COMMUN. MATH. SCI. (© 2016 International Press
Vol. 14, No. 8, pp. 2287-2307

EXISTENCE OF AXTALLY SYMMETRIC WEAK SOLUTIONS
TO STEADY MHD WITH NONHOMOGENEOUS
BOUNDARY CONDITIONS*

SHANGKUN WENGT

Abstract. We establish the existence of axially symmetric weak solutions to steady incompressible
magnetohydrodynamics with nonhomogeneous boundary conditions. The key issue is the Bernoulli’s
law for the total head pressure ®= %(|u\2+|h|2)+p to a special class of solutions to the inviscid,
non-resistive MHD system, where the magnetic field only contains the swirl component.
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1. Introduction and main results
Let Q C R3 be an axially symmetric domain with C?-smooth boundary 9Q = Uj‘\;o I
consisting of IV +1 disjoint components I';, i.e.,
Q=0\(UL,9;), ©CcQji=1,...,N, (1.1)
where I'; =09;. Consider the steady magnetohydrodynamics (MHD) equations in

(u-V)u+Vp=(h-V)h+Au+Vxf, VreQ,
V)u

(u-V)h—(h- =Ah+Vxg, Ve, (12)
div u=div h=0, Vo e, '
u=a, h:b on 89.

For the existence of weak solutions to the system (1.2), the following compatibility
conditions are necessary:

N N

Z]—'j::Z/ a-nds=0, (1.3)
j=0 =013

N N

> 6 ;:Z/ b-nds=0, (1.4)
=0 j=0"1i

where n is the outward unit vector to the boundary 952.
If the magnetic field h is absent, then the system (1.2) is reduced to the famous
steady Navier—Stokes equations

(u-V)u+Vp=Au+V xf, Ve,
div u=0, (1.5)
u=a on 0.
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Leray [21] made fundamental contributions to the existence theory and showed the exis-
tence of a weak solution ue€ W12(Q2) to the system (1.5) under the stronger assumptions

FJ

Leray provided two different methods for the existence results in [21]. The first one
reduced the nonhomogeneous case to homogeneous case by using the solenoidal ex-
tension of boundary value a into 2, which was successively completed and clarified
in [6,11,20]). The second one is based on a clever contradiction argument, which was
used in [1,2,12,25]. However, the problem of whether the systems (1.5) and (1.3) admit
a solution or not has been open for long time and is usually referred to as Leray’s prob-
lem in the literature. For sufficiently small fluxes F}, one can also obtain the existence
of weak solutions [2,6,7,9,10,12,18,25]. The existence was also known with certain
symmetric restrictions on the domain and the boundary data and the forcing term
(see [1,8,14,22-24]). Recently, Korobkov, Pileckas, and Russo have made an important
breakthrough in a series of papers [13,15-17] on the existence theory without any re-
strictions on the fluxes. First, in [13], they obtained the existence for a plane domain €
with two connected components of the boundary assuming only the inflow condition on
the external component. The new ingredients of analysis in [13] are the weak one-sided
maximum principle for the total head pressure ® = %|u|2 + p obtained by the Bernoulli’s
law for weak solutions to the Euler equations and a divergence form representation of
®. The Bernoulli’s law is based on the Morse-Sard theorem developed in [3]. The spa-
tial axially symmetric case was investigated in [15], where the existence was established
without any restrictions on the fluxes, if all components I'; of 02 intersect the axis of
Symimetry.

In [16], Korobkov, Pileckas, and Russo finally established the existence of weak
solutions u€ H'() to the steady Navier-Stokes with boundary values a€ W3/22(9Q)
and the force V x f € H(Q) in 2-D bounded domain or 3-D axially symmetric domain
with C2-smooth boundary, assuming only the total fluxes are zero. By the Morse-Sard
theorem proved in [3], almost all level sets of the stream function v are finite unions
of O curves. Based on the clear understanding of the level sets of 1 and ®, they can
construct appropriate integration domains (bounded by smooth level lines) and estimate
the upper bound of the L? of V®. On the other hand, the length of each of these level
lines is bounded from below, and the coarea formula implies a lower bound for the L'
norm of V®, from which they can derive a contradiction. In the proof given in [16], the
Bernoulli’s law for the Euler equations plays an essential role.

In this paper, we adapt their idea in [16] to the steady MHD equations. More
precisely, we will establish the existence of axially symmetric weak solutions u(x)=
up(r,z)e, +up(r,z)eg +u.(r,z)e. and h(x)=hgy(r,z)ey to the system (1.2) with non-
homogeneous boundary values in axially symmetric domains with C? smooth bound-
ary. We introduce some notations. Let O,,0,,,0,, be coordinate axes in R? and
0 =arctan(zy/21),r = (2 +23)*/2, 2 =23 be cylindrical coordinates. Denote by vg,v,., v,
the projections of the vector v on the axes 0,r,z. A function f is said to be axially
symmetric if it does not depend on 6. A vector-valued function h= (h,.,hg,h.) is called
axially symmetric if h,., hg, and h, do not depend on 6. A vector-valued function
h'=(h,,hg,h.) is called axially symmetric with no swirl if hg=0 while h, and h, do
not depend on 6.

We need to use the following symmetry assumptions:
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(SO) QCR? is a bounded domain with C? boundary and O,, is a symmetry axis of
Q.

(AS) The assumptions (SO) are fulfilled and both the boundary value a € W3/22(9Q)
and V x f e Wh2(Q) are axially symmetric.

(ASwR) The assumptions (SO) are fulfilled and both the boundary value ac
W3/22(9Q) and V x f € WH2(Q) are axially symmetric without rotation.

(ASoS) The assumptions (SO) are fulfilled and both the boundary value be
W3/22(9Q) and V xge W2(Q) are axially symmetric with only swirl com-
ponent.

We will use standard notation for Sobolev spaces: W*4(€Q), W(€), W*4(9), where

a€(0,1),k€Ng,qg€[1,00]. Denote by H(£2) the subspace of all solenoidal vector fields

from Wy*(€2) equipped with the norm ull o) =IVul[12q). Denote by L% ()

(L% gwr(£2)) the space of all axially symmetric vector-valued functions (without rota-

tion) in L7(£2). Similarly, define the sgz;ges L%SOSEK/ZQ),QHAS(Q), 5,245103(9), H o, (),

1,2 1,2 1,2 3/2, 3/2, ,
W (), Wis,r (), Wises(Q), Wis™(09), Wiy r(9), Wils 5(09), ete. We de-
note by H! the one-dimensional Hausdorff measure, i.e., H!(F)=1lim;_,o; H{ (F), where

’Htl(F):inf{Zdiam F;:diam F; <t,FC UFl}

i=1 i=1
The main result of this paper is stated as follows.

