1,2. (4.31)

&0tz | < C (k

4.2. Global solution case. We let (nj,j5,n5,75,¢°) stand for the global so-
lution of the QHD initial-boundary value problem (1.1)-(1.3), and continue to write
(n9,79,n9,79,¢°) for the global solution of the HD initial-boundary value problem (1.9)—
(1.11).

In order to prove Theorem 1.4, we have to use Lemma 1.2, Theorem 1.2, and
Theorem 1.3 simultaneously. Therefore, the semi-classical limit of the global solution is
based on the subsequence {e} in Theorem 1.3. Below, we give the proof of Theorem
1.4.

Proof.  We first choose the appropriate initial data to ensure that there are the
global solution of QHD problem and that of the HD problem at the same time. To this
end, we let

1
(50 = 5 IIliIl{(SQ, 64} >0, (433)

where 09 is given in Lemma 1.2 and d4 in Theorem 1.2. By Theorem 1.3, for the above
do, there is a positive constant ey such that if e, <eg, then

> (s =+ 155 = 301) <do. (4.34)

=1
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Now, we define
66::min{65, €0, 60}>0. (435)

It is obvious that the condition (1.18) in Theorem 1.4 implies
2
5+ 3 Ml(nio =7, jio — 3°) |2 < 2680 < 6. (4.36)

Secondly, for 0 < e < dg, we introduce the error variables as follows

Niki=ngk —nd  Jori=450—50, 0% i=¢ — ", V(t,x)€[0,+00) x Q. (4.37)

(2 1 (2

From
(1.1)——(1.9), (1.3a)——(1.11a), (1.3c)——(1.11b), (4.38)

we deduce that
N+ T =0, (4.39a)
RGN 250 55 () T = 5 ()]
=G5 (n5*) 20k = (5))2 (n) 20, ]

+<—1>i<w¢zk+n9<bzk>+fk=ein:k[(W ) V] s

Ok =NTF—N3*, i=1,2, V(t,x)€[0,4+00)x K, (4.39¢)

with the homogeneous boundary conditions
NEE(E,0) =N7E(t,1) =N (,0) =N3* (t,1) = ®°+(¢,0) = D+ (¢,1) =0. (4.40)
From —0,(4.39b) together with Equation (4.39a), we get
N = KNG = 2[5+ g5 (n5*) ™1 =5 ai (nd) 71,
(52 (ng*) " 2ngs — (3))2(nd) 0], + (1) T HNTR oS +nf @)

+M§k:_g§{njk{<ﬁ> /\/nT’“] } i=1,2. (4.41)

Repeated application of Lemma 1.1 and Lemma 1.2 enables us to write

nd(t,x), S?:=8;[n?,591>Cr>0, i=1,2, V(t,x)€[0,+00)x 1, (4.42a)

> (10 = gDl + 1 GOl ) +16°1)l2 S C2 <€ V[0, 400). (4.42)

Based on Theorem 1.1 and Theorem 1.2, we continue in the above fashion obtaining

nit(t,x), SiF:=S;[ni*,ji* 1 >Cs >0, i=1,2, V(t,x)€[0,400) %1, (4.43a)

> (105 =, 32Ol + 1t 5 (O

i=1
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+l(erdin 05, 30t O] ) + 167 (s < C <, Wee 0, +00),

for Y0 < e, <dg, where Cg,C,dg are independent of .
The remaining part of the proof will be divided into three steps.

Step 1. From

2 1
> / (4.39b) J5* da,
i=170

we obtain
d [t 12
&/ Z§<Jf’“)2dm+/ Z(Jfk)?dx
:_Z/ KNEk ak dr — Z/ ]fk]f; 1 1_'];).]%(”?)71] \Z‘Ek dx
+Z/ gk — (3% (nd) P, | T da

2 1
#3077 da
i=170
1

2

+E%Z/ ng* [(wﬁ’“) / nf’“} Tk dx
—17/0 zx z

=1 +To+IT3+Ty+Ts,

By using Equations (4.42) and (4.43), we estimate I'y-T'5 as follows

F1<CZIINEk T OI7,

1x 7

ra<CY [ 02 417+ INE DI
i=1

2
<Oy T TN,

=1
2 1
i<y / (T4 |4+ INEE [+ NG DI da
<OZ|| (T2 N NER) (@),
r4<CZ/ NP+ DI e SOSN8, T2 O

i=1

<CZII AV ARSI Ol
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(4.43D)

