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EXISTENCE OF AXIALLY SYMMETRIC WEAK SOLUTIONS
TO STEADY MHD WITH NONHOMOGENEOUS

BOUNDARY CONDITIONS∗

SHANGKUN WENG†

Abstract. We establish the existence of axially symmetric weak solutions to steady incompressible
magnetohydrodynamics with nonhomogeneous boundary conditions. The key issue is the Bernoulli’s
law for the total head pressure Φ= 1

2
(|u|2+ |h|2)+p to a special class of solutions to the inviscid,

non-resistive MHD system, where the magnetic field only contains the swirl component.
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1. Introduction and main results

Let Ω⊂R3 be an axially symmetric domain with C2-smooth boundary ∂Ω=
⋃N

j=0Γj

consisting of N+1 disjoint components Γj , i.e.,

Ω=Ω0 \(∪N
j=1Ωj), Ωj⊂Ω0,j=1, . . . ,N, (1.1)

where Γj=∂Ωj . Consider the steady magnetohydrodynamics (MHD) equations in Ω:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(u ·∇)u+∇p=(h ·∇)h+Δu+∇× f , ∀x∈Ω,
(u ·∇)h−(h ·∇)u=Δh+∇×g, ∀x∈Ω,
div u=div h=0, ∀x∈Ω,
u=a, h=b on ∂Ω.

(1.2)

For the existence of weak solutions to the system (1.2), the following compatibility
conditions are necessary:

N∑
j=0

Fj :=

N∑
j=0

∫
Γj

a ·nds=0, (1.3)

N∑
j=0

Gj :=
N∑
j=0

∫
Γj

b ·nds=0, (1.4)

where n is the outward unit vector to the boundary ∂Ω.

If the magnetic field h is absent, then the system (1.2) is reduced to the famous
steady Navier–Stokes equations⎧⎪⎨

⎪⎩
(u ·∇)u+∇p=Δu+∇× f , ∀x∈Ω,
div u=0,

u=a on ∂Ω.

(1.5)

∗Received: November 15, 2015; accepted (in revised form): May 7, 2016. Communicated by Mikhail
Feldman.

†Pohang Mathematics Institute, Pohang University of Science and Technology. Hyoja-Dong San 31,
Nam-Gu, Pohang, Gyungbuk, 790-784, Republic of Korea (skwengmath@gmail.com).

2287



2288 EXISTENCE OF AXIALLY SYMMETRIC WEAK SOLUTIONS

Leray [21] made fundamental contributions to the existence theory and showed the exis-
tence of a weak solution u∈W 1,2(Ω) to the system (1.5) under the stronger assumptions

Fj=

∫
Γj

a ·ndS=0, j=0,1, . . . ,N. (1.6)

Leray provided two different methods for the existence results in [21]. The first one
reduced the nonhomogeneous case to homogeneous case by using the solenoidal ex-
tension of boundary value a into Ω, which was successively completed and clarified
in [6, 11, 20]). The second one is based on a clever contradiction argument, which was
used in [1,2,12,25]. However, the problem of whether the systems (1.5) and (1.3) admit
a solution or not has been open for long time and is usually referred to as Leray’s prob-
lem in the literature. For sufficiently small fluxes Fj , one can also obtain the existence
of weak solutions [2, 6, 7, 9, 10, 12, 18, 25]. The existence was also known with certain
symmetric restrictions on the domain and the boundary data and the forcing term
(see [1,8,14,22–24]). Recently, Korobkov, Pileckas, and Russo have made an important
breakthrough in a series of papers [13, 15–17] on the existence theory without any re-
strictions on the fluxes. First, in [13], they obtained the existence for a plane domain Ω
with two connected components of the boundary assuming only the inflow condition on
the external component. The new ingredients of analysis in [13] are the weak one-sided
maximum principle for the total head pressure Φ= 1

2 |u|2+p obtained by the Bernoulli’s
law for weak solutions to the Euler equations and a divergence form representation of
Φ. The Bernoulli’s law is based on the Morse–Sard theorem developed in [3]. The spa-
tial axially symmetric case was investigated in [15], where the existence was established
without any restrictions on the fluxes, if all components Γj of ∂Ω intersect the axis of
symmetry.

In [16], Korobkov, Pileckas, and Russo finally established the existence of weak
solutions u∈H1(Ω) to the steady Navier–Stokes with boundary values a∈W 3/2,2(∂Ω)
and the force ∇× f ∈H1(Ω) in 2-D bounded domain or 3-D axially symmetric domain
with C2-smooth boundary, assuming only the total fluxes are zero. By the Morse–Sard
theorem proved in [3], almost all level sets of the stream function ψ are finite unions
of C1 curves. Based on the clear understanding of the level sets of ψ and Φ, they can
construct appropriate integration domains (bounded by smooth level lines) and estimate
the upper bound of the L2 of ∇Φ. On the other hand, the length of each of these level
lines is bounded from below, and the coarea formula implies a lower bound for the L1

norm of ∇Φ, from which they can derive a contradiction. In the proof given in [16], the
Bernoulli’s law for the Euler equations plays an essential role.

In this paper, we adapt their idea in [16] to the steady MHD equations. More
precisely, we will establish the existence of axially symmetric weak solutions u(x)=
ur(r,z)er+uθ(r,z)eθ+uz(r,z)ez and h(x)=hθ(r,z)eθ to the system (1.2) with non-
homogeneous boundary values in axially symmetric domains with C2 smooth bound-
ary. We introduce some notations. Let Ox1

,Ox2
,Ox3

be coordinate axes in R3 and
θ=arctan(x2/x1),r=(x

2
1+x22)

1/2,z=x3 be cylindrical coordinates. Denote by vθ,vr,vz
the projections of the vector v on the axes θ,r,z. A function f is said to be axially
symmetric if it does not depend on θ. A vector-valued function h=(hr,hθ,hz) is called
axially symmetric if hr, hθ, and hz do not depend on θ. A vector-valued function
h′=(hr,hθ,hz) is called axially symmetric with no swirl if hθ=0 while hr and hz do
not depend on θ.

We need to use the following symmetry assumptions:
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(SO) Ω⊂R3 is a bounded domain with C2 boundary and Ox3 is a symmetry axis of
Ω.

(AS) The assumptions (SO) are fulfilled and both the boundary value a∈W 3/2,2(∂Ω)
and ∇× f ∈W 1,2(Ω) are axially symmetric.

(ASwR) The assumptions (SO) are fulfilled and both the boundary value a∈
W 3/2,2(∂Ω) and ∇× f ∈W 1,2(Ω) are axially symmetric without rotation.

(ASoS) The assumptions (SO) are fulfilled and both the boundary value b∈
W 3/2,2(∂Ω) and ∇×g∈W 1,2(Ω) are axially symmetric with only swirl com-
ponent.

We will use standard notation for Sobolev spaces: W k,q(Ω),W k,q
0 (Ω),Wα,q(∂Ω), where

α∈ (0,1),k∈N0,q∈ [1,∞]. Denote by H(Ω) the subspace of all solenoidal vector fields
from W 1,2

0 (Ω) equipped with the norm ‖u‖H(Ω)=‖∇u‖L2(Ω). Denote by Lq
AS(Ω)

(Lq
ASwR(Ω)) the space of all axially symmetric vector-valued functions (without rota-

tion) in Lq(Ω). Similarly, define the spaces Lq
ASoS(Ω), HAS(Ω), HASwR(Ω), H

q
ASoS(Ω),

W 1,2
AS (Ω), W

1,2
ASwR(Ω), W

1,2
ASoS(Ω), W

3/2,2
AS (∂Ω), W

3/2,2
ASwR(∂Ω), W

3/2,2
ASoS(∂Ω), etc. We de-

note by H1 the one-dimensional Hausdorff measure, i.e., H1(F )= limt→0+H1
t (F ), where

H1
t (F )= inf

{ ∞∑
i=1

diam Fi : diam Fi≤ t,F ⊂
∞⋃
i=1

Fi

}
.

