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Abstract. We analyse kinetic and macroscopic models intended to describe pursuit-evasion dy-
namics. We investigate well-posedness issues and the connection between the two model, based on
asymptotic analysis. In particular, in dimension 2, we show that the macroscopic system has some
regularizing effects: bounded solutions are produced, even when starting from integrable but possibly
unbounded data. Our proof is based on De Giorgi’s method.
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1. Introduction
In [13], a hierarchy of equations has been introduced in order to model some simple

pursuit-evasion dynamics. Roughly speaking, these equations describe the interaction
between prey and chasers, governed by the following simple rule: prey are repelled by
the chasers while chasers are attracted by the presence of prey. The proposed mod-
els range from individual-based models, which have the form of systems of ODEs, to
macroscopic equations, where the unknowns are the local concentrations of prey and
chasers. Connections between these equations are formally drawn in [13], based on suit-
able rescaling and asymptotic arguments. Here, we wish to analyse in more detail some
aspects of this hierarchy.

More precisely, we are mainly interested in the following system of PDEs:

∂tρc−divx (ρc∇xΦc)=Δxρc,

∂tρp−divx (ρp∇xΦp)=Δxρp,
(1.1)

where the potentials are self-consistently defined by

ΔxΦc=ρp, −ΔxΦp=αρc (α>0). (1.2)

Here, the equations are considered on the whole space RN ; the functions (t,x) �→ρc(t,x)
and (t,x) �→ρp(t,x) stand for the concentration of chasers and prey, respectively. It
means that, for any subdomain Ω⊂R

N ,
∫
Ω
ρj(t,x)dx gives the number of the individuals

in the population labelled by j that can be found in the domain Ω at time t. The system
(1.1)–(1.2) is complemented by initial conditions

ρp

∣∣∣
t=0

=ρp,0, ρc

∣∣∣
t=0

=ρc,0

which are thus naturally non-negative and integrable functions. The definition of the
potentials Φc and Φp in Equation (1.2) is intended to describe the attractive effect of
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tipolis, CNRS, Labo. J.-A. Dieudonné, UMR 7351 Parc Valrose, F-06108 Nice, France (thierry.goudon@
inria.fr).
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the prey on the chasers population and the repulsive effect of the chasers on the prey:
the population j∈{c,p} is driven according to the gradient of the potentials Φj , which
is itself defined by the other population, through the Poisson equation (1.2). The sign
determines whether a population has an attractive or a repulsive effect on the other.
This should be thought of by analogy with the definition of repulsive electrostatic forces
and attractive gravitational forces. For further details on the modelling issues and
alternate definitions of the potentials, we refer the reader to [13]. We bear in mind that
Equation (1.2) should be understood as a convolution relation involving the elementary
solution of −Δx. We shall also pay attention to the following kinetic version of pursuit-
evasion dynamics:

∂tfc+v ·∇xfc−∇xΦc ·∇vfc=L(fc),

∂tfp+v ·∇xfp−∇xΦp ·∇vfp=L(fp),

ΔxΦc=

∫
RN

fpdv, −ΔxΦp=α

∫
RN

fcdv,

(1.3)

where L stands for the Fokker–Planck operator

L(f)=divv(vf+∇vf)=divv

(
M∇v

( f

M

))
, M(v)=

1

(2π)N/2
e−v2/2. (1.4)

It corresponds to a statistical description of the population: v is interpreted as the
velocity variable, and fj(t,x,v) is the distribution in phase space of the population j. In
other words,

∫
Ω

∫
V fj(t,x,v)dvdx gives the number of the individuals in the population

j which are in the domain Ω⊂R
N , with a velocity v∈V ⊂R

N , at time t. System (1.3)
is written in dimensionless variables. It can be rescaled by introducing a parameter
0<ε�1 which leads to

∂tf
ε
c +

1

ε
(v ·∇xf

ε
c −∇xΦ

ε
c ·∇vf

ε
c )=

1

ε2
L(f ε

c ),

∂tf
ε
p+

1

ε
(v ·∇xf

ε
p−∇xΦ

ε
p ·∇vf

ε
p)=

1

ε2
L(f ε

p),

ΔxΦ
ε
c=

∫
RN

f ε
pdv,

−ΔxΦ
ε
p=α

∫
RN

f ε
c dv.

(1.5)

We refer the reader to [13, Section 2.3] for details on the scaling; see also [33] for
a similar discussion in a different context. The regime can be roughly motivated as
follows. The Fokker–Planck operator describes drag effects, which make the velocity of
the individuals relax towards the gradient of the potential. We are assuming that the
relaxation time associated to this friction force is small compared to the time scale of
observation (in other words the strength of the friction is strong). In the meantime, the
typical velocity of the individuals is supposed to be large compared to the observation
units, while the strength of the coupling force is weak. The arguments developed in
[13] indicate that the system (1.1)–(1.2) can be obtained from the system (1.5) in the
regime ε→0. In this work, we wish to address the following problems:

• well-posedness of the system (1.1)–(1.2) and qualitative properties of the solu-
tions

• well-posedness of the system (1.3).
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• derivation of the macroscopic model (1.1)–(1.2) from the kinetic equations
rescaled as in the system (1.5).