THEOREM 1.1. Assume that QCR3 is a bounded avially symmetric domain
of type (1.1) with C?-smooth boundary 0Q. If (Vx£,Vxg)e Has(Q)x Hasos(9),
(a,b) € Wi/sz’z(aQ) X WZ@;(@Q) and a satisfy the compatibility condition (1.8). Then
the system (1.2) admits at least one weak azially symmetric solution (u,h) € Hag(Q) X
Hus505(2). Moreover, if Vxf € Hpgwr(2) and ac Wi{;ﬁz(aﬁ) are axially symmetric
with no swirl, then the system (1.2) admits at least one weak azially symmetric solution
with (u7h) € HASwR(Q) X HASoS(Q)'

REMARK 1.1. In the case that b=by(r,2)ey, Equation (1.4) holds automatically since
ep-n=0 on 0N.

For the stationary MHD equations (1.2), we can define the total head pressure & =
1(Jul®*+|h[*)+p. Suppose (u,h,p) are a smooth solution to the inviscid, non-resistive
MHD system. Then we only have

(u-V)®@=(h-V)(u-h). (1.7)

So even in the two-dimensional case, the right side is not zero in general. In particular,
the level sets of the stream function ¢ and ® do not coincide with each other; the
Bernoulli’s law is lost. However, if we further restrict ourselves to the axially symmetric
MHD case with the special solution form u(x)=w,(r,z)e, +ug(r,z)es+u.(r,z)e, and
h(x) =hg(r,z)eq, then (h-V)(u-h)="20y(u-h)=0 and the Bernoulli’s law holds

(u-V)®=0. (1.8)

This has been observed in our previous paper [4], where we have used this to prove
some Liouville-type theorems for the steady MHD equations. Here, we will adapt the
methods developed in [16] to establish the existence of axially weak solutions to the
system (1.2).
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This paper is organized as follows. We first prepare some preliminaries to reduce
the existence problem to some uniform estimates needed in Lemma 2.5 and Lemma
2.6. Then, in Section 3.1, we first run the Leray’s reductio ad absurdum argument for
the steady MHD equations. The Bernoulli’s law for the inviscid, nonresistive MHD
equations is obtained in Section 3.2. Finally, we adapt the methods developed in [16]
to the steady MHD equation to obtain a contradiction.

2. Preliminaries

The following lemmas concern the existence of solenoidal extensions of boundary
values.
LEMMA 2.1.

(i) Ifac Wj/SQ’Q (092) and Equation (1.3) holds, then there exists an azially symmetric
solenoidal extension A € W22(Q) of a with the estimate

1A ll22(0) < cllallyaze o) (2.1)

Moreover, if conditions (ASwR.) are prescribed, then A can be chosen to have
zero swirl component.

(i) If be Wiﬁ;g(@&)) , then there exists a unique vector field H € Wj’gos(ﬁ) such that
AH=0 nQ, divH=0 inQ, H=b on o (2.2)
We also have the estimate

1Elhwaz (o) <ellbllyszs ooy (2.3)

Proof.  The conclusion (i) has been proved in [15]. (ii) Let be Wi@;(@ﬁ). Then
there exists a unique vector field F € W22(9Q) to the Laplace equation

AF=0 in Q, F=b on 0f). (2.4)

By similar arguments as in Lemma 2.2 in [15], we can choose F to be axially sym-
metric. By the standard formulas for A in cylindrical coordinate system, one has for
F= (FT‘vFgaFZ)

1 1
AF:(AQ*ﬁ)FTeT“i’(AQ*ﬁ)Fge‘g‘i’(Ang)eZ:O, (2.5)

where Ay = (82 + 10,4+ 02). Take H=Fyey. Then He Wi’gos(Q), and it follows easily
from Equation (2.5) that

AH=0.
Since be ng%;@(aﬂ), we still have H=b on 912; therefore, H=F by uniqueness. That
is, Fi.=F, =0, which implies that

1
div H=div F=0,.F,.+-F,.+0.F,=0.
r

d
REMARK 2.1. The statement and proof of (ii) were suggested by one of the referees.
The author would like to thank them for the important improvement.
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Given a function F e L(Q) with ¢ >6/5, consider the continuous linear functional

H(Q)>n— fQ F-ndz. By the Riesz representation theorem, there exists a unique func-
tion G € H(Q) with

/F~'r/dx:/Vn~Vde:<G,n>H(Q) Vne H(Q).
Q Q

Put G=T,F. Evidently, Tj is a continuous linear operator from L4(2) to H((2).
The following lemmas are easily verified.

LEMMA 2.2.  The operator Ty : L3/2(Q2) — H(Q) has the following symmetry properties:
VEeL/2(Q)  TyFeHas(Q),
VEeL¥2 (Q)  ToF€Hasur(9), (2.6)
VEeL2 J(Q)  ToF € Hasos(R).

LEMMA 2.3.  The following inclusions are valid:

Yu,ve Hys(Q) V€L3/2( Q),
Vu,VGHAsz(Q) u- VEL?X;wR(Q)

(u-V)
() (2.7)
Vu e Hag(Q),vE Hagos () (u-V)v—(v-V)ue L¥2 (),
W, v € Hasos (), (w-V)ve LG, z(9):

Suppose a € W3/22(9Q) and also the conditions (1.3) and (AS) (or (ASWR)) are
fulfilled. Then we can find a weak axially symmetric solution U € W22((Q) to the Stokes
problem in the sense that U— A € H(Q)NW?>2(Q), and the following formula is satisfied
by U:

/VU-Vndx:/(fo)-ndm, Vne H(Q).
Q Q

Moreover,

1Ullw22(0) <cllallwsrzz@0) + IV < £llL20)-

Put w=u—U and k=h—H. Then the problem (1.2) is equivalent to

—“Aw+(U-V)w+(w-V)w+(w-V)U=-Vp—(U-V)U
+(H-V)k+(k-V)k+ (k- V)H+(H-V)H, in Q,
—Ak+(U-V)k+(w-V)k+(w-V)H—(k-V)U—(k-V)w— (H-V)w=0
_(U.V)H+H-V)U+V xg, i (12
div w=div k=0 in Q,
w=k=0 on 0f2.