The main result of this paper is stated as follows.

Theorem 1.1. Assume that Ω⊂R3 is a bounded axially symmetric domain
of type (1.1) with C2-smooth boundary ∂Ω. If (∇× f ,∇×g)∈HAS(Ω)×HASoS(Ω),

(a,b)∈W 3/2,2
AS (∂Ω)×W

3/2,2
ASoS(∂Ω) and a satisfy the compatibility condition (1.3). Then

the system (1.2) admits at least one weak axially symmetric solution (u,h)∈HAS(Ω)×
HASoS(Ω). Moreover, if ∇× f ∈HASwR(Ω) and a∈W 3/2,2

ASwR(∂Ω) are axially symmetric
with no swirl, then the system (1.2) admits at least one weak axially symmetric solution
with (u,h)∈HASwR(Ω)×HASoS(Ω).

Remark 1.1. In the case that b= bθ(r,z)eθ, Equation (1.4) holds automatically since
eθ ·n≡0 on ∂Ω.

For the stationary MHD equations (1.2), we can define the total head pressure Φ=
1
2 (|u|2+ |h|2)+p. Suppose (u,h,p) are a smooth solution to the inviscid, non-resistive
MHD system. Then we only have

(u ·∇)Φ=(h ·∇)(u ·h). (1.7)

So even in the two-dimensional case, the right side is not zero in general. In particular,
the level sets of the stream function ψ and Φ do not coincide with each other; the
Bernoulli’s law is lost. However, if we further restrict ourselves to the axially symmetric
MHD case with the special solution form u(x)=ur(r,z)er+uθ(r,z)eθ+uz(r,z)ez and
h(x)=hθ(r,z)eθ, then (h ·∇)(u ·h)= hθ

r ∂θ(u ·h)≡0 and the Bernoulli’s law holds

(u ·∇)Φ=0. (1.8)

This has been observed in our previous paper [4], where we have used this to prove
some Liouville-type theorems for the steady MHD equations. Here, we will adapt the
methods developed in [16] to establish the existence of axially weak solutions to the
system (1.2).
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This paper is organized as follows. We first prepare some preliminaries to reduce
the existence problem to some uniform estimates needed in Lemma 2.5 and Lemma
2.6. Then, in Section 3.1, we first run the Leray’s reductio ad absurdum argument for
the steady MHD equations. The Bernoulli’s law for the inviscid, nonresistive MHD
equations is obtained in Section 3.2. Finally, we adapt the methods developed in [16]
to the steady MHD equation to obtain a contradiction.

2. Preliminaries
The following lemmas concern the existence of solenoidal extensions of boundary

values.
Lemma 2.1.

(i) If a∈W 3/2,2
AS (∂Ω) and Equation (1.3) holds, then there exists an axially symmetric

solenoidal extension A∈W 2,2(Ω) of a with the estimate

‖A‖W 2,2
AS (Ω)

≤ c‖a‖
W

3/2,2
AS (∂Ω)

. (2.1)

Moreover, if conditions (ASwR) are prescribed, then A can be chosen to have
zero swirl component.

(ii) If b∈W 3/2,2
ASoS(∂Ω) , then there exists a unique vector field H∈W 2,2

ASoS(Ω) such that

ΔH=0 in Ω, div H=0 in Ω, H=b on ∂Ω. (2.2)

We also have the estimate

‖H‖W 2,2
ASoS(Ω)

≤ c‖b‖
W

3/2,2
ASoS(∂Ω)

. (2.3)

Proof. The conclusion (i) has been proved in [15]. (ii) Let b∈W 3/2,2
ASoS(∂Ω). Then

there exists a unique vector field F∈W 2,2(∂Ω) to the Laplace equation

ΔF=0 in Ω, F=b on ∂Ω. (2.4)

By similar arguments as in Lemma 2.2 in [15], we can choose F to be axially sym-
metric. By the standard formulas for Δ in cylindrical coordinate system, one has for
F=(Fr,Fθ,Fz)

ΔF=(Δ2− 1

r2
)Frer+(Δ2− 1

r2
)Fθeθ+(Δ2Fz)ez=0, (2.5)

where Δ2=(∂
2
r +

1
r∂r+∂2z ). Take H=Fθeθ. Then H∈W 2,2

ASoS(Ω), and it follows easily
from Equation (2.5) that

ΔH=0.

Since b∈W 3/2,2
ASoS(∂Ω), we still have H=b on ∂Ω; therefore, H=F by uniqueness. That

is, Fr=Fz≡0, which implies that

div H=div F=∂rFr+
1

r
Fr+∂zFz=0.

Remark 2.1. The statement and proof of (ii) were suggested by one of the referees.
The author would like to thank them for the important improvement.
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Given a function F∈Lq(Ω) with q≥6/5, consider the continuous linear functional
H(Ω)�η 
→∫

Ω
F ·ηdx. By the Riesz representation theorem, there exists a unique func-

tion G∈H(Ω) with∫
Ω

F ·ηdx=
∫
Ω

∇η ·∇Gdx= 〈G,η〉H(Ω) ∀η∈H(Ω).

Put G=T0F. Evidently, T0 is a continuous linear operator from Lq(Ω) to H(Ω).
The following lemmas are easily verified.

Lemma 2.2. The operator T0 :L
3/2(Ω)→H(Ω) has the following symmetry properties:

∀F∈L3/2AS (Ω) T0F∈HAS(Ω),

∀F∈L3/2ASwR(Ω) T0F∈HASwR(Ω),

∀F∈L3/2ASoS(Ω) T0F∈HASoS(Ω).

(2.6)

Lemma 2.3. The following inclusions are valid:

∀u,v∈HAS(Ω) (u ·∇)v∈L3/2AS (Ω),

∀u,v∈HASwR(Ω) (u ·∇)v∈L3/2ASwR(Ω),

∀u∈HAS(Ω),v∈HASoS(Ω) (u ·∇)v−(v ·∇)u∈L3/2ASoS(Ω),

∀u,v∈HASoS(Ω), (u ·∇)v∈L3/2ASwR(Ω).

(2.7)

Suppose a∈W 3/2,2(∂Ω) and also the conditions (1.3) and (AS) (or (ASwR)) are
fulfilled. Then we can find a weak axially symmetric solution U∈W 2,2(Ω) to the Stokes
problem in the sense thatU−A∈H(Ω)∩W 2,2(Ω), and the following formula is satisfied
by U: ∫

Ω

∇U ·∇ηdx=

∫
Ω

(∇× f) ·ηdx, ∀η∈H(Ω).

Moreover,

‖U‖W 2,2(Ω)≤ c(‖a‖W 3/2,2(∂Ω)+‖∇× f‖L2(Ω)).

Put w=u−U and k=h−H. Then the problem (1.2) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δw+(U ·∇)w+(w ·∇)w+(w ·∇)U=−∇p−(U ·∇)U
+(H ·∇)k+(k ·∇)k+(k ·∇)H+(H ·∇)H, in Ω,

−Δk+(U ·∇)k+(w ·∇)k+(w ·∇)H−(k ·∇)U−(k ·∇)w−(H ·∇)w=0

−(U ·∇)H+(H ·∇)U+∇×g, in Ω,

div w=div k=0 in Ω,

w=k=0 on ∂Ω.