At first sight, the system (1.1)–(1.2), shares the structure of the following Keller–
Segel type system, introduced in [21, 22, 30]:

∂tρ−divx (ρ∇xΦ)=Δxρ,
ΔxΦ=ρ.

(1.6)

As revealed in [15, 20], this system (1.6) is known to produce Dirac masses in finite time
when the integral

∫
RN ρ(0,x)dx exceeds a certain threshold. We refer the reader to the

surveys [17, 18] for further information and references on the system (1.6). Many mech-
anisms have been discussed that can prevent the blow-up of the solutions in such PDE
systems describing chemotactic phenomena. For instance, adding a logistic-like source
term or cross-diffusion terms might have such a regularizing effect, as studied in [44] and
[7, 16], respectively. Another option, relevant in several physical situations, consists in
introducing non-linearities in the convection and/or diffusion coefficients. Depending on
growth assumptions on the non-linearities, the modified system can be shown to admit
bounded solutions [19, 41]. Closer to our purposes, coupling between several species
might also have some regularizing effects that lead to bounded solutions. This is par-
ticularly the case for chemotaxis-haptotaxis models that describe the invasion of tissues
by tumor cells; see [28, 32, 37, 38, 39, 40, 43] or, for systems modelling ants foraging, see
[2]. Hence, for the system (1.1)–(1.2) it is natural to wonder whether or not solutions
become singular in finite time. In fact, we shall show that the system (1.1)–(1.2) admits
bounded solutions and, furthermore, that the system has a regularizing effect: we shall
prove that integrable data, possibly unbounded, lead to bounded solutions, at least in
dimension N =2 (and N =1). This is in contrast with the behaviour of the system
(1.6). Our results in this direction are complementary to the recent work [42], where
similar two-species models are analysed, with equations set on a bounded domain with
Neumann boundary conditions (for both the densities and the potentials): [42] justifies
the well-posedness of the system for continuous initial data. Here, we show that the
solutions become instantaneously bounded for general, possibly unbounded, data. The
analysis of the boundedness of solutions for such PDEs systems which involve some
attractive self-consistent potential usually relies either on semigroup techniques or on
suitable adaptations of Moser’s iteration reasoning, a method inspired from [1]. Here,
the proof we propose uses De Giorgi’s approach, in the spirit of [2, 14, 32]. Concern-
ing asymptotic issues, connections between Keller–Segel models of type (1.6) have been
studied via hydrodynamical limits in [27] and the derivation of drift-diffusion systems
like (1.6) from kinetic models has been investigated for instance in [9, 12, 26, 33].

The paper is organized as follows. In Section 2, we set up a few notations and give
the precise statements of the main results. Section 3 is devoted to the analysis of the
system (1.1)–(1.2). In Section 4, we turn to the investigation of the system (1.3) and of
the asymptotic regime.

2. Main results
We start with the statements concerned with the existence and regularity theory for

the macroscopic system (1.1)–(1.2). We refer the reader to [42, Thm. 1.1] for, among
others, existence-uniqueness results for the system (1.1)–(1.2) in a bounded domain
with Neumann conditions, when N ≤3 and starting with continuous initial data. It is
remarkable that in dimension N =2 the system produces bounded, and thus smooth,
solutions, while the data can be unbounded. (A similar result holds in dimension N =1;
see Section 3.5 below.)
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Theorem 2.1. Let (ρp,0,ρc,0) be a pair of functions in L1∩L∞(RN ). Furthermore,
we assume that |x|2(ρp,0+ρc,0)∈L1(RN ). Then, for any T >0, the system (1.1)–(1.2)
with data (ρp,0,ρc,0) admits a unique solution which is bounded on [0,T ]×R

N and lies
in C∞((0,T )×R

N ).

Theorem 2.2. Let N =2. We suppose that ρp,0,ρc,0 belong to in L1∩L1+δ(R2)
for some δ>0, with |x|2(ρp,0+ρc,0)∈L1(R2). Then, there exists a solution (ρp,ρc) in
C([0,∞);L1(R2)−weak) of the system (1.1)–(1.2) with initial data (ρp,0,ρc,0). Further-
more, for any t�>0, there exists a constant M�>0 such that 0≤ρp(t,x), ρc(t,x)≤M�

holds for a.e. (t,x)∈ [t�,∞)×R
2, and the solution lies in C∞([t�,∞)×R

2).

The system (1.3) is a two-species version of the Vlasov–Poisson–Fokker–Planck
equations. We can use the methods introduced in [33] to justify the existence of so-
lutions, as well as to investigate the behaviour of the solutions of the system (1.5) as
ε→0. In order to state the results, let us introduce the norm

|||f |||q :=
(∫∫

fqM1−qdvdx

)1/q

.

Given 0<T <∞, we also define the following functional space:

Mq,T :=

{
fc,fp : [0,T ]×R

N ×R
N→R, sup

0≤t≤T
(|||fc(t, ·)|||q+ |||fp(t, ·)|||q)<+∞

}
.

Given 0<mc,mp<∞, we shall denote by Cq,T the convex subset in Mq,T made of
non-negative functions in Mq,T which satisfy∫∫ (

fc
fp

)
dvdx=

(
mc

mp

)
.