By a weak solution to the problem (1.2), we understand functions (u,h) such that
w=u—-UeH(Q), k=h—He H(Q) and for any ne H(Q),¢ € W, *(Q)

(e = [ (U-9)U-mda— [ (U-9)ww-pda [ (w9 e
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—/Q(W~V)U~ndx+/Q(H~V)k~ndx+/ﬂ(k-V)k~ndx

+/Q(k-V)H.ndH/Q(HV)H'nd% (2.9)

(k,C)H(Q):—/Q(U~V)H~Cdxf/Q(U'V)k-Calf—/(W.V)k.gdx

Q

f/Q(w~V)H~Cdﬂc+/Q(k-V)U~Cdm+/Q(k~V)w~C
+/Q(H-V)W-Cdx+/Q(H-V)U~Cdm+/Q(V><g)~Cdx.

w

By the Riesz representation theorem, for any <k

> €H(Q)x H(Q) there ex-

T
ists a unique element T (xlz{v) = (Tl (K) Ty (‘l:/)) € H(Q) x H(2) such that

the right-hand sides of Equation (2.9) are equivalent to <T1 (f{v n and

H(Q)
k
ear operator from H(Q) x H(Q) to H(Q) x H(Q).

LEMMA 2.4.  The operator T: H(Q)x H(Q)— H(Q) x H(Q) is compact. Moreover, T
has the following symmetry properties:

<T2 (W> ,C> forallme H(Q),C € Wol’Z(Q)’ respectively. Obviously, T is a nonlin-
H(Q)

V(E’) € Has(Q) x Hasos(Q), Th (K) € Has(9),

w

v(f{") € Haswr(Q) x Hasos(Q), T (k ) € Haswr (), (2.10)

v(f{v> € Has() x Hasos(Q), T (K) € Hasos ().

Proof.  The compactness can be proved in a standard way as shown in [20], and
Equation (2.10) follows from Lemma 2.2 and Lemma 2.3. o

Hence, Equation (2.9) is equivalent to the operator equation

)-+()

in the space H(Q2) x H(Q2). Thus, we can apply the Leray—Schauder fixed point theo-
rem to the compact operators T|g, () x Hasos(@) @ Tl g 460 0(Q) x Hasos(@)- Then the
following statements hold.

LEMMA 2.5.  Let conditions (AS) and (ASoS) and Equations (1.3)-(1.4) be fulfilled.

Suppose all possible solutions to the equation <W> =T <W> with A€ [0,1]are

w
k k k

uniformly bounded in H(2) x H(Q). Then problem (1.2) admits at least one weak azially
symmetric solution (u,h) € Has(Q) x Hasos(£2).

LEMMA 2.6. Let conditions (ASwR) and (ASoS) and Equations (1.3)-(1.4) be

W) to the equation (K) =\T (W> with

fulfilled.  Suppose all possible solutions <k Kk
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A€ [0,1] are uniformly bounded in H(Q) x H(Q2). Then problem (1.2) admits at least
one weak azially symmetric solution (u,h) € H 45,z () X Hasos(S2).

3. Proof of Theorem 1.1

3.1. The reductio ad absurdum argument by Leray. We apply the reductio
ad absurdum argument of Leray [21] to the stationary MHD equations. To prove the
existence of a weak solution to the MHD system (1.2), by Lemma 2.5, and Lemma
2.6 it is sufficient to show that the weak solutions (w,k) satisfying for any (n,¢)€
H(Q)x Wg2(Q)

(w,n>H(Q):—)\/Q(U-V)U-ndx—)\/Q(U-V)w-ndx—)\/Q(W.v)w.ndx

f)\/g(w-V)U-ndx+)\/Q(H‘V)k~nda¢+)\/g(k~V)k~ndm

Jr)\/ﬂ(k'V)H~77d:174r>\/Q(H~V)H~77d;r,
(k,C)H(Q):—)\/Q(U~V)H-Cdx—A/g(U-V)k(dx—)\/Q(W~V)k~Cdx (3.1

—)\/Q(w-V)H~Cdm+>\/g(k~V)U~Cdx+)\/(k~V)w~C

Q
+)\/Q(H~V)W-Cdx)\+/Q(H-V)U-Cdm—)\/QVH-VCdx—H\/Q(V><g)~Cda:,

are uniformly bounded in H () x H(Q) with respect to A€[0,1]. Assume that this is
false. Then there exist sequences {\, }nen C [0,1] and {W,,,ky, }nen € H(Q2) x H(§2) such
that, for any (,¢) € H () x Wy (Q),

/VvAvn-Vnda:—)\n/((v?rn+U)'V)n~€rnd;z:—)\n/(vAvn'V)n-de
Q Q Q

+>\n/((En+H)~V)n~Endx+/\n/(En-v)n~de

Q Q

:)\n/(U~V)n'Ud:c—)\n/(H-V)n'Hdac, (3.2)
Q Q

/vﬁn.vcdx—An/((wn+U)-V)c.Endx—An/(wn.V)c.Hd:c
Q Q Q

+An/((En+H)-V)c-€vnd:¢+An/(En-V)c-de
Q Q

z)\n/ﬂ((U-V)C)-de—)\n/Q(H-V)C-Udm—)\n/QVH-VCdx—i—)\n/Q(Vxg)-(dx
(3.3)
and

T A =X0€[0,1),  Tim 2= lim (|Walye) + [Kallfio) =00, (3.4)

Denote w, =J; "W, .k, =J; 'k,. Since ||WnH§{(Q) + ||an%I(Q) =1, there exists a
subsequence {w,,,k,, } converging weakly in H () to vector fields w,k € H(2). Because
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of the compact embedding
H(Q)—L"(Q) Vre([1,6),

the subsequence {w,,,k,,} converges strongly in L"(£2). Replacing ¢ in Equation (3.3)
by J,,72¢ and letting n — oo, we obtain

)\O/Q[(W'V)k— (k-V)w]-Cdx=0. (3.5)