(2.8)

By a weak solution to the problem (1.2), we understand functions (u,h) such that
w=u−U∈H(Ω), k=h−H∈H(Ω) and for any η∈H(Ω),ζ ∈W 1,2

0 (Ω)

〈w,η〉H(Ω)=−
∫
Ω

(U ·∇)U ·ηdx−
∫
Ω

(U ·∇)w ·ηdx−
∫
Ω

(w ·∇)w ·ηdx
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−
∫
Ω

(w ·∇)U ·ηdx+
∫
Ω

(H ·∇)k ·ηdx+
∫
Ω

(k ·∇)k ·ηdx

+

∫
Ω

(k ·∇)H ·ηdx+
∫
Ω

(H ·∇)H ·ηdx, (2.9)

〈k,ζ〉H(Ω)=−
∫
Ω

(U ·∇)H ·ζdx−
∫
Ω

(U ·∇)k ·ζdx−
∫
Ω

(w ·∇)k ·ζdx

−
∫
Ω

(w ·∇)H ·ζdx+
∫
Ω

(k ·∇)U ·ζdx+
∫
Ω

(k ·∇)w ·ζ

+

∫
Ω

(H ·∇)w ·ζdx+
∫
Ω

(H ·∇)U ·ζdx+
∫
Ω

(∇×g) ·ζdx.

By the Riesz representation theorem, for any

(
w
k

)
∈H(Ω)×H(Ω) there ex-

ists a unique element T

(
w
k

)
=

(
T1

(
w
k

)
,T2

(
w
k

))T

∈H(Ω)×H(Ω) such that

the right-hand sides of Equation (2.9) are equivalent to

〈
T1

(
w
k

)
,η

〉
H(Ω)

and〈
T2

(
w
k

)
,ζ

〉
H(Ω)

for all η∈H(Ω),ζ ∈W 1,2
0 (Ω), respectively. Obviously, T is a nonlin-

ear operator from H(Ω)×H(Ω) to H(Ω)×H(Ω).

Lemma 2.4. The operator T :H(Ω)×H(Ω)→H(Ω)×H(Ω) is compact. Moreover, T
has the following symmetry properties:

∀
(
w
k

)
∈HAS(Ω)×HASoS(Ω), T1

(
w
k

)
∈HAS(Ω),

∀
(
w
k

)
∈HASwR(Ω)×HASoS(Ω), T1

(
w
k

)
∈HASwR(Ω), (2.10)

∀
(
w
k

)
∈HAS(Ω)×HASoS(Ω), T2

(
w
k

)
∈HASoS(Ω).

Proof. The compactness can be proved in a standard way as shown in [20], and
Equation (2.10) follows from Lemma 2.2 and Lemma 2.3.

Hence, Equation (2.9) is equivalent to the operator equation(
w
k

)
=T

(
w
k

)
(2.11)

in the space H(Ω)×H(Ω). Thus, we can apply the Leray–Schauder fixed point theo-
rem to the compact operators T|HAS(Ω)×HASoS(Ω) and T|HASwR(Ω)×HASoS(Ω). Then the
following statements hold.

Lemma 2.5. Let conditions (AS) and (ASoS) and Equations (1.3)–(1.4) be fulfilled.

Suppose all possible solutions

(
w
k

)
to the equation

(
w
k

)
=λT

(
w
k

)
with λ∈ [0,1]are

uniformly bounded in H(Ω)×H(Ω). Then problem (1.2) admits at least one weak axially
symmetric solution (u,h)∈HAS(Ω)×HASoS(Ω).

Lemma 2.6. Let conditions (ASwR) and (ASoS) and Equations (1.3)–(1.4) be

fulfilled. Suppose all possible solutions

(
w
k

)
to the equation

(
w
k

)
=λT

(
w
k

)
with
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λ∈ [0,1] are uniformly bounded in H(Ω)×H(Ω). Then problem (1.2) admits at least
one weak axially symmetric solution (u,h)∈HASwR(Ω)×HASoS(Ω).

3. Proof of Theorem 1.1

3.1. The reductio ad absurdum argument by Leray. We apply the reductio
ad absurdum argument of Leray [21] to the stationary MHD equations. To prove the
existence of a weak solution to the MHD system (1.2), by Lemma 2.5, and Lemma
2.6 it is sufficient to show that the weak solutions (w,k) satisfying for any (η,ζ)∈
H(Ω)×W 1,2

0 (Ω)

〈w,η〉H(Ω)=−λ
∫
Ω

(U ·∇)U ·ηdx−λ

∫
Ω

(U ·∇)w ·ηdx−λ

∫
Ω

(w ·∇)w ·ηdx

−λ
∫
Ω

(w ·∇)U ·ηdx+λ

∫
Ω

(H ·∇)k ·ηdx+λ

∫
Ω

(k ·∇)k ·ηdx

+λ

∫
Ω

(k ·∇)H ·ηdx+λ

∫
Ω

(H ·∇)H ·ηdx,

〈k,ζ〉H(Ω)=−λ
∫
Ω

(U ·∇)H ·ζdx−λ

∫
Ω

(U ·∇)k ·ζdx−λ

∫
Ω

(w ·∇)k ·ζdx (3.1)

−λ
∫
Ω

(w ·∇)H ·ζdx+λ

∫
Ω

(k ·∇)U ·ζdx+λ

∫
Ω

(k ·∇)w ·ζ

+λ

∫
Ω

(H ·∇)w ·ζdxλ+
∫
Ω

(H ·∇)U ·ζdx−λ

∫
Ω

∇H ·∇ζdx+λ

∫
Ω

(∇×g) ·ζdx,

are uniformly bounded in H(Ω)×H(Ω) with respect to λ∈ [0,1]. Assume that this is
false. Then there exist sequences {λn}n∈N⊂ [0,1] and {ŵn,k̂n}n∈N∈H(Ω)×H(Ω) such
that, for any (η,ζ)∈H(Ω)×W 1,2

0 (Ω),∫
Ω

∇ŵn ·∇ηdx−λn

∫
Ω

((ŵn+U) ·∇)η ·ŵndx−λn

∫
Ω

(ŵn ·∇)η ·Udx

+λn

∫
Ω

((k̂n+H) ·∇)η · k̂ndx+λn

∫
Ω

(k̂n ·∇)η ·Hdx

=λn

∫
Ω

(U ·∇)η ·Udx−λn

∫
Ω

(H ·∇)η ·Hdx, (3.2)∫
Ω

∇k̂n ·∇ζdx−λn

∫
Ω

((ŵn+U) ·∇)ζ · k̂ndx−λn

∫
Ω

(ŵn ·∇)ζ ·Hdx

+λn

∫
Ω

((k̂n+H) ·∇)ζ ·ŵndx+λn

∫
Ω

(k̂n ·∇)ζ ·Udx

=λn

∫
Ω

((U ·∇)ζ) ·Hdx−λn

∫
Ω

(H ·∇)ζ ·Udx−λn

∫
Ω

∇H ·∇ζdx+λn

∫
Ω

(∇×g) ·ζdx
(3.3)

and

lim
n→∞λn=λ0∈ [0,1], lim

n→∞J2n= lim
n→∞(‖ŵn‖2H(Ω)+‖k̂n‖2H(Ω))=∞. (3.4)

Denote wn=J−1
n ŵn,kn=J−1

n k̂n. Since ‖wn‖2H(Ω)+‖kn‖2H(Ω)=1, there exists a

subsequence {wnl
,knl

} converging weakly inH(Ω) to vector fieldsw,k∈H(Ω). Because
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of the compact embedding

H(Ω) 
→Lr(Ω) ∀r∈ [1,6),

the subsequence {wnl
,knl

} converges strongly in Lr(Ω). Replacing ζ in Equation (3.3)
by J−2

n ζ and letting n→∞, we obtain

λ0

∫
Ω

[(w ·∇)k−(k ·∇)w] ·ζdx=0. (3.5)

Taking η=J−2
n ŵn,ζ=J−2

n k̂n in Equations (3.2)–(3.3) and adding the above two
identities, we get∫

Ω

|∇wn|2+ |∇kn|2dx

=λn

∫
Ω

[(wn ·∇)wn−(kn·)kn] ·Udx−λn

∫
Ω

[(wn ·∇)kn−(kn ·∇)wn] ·Hdx

+J−1
n λn

∫
Ω

[(U ·∇)wn ·U−(H ·∇)wn ·H+(U ·∇)kn ·H−(H ·∇)kn ·U]dx

−J−1
n λn

∫
Ω

[(∇×g) ·kn+∇H ·∇kn]dx. (3.6)

Therefore, passing to a limit as nl→∞ in Equation (3.6) and using Equation (3.5), we
obtain

1=λ0

∫
Ω

[(w ·∇)w−(k ·∇)k] ·Udx. (3.7)

This implies λ0∈ (0,1]. Let us return to the integral identity (3.2). Consider the func-
tional

Rn(η)=

∫
Ω

∇ŵn ·∇ηdx−λn

∫
Ω

((ŵn+U) ·∇)η ·ŵndx−λn

∫
Ω

(ŵn ·∇)η ·Udx

+λn

∫
Ω

((k̂n+H) ·∇)η · k̂ndx+λn

∫
Ω

(k̂n ·∇)η ·Hdx−λn

∫
Ω

(U ·∇)η ·Udx

+λn

∫
Ω

(H ·∇)η ·Hdx ∀η∈W 1,2
0 (Ω).