Theorem 2.3. Let fc,0,fp,0 be a pair of non-negative functions such that∫∫
fc,0dvdx=mc,

∫∫
fp,0dvdx=mp,

|||fc,0|||q+ |||fp,0|||q <∞,

for some q>max(N,2). We also assume that∫∫
fj,0

(
| ln(fj,0)|+ |x|+ v2

2

)
dvdx<∞

for j∈{c,p}. Then, there exists T >0 such that the system (1.3) complemented with the
initial data (fc,fp)

∣∣
t=0

=(fc,0,fp,0) has a solution which belongs to Cq,T .

Theorem 2.4. Let
(
f ε
c,0,f

ε
p,0

)
ε>0

be a sequence of non-negative functions bounded

in the ||| · |||q-norm for some q>max(N,2), with
∫
f ε
c,0dvdx=mc and

∫
f ε
p,0dvdx=mp.

Furthermore, we assume that

sup
ε>0

(∫∫
f ε
j,0

(
| ln(f ε

j,0)|+ |x|+
v2

2

)
dvdx

)
<∞

holds for j∈{p,c}. Let (f ε
c ,f

ε
p) be a solution in Cq,T of the system (1.5) complemented

with the initial data (f ε
c,0,f

ε
p,0). Then, provided 0<T <∞ is small enough, up to a
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subsequence (still labelled by ε), the macroscopic concentrations ρεc=
∫
f ε
c dv and ρεp=∫

f ε
pdv converge strongly to ρc and ρp, respectively, in Ls(0,T ;Lr(RN )) for any 1≤s<

∞, 1≤ r<q, where ρc and ρp are solutions of the system (1.1)–(1.2), with initial data
defined by the weak limits of

∫
f ε
c,0dv and

∫
f ε
p,0dv.

The last two results are only local in time. This is due to the adopted functional
framework, directly inspired by [33], and the restriction comes from non-linear estimates
for the norm ||| · |||q. Again, difficulties are related to the meaning and the stability of
the product between the densities and the force field. It would be interesting to further
investigate the existence theory of the kinetic model, for instance by using the techniques
introduced in [5]. In order to obtain global statements for the asymptotic analysis, it
could be worth trying to adapt the tricky renormalisation arguments designed for the
scalar case in [9].

3. Analysis of the macroscopic model: boundedness of solutions
The main ingredient of the analysis consists in finding a priori estimates satisfied

by the solutions of the system (1.1)–(1.2). Therefore, we start by assuming that we
have at hand non-negative and mass-preserving solutions of the system (1.1)–(1.2), with
enough regularity and fast decay at infinity to perform manipulations like permutation of
derivatives and integrals, integration by parts, etc. We establish some uniform estimates
on these solutions that will depend only on certain Lq-norms of the initial data. Then,
we shall need to construct solutions that satisfy such estimates, possibly at the price of
restricting the set of initial data. Then, using the uniformity of the obtained estimates
the result can be extended to more general data.

3.1. A priori estimates. To start with, let us show that solutions associated
with bounded data remain in L∞. This property is already in contrast to the Keller–
Segel system. In dimension N =2, we can prove the propagation of Lq estimates for
any exponent q≥1. Let us summarize our findings concerning the propagation of L∞

and Lq bounds as follows.

Lemma 3.1. If ρp,0 and ρc,0 belong to L1∩L∞(RN ), then for any 1≤ q≤∞ we have

‖ρp(t, ·)‖q≤‖ρp,0‖q for any t≥0,

‖ρc(t, ·)‖q≤ eT‖ρp,0‖∞‖ρc,0‖q for any 0≤ t≤T <∞.

Furthermore, for any 0<T <∞ and 1<q<∞, ∇xρ
q/2
p and ∇xρ

q/2
c belong to

L2((0,∞)×R
N ).

Lemma 3.2. Let us assume N =2. If ρp,0 and ρc,0 belong to L1∩Lq(RN ) for some
q>1, then

‖ρp(t, ·)‖q≤‖ρp,0‖q
and there exists C>0 which depends only on q, mc, mp, ‖ρp,0‖q, and ‖ρc,0‖q such that

‖ρc(t, ·)‖q≤C

holds for any t≥0. Furthermore, ∇xρ
q/2
p and ∇xρ

q/2
c belong to L2((0,∞)×R

2).

Proof. (Proof of Lemma 3.1.) The proof is quite simple and relies on standard
Stampacchia’s reasoning. Let G :R→ (0,∞) be a convex function. Multiply

∂tρp−divx(ρp∇xΦp+∇xρp)=0
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by G′(ρp) and integrate by parts. We obtain

d

dt

∫
G(ρp)dx+

∫
G′′(ρp)|∇xρp|2dx=−

∫
G′′(ρp)∇xρp ·ρp∇xΦpdx. (3.1)

Let Z be a primitive of ρ �→G′′(ρ)ρ. By using Equation (1.2), the right-hand side of
Equation (3.1) becomes

−
∫
∇xZ(ρp) ·∇xΦpdx=

∫
Z(ρp)ΔxΦpdx=−α

∫
ρcZ(ρp)dx,

which is non-positive since G is convex. Therefore, we arrive at

d

dt

∫
G(ρp)dx+

∫
G′′(ρp)|∇xρp|2dx≤0. (3.2)