Taking an;QV’?/n,C:Jn’2En in Equations (3.2)-(3.3) and adding the above two
identities, we get

/\an|2+|an|2dx
Q
=\, /Q [(Wn- V)W, — (kn-)ky]-Udz — ), /Q (W, -V)ky, — (kp - V)W, - Hdz
+J;1)\n/[(UoV)wn~Uf(H~V)wn~H+(U~V)kn-Hf(H~V)kn~U]dx
Q
—J;IAH/[(ng).kn+VH-an]dm. (3.6)
Q

Therefore, passing to a limit as n; — co in Equation (3.6) and using Equation (3.5), we
obtain

1 :)\O/Q[(W~V)wf (k-V)k]- Uda. (3.7)

This implies Ao € (0,1]. Let us return to the integral identity (3.2). Consider the func-
tional

Ro(n) = /Q VW, Vndz— A, / (50 +0)- V)-Seda =N, [ (9-V)- Ul

+An Q(( w+H)-V)n-Kydz+ A, / V)n-Hdz—\, / (U-V)n-Udz
+/\n/Q(H~V)n~de VneW,?(Q).
Obviously, Ri(n) is a linear functional and
(B ()] < el )y B ) [y + 1) By 12
with constant ¢ independent of n. It follows from Equation (3.2) that
R,(m)=0  VneH(Q).

Therefore, there exists an axially symmetric function p, e L2(Q)={qeL?(Q):
Joa(z)dz=0} such that

Ro(m) = /Q Podiv nds Ve WSA(Q)
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and

1Pnllz2 (@) < el (¥n k)l 220 + | (W k) 1) + 1@ D) [Fya/2.2 02y + IEl1Ty1.2 )-

(3.8)
The pair (vAvn,En7 Dn) satisfies the integral identity
/Q V- Vipda — A, /Q (5, +0)- V)-Seda =N, [ (8- V)n- Ul
+An/Q((§n+H).V)n-EndHAn/ﬂ(En.V)n.HdHAn/Q(HV)n-de
—An/Q(U.V)n.de:/Qpndiv ndz, YneWy?(Q). (3.9)

Let U, =w, + U,fln = Kn +H. Then identity (3.9) reduces to

/Vﬁn.Vndx—/[)ndiv nd:c:—)\n/(ﬁn.V)ﬁn.ndx
Q Q Q

+An/(ﬁn.V)ﬂn.ndx+An/(va).ndag, vne Wy 2(Q).
Q Q

~

Thus (U,,h,,p,) might be considered as a weak solution to the Stokes problem

— AUy + V=M (T - V)ln+Ap(hy - V), + 0, Vx £:=F,  inQ,

—Ah, =X, (T, - V)hy, + Ay (b, - V)0, +V x g:=H, in Q,
div 6, =div h, =0 in Q,
ﬁnza,ﬁn:b on Of).

Obviously, F,,,H,, € L?/2(Q) and
1FnllLer2 () < ell(@n - V)| par2 () + ¢l (B - V)b La2) + IV X £l 2720
< clldnllze@) VanllLz @) +cllhn | Lo @) [[Vhnl 2(@) + IEll 2 g
< c([Wnll3r 0y + KnlFriy + 1allZ 2.2 a0) + D122 00)) + (w20,
HHn||L3/2(Q) <c|[(uy- V)hnHL3/2(Q) +cf (hy, - V)ﬁnHL3/2(Q) +IV x g||L3/2(Q)
< (|19 310 + Kn 310+ 1all 3122 00 + 1131722 00)) + Il 20y

where c is independent of n. By the well-known regularity results for the Stokes system
(see [10, Theorem IV.6.1]), we have U,,h, € W23/2(Q),p, € WH3/2(Q), and also the
estimate
[Wn w232 +Dnllwrsz@) < c(FallLs2) + lallwsrz20))
< c(IWnllfr () + %nll7r () + 12 D) 17 2.2a0) + 1 (@B lwsr2200) + [Ellwr2iqy), (3:10)
I llwzs/2) < c(l[HnllLs/2) + Ibllws/2200))
< c(IWnllfr () + %nllFr () + 12 D) [ 2200y + 1 (@B lwsr2200) + gllwa2iqy)- (3:11)



2296 EXISTENCE OF AXIALLY SYMMETRIC WEAK SOLUTIONS
Denote u, =J, 'u,,h,, =J,h,, and p, =\ 'J,2p,. Then

—vpAu,+ (v, -Viu,+Vp,=(h,-V)h,+V xf,, inQ,
—vpAhy, + (u,-V)h, — (h,-V)u,=Vxg,, mn Q,
div u,, =div h,, =0, in €,
u,=a,, h,=b,, on 0f,

(3.12)

where v, =\ 1J-1 £, =J %f g, =J 2g and a,=J, 'a,b,=J, 'b.
It follows from Equation (3.10) that

HanWl,ez/z(Q) < const.

Hence, from the sequence {p,, }, we can extract a subsequence, still denoted by {py, },
which converges weakly in W3/2(Q) to some function p€ W3/2(Q). Let ¢ € C§°(Q).
Taking n=J, ?¢ in Equation (3.9) and letting n; — oo, we get

—Ao/(W-V)<p~Wd:E+)\0/ (k-V)go-kdmz)\o/pdiv pdx Y € C5°(Q).
Q Q Q
Integrating by parts in the last equality, we derive
)\0/ [(w-V)w—(k-V)k] - pdx= —/\0/ Vp-pdr YeeCe(Q). (3.13)
Q Q

Hence, the pair (w,k,p) satisfies, for almost all z €, the inviscid, nonresistive MHD
equations

(w-V)w+Vp=(k-V)k, in €,

-V)k— (k- =0 in Q
(V.V V) .( V)w =0, in 2, (3.14)
div w=div k=0, in §Q,
w=k=0, on 0f).
We summarize the above results as follows.
LEmMMA 3.1. Assume that QCR? is a bounded azially symmetric domain of

type (1.1) with C2-smooth boundary 09, (V x £,V x g) € Wya(Q) x Wy ¢(Q), (a,b) €

ng2*2(as2) X Wi/;o’g(aQ) are azially symmetric, and a and b satisfy conditions (1.3)-

(1.4). If the assertion of Theorem 1.1 is false, then there exist w,k,p with the following

properties:

(IMHD-AX) The axially symmetric functions (w,k)€ Hag(Q2) X Hagos(2),p€
Wj,’gm(ﬂ) satisfy the inviscid, nonresistive MHD system (3.14) and Equation
(3.7).