Obviously, Rk(η) is a linear functional and

|Rn(η)|≤ c(‖(ŵn,k̂n)‖H(Ω)+‖(ŵn,k̂n)‖2H(Ω)+‖(a,b)‖2W 3/2,2(∂Ω)+‖f‖2W 1,2
0 (Ω)

)‖η‖H(Ω)

with constant c independent of n. It follows from Equation (3.2) that

Rn(η)=0 ∀η∈H(Ω).

Therefore, there exists an axially symmetric function p̂n∈ L̂2(Ω)={q∈L2(Ω) :∫
Ω
q(x)dx=0} such that

Rn(η)=

∫
Ω

p̂ndiv ηdx ∀η∈W 1,2
0 (Ω)
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and

‖p̂n‖L2(Ω)≤ c(‖(ŵn,k̂n)‖H(Ω)+‖(ŵn,k̂n)‖2H(Ω)+‖(a,b)‖2W 3/2,2(∂Ω)+‖f‖2W 1,2
0 (Ω)

).

(3.8)

The pair (ŵn,k̂n, p̂n) satisfies the integral identity∫
Ω

∇ŵn ·∇ηdx−λn

∫
Ω

((ŵn+U) ·∇)η ·ŵndx−λn

∫
Ω

(ŵn ·∇)η ·Udx

+λn

∫
Ω

((k̂n+H) ·∇)η · k̂ndx+λn

∫
Ω

(k̂n ·∇)η ·Hdx+λn

∫
Ω

(H ·∇)η ·Hdx

−λn

∫
Ω

(U ·∇)η ·Udx=

∫
Ω

p̂ndiv ηdx, ∀η∈W 1,2
0 (Ω). (3.9)

Let ûn= ŵn+U,ĥn= k̂n+H. Then identity (3.9) reduces to∫
Ω

∇ûn ·∇ηdx−
∫
Ω

p̂ndiv ηdx=−λn

∫
Ω

(ûn ·∇)ûn ·ηdx

+λn

∫
Ω

(ĥn ·∇)ĥn ·ηdx+λn

∫
Ω

(∇× f) ·ηdx, ∀η∈W 1,2
0 (Ω).

Thus (ûn,ĥn, p̂n) might be considered as a weak solution to the Stokes problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δûn+∇p̂n=−λn(ûn ·∇)ûn+λn(ĥn ·∇)ĥn+λn∇× f :=Fn in Ω,

−Δĥn=−λn(ûn ·∇)ĥn+λn(ĥn ·∇)ûn+∇×g :=Hn in Ω,

div ûn=div ĥn=0 in Ω,

ûn=a,ĥn=b on ∂Ω.

Obviously, Fn,Hn∈L3/2(Ω) and

‖Fn‖L3/2(Ω)≤ c‖(ûn ·∇)ûn‖L3/2(Ω)+c‖(ĥn ·∇)ĥn‖L3/2(Ω)+‖∇× f‖L3/2(Ω)

≤ c‖ûn‖L6(Ω)‖∇ûn‖L2(Ω)+c‖ĥn‖L6(Ω)‖∇ĥn‖L2(Ω)+‖f‖W 1,2
0 (Ω)

≤ c(‖ŵn‖2H(Ω)+‖k̂n‖2H(Ω)+‖a‖2W 1/2,2(∂Ω)+‖b‖2W 1/2,2(∂Ω))+‖f‖W 1,2
0 (Ω),

‖Hn‖L3/2(Ω)≤ c‖(ûn ·∇)ĥn‖L3/2(Ω)+c‖(ĥn ·∇)ûn‖L3/2(Ω)+‖∇×g‖L3/2(Ω)

≤ c(‖ŵn‖2H(Ω)+‖k̂n‖2H(Ω)+‖a‖2W 1/2,2(∂Ω)+‖b‖2W 1/2,2(∂Ω))+‖g‖W 1,2
0 (Ω),

where c is independent of n. By the well-known regularity results for the Stokes system
(see [10, Theorem IV.6.1]), we have ûn,ĥn∈W 2,3/2(Ω), p̂n∈W 1,3/2(Ω), and also the
estimate

‖ûn‖W 2,3/2(Ω)+‖p̂n‖W 1,3/2(Ω)≤ c(‖Fn‖L3/2(Ω)+‖a‖W 3/2,2(∂Ω))

≤ c(‖ŵn‖2H(Ω)+‖k̂n‖2H(Ω)+‖(a,b)‖2W 3/2,2(∂Ω)+‖(a,b)‖W 3/2,2(∂Ω)+‖f‖W 1,2
0 (Ω)), (3.10)

‖ĥn‖W 2,3/2(Ω)≤ c(‖Hn‖L3/2(Ω)+‖b‖W 3/2,2(∂Ω))

≤ c(‖ŵn‖2H(Ω)+‖k̂n‖2H(Ω)+‖(a,b)‖2W 3/2,2(∂Ω)+‖(a,b)‖W 3/2,2(∂Ω)+‖g‖W 1,2
0 (Ω)). (3.11)
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Denote un=J−1
n ûn,hn=J−1

n ĥn and pn=λ−1
n J−2

n p̂n. Then

−νnΔun+(un ·∇)un+∇pn=(hn ·∇)hn+∇× fn, in Ω,
−νnΔhn+(un ·∇)hn−(hn ·∇)un=∇×gn, in Ω,
div un=div hn=0, in Ω,
un=an, hn=bn, on ∂Ω,

(3.12)

where νn=λ−1
n J−1

n ,fn=J−2
n f ,gn=J−2

n g and an=J−1
n a,bn=J−1

n b.
It follows from Equation (3.10) that

‖pn‖W 1,3/2(Ω)≤ const.
Hence, from the sequence {pnl

}, we can extract a subsequence, still denoted by {pnl
},

which converges weakly in W 1,3/2(Ω) to some function p∈W 1,3/2(Ω). Let ϕ∈C∞
0 (Ω).

Taking η=J−2
n ϕ in Equation (3.9) and letting nl→∞, we get

−λ0
∫
Ω

(w ·∇)ϕ ·wdx+λ0

∫
Ω

(k ·∇)ϕ ·kdx=λ0

∫
Ω

pdiv ϕdx ∀ϕ∈C∞
0 (Ω).

Integrating by parts in the last equality, we derive

λ0

∫
Ω

[(w ·∇)w−(k ·∇)k] ·ϕdx=−λ0
∫
Ω

∇p ·ϕdx ∀ϕ∈C∞
0 (Ω). (3.13)

Hence, the pair (w,k,p) satisfies, for almost all x∈Ω, the inviscid, nonresistive MHD
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(w ·∇)w+∇p=(k ·∇)k, in Ω,

(w ·∇)k−(k ·∇)w=0, in Ω,

div w=div k=0, in Ω,

w=k=0, on ∂Ω.