We use this relation with G(ρ) := 1
2

[
ρ−‖ρp,0‖∞

]2
+

to deduce the uniform estimate on

ρp in L∞(RN ). More generally, with G(ρ)=ρq, (3.2) becomes

d

dt

∫
ρqpdx+4

q−1

q

∫
|∇xρ

q/2
p |2dx≤0, (3.3)

which gives the estimates on the different Lq-norms.
We turn to the estimates on the chaser density. We repeat the same argument on

∂tρc−divx(ρp∇xΦc+∇xρc)=0

with the function G(ρ) :=ρq, q>1. This yields

d

dt

∫
ρqc dx+

4(q−1)

q

∫
|∇xρ

q/2
c |2dx=(q−1)

∫
ρpρ

q
c dx, (3.4)

where we have made use of Equation (1.2). The obtained estimate for ρp allows us to
obtain

d

dt

∫
ρqc dx+

4(q−1)

q

∫
|∇xρ

q/2
c |2dx≤ (q−1)‖ρp,0‖∞

∫
ρqc dx.

Grönwall’s Lemma leads us to∫
ρqc(t,x)dx≤ eqt‖ρp,0‖∞

∫
ρqc,0(x)dx,

which recasts as ‖ρc(t, ·)‖q≤ eT‖ρp,0‖∞‖ρc,0‖q≤ eT‖ρp,0‖∞‖ρc,0‖1−1/q
∞ m

1/q
c for any 1<q<

∞. We let q go to ∞ to obtain the L∞ estimate.

Proof. (Proof of Lemma 3.2.) Of course, Equation (3.3) implies that ρp∈
L∞(0,∞;Lq(RN )) and ∇xρ

q/2
p ∈L2((0,∞)×R

N ) when ρp,0 belongs to Lq(RN ). What
is remarkable is to improve the Lq estimate for ρc in Lemma 3.1 and to make it uniform
with respect to time when N =2. The restriction on the space dimension arises when
we estimate the right-hand side of Equation (3.4). To this end, we make use of the
Gagliardo–Nirenberg–Sobolev inequality (see, e.g., [29, p. 125] or [6, Eq. (85) p. 195]),
which holds in R

2 for any α≥1:∫
ξα+1dx≤C

∫
ξdx

∫
|∇x(ξ

α/2)|2dx. (3.5)
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Then, by using Hölder’s (with conjugate exponents q+1 and (q+1)′= q+1
q ) and Young’s

inequalities, we get

(q−1)

∫
ρpρ

q
c dx ≤ q

(∫
ρq+1
c dx

)q/(q+1)(∫
ρq+1
p dx

)1/(q+1)

≤ qδ1/q
∫

ρq+1
c dx+

1

δ

∫
ρq+1
p dx,

for δ>0 to be determined. With Equation (3.5), we are led to

(q−1)

∫
ρpρ

q
c dx≤Cqδ1/q

∫
ρcdx

∫
|∇xρ

q/2
c |2dx+ 1

δ

∫
ρq+1
p dx.

By mass conservation, we have
∫
ρcdx=mc. We go back to Equation (3.4). Choosing

δ>0 small enough, we find two constants, C1 and C2, such that

d

dt

∫
ρqc dx+C1

∫
|∇xρ

q/2
c |2dx≤C2

∫
ρq+1
p dx.

The constants depend only on the Gagliardo–Nirenberg–Sobolev, q, and mc. For in-

stance we can set C1=2 q−1
q by choosing δ=

(
2 q−1
q2Cmc

)q
; accordingly C2=

(
q2Cmc

2(q−1)

)q
. By

using Equation (3.5) again, we are led to

d

dt

∫
ρqc dx+C1

∫
|∇xρ

q/2
c |2dx≤C2Cmp

∫
|∇xρ

q/2
p |2dx,

where the bound in L1((0,∞)) on the right-hand side has already been discussed in
Equation (3.3).

3.2. Boundedness implies regularity. As a consequence of the L∞ estimate,
we can establish the regularity of the solution.

Lemma 3.3. Assume that the solution (ρp,ρc) of the system (1.1)–(1.2) lies in
L∞((t�,T )×R

N ) for some 0≤ t�<T ≤∞. Then, ρp,ρc are actually C
∞ on (t�,T )×R

N .

The proof uses the following elementary estimate on the velocity field, bearing in mind
the definition of the potentials in Equation (1.2) by means of a convolution formula.

Lemma 3.4. Let ρ∈L1∩L∞(RN ). Set

∇xΦ(x)=

∫
x−y

|x−y|N ρ(y)dy.

There exists a constant CN >0 such that

|∇xΦ(x)|≤CN‖ρ‖1/N1 ‖ρ‖1−1/N
∞ .

Proof. For a given A>0, we split

∇xΦ(x)=

∫
|x−y|≤A

x−y

|x−y|N ρ(y)dy+

∫
|x−y|>A

x−y

|x−y|N ρ(y)dy.
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The first integral is dominated by

‖ρ‖∞ |SN−1|
∫ A

0

1

rN−1
rN−1dr=‖ρ‖∞ |SN−1|A

while the second is dominated by

1

AN−1

∫
|ρ(y)|dy.

Optimizing with respect to A yields A=
(

N−1
|SN−1|

)1/N‖ρ‖1/N1 ‖ρ‖−1/N
∞ , which allows us to

conclude.