(MHD-AX) There exist a sequence of azially symmetric functions u,, € Wi’g(ﬂ),hn €
Whe o(), pne Wj"g/Z(Q) and numbers v, — 0+, A, — Ao € (0,1] such that the
norms |[un [lw.2() +[hullwi2) and [|pallwrs/2q) are uniformly bounded, the
pair (un,hy,,py) satisfies Equation (3.12), and

”vun”L?(Q)JFHthHLZ(Q) —1, (3.15)
u,—w, h,—k nW"2Q), p,—p in W-/2(Q). '

Moreover, (u,,h,) € W>2(Q) and p, € W22 (Q).

loc loc
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Assume that

[;N0,, #0, j=0,...,M',
FjﬁOwSZQ), j:M/—‘rl,...,N.

Let P ={(0,22,23): 22> 0,23 € R}, D=QN P,. Obviously, on P, the coordinates
29,73 coincide with the coordinates r,z. For a set ACR3, put A::AHPJF, and for
B C P, denote by B the set in R? obtained by rotation of B around the O,-axis. Then
(S1) D is a bounded plane domain with Lipschitz boundary. Moreover, fj is a con-

nected set for every j=0,...,N. In other words, {f] :7=0,...,N} coincides
with the family of all connected components of the set Py NaD.

Hence w, k, and p satisfy the following system in the plan domain D:

Wy Orwy + w0, wy — ng +0p= —]%3,

wy-Opwy +w, 0, wy + “=22 =0,

W, Opw, +w,0,w, +0,p=0, (3.16)
W, Orkig +1,0, kg — 2282 =0,

Or(rw,) + 0. (rw, ) =0.

These equations are satisfied for almost all x € D and
w(z)=k(z)=0 for H'-almost all x € P, NOD. (3.17)

We have the following integral estimates: w,k € WI’Z(D),

loc

/D (IVw(r, 2)[2 + [VK(r, 2)|2)rdrdz < oo, (3.18)

and, by the Sobolev embedding theorem for three-dimensional domains, w,k € L5(2),
ie.,

/ (|w(r,2)|®+ k(r,2)|%)rdrdz < co. (3.19)
D
Also, the condition Vp € L3/2(Q) can be written as

/ \Vp(r,2)|3/ *rdrdz < co. (3.20)
D

Denote by &= p+#+¥ the total head pressure corresponding to the solution
(w,k,p). Obviously,

/T|V<I>(r,z)|3/2drdz<oo. (3.21)
D
Hence,

deWl¥2(D,)  Ve>0. (3.22)

We also have the important Bernoulli’s law: for almost all x € D,

(wrOp +w,0,)P=0. (3.23)
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3.2. Some results on inviscid MHD equations. Since w and k satisfy Equa-
tion (3.14), w=k =0 on 92, and Vp € L3/%(Q2): then one can follow [1] and [12] to prove
the following statement.

LemMmA 3.2, If IMHD-AX) are satisfied, then
vj€{0,1,....,N} 3p,eR: p(x)=p; for H*-almost all z€T. (3.24)
In particular, by axial symmetry,
p(x)=p; for H'-almost all €T ;. (3.25)

We need a weak version of Bernoulli’s law for a Sobolev solution (w,k,p) to the
inviscid MHD Equations (3.16).

From the last equality in Equations (3.16) and from Equation (3.18), it follows that
there exists a stream function ¢ € Wif(D) such that

o _ 9y

By = TWe g =T (3.26)

Fix a point z, € D. For € >0, denote by D, the connected component of DN{(r,z):
r> ¢} containing .. Since

YeW?>*(D.)  Ve>0, (3.27)

by the Sobolev embedding theorem, 1€ C(D,). Hence 1) is continuous at points of
D\O,=D\{(0,z):z€R}. By the definition of 1) and since w=k=0 on 99, we see
that all the boundary components are level sets of 1.

LEmMMA 3.3.  If AMHD-AX) are satisfied, then there exist constants &o,...,En ER
such that ¥(x)=¢; on each curve T';, j=0,...,N.

Proof. By virtue of Equations (3.17) and (3.26), we have Vi)(z) =0 for H'-almost
all z€ 9D\ O,. Then the Morse-Sard property (see [3]) implies that

for any connected set C COD\O,, Ja=a(C)eR:Y(z)=a VzeCl.

Hence since fj are connected, the lemma follows. 0
By the properties of Sobolev functions w,k,,® (see [5]), we get the following.

LEMMA 3.4.  If conditions (IMHD-AX) hold, then there exists a set Ay CD such
that

(i) H'(Aw)=0;
(ii) for all x=(r,z) €D\ Aw,

lim [w(y) —w(x)[*dy = lim k(y) —k(z)[*dy = lim |®(y) — ®(x)[*dy =0;
P=0J B, (x) P=0) B, (x) P=0J B, (x)

moreover, the function 1 is differentiable at x, and
Vip(z) = (—rw,(z),rw,.(z));and

(iii) for every e>0, there exists a set UCR? with H. (U)<e,Aw CU and such that
the functions w,k,® are continuous on D\ (UUQO,).
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Then one can mimic the proof in [15] to establish the following weak version of
Bernoulli’s law.

LemMA 3.5 (Bernoulli’s Law).  Let conditions (IMHD-AX) be valid, and let Ay, be a
set from Lemma 8.4. For any compact connected set K C D\ O,, the following property
holds: if

|k = const, (3.28)
then
D(x1)=D(22) for all 1,29 € K\ Ay. (3.29)

In particular, we can denote by ®(K) the uniform constant c€R such that ®(z)=c for
all € K\ Ay for any compact set K C D\ O, with ¢ =const. Moreover, ® has some
continuity properties when K approaches the singularity axis O,.

LEMMA 3.6. Assume that conditions (IMHD-AX) are satisfied. Let K, be a
sequence of compact sets with the following properties: K; CD\O.,1|k, =const, and
lim  inf r=0, liminf sup r>0. Then ®(K;)—po asi— 0.

i—=00(r,2)€K; =00 (r2)EK;

LEMMA 3.7.  If conditions (IMHD-AX) are satisfied, then po=---=pa, where p;
are the constants from Lemma 3.2.