(3.14)

We summarize the above results as follows.

Lemma 3.1. Assume that Ω⊂R3 is a bounded axially symmetric domain of
type (1.1) with C2-smooth boundary ∂Ω, (∇× f ,∇×g)∈W 1,2

AS (Ω)×W 1,2
ASoS(Ω), (a,b)∈

W
3/2,2
AS (∂Ω)×W

3/2,2
ASoS(∂Ω) are axially symmetric, and a and b satisfy conditions (1.3)–

(1.4). If the assertion of Theorem 1.1 is false, then there exist w,k,p with the following
properties:

(IMHD-AX) The axially symmetric functions (w,k)∈HAS(Ω)×HASoS(Ω),p∈
W

1,3/2
AS (Ω) satisfy the inviscid, nonresistive MHD system (3.14) and Equation

(3.7).

(MHD-AX) There exist a sequence of axially symmetric functions un∈W 1,2
AS (Ω),hn∈

W 1,2
ASoS(Ω), pn∈W 1,3/2

AS (Ω) and numbers νn→0+,λn→λ0∈ (0,1] such that the
norms ‖un‖W 1,2(Ω)+‖hn‖W 1,2(Ω) and ‖pn‖W 1,3/2(Ω) are uniformly bounded, the
pair (un,hn,pn) satisfies Equation (3.12), and

‖∇un‖L2(Ω)+‖∇hn‖L2(Ω)→1,
un⇀w, hn⇀k in W 1,2(Ω), pn⇀p in W 1,3/2(Ω).

(3.15)

Moreover, (un,hn)∈W 3,2
loc (Ω) and pn∈W 2,2

loc (Ω).
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Assume that

Γj ∩Ox3
�=∅, j=0, . . . ,M ′,

Γj ∩Ox3
=∅, j=M ′+1, . . . ,N.

Let P+={(0,x2,x3) :x2>0,x3∈R}, D=Ω∩P+. Obviously, on P+, the coordinates
x2,x3 coincide with the coordinates r,z. For a set A⊂R3, put Ă :=A∩P+, and for
B⊂P+ denote by B̃ the set in R3 obtained by rotation of B around the Oz-axis. Then

(S1) D is a bounded plane domain with Lipschitz boundary. Moreover, Γ̆j is a con-

nected set for every j=0, . . . ,N . In other words, {Γ̆j : j=0, . . . ,N} coincides
with the family of all connected components of the set P+∩∂D.

Hence w, k, and p satisfy the following system in the plan domain D:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wr∂rwr+wz∂zwr− w2
θ

r +∂rp=−k2
θ

r ,

wr∂rwθ+wz∂zwθ+
wrwθ

r =0,

wr∂rwz+wz∂zwz+∂zp=0,

wr∂rkθ+wz∂zkθ− wrkθ

r =0,

∂r(rwr)+∂z(rwz)=0.

(3.16)

These equations are satisfied for almost all x∈D and

w(x)=k(x)=0 for H1-almost all x∈P+∩∂D. (3.17)

We have the following integral estimates: w,k∈W 1,2
loc (D),∫

D
(|∇w(r,z)|2+ |∇k(r,z)|2)rdrdz<∞, (3.18)

and, by the Sobolev embedding theorem for three-dimensional domains, w,k∈L6(Ω),
i.e., ∫

D
(|w(r,z)|6+ |k(r,z)|6)rdrdz<∞. (3.19)

Also, the condition ∇p∈L3/2(Ω) can be written as∫
D
|∇p(r,z)|3/2rdrdz<∞. (3.20)

Denote by Φ=p+ |w|2
2 + |k|2

2 the total head pressure corresponding to the solution
(w,k,p). Obviously, ∫

D
r|∇Φ(r,z)|3/2drdz<∞. (3.21)

Hence,

Φ∈W 1,3/2(Dε) ∀ε>0. (3.22)

We also have the important Bernoulli’s law : for almost all x∈D,
(wr∂r+wz∂z)Φ=0. (3.23)
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3.2. Some results on inviscid MHD equations. Since w and k satisfy Equa-
tion (3.14), w=k≡0 on ∂Ω, and ∇p∈L3/2(Ω): then one can follow [1] and [12] to prove
the following statement.

Lemma 3.2. If (IMHD-AX) are satisfied, then

∀j∈{0,1, . . . ,N} ∃pj ∈R : p(x)≡pj for H2-almost all x∈Γj . (3.24)

In particular, by axial symmetry,

p(x)≡pj for H1-almost all x∈ Γ̆j. (3.25)

We need a weak version of Bernoulli’s law for a Sobolev solution (w,k,p) to the
inviscid MHD Equations (3.16).

From the last equality in Equations (3.16) and from Equation (3.18), it follows that
there exists a stream function ψ∈W 2,2

loc (D) such that
∂ψ

∂r
=−rwz,

∂ψ

∂z
= rwr. (3.26)

Fix a point x∗∈D. For ε>0, denote by Dε the connected component of D∩{(r,z) :
r>ε} containing x∗. Since

ψ∈W 2,2(Dε) ∀ε>0, (3.27)

by the Sobolev embedding theorem, ψ∈C(Dε). Hence ψ is continuous at points of
D\Oz=D\{(0,z) :z∈R}. By the definition of ψ and since w=k≡0 on ∂Ω, we see
that all the boundary components are level sets of ψ.

Lemma 3.3. If (IMHD-AX) are satisfied, then there exist constants ξ0, . . . ,ξN ∈R
such that ψ(x)≡ ξj on each curve Γ̆j, j=0, . . . ,N .

Proof. By virtue of Equations (3.17) and (3.26), we have ∇ψ(x)=0 for H1-almost
all x∈∂D\Oz. Then the Morse–Sard property (see [3]) implies that

for any connected set C⊂∂D\Oz, ∃α=α(C)∈R :ψ(x)≡α ∀x∈C.
Hence since Γ̆j are connected, the lemma follows.

By the properties of Sobolev functions w,k,ψ,Φ (see [5]), we get the following.

Lemma 3.4. If conditions (IMHD-AX) hold, then there exists a set Aw⊂D such
that

(i) H1(Aw)=0;

(ii) for all x=(r,z)∈D\Aw,

lim
ρ→0

−
∫
Bρ(x)

|w(y)−w(x)|2dy= lim
ρ→0

−
∫
Bρ(x)

|k(y)−k(x)|2dy= lim
ρ→0

−
∫
Bρ(x)

|Φ(y)−Φ(x)|2dy=0;

moreover, the function ψ is differentiable at x, and

∇ψ(x)=(−rwz(x),rwr(x));and

(iii) for every ε>0, there exists a set U ⊂R2 with H1
∞(U)<ε,Aw⊂U and such that

the functions w,k,Φ are continuous on D\(U ∪Oz).
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Then one can mimic the proof in [15] to establish the following weak version of
Bernoulli’s law.

Lemma 3.5 (Bernoulli’s Law). Let conditions (IMHD-AX) be valid, and let Aw be a
set from Lemma 3.4. For any compact connected set K⊂D\Oz, the following property
holds: if

ψ|K =const, (3.28)

then

Φ(x1)=Φ(x2) for all x1,x2∈K \Aw. (3.29)

In particular, we can denote by Φ(K) the uniform constant c∈R such that Φ(x)= c for
all x∈K \Aw for any compact set K⊂D\Oz with ψK =const. Moreover, Φ has some
continuity properties when K approaches the singularity axis Oz.

Lemma 3.6. Assume that conditions (IMHD-AX) are satisfied. Let Ki be a
sequence of compact sets with the following properties: Ki⊂D\Oz,ψ|Ki

=const, and
lim
i→∞

inf
(r,z)∈Ki

r=0, liminf
i→∞

sup
(r,z)∈Ki

r>0. Then Φ(Ki)→p0 as i→∞.