Proof. (Proof of Lemma 3.3.) Lemma 3.4 implies that ∇xΦp(t, ·)
(resp. ∇xΦc(t, ·)) is bounded a.e. when ρc(t, ·) (resp. ρp(t, ·)) lies in L1∩L∞(RN ). Let
0≤ t�<T ≤∞. Going back to the convection-diffusion equations satisfied by the densi-
ties ρp,ρc, we can apply standard results from the theory of parabolic equations (see for
instance [23, Thm. VII.6.1]) to assert that ∇xρp,∇xρc∈L∞((t�,T )×Ω) for any Ω⊂R

N

provided ρp and ρc lie in L∞((t�,T )×R
N ). Then, for j∈{p,c} and any k∈{1, . . . ,N},

the function uj =∂xk
ρj verifies

∂tuj−divx(uj∇xΦj)−Δxuj =divx(uj∇xΨj),

where Ψj =∂xk
Φj is defined by the Poisson equation ΔxΨc=up or −ΔxΨp=αuc. We

deduce from standard results (see for instance [10, Thm. 3.9 & Prob. 8.4]), that ∇xΨj

is a (locally) bounded function which in turn permits us to conclude that ∇xuj is
bounded on any subdomain (t�,T )×Ω. Continuing this reasoning by induction as in
[14, Proposition A.1] establishes that ρc and ρp are C∞ functions.

3.3. De Giorgi’s analysis. We wish to relax the boundedness and integrability
conditions on the initial data, showing that they are improved by the dynamics itself.
The proof splits into two steps. Firstly, we pay attention to Lq estimates for finite
q’s; secondly we discuss the L∞ bound by adapting the De Giorgi technique. We refer
the reader to [2, 14, 32] for similar reasoning. The first step aims at establishing the
following claim, where a restriction on the space dimension appears.

Lemma 3.5. Let us assume N =2. Let 1<q<∞. There exists a constant M which
only depends on the initial mass mc, mp, and q, such that∫

ρqp(t,x)dx+

∫
ρqc(t,x)dx≤M

(
1+

1

tq−1

)
holds for any t≥0.

Proof. We go back to the proof of Lemma 3.2. By using Equation (3.5), which
gives rise to the restriction on the space dimension N =2, and mass conservation, we
have actually obtained the following differential inequalities:

d

dt

∫
ρqpdx+4

q−1

q

∫
|∇xρ

q/2
p |2dx≤0,

d

dt

∫
ρqc dx+C1

∫
|∇xρ

q/2
c |2dx≤C2

∫
ρq+1
p dx.

(3.6)
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Owing to Equation (3.5) and mass conservation again, we get

d

dt

∫
ρqpdx+4

q−1

q

1

Cmp

∫
ρq+1
p dx≤0.

d

dt

∫
ρqc dx+

C1

Cmc

∫
ρq+1
c dx≤C2

∫
ρq+1
p dx.

Let us set

X (t)=

∫
ρqpdx+A

∫
ρqc dx

for some A>0 to be determined. We get

d

dt
X +

(
4
q−1

q

1

Cmp
−AC2

)∫
ρq+1
p dx+A

C1

Cmc

∫
ρq+1
c dx≤0.

We choose A>0 small enough such that the constant the factor in front of
∫
ρq+1
p dx

remains positive (for instance A=2 q−1
qC2Cmp

). Finally, we make use of the interpolation

inequality ∫
ξqdx≤

(∫
ξdx

)1/q(∫
ξq+1dx

)(q−1)/q

.

Together with the mass conservation property, it permits us to find two constants a,b>0
such that

d

dt
X +a

(∫
ρqc dx

)q/(q−1)

+b

(∫
ρqpdx

)q/(q−1)

≤0.

With the elementary inequality (s+ t)q/(q−1)≤Cq(s
q/(q−1)+ tq/(q−1)), we conclude that

d

dt
X +βX q/(q−1)≤0

holds for a certain constant β>0. By a comparison argument (see Appendix A) we
deduce that

X (t)≤M (1+1/tq−1),

where the constant M only depends on q and β.

Lemma 3.5 already indicates that Lq-norms of the solutions become instantaneously
finite, for any positive time, even if the Lq-norm of the data is infinite. We shall use
this information to obtain that the L∞-norm becomes finite too, by using the De Giorgi
scheme, as in [2, 14, 32]. This is the second step of our approach. As it will be
clear within the proof, the restriction on the space dimension comes from the use of
Lemma 3.5.

Lemma 3.6. Let us assume N =2. Let t�>0. There exists a constant M� which
depends on t� in such a way that it blows up as t�→0, such that

|ρp(t,x)|≤M�, |ρc(t,x)|≤M�

holds for almost every t≥ t�, x∈RN .
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Proof. We are working on a finite time time interval 0<t�<T <∞ which does
not contain 0. Let M>0 to be determined. We define the following sequences:

Mk :=M(1−1/2k), tk := t�(1−1/2k+1)= t�/2
k+1+(1−1/2k)t�.