(4.44)

(4.45)

(4.46a)

(4.46b)

(4.46¢)

(4.46d)
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ea (),
a1 ) i

(). I

(T T @) < Csj. (4.46¢)

Ekjgk d./E

Sk lo |71+ InS* oll T 1)

2
<Ceiy (W)
i=1

Substituting Equation (4.46) into Equation (4.45), we get

2
&S ST ) H?+Z||fk H2<C(ZIIN5" TNOR+).  (447)
=1

Step II. From

2 1
> / (44NN da, (4.48)
i=170

repeated application of Equations (4.42) and (4.43) together with the above standard
argument gives

d (11 :
G S IV SN det S INGF O =B, (%
=1 =1

where

Z/ gl (nd)” ]Jm}/\/ftkdx
*Z/ 00 L(A@ikfdxz/ol;[(az)(z) 2 (NEd

izl 01 i=1
=3 [ {16 = G0 2 ) N da
lzl 1
+Z/O( )i(A/iEk¢5k+n0(I)ek) NEF da
+€ii/01ni [(F) /f} NE: dx (4.49b)
<c(i|<A@E’sz><t>||%+ek). (4.490)

Substituting Equation (4.49¢) into Equation (4.49a), we have

d 11 2 - c c e E
G el st dx+z||w ||2<c(z||/w YOI +er).
=t (4.50)
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Step 1II. From

(4.47) + (4.50), (4.51)
we have
2
FE +ZIW B<o(SIN TN O +ar),  (452a)
=1
>0
where
Eer(t / Z (T2 + (T2 + SY(NEF)?] da. (4.52b)

Here we have used Equation (4.39a) and 0 <&y, < 1. By Equation (4.42a) and Equation
(3.58), we can easily check the equivalence

2

2
Cor )N TP OIF < B (1) < Cor YN+ T )ONF, VEE[0,400).  (4.53)

i=1 i=1
Combining Equation (4.52a) with Equation (4.53), we obtain the ordinary differential

inequality

%Esk (£) < CroB=(£) + Cer,  WEE [0,+00). (4.54)

Applying Gronwall’s inequality to Equation (4.54) and noting that E<+(0) =0, we get
E(t) < CeC1otey,  Vie[0,400). (4.55)

Substituting Equation (4.53) into Equation (4.55), we have
2
DI TN Bl < Ce®o 22, vt [0,400). (4.56)

Let 73 :=C40/2 >0, by using the elliptic estimate || (¢)||3 < Z?:l [IV7*(t)]]1 together
with Equation (4.56), we see that Equation (1.19) is true.

Finally, we show the convergence estimate (1.20). For this purpose, fix 0<ej <1,
define

lnek
Ty =T(ep) = ——=k 5, 457
k=T(ex) o (4.57)
Substituting (4.57) into (4.56), we get
ZII (NE, T ()| < Cestel/? < censTrel = Cel/*, Ve [0,Ty]. (4.58)

For Vt > T}, using the estimates (1.14), (1.16), and (1.17a), we obtain

ZHW TE) \\1<Z(\| ngt =i, je =3 )l
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S =83 =)l + 1 70,30 = G0 )l )
<Coe” 2t 4 Cep + Coge Y
SC(e_“T’c +e 2Tk —I-Ek)
:C(&_ZM(MS)+Ezz/(473)+gk)

SCEZ“, (4.59)
where

o 1
= —,—, = >0. 4.60
74 min 4/}/3 ) 473 ) 4 ( )

Since 74 <1/4 and 0 < ey, < 1, combining Equation (4.58) with Equation (4.59), we hence
have

ZII NI Dl + 1127+ (Bl < Cejt, vt [0,400). (4.61)

Here we have used the elliptic estimate || (¢)||3 < 2?21 INF=(t)]]1 again. Note that the
right-hand side of Equation (4.61) is independent of time ¢ € [0,400), this immediately
implies Equation (1.20). o
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