Lemma 3.7. If conditions (IMHD-AX) are satisfied, then p0= · · ·=pM ′ , where pj
are the constants from Lemma 3.2.

Heuristically, one can imagine that the axis Oz is an “almost” streamline. By
Lemma 3.5, all the boundary components that intersects with the symmetry axis should
share the same total head pressure Φ, which immediately implies Lemma 3.7. Since the
proof of lemmas 3.2–3.7 are quite similar to the proofs in [15], we omit the details.

3.3. Obtaining a contradiction. We consider three possible cases.

(a) The maximum of Φ is attained on the boundary component intersecting the sym-
metry axis:

p0= max
j=0,...,N

pj=sup
x∈Ω

Φ(x). (3.30)

(b) The maximum of Φ is attained on a boundary component that does not intersect
the symmetry axis:

p0<pN = max
j=0,...,N

pj=sup
x∈Ω

Φ(x). (3.31)

(c) The maximum of Φ is not attained on ∂Ω:

max
j=0,...,N

pj < sup
x∈Ω

Φ(x). (3.32)

3.3.1. The case supx∈ΩΦ(x)=p0. Adding a constant to the pressure p, we can
assume that

p0=sup
x∈Ω

Φ(x)=0. (3.33)

Since the identity p0=p1= · · ·=pN is impossible, we have that pj <0 for some
j∈{M ′+1,N}. Recall that, by Lemma 3.7, p0=p1= · · ·=pM ′ =0. From Equation
(3.14)1, we obtain

0=x ·∇p(x)+x ·(w(x) ·∇)w(x)−x ·(k(x) ·∇)k(x)
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=div [xp(x)+(w(x) ·x)w(x)−(k(x) ·x)k(x)]−p(x)div x−|w(x)|2+ |k(x)|2

=div [xp(x)+(w(x) ·x)w(x)−(k(x) ·x)k(x)]−3Φ(x)+ 1

2
|w(x)|2+ 5

2
|k(x)|2. (3.34)

Integrating it over ∂Ω and using Equation (3.33), we derive a contradiction as
follows:

0≥
∫
Ω

[3Φ(x)− 1

2
|w(x)|2− 5

2
|k(x)|2]dx=

∫
∂Ω

p(x)(x ·n)ds=
N∑
j=0

pj

∫
Γj

(x ·n)ds

=
N∑
j=1

pj

∫
Ωj

div xdx=−3
N∑
j=1

pj |Ωj |>0.

Hence, we exclude the first case.

3.3.2. The case: p0<pN =supx∈ΩΦ(x). We may assume that the maximum
value is zero:

p0<pN = max
j=0,...,N

pj=sup
x∈Ω

Φ(x)=0. (3.35)

Then p0= · · ·=pM ′ <0.
Change (if necessary) the numbering of the boundary components ΓM ′+1, . . . ,ΓN−1

so that

pj <0,j=0, . . . ,M,M ≥M ′, (3.36)

pM+1= · · ·=pN =0. (3.37)

To remove a neighborhood of the singularity line Oz from our consideration, we
take r0>0 such that the open set Dε={(r,z)∈D : r>ε} is connected for every ε≤ r0
(i.e., Dε is a domain), and

Γ̆j⊂Dr0 and inf(r,z)∈Γ̆j
r≥2r0, j=M ′+1, . . . ,N,

Γ̆j ∩Dε is a connected set and sup(r,z)∈Γ̆j∩Dε
r≥2r0,j=0, . . . ,M ′,ε∈ (0,r0].(3.38)

Let a set C⊂Dε separate Γ̆i and Γ̆j in Dε for some different indexes i,j∈{0, . . . ,N};
i.e., Γ̆i∩Dε and Γ̆j ∩Dε lie in different connected components of Dε \C. Obviously,
for ε∈ (0,r0], there exists a constant δ(ε)>0 (not depending on i,j,C) such that the
uniform estimate sup(r,z)∈C r≥ δ(ε) holds. Moreover, the function δ(ε) is nondecreasing.
In particular,

δ(ε)≥ δ(r0), ε∈ (0,r0]. (3.39)

In the following, we will construct an appropriate integration domain by using the
level sets of Φ and Φn. We need some information concerning the behavior of the
limit total head pressure Φ on stream lines. Following [16] and [19], we introduce some
facts of topology. By continuum we mean a compact connected set. We understand
connectedness in the sense of general topology. A subset of a topological space is called
an arc if it is homeomorphic to the unit interval [0,1]. Let Q=[0,1]× [0,1] be a square
in R2, and let f be a continuous function on Q. Denote by Et a level set of the function
f , i.e., Et={x∈Q :f(x)= t}. A connected component K of the level set Et containing
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a point x0 is a maximal connected subset of Et containing x0. By Tf denote a family
of all connected components of level sets of f .

We apply Kronrod’s results to the stream function ψ|Dε
,ε∈ (0,r0]. Accordingly, Tψ,ε

means the corresponding Kronrod tree for the restriction ψ|Dε
. Define the total head

pressure on the Kronrod tree Tψ,ε as follows. Let K ∈Tψ,ε with diam K>0. Take any
x∈K \Aw and put Φ(K)=Φ(x). By the Bernoulli’s Law in Lemma 3.5, the value Φ(K)
is independent of the choice x∈K \Aw. Then Φ has the following continuity properties
on stream lines.

Lemma 3.8 (See [16, Lemma 3.5]). Let A,B∈Tψ,ε, where ε∈ (0,r0], diam A>0, and
diam B>0. Consider the corresponding arc [A,B]⊂Tψ,ε joining A to B. Then the
restriction Φ|[A,B] is a continuous function.

Denote by Bε
0, . . . ,B

ε
N the elements of Tψ,ε such that B

ε
j ⊃ Γ̆j ∩Dε, j=0, . . . ,M

′, and
Bε

j ⊃ Γ̆j ,j=M ′+1, . . . ,N . By construction, Φ(Bε
j)<0 for j=0, . . . ,M , and Φ(Bε

j)=0
for j=M+1, . . . ,N . For r>0, let Lr be the horizontal straight line Lr={(r,z) : z∈R}.
Then, similar to [16, Lemma 4.6], we can find r∗∈ (0,r0] and Cj ∈ [Br∗

j ,Br∗
N ], j=0, . . . ,M ,

such that Φ(Cj)<0 and C∩Lr∗ =∅ for all C ∈ [Cj ,B
r∗
N ].

We restrict our argument on the domain Dr∗ and put Tψ=Tψ,r∗ and Bj=Br∗
j .

Since ∂Dr∗ ⊂B0∪···∪BN ∪Lr∗ and the set {B0, . . . ,BN}⊂Tψ is finite, we can change
Cj (if necessary) such that

∀j=0, . . . ,M, Cj ∈ [Bj ,BN ], Φ(Cj)<0, (3.40)

C∩∂Dr∗ =∅ ∀C ∈ [Cj ,BN ). (3.41)

Observe that Γj ∩Lr∗ �=∅ for j=0, . . . ,M ′. Therefore, if a cycle C ∈Tψ separates
ΓN from Γ0 and C∩∂Dr∗ =∅, then C separates ΓN from Γj for all j=1, . . . ,M

′. So
we can take C0= · · ·=CM ′ and consider only the Kronrod arcs [CM ′ ,BN ], . . . , [CM ,BN ].
Recall that a set Z⊂Tψ has T -measure zero if H1({ψ(C) :C ∈Z})=0.
Lemma 3.9. For every j=M ′, . . . ,M , T -almost all C ∈ [Cj ,BN ] are C1-curves home-
omorphic to the circle. Moreover, there exists a subsequence Φnl

such that the sequence
Φnl

|C converges to Φ|C uniformly Φn|C ⇒Φ|C on T -almost all cycles C ∈ [Cj ,BN ].