We denote

ρ(k)p =(ρp−Mk)1ρp>Mk
,

where 1Ω stands for the characteristic function of the set Ω. We multiply Equation (1.1)

by ρ
(k)
p and integrate the result. It yields

1

2

d

dt

∫
|ρ(k)p |2dx+

∫
|∇xρ

(k)
p |2dx=−α

∫
ρc|ρ(k)p |2dx. (3.7)

We integrate Equation (3.7) over the interval [s,t], with tk−1<s<tk<t<T . We get

1

2

∫
|ρ(k)p |2(t,x)dx+

∫ t

s

∫
|∇xρ

(k)
p (τ,x)|2dxdτ+α

∫ t

s

∫
ρc|ρ(k)p |2(τ,x)dxdτ

=
1

2

∫
|ρ(k)p (s,x)|2dx≥ 1

2

∫
|ρ(k)p |2(t,x)dx+

∫ t

tk

∫
|∇xρ

(k)
p (τ,x)|2dxdτ. (3.8)

Let us define the sequence

Vk= sup
tk≤t≤T

1

2

∫
|ρ(k)p |2(t,x)dx+

∫ T

tk

∫
|∇xρ

(k)
p (τ,x)|2dxdτ.

We average Equation (3.8) over s∈ [tk,tk−1] and obtain

Vk≤ 1

2

1

tk− tk−1

∫ tk

tk−1

∫
|ρ(k)p (s,x)|2dxds.

However, for any β≥0, we have

|ρ(k)p |2≤|ρ(k−1)
p |2

(
2k

M
ρ(k−1)
p

)β

,

which yields

Vk≤ 1

2

2k+1

t�

∫ T

tk−1

∫
|ρ(k)p (s,x)|2dxds≤ 1

2

2k+1

t�

2βk

Mβ

∫ T

tk−1

∫
|ρ(k−1)

p (s,x)|2+β dxds.

The choice of the exponent β relies on the Gagliardo–Nirenberg–Sobolev inequality∫
|ξ|2+β dx≤C

∫
|∇xξ|2dx

(∫
|ξ|2dx

)β/2

,

which holds for 2+β=2N+2
N =2+4/N . Bearing in mind that N =2, we arrive at

Vk ≤ C

2

2k+1

t�

22k

M2

∫ T

tk−1

{∫
|∇xρ

(k−1)
p |2dx×

∫
|ρ(k−1)

p |2dx
}
ds

≤ 2C

M2t�
23k V 2

k−1.
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We choose a∈ (0,1) small enough and M>0 large enough, such that akV0 is a super-
solution of this sequence of inequalities. If Vk−1≤ak−1V0 holds, then we get

Vk≤ 2V0

M2t�a2
(
23a2

)k
V0.

Therefore, we can conclude that Vk is smaller than akV0 provided the following two
conditions are fulfilled:

a≤ 1

23
, M ≥

( 2V0

t�a2

)1/2

.

Bearing in mind that M0=0 (thus ρ
(0)
p =ρp) and T0= t�/2, it remains to evaluate

V0= sup
t�/2≤t≤T

1

2

∫
|ρp|2(t,x)dx+

∫ T

t�/2

∫
|∇xρp(τ,x)|2dxdτ.

To this end, we go back to the first equation in the system (3.6) with q=2 (energy
inequality), integrated over (t�/2,t):

1

2

∫
|ρp(t,x)|2dx+

∫ t

t�/2

∫
|∇xρp(τ,x)|2dxdτ ≤ 1

2

∫
|ρp(t�/2,x)|2dx≤M

2

(
1+

2

t�

)
,

where the last inequality uses Lemma 3.5. By the way, we bear in mind that the
estimate in Lemma 3.5 relies on the Gagliardo–Nirenberg–Sobolev inequality and it
assumes N =2: the restriction on the space dimension does not come from the De Giorgi
argument in itself but from the need of an estimate on V0, which relies on Lemma 3.5.
In other words, we have obtained

V0≤M

2

(
1+

2

t�

)
.

Since N =2, we end up with the following bound from below for M :

M ≥
(M (1+2/t�)

t�a2

)1/2

.

In particular, notice that M behaves like 1/t� as t�→0.
Fix T >0. Then, for any given 0<t��1, we can find M large enough to ensure

that limk→∞Vk=0. Let us now consider the average over [tk,T ]

1

T − tk

∫ T

tk

∫
|ρ(k)p (t,x)|2dxdt≤2Vk.

However, for a.e. (t,x)∈ [0,∞)×R
N , we have

lim
k→∞

(
|ρ(k)p (t,x)|2

T − tk
×1tk≤t≤T

)
=
|ρ(k)p (t,x)|2

T − t�
×1t�≤t≤T ×1ρp(t,x)≥M .

By virtue of Fatou’s lemma, we conclude that

1

T − t�

∫ T

t�

∫
|ρp(t,x)|21ρp(t,x)≥M dxdt≤ lim

k→0
Vk=0.
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It implies that

ρp(t,x)1ρp(t,x)≥M =0 for a.e. (t,x)∈ (t�,T )×R
N

holds and, thus, ρp(t,x) is dominated by M .