Heuristically, one can imagine that the axis Oz is an “almost” streamline. By
Lemma 3.5, all the boundary components that intersects with the symmetry axis should
share the same total head pressure ®, which immediately implies Lemma 3.7. Since the
proof of lemmas 3.2-3.7 are quite similar to the proofs in [15], we omit the details.

3.3. Obtaining a contradiction. = We consider three possible cases.

(a) The maximum of ® is attained on the boundary component intersecting the sym-
metry axis:

po= max_p;=supP(x). (3.30)
j:O,...,N zeN

(b) The maximum of ® is attained on a boundary component that does not intersect
the symmetry axis:

po<pn= max _ p;=supP(z). (3.31)
§=0,....N Q)

(¢) The maximum of ® is not attained on 0€:

~max_pj; <sup®(x). (3.32)
3=0,....N zeQ

3.3.1. The case sup,cq®(z)=po. Adding a constant to the pressure p, we can
assume that

po=sup ®(x)=0. (3.33)

€
Since the identity po=pi=---=pn is impossible, we have that p; <0 for some
JjE{M’'4+1,N}. Recall that, by Lemma 3.7, pg=p; =---=pp=0. From Equation

(3.14),, we obtain

O=2-Vp(z)+z-(w(x) - V)w(z)—z- (k(z) V)k(z)
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=div [zp(z) + (W(2) - 2)w(z) — (k(z) 2)k(z)] - p(z)div = —[w(z)|* + [k(z)|*
=div [zp(z)+ (w(x) z)w(z) — (k(z)-2)k(z)] — 3®(x) + % lw(z)|? + g|k(x) 2. (3.34)

Integrating it over 9 and using Equation (3.33), we derive a contradiction as
follows:

0> [ o)~ 5 W)= SIk@) o= | plo)@n)ds=3 ", [ (@on)ds

N N
:ij/ div mdx:—Sij|Qj|>0.
j=1 7%

3 j=1
Hence, we exclude the first case.

3.3.2. The case: py<py=sup,.gP(z). We may assume that the maximum
value is zero:

po<pny= max_ p;=supP(z)=0. (3.35)
§=0,...N eQ
Then pg=---=py <0.
Change (if necessary) the numbering of the boundary components 'y y1,...,I'n_1
so that
pj<0aj:0a"'aM7MZM/7 (336)
pPu+1=-=pn=0. (3.37)

To remove a neighborhood of the singularity line O, from our consideration, we
take ro >0 such that the open set D.={(r,z) €D:r> e} is connected for every e <r
(i.e., D, is a domain), and

3.38
is a connected set and sup, iy .7 = 2r0,J =0,...,M'e€ (077“0]-( )

i CD,, and inf(r’z)efjrz%x)7 j=M'+1,...,N,
D,

Let a set C'C D, separate I'; and fj in D, for some different indexes i,j € {0,...,N};
ie., I';ND, and lv“jﬁﬁ lie in different connected components of D.\C. Obviously,
for €€ (0,7¢], there exists a constant d(e¢) >0 (not depending on i,5,C) such that the
uniform estimate supy,. ,yec > d(€) holds. Moreover, the function d(e) is nondecreasing.
In particular,

5(e)>8(ro), €€ (0,mo). (3.39)

In the following, we will construct an appropriate integration domain by using the
level sets of ® and ®,,. We need some information concerning the behavior of the
limit total head pressure ® on stream lines. Following [16] and [19], we introduce some
facts of topology. By continuum we mean a compact connected set. We understand
connectedness in the sense of general topology. A subset of a topological space is called
an arc if it is homeomorphic to the unit interval [0,1]. Let @=10,1] x [0,1] be a square
in R?, and let f be a continuous function on @). Denote by E; a level set of the function
f,ie, BEr={xe€Q: f(x)=t}. A connected component K of the level set F; containing
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a point x( is a maximal connected subset of E; containing x¢. By Ty denote a family
of all connected components of level sets of f.

We apply Kronrod’s results to the stream function ME, €€ (0,70]. Accordingly, Ty
means the corresponding Kronrod tree for the restriction ¢‘ﬁ' Define the total head
pressure on the Kronrod tree Ty, as follows. Let K €Ty, . with diam K >0. Take any
x€ K\ Ay and put ®(K)=®(z). By the Bernoulli’s Law in Lemma 3.5, the value ®(K)
is independent of the choice x € K\ Ay. Then ® has the following continuity properties
on stream lines.

LEMMA 3.8 (See [16, Lemma 3.5]). Let A,B€Ty ., where e€ (0,r¢], diam A>0, and
diam B>0. Consider the corresponding arc [A,B|CTy . joining A to B. Then the
restriction CI)|[A7B] is a continuous function.

Denote by B, ..., B} the elements of Ty . such that Bj D f‘j ND., j=0,...,M’, and
B ij,j:M’—i—l,...,N. By construction, ®(B5) <0 for j=0,...,M, and ®(B5)=0
for j=M+1,...,N. For r >0, let L, be the horizontal straight line L, ={(r,z):z€R}.
Then, similar to [16, Lemma 4.6], we can find r, € (0,7] and C; € [B}*, By ], j=0,..., M,
such that ®(C;) <0 and CNL,, =0 for all C€[C;,By].

We restrict our argument on the domain D,, and put T\, =Ty ., and B; :B;*.
Since 9D,, C ByU---UBN UL, and the set {By,...,Bn} CT)y is finite, we can change
C; (if necessary) such that

Vji=0,....,M, CjG[Bj,BN], ‘I)(Cj)<0, (3.40)
Cﬂ@DT*:(Z) VCE[C]‘,BN). (341)

Observe that I';NL,, #0 for j=0,...,M’. Therefore, if a cycle C' €T, separates
I'y from I'y and CNOD,, =0, then C separates I'y from I'; for all j=1,...,M’'. So
we can take Cp=---=C)y and consider only the Kronrod arcs [Cy, By],...,[Car, By]-
Recall that a set Z C Ty has T-measure zero if H!'({y(C):C € Z})=0.

LEMMA 3.9.  For every j=M’,...,M, T-almost all C € [C;,Bn] are C*-curves home-
omorphic to the circle. Moreover, there exists a subsequence ®,,, such that the sequence
., |c converges to ®|c uniformly ®,|c = ®|c on T-almost all cycles C € [C},By].