Without loss of generality, we assume that the subsequence Φnl
coincides with Φn.

Besides, cycles satisfying the assertion of Lemma 3.9 will be called regular cycles. From
Lemma 3.9 and [16, Lemma 3.6], we can conclude that

H1({Φ(C) :C ∈ [Cj ,BN ] and C is not a regular cycle})=0,j=M ′, . . . ,M. (3.42)

Setting α= max
j=M ′,...,M

min
C∈[Cj ,BN ]

Φ(C), by (3.40), α<0. By Equation (3.42), we can

find a sequence of positive values ti∈ (0,−α),i∈N with ti+1=
1
2 ti such that the impli-

cation

Φ(C)=−ti⇒C is a regular cycle

holds for every j=M ′, . . . ,M and for all C ∈ [Cj ,BN ]. Consider the natural order on

the arc [Cj ,BN ], namely, C
′<C

′′
if C

′′
is closer to BN than C ′. For j=M ′, . . . ,M and

i∈N, put
Aj

i =max{C ∈ [Cj ,BN ] :Φ(C)=−ti}.
Then each Aj

i is a regular cycle and Aj
i ⊂Dr∗ . In particular, for each i∈N, the compact

set ∪M
j=M ′A

j
i is separated from ∂Dr∗ and dist(∪M

j=M ′A
j
i ,∂Dr∗)>0. Then for each i
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and for sufficiently small h>0, we have the inclusion {x∈Dr∗ : dist(x,Γ̆N )<h}⊂Dr∗ \
(∪M

j=M ′A
j
i ). Denote by Vi the connected component of the open set Dr∗ \(∪M

j=M ′A
j
i )

which encloses the set {x∈Dr∗ : dist(x,Γ̆N )<h}. Then we have

{x∈Dr∗ : dist(x,Γ̆N )<h}∩∂Vi=AM ′
i ∪···∪AM

i .

By the construction, the sequence of domains Vi is decreasing, i.e., Vi⊃Vi+1. Hence,
the sequence of sets (∂Dr∗)∩(∂Vi) is nonincreasing. Every set (∂Dr∗)∩(∂Vi) consists
of several components Γ̆l with l>M . Since there are only finitely many components
Γl, we can conclude that, for sufficiently large i, the set (∂Dr∗)∩(∂Vi) is independent
of i. So we can assume that (∂Dr∗)∩(∂Vi)= Γ̆K ∪···∪ Γ̆N , where K ∈{M+1, . . . ,N}.
Hence,

∂Vi=AM ′
i ∪···∪AM

i ∪ Γ̆K ∪···∪ Γ̆N . (3.43)

By Lemma 3.9, we have the uniform convergence Φn|Aj
i
⇒Φ(Aj

i ) as n→∞. Then

for each i∈N there exists ni such that for all n≥ni

Φn|Aj
i
<−7

8
ti, Φn|Aj

i+1
>−5

8
ti ∀j=M ′, . . . ,M.

Then

∀t∈ [ 5
8
ti,
7

8
ti] ∀n≥ni Φn|Aj

i
<−t, Φn|Aj

i+1
>−t ∀j=M ′, . . . ,M.

Accordingly, for n≥ni and t∈ [ 58 ti, 78 ti], we can define W j
in(t) as the connected

component of the open set {x∈Vi \Vi+1 :Φn(x)>−t} with ∂W j
in(t)⊃Aj

i+1 and put

Win(t)=
M⋃

j=M ′
W j

in(t), Sin(t)=(∂Win(t))∩(Vi \Vi+1).

By construction, Φn≡−t on Sin(t) and

∂Win(t)=Sin(t)∪AM ′
i+1∪···∪AM

i+1,

and the set Sin(t) separates A
M ′
i ∪···∪AM

i from AM ′
i+1∪···∪AM

i+1. Since Φn∈W 2,2
loc (Ω),

by the Morse–Sard theorem, for almost all t∈ [ 58 ti, 78 ti], the level set Sin(t) consists of
finitely many C1-cycles, and Φn is differentiable in the classical sense at every point x∈
Sin(t) with ∇Φn(x) �=0. We will say the values t∈ [ 58 ti, 78 ti] having the above property
are (n,i)-regular. Therefore, S̃in(t) is a finite union of smooth surfaces (tori), and by
construction ∫

˜Sin(t)

∇Φn ·ndS=−
∫
˜Sin(t)

|∇Φn|dS<0, (3.44)

where n is the unit outward normal vector to ∂W̃in(t).
For h>0, denote Γh={x∈Ω:dist(x,ΓK ∪···∪ΓN )=h}, Ωh={x∈Ω:dist(x,ΓK ∪

···∪ΓN )<h}. Since the distance function dist(x,∂Ω) is C1-regular and the norm of its
gradient is equal to one in the neighborhood of ∂Ω, there is a constant δ0>0 such that,
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for every h≤ δ0, the set Γh is a union of N−K+1 C1-smooth surfaces homeomorphic
to the torus, and

H2(Γh)≤ c0 ∀h∈ (0,δ0], (3.45)

where the constant c0=3H2(ΓK ∪···∪ΓN ) is independent of h.

Lemma 3.10. For any i∈N, there exists n(i)∈N such that, for every n≥n(i) and for
almost all t∈ [ 58 ti, 78 ti], the inequality∫

˜Sin(t)

|∇Φn|dS≤Ft (3.46)

holds with the constant F independent of t, n, and i.

Proof. By a direct calculation, Equation (3.16) implies

∇Φ =∇ 1
2 |w|2−(w ·∇)w+∇ 1

2 |k|2+(k ·∇)k
=[∇w−(∇w)T ] ·w+[∇k+(∇k)T ] ·k. (3.47)

Since Φ �=const on Ṽi, (3.47) implies
∫
˜Vi
|∇w−(∇w)T |2+ |∇k+(∇k)T |2dx>0 for every

i. Hence, from the weak convergence ∇un⇀∇w and ∇hn⇀∇k in L2(Ω) it follows
that for any i∈N, there exist constants εi>0,δi∈ (0,δ0) and k′i∈N such that

Ωδi ∩Ãj
i =Ωδi ∩˜Aj

i+1=∅, j=M ′, . . . ,M,

and for all n≥n′
i∫
˜Vi+1\Ωδi

(|∇un−(∇un)
T |2+ |∇hn+(∇hn)

T |2)dx>εi. (3.48)

Fix i∈N. We assume that n≥ni. Since we have removed a neighborhood of the
singularity line Oz, we can use the Sobolev embedding theorem in the plane domain
Dr∗ . The uniformly boundedness of ‖Φn‖W 1,3/2(Dr∗ ) imply that the norm ‖Φn‖L6(Dr∗ )
and then ‖Φn∇Φn‖L6/5(Dr∗ ) are also uniformly bounded. Finally, we have

‖Φn∇Φn‖L6/5(˜Dr∗ )
≤ const. (3.49)

Fix a sufficiently small σ>0 (the exact value of σ will be specified below), and take
the parameter δσ ∈ (0,δi] small enough to satisfy the following conditions:

Ωδσ ∩Ãj
i =Ωδσ ∩˜Aj

i+1=∅, j=M ′, . . . ,M, (3.50)∫
Γh

Φ2ndS<σ2 ∀h∈ (0,δσ] ∀n≥n′. (3.51)

The last estimate follows from the identity Φ|ΓK∪···∪ΓN
≡0, the weak convergence Φn⇀

Φ in the space W 1,3/2(Ω), and (3.49).
By a direct calculation, (3.12) implies

∇Φn=−νncurl curl un+[∇un−(∇un)
T ] ·un

+[∇hn+(∇hn)
T ] ·hn+∇× fn.
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Then, using Stokes’ theorem, we obtain∫
S

∇Φn ·ndS=
∫
S

(
[∇un−(∇un)

T ] ·un

) ·ndS+∫
S

(
[∇hn+(∇hn)

T ] ·hn

) ·ndS.
Now, fix a sufficiently small ε>0. The exact value of ε will be specified below. For

a given sufficiently large n≥n′, we follow the proof of [16, Lemma 3.8] to find a number
hn∈ (0,δσ) such that the estimates∣∣∣∣

∫
Γhn

∇Φn ·ndS
∣∣∣∣≤2

∫
Γhn

(|un| · |∇un|+ |hn| · |∇hn|)dS<ε, (3.52)

∫
Γhn

(|un|2+ |hn|2)dS≤Cεν
2
n (3.53)

hold, where Cε is independent of n and σ.
Now, for (n,i)-regular value t∈ [ 58 ti, 78 ti], consider the domain

Ωihn
(t)=W̃in(t)∪(Ṽi+1 \Ωhn

).