Once this bound is obtained for ρp, we proceed similarly for dealing with ρc. We
use exactly the same notation, with Mk=μ(1−1/2k), μ>0 being the quantity to be
determined, and tk := t��(1−1/2k+1) where t��=2t�. In particular we now have t�≤
tk≤ t��. We are led to

1

2

d

dt

∫
|ρ(k)c |2dx+

∫
|∇xρ

(k)
c |2dx=

∫
ρp|ρ(k)c |2 dx≤M

∫
|ρ(k)c |2 dx,

where M is the bound we have just obtained for ρp. We integrate over [s,t], with
tk−1<s<tk<t<T , and next we average over s∈ [tk−1,tk]. We obtain

1

2

∫
|ρ(k)c |2(t,x)dx+

∫ t

tk

∫
|∇xρ

(k)
c |2dx

≤ 1

2

1

tk− tk−1

∫ tk

tk−1

∫
|ρ(k)c (s,x)|2dxds+M

∫ T

tk−1

∫ ∣∣∣ρ(k)c (τ,x)
∣∣∣2 dxdτ

≤
( 2k

t��
+M

)∫ T

tk−1

∫
|ρ(k)c (s,x)|2dxds.

We now set

V ′
k = sup

tk≤t≤T

1

2

∫
|ρ(k)c |2(t,x)dx+

∫ t

tk

∫
|∇xρ

(k)
c |2dx.

Repeating the arguments detailed above yields

V ′
k ≤

2

μ2
22k

(
2k

t��
+M

)
(V ′

k )
2≤ 2

μ2

(
1

t��
+M

)
23k (V ′

k−1)
2.

We apply the same reasoning as above, which leads us to impose

μ≥
(
2V ′

0

a2

(
M+

1

t��

))1/2

.

We need to estimate V ′
0 . To this end, we go back to Equation (3.6),

d

dt

∫
|ρc|2dx+C1

∫
|∇xρc|2dx≤C2

∫
ρ3pdx≤C2Cmp

∫
|∇xρp|2dx,

by using Equation (3.5) and mass conservation. Integrate over (t��/2,t)=(t�,t) to
obtain ∫

|ρc(t,x)|2dx+C1

∫ t

t�

∫
|∇xρc(τ,x)|2dxdτ

≤
∫
|ρc(t�,x)|2dx+C2Cmp

∫ t

t�

∫
|∇xρp(τ,x)|2dxdτ

≤M
(
1+

1

t�

)
+C2CmpV0

≤M
(
1+

CC2mp

2

)(
1+

2

t�

)
.
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It follows that

V ′
0 ≤M

(
1+

CC2mp

2

)(
1+

2

t�

)
.

Therefore, since N =2, we arrive at the condition

μ≥
(

2

a2

(
M+

1

2t�

)
M

(
1+

CC2mp

2

)(
1+

2

t�

))1/2

,

which behaves like 1/t� for small t�’s. We conclude that ρc(t,x)≤μ holds a.e. on
(t��,T )×R

2. We point out that both M and μ depend on t� and, of course, they
blow up as t�→0. What is interesting is to remark that the estimate is uniform over
large times.

3.4. Existence-uniqueness of solutions. We are going to obtain the solutions
of the system (1.1)–(1.2) by means of a fixed point argument. The method is quite
classical, and we only sketch the proof, pointing out some technical difficulties. We start
by assuming that the initial data (ρp,0,ρc,0) belongs to L1∩L∞(RN ). Let 0<T <∞.
We consider two functions ρ̃p, ρ̃c : (0,T )×R

N→R
N such that

0≤ ρ̃p(t,x)≤‖ρp,0‖∞, 0≤ ρ̃c(t,x)≤‖ρc,0‖∞eT‖ρp,0‖∞ ,∫
ρ̃p(t,x)dx=mp,

∫
ρ̃c(t,x)dx=mc.

(3.9)

Let us denote by CT the (convex) set of functions that fulfill Equation (3.9). The
intermediate result is stated as follows (for N ≥3 it is likely far from optimal; since the
regularity analysis requires N =2, we do not elaborate more on this case here).

Proposition 3.1. Let (ρp,0,ρc,0)∈L1∩L∞(RN ). Furthermore, we assume that x �→
x2ρp,0(x) and x �→x2ρc,0(x) belong to L1(RN ). Then, for any T >0, the system (1.1)–
(1.2) with data (ρp,0,ρc,0) admits a unique solution in CT .

3.4.1. Preliminary observations. Given (ρ̃p, ρ̃c)∈CT , we define Φ̃p,Φ̃c by
solving

ΔxΦ̃p=−αρ̃c, ΔxΦ̃c= ρ̃p.

Lemma 3.4 tells us that∇xΦ̃p and∇xΦ̃c are bounded functions. Then, we can introduce
the solutions of the linear equations

∂tρp−divx(ρp∇xΦ̃p+∇xρp)=0,

∂tρc−divx(ρc∇xΦ̃c+∇xρc)=0,

ρp

∣∣∣
t=0

=ρp,0, ρc

∣∣∣
t=0

=ρc,0,

By standard theory of parabolic equations (see, e.g., [6, Thm. X.9]), solutions are found
in C([0,T ];L2(RN ))∩L2(0,T ;H1(RN )). Repeating the derivation of the a priori esti-
mates, we check that (ρp,ρc)∈CT .