Without loss of generality, we assume that the subsequence ®,,, coincides with @,,.
Besides, cycles satisfying the assertion of Lemma 3.9 will be called regular cycles. From
Lemma 3.9 and [16, Lemma 3.6], we can conclude that

H' ({®(C):C€[Cj,Bx] and C is not a regular cycle})=0,j=M',...,M. (3.42)
Setting o= in  ®(C), by (3.40), a <0. By Equation (3.42),
etting « j:J\I}l’%).{.,MCG[Ig:?BN] (C), by (3.40), « y Equation (3.42), we can

find a sequence of positive values ¢; € (0,—«),i €N with t;,1 = %ti such that the impli-
cation

®(C)=—t;=C is a regular cycle

holds for every j=M’,...,M and for all C'€[C},By]. Consider the natural order on
the arc [C}, By], namely, C'<C" if " is closer to By than C”. For j=M’,...,M and
1€N, put

Al =max{C € [C},Bn]: ®(C)=—t;}.

Then each A{ is a regular cycle and A{ CD,,. In particular, for each i € N, the compact
set Uj]‘/iM,Ag is separated from 0D,, and dist(U?iM,Ag,a’Dm) >0. Then for each i
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and for sufficiently small 4> 0, we have the inclusion {z €D, :dist(z,I'y) < h} cD,,\
(UM A7), Denote by V; the connected component of the open set D, \ (U;Z Mo AD

which encloses the set {z €D, :dist(z,I'y) <h}. Then we have
{zeD,, dist(z,Ty)<h}ndV;=AM U...uAM.

By the construction, the sequence of domains V; is decreasing, i.e., V; DV;11. Hence,
the sequence of sets (9D, )N (JV;) is nonincreasing. Every set (0D,,)N(0V;) consists
of several components I'; with > M. Since there are only finitely many components
', we can conclude that, for sufficiently large i, the set (0D,,)N(9V;) is independent
of i. So we can assume that (9D, )N (dV;)=TxU---Uly, where K€ {M+1,...,N}.
Hence,

V=AM U .UAM UT g U---UTy. (3.43)

By Lemma 3.9, we have the uniform convergence ®,,| ,; = ®(A?) as n—o00. Then
for each 7 € N there exists n; such that for all n>n;

7

5
¢n|AJ<_§t7A (D7L‘Aj.v+1>_7tl vJ:Z\4/,,]\4

8 7
Then

5 7 . /
Vt€[§ti,§t¢} VnZng Puly <—t, Pnly >t Vi=M'. M.

Accordingly, for n>n; and t€[3t;,Zt;], we can define W/ (t) as the connected

component, of the open set {z € V;\ Vi : ®,(z) >—t} with W/ (t) > AJ_|r1 and put

M
D= U WL, Sult)=(@Win(t) N (V:\Tira).

=M
By construction, ®,, =—t on S;,(t) and
OWin (£) = Sin (HHUAM U uAM |
and the set Sy, (t) separates AM U---UAM from AlJ7r1 U---UAM,. Since @, € Wif(Q)
by the Morse—Sard theorem, for almost all te[ i»sti], the level set S;,(t) consists of
finitely many C*-cycles, and ®,, is differentiable in the classical sense at every point x €
Sin(t) with V&, (z) #0. We will say the values ¢ € [3t;, ;] having the above property

are (n,i)-regular. Therefore, Sin (t) is a finite union of smooth surfaces (tori), and by
construction

/N VCIJn-ndSz—/N IV®,|dS <0, (3.44)
in (t) Sin,(t)

where n is the unit outward normal vector to Wiy (t).
For h>0, denote T'j, ={xeQ:dist(x,TxU---UTN)=h}, Q={xeQ:dist(z,TxU
--UT ) <h}. Since the distance function dist(z,d9) is C*-regular and the norm of its
gradient is equal to one in the neighborhood of 0f, there is a constant g >0 such that,
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for every h <y, the set I'j, is a union of N — K 41 C'-smooth surfaces homeomorphic
to the torus, and

H2(Th)<co Yhe(0,60], (3.45)

where the constant co =3H?(I'x U---UTy) is independent of h.

LEMMA 3.10. For any i €N, there exists n(i) €N such that, for every n>n(i) and for

almost all t € [%ti, %ti], the inequality

/ V®,|dS < Ft (3.46)
Sin(t)

holds with the constant F independent of t, n, and i.
Proof. By a direct calculation, Equation (3.16) implies

Vo = Vw2 (w-V)w+ V1K + (k-V)k

= [Vw—(VwW)"]-w+[Vk+(Vk)"] k. (3.47)

Since ® # const on V;, (3.47) implies [o IVw—(Vw)T |24 |Vk+ (Vk)” [*dz > 0 for every
i. Hence, from the weak convergence Vu, —Vw and Vh,, — Vk in L?*(Q) it follows
that for any i € N, there exist constants ¢; >0,9; € (0,00) and k] € N such that

—

TN Al =05 AL, =0, j=A, M,

and for all n>n/,
/N (IVu, — (Vu,)" > +|Vh, +(Vh,)"|?) dz > ;. (3.48)
Vig1\Qs;

Fix 1€ N. We assume that n>n;. Since we have removed a neighborhood of the
singularity line O,, we can use the Sobolev embedding theorem in the plane domain
D, . The uniformly boundedness of [[®,|y1,5/2(p, ) imply that the norm [[®,|Ls(p, )
and then [|®,V®,[[16/5(p, ) are also uniformly bounded. Finally, we have

||<I>nV<I>nHL6/5(DAT:) < const. (3.49)

Fix a sufficiently small o >0 (the exact value of o will be specified below), and take
the parameter d, € (0,9;] small enough to satisfy the following conditions:

—

Qs5, NAl=Qs, NAL =0, j=M,.. M, (3.50)
/ ®2dS<o* VYhe(0,0,] Yn>n'. (3.51)
I'n

The last estimate follows from the identity ®|r,u...ury =0, the weak convergence ®,, —

® in the space W3/2(Q), and (3.49).
By a direct calculation, (3.12) implies

Vo, =-v,curl curl u, +[Vu, — (Vun)T] ‘u,
+[Vh, +(Vh,)"]-h, +V xf,.
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Then, using Stokes’ theorem, we obtain