By construction, ∂Ωihn
(t)=Γhn

∪ S̃in(t). Also using Equation (3.12), we know

ΔΦn=Δpn+ |∇un|2+ |∇hn|2+un ·Δu+hn ·Δhn

=−div((un ·∇)un)+div((hn ·∇)hn)+ |∇un|2+ |∇hn|2

− 1

νn

(
(∇× fn) ·un+(∇×gn) ·hn

)

+
1

νn

(
(un ·∇) |un|2

2
+un ·∇pn−un ·((hn ·∇)hn)

)

+
1

νn

(
(un ·∇) |hn|2

2
−hn ·((hn ·∇)un)

)

=−
3∑

i,j=1

∂iunj∂juni+ |∇un|2+ |∇hn|2+
3∑

i,j=1

∂ihnj∂jhni+
1

νn
(un ·∇)Φn

− 1

νn
(hn ·∇)(un ·hn)− 1

νn

(
(∇× fn) ·un+(∇×gn) ·hn

)

=
1

νn
div (Φnun)+

1

2
|∇un−(∇un)

T |2+ 1

2
|∇hn+(∇hn)

T |2

− 1

νn

(
(∇× fn) ·un+(∇×gn) ·hn

)
, (3.54)

where we have used the special structure of un and hn, so that (hn ·∇)(un ·hn)≡0.
Integrating Equation (3.54) over the domain Ωihn

(t), we obtain∫
˜Sin

∇Φn ·nds+
∫
Γhn

∇Φn ·nds

=

∫
Ωihn

(t)

1

2
|∇un−(∇un)

T |2+ 1

2
|∇hn+(∇hn)

T |2dx

− 1

νn

∫
Ωihn

(t)

((∇× fn) ·un+(∇×gn) ·hn)dx+
1

νn

∫
˜Sin

Φnun ·nds+ 1

νn

∫
Γhn

Φnun ·nds
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=

∫
Ωihn

(t)

1

2
|∇un−(∇un)

T |2+ 1

2
|∇hn+(∇hn)

T |2dx

− 1

νn

∫
Ωihn

(t)

((∇× fn) ·un+(∇×gn) ·hn)dx+
1

νn

∫
Γhn

Φnun ·nds− tλnF ,

where F =(FM ′+ · · ·+FM ). In view of Equation (3.52), we can estimate∫
˜Sin

|∇Φn|ds≤ tF+ε+
1

νn

∫
Ωihn

(t)

((∇× fn) ·un+(∇×gn) ·hn)dx

−
∫
Ωihn

(t)

(
1

2

∣∣∣∣∇un−(∇un)
T

∣∣∣∣2+ 1

2

∣∣∣∣∇hn+(∇hn)
T

∣∣∣∣2
)
dx

+
1

νn

(∫
Γhn

Φ2nds

) 1
2
(∫

Γhn

|un|2ds
) 1

2

(3.55)

with F = |F|. By definition, 1
νn
‖∇× fn‖L2(Ω)=λnνn‖∇× f‖L2(Ω)→0 as n→∞. There-

fore, ∣∣∣∣ 1νn
∫
Ωihn

(t)

((∇× fn) ·un+(∇×gn) ·hn)dx

∣∣∣∣≤ ε

for sufficiently large n. Using inequalities (3.51) and (3.53) in Equation (3.55), we obtain∫
˜Sin

|∇Φn|ds≤ tF+2ε+σ
√

Cε−
∫
Ωihn

(t)

1

2
|∇un−(∇un)

T |2+ 1

2
|∇hn+(∇hn)

T |2dx

≤ tF+2ε+σ
√
Cε−

∫
˜Vi+1\Ωδi

1

2
|∇un−(∇un)

T |2+ 1

2
|∇hn+(∇hn)

T |2dx,

where Cε is independent of n and σ. Choosing ε= 1
6εi, σ=

εi
3
√
Cε
, and a sufficiently large

n, from Equation (3.48) we obtain 2ε+σ
√
Cε−

∫
˜Vi+1\Ωδi

1
2 |∇un−(∇un)

T |2+ 1
2 |∇hn+

(∇hn)
T |2dx≤0. We have finished the proof.

Now we can derive a contradiction by using the Co-area formula.

Lemma 3.11. Assume that Ω⊂R3 is a bounded domain of type (1.1) with C2-

smooth boundary ∂Ω, (∇× f ,∇×g)∈W 1,2
AS (Ω)×W 1,2

ASoS(Ω), and (a,b)∈W 3/2,2
AS (∂Ω)×

W
3/2,2
ASoS(∂Ω) satisfies conditions (1.3)–(1.4). Then assumptions (MHD-AX) and Equa-

tion (3.35) lead to a contradiction.

The proof of Lemma 3.11 can be obtained by slightly modifying the proof of Lemma
3.9 of [16], i.e., replacing Hausdorff measure H1 by H2 and the curves Sin(t) by the

surfaces S̃in(t) in the corresponding integrals, and the details are omitted. Therefore,
we have excluded the second case.

3.3.3. The case: supx∈ΩΦ(x)>maxj=0,...,N pj. Assume that Equation (3.32)
is satisfied, and set σ=maxj=0,...,N pj . Then we can find a compact connected set
F ⊂D\Aw such that diam(F )>0, ψ|F =const, and Φ(F )>σ. We may assume that
σ<0 and Φ(F )=0. We still need to separate F from ∂D by regular cycles and take a
number r0>0 such that F ⊂Dr0 , the open set Dε={(r,z)∈D : r>ε} is connected for
every ε≤ r0 and conditions (3.38) are satisfied. Then, for ε∈ (0,r0], we can consider the
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behavior of Φ on the Kronrod trees Tψ,ε corresponding to the restrictions ψ|Dε
. Denote

by F ε the element of Tψ,ε containing F . Using the same procedure as before, we can
find r∗∈ (0,r0] and Cj ∈ [Br∗

j ,F r∗ ], j=0, . . . ,N , such that Φ(Cj)<0 and C∩Lr∗ =∅ for
all C ∈ [Cj ,F

r∗ ].

Set Tψ=Tψ,r∗ ,F
∗=F r∗ , and Bj=Br∗

j , i.e., Bj ∈Tψ and Bj⊃ Γ̆j ∩Dr∗ . As above,
we can change Cj so that

∀j=0, . . . ,N Cj ∈ [Bj ,F
∗], Φ(Cj)<0,

C∩∂Dr∗ =∅ ∀C ∈ [Cj ,F
∗], and C0= · · ·=CM ′ .

Similarly, we should construct an appropriate integration domain by using the
level sets of Φ and Φn. Take positive numbers ti=2

−it0, regular cycles Aj
i ∈ [Cj ,F

∗]
with Φ(Aj

i )=−ti, and the set Sin(t) with Φn|Sin(t)≡−t separating AM ′
i ∪···∪AN

i from

AM ′
i+1∪···∪AN

i+1, etc. Argued in Lemma 3.10 and Lemma 3.11, we can derive a similar
contradiction as before. Therefore, we have finished the proof of Theorem 1.1.
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