/ V(I)n~ndS:/ (Vu, — (Vu,)"]-u,) .nds+/ ([Vh, +(Vh,)"] -h,) -ndS.
s s s

Now, fix a sufficiently small e >0. The exact value of € will be specified below. For
a given sufficiently large n>n', we follow the proof of [16, Lemma 3.8] to find a number
hy, € (0,0,) such that the estimates

/ V@n-ndS‘ §2/ ([t [Vt |+ [ho|- [VBoJdS <e,  (3.52)
I'— I

hn P
[ i pras<c.? (3.53)
T

hold, where C. is independent of n and o.
Now, for (n,i)-regular value ¢ € [2t;,%;], consider the domain

e~

Qg ()= Win (1)U (Vi1 \ O
By construction, 0€Q;~(t) :FEU%(t). Also using Equation (3.12), we know

A®, =Ap,+|Vu,[*+|Vh,|*+u,-Au+h, -Ah,
= —div((u, - V)u,)+div((h, - V)h,) +|Vu,|* +|Vh, |*

—1<(fon)-un+(ngn)-hn)

Un

(00, 9, (0, Om) )
+— ((un~V) ‘h;|2 —hn-((hn-V)un))

Un

3 3
1
= E &un]ajum—i—|Vun|2+|th|2+ E 8ihnj6jhm‘+7 (unV)q)n
irj=1 irj=1 "

—i(hn~V)(un~hn) L ((V xfp) - u, +(Vxg,) -hn>

Un Un

1 1 1
= —div (®,u,)+ 3 Vu, — (Vu,)" |2+ 3 |Vh,, + (Vh,)T|?

1

—V((Vxfn)-u,ﬁ—(ngn)-hn)7 (3.54)
where we have used the special structure of u, and h,, so that (h,-V)(u, -h,)=0.
Integrating Equation (3.54) over the domain §2;7-(¢), we obtain

V®n~nds+/ Vo, -nds

Sin Iy
1 T2 1 T2
- SV, — (V)T 2+ = |Vhy, + (Vh,) T |dz
) 2
th” (t)
1

1 1
- (Vxf,) u,+(Vxgy,)-hy)de+— [ @,u, nds+— ®,,u,, -nds

Un th—n(t) Un JSin 2% FT,,,
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1
_ / 5 Ly, — (V)2 + 5 Vi +(Vh,) T [Pda
7 (1)

1 1 —
- ((Vxfn)-un—&-(VXgn)hn)dx—i——/ D,u, -nds—t\, F,

Vn JQ (1)

where F = (Fur+-+-+Far). In view of Equation (3.52), we can estimate

1
/ Vo, |ds<t]-'+e+— (Vxf,) u,+(Vxg,)-h,)ds
Sin Qi (1)

2
—/ (‘Vun—(Vun)T )dw
Q7 (t) 2
: : !
+< / cpff;ds) ( / |un2ds> (3.55)
Un r— e

hn

2

1
+2‘th+(th)T

with F =|F|. By definition, iHV X £l L2 (0) = At ||V X f]| L2(q) — 0 as n— oo. There-
fore,

1

[ ()t (Vx| <c
iy (1)

for sufficiently large n. Using inequalities (3.51) and (3.53) in Equation (3.55), we obtain

1
| IVesds<eFaero /o [ Vun - (Va4 5[ Vh, + (Vh,) P
Sin QT(t)
1
<tFe2ebav/Cim [ V= (Tu,)T P 5|V (V)T P
Vit1\Qs;

where C. is independent of n and ¢. Choosing €= %ei, o=3 ﬁ’ and a sufficiently large

n, from Equation (3.48) we obtain 2€+0\/Ce—f‘7;:1\95 1Vu, = (Vu,) T[>+ 5|Vh, +
(Vh,,)T|2dx <0. We have finished the proof. 0

Now we can derive a contradiction by using the Co-area formula.

LEMMA 3.11. Assume that QCR? is a bounded domain of type (1.1) with C?-
smooth boundary 090, (Vxf ,Vxg)e Wj;(Q) X Wj"gos (Q), and (a,b) € VVS/2 2(39) X
Wj{ﬁoé(ag) satisfies conditions (1.3)—(1.4). Then assumptions (MHD-AX) and Equa-
tion (3.35) lead to a contradiction.

The proof of Lemma 3.11 can be obtained by slightly modifying the proof of Lemma
3.9 of [16], i.e., replacing Hausdorff measure H! by H? and the curves Sy, (t) by the
surfaces 5‘;1(15) in the corresponding integrals, and the details are omitted. Therefore,
we have excluded the second case.

3.3.3. The case: sup,co®(x)>max;—g.. npj. Assume that Equation (3.32)
is satisfied, and set o =max;—g,. np;. Then we can find a compact connected set
F CD\ Ay such that diam(F) >0, ¢¥|r =const, and ®(F)>0c. We may assume that
0 <0 and ®(F)=0. We still need to separate F' from 9D by regular cycles and take a
number 79 >0 such that F'CD,,, the open set D.={(r,z) €D:r>e€} is connected for
every € <7 and conditions (3.38) are satisfied. Then, for e € (0,7¢], we can consider the
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behavior of ® on the Kronrod trees Ty, . corresponding to the restrictions ¢|i. Denote
by F¢ the element of T} . containing F'. Using the same procedure as before, we can
find r. € (0,ro] and C; € [B}*, F"™], j=0,...,N, such that ®(C;) <0 and CNL,, =0 for
all C'e[C},F].

Set Ty =Ty ., F*=F", and B, :B;*, ie, BjeTy, and B; D f‘j ND,.. As above,
we can change C; so that

Vj=0,....N C,€[B;,F*], ®(C;)<0,
CnoD,, =0 VCe[C;,F*], and Co=---=Chyp.

Similarly, we should construct an appropriate integration domain by using the
level sets of ® and ®,,. Take positive numbers ¢; =27¢, regular cycles A{ €[C;, F*]
with ®(A7) = —t;, and the set S, (t) with ®,,
A%_ll U---UAN, ete. Argued in Lemma 3.10 and Lemma 3.11, we can derive a similar
contradiction as before. Therefore, we have finished the proof of Theorem 1.1.

Sin (t) = —t separating AM U---UAY from
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