Let (ρp,ρc)=T (ρ̃p, ρ̃c) and (μp,μc)=T (μ̃p,μ̃c). We denote by (Ψ̃p,Ψ̃c) the poten-
tial associated to (μ̃p,μ̃c). We obtain

1

2

d

dt

∫
|ρp−μp|2dx+

∫
|∇x(ρp−μp)|2dx

=−α

2

∫
ρ̃c|ρp−μp|2dx−

∫
μp∇x(Φ̃p−Ψ̃p) ·∇x(ρp−μp)dx

≤ 1

2

∫
|∇x(ρp−μp)|2dx+ 1

2

∫
μ2
p|∇x(Φ̃p−Ψ̃p)|2dx.
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It follows that

d

dt

∫
|ρp−μp|2dx+

∫
|∇x(ρp−μp)|2dx

≤
(∫

μ2q/(q−2)
p dx

)(q−2)/q(∫
|∇x(Φ̃p−Ψ̃p)|qdx

)2/q

.

When the space dimension N is larger than 2, we can use the following Hardy–
Littlewood–Sobolev inequality [24, Thm. 4.3].

Lemma 3.7. Let α>1. The operator defined by

H :f �→
∫

f(y)

|x−y|N/α
dy

is continuous from Lp(RN ) to Lq(RN ) for any 1<p< α
α−1 and 1/q=1/p+1/α−1.

Let N ≥3; we use Lemma 3.7 with α= N
N−1 and p=2. It leads to q= 2N

N−2 >2, and
we denote by |||H||| the corresponding norm. As a matter of fact, we note that

(∫
ρ2q/(q−2)
p dx

)(q−2)/q

= ‖ρp‖22q/(q−2)≤‖ρp‖(q+2)/q
∞ ‖ρp‖(q−2)/q

1

≤ ‖ρp,0‖(q+2)/q
∞ m

(q−2)/q
p =C0.

We are thus led to

d

dt

∫
|ρp−μp|2dx+

∫
|∇x(ρp−μp)|2dx≤C0|||H|||

∫
|ρ̃c− μ̃c|2dx.

We proceed similarly for the chaser species, and we obtain

d

dt

∫
|ρc−μc|2dx+

∫
|∇x(ρc−μc)|2dx

≤‖ρp,0‖∞
∫
|ρc−μc|2dx+‖ρc,0‖(q+2)/q

∞ eT‖ρp,0‖∞(q+2)/qm(q−2)/q
c |||H|||

∫
|ρ̃p− μ̃p|2dx.

We add these two inequalities and we apply the Grönwall lemma. It allows us to define
a constant K (T ), which depends on T and on the L1 and L∞ norms of the data, such
that ∫

(|ρp−μp|2+ |ρc−μc|2)(t,x)dx

≤eT‖ρp,0‖∞

(∫
(|ρp,0−μp,0|2+ |ρc,0−μc,0|2)dx

+TK (T ) sup
0≤s≤T

∫
(|ρ̃p− μ̃p|2+ |ρ̃c− μ̃c|2)(s,x)dx

)
. (3.10)

Relation (3.10) holds when N ≥3, and it proves

• that T : (ρ̃p, ρ̃c) �→ (ρp,ρc) is continuous on L∞(0,T ;L2(RN )); actually, it defines
a contraction mapping in this space when T is small enough, which implies the
local existence-uniqueness of a solution in CT ;
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• whatever the choice of T , the uniqueness of the solutions in CT , by means of
Grönwall’s lemma, as well as the continuity of the solution with respect to the
initial data.

When N =2, the argument to get uniqueness is more involved, as we shall see below.
In what follows, we shall also use the following observation:

d

dt

∫
x2

2
ρpdx = −

∫
x ·∇xρp−

∫
x ·∇xΦ̃pρpdx

≤ N

∫
ρpdx+‖∇xΦ̃p‖∞

(∫
ρpdx

)1/2(∫
x2ρpdx

)1/2

≤ mp

(
N+

1

2
‖∇xΦ̃p‖2∞

)
+

1

2

∫
x2ρpdx.

By Lemma 3.4, we have

‖∇xΦ̃p‖∞≤C2‖ρ̃c‖1/N1 ‖ρ̃c‖1−1/N
∞ ≤Υ(T ),

where Υ(T ) depends on the L1 and L∞ norms of the data and has an exponential
growth with respect to T . From now on, we use the generic notation Υ(T ) for such a
quantity, while the precise value of the constant might vary from one line to another.
A similar computation holds for ρc. Applying Grönwall’s lemma, we deduce that∫

x2ρpdx+

∫
x2ρcdx≤Υ(T ) (3.11)

holds. Finally, the analysis uses the following claim, the proof of which can be found in
Appendix B for the sake of completeness.

Lemma 3.8. The operator f �→∫
RN

x−y
|x−y|N f(y)dy is continuous and compact from

L1(RN ) to Lq(B(0,R)) for any 1≤ q< N
N−1 and 0<R<∞.

3.4.2. Global existence. Let us go back to the existence of solutions. We
already know that T (CT )⊂CT . We are going to prove that T is continuous for
the L1((0,T )×R

N )-norm. We consider (ρ̃p,n, ρ̃c,n)∈CT which converges to (ρ̃p, ρ̃c) in
L1((0,T )×R

N ). Of course, the limit belongs to CT . Reproducing the same manipula-
tions as above, we find

d

dt

∫
|ρp,n−ρp|2dx+

∫
|∇xρp,n−∇xρp|2dx

≤−α
∫

ρ̃c|ρp,n−ρp|2dx+
∫

ρ2p,n|∇x(Φ̃p,n− Φ̃p)|2dx.

For any 0<R<∞, the last integral can be dominated by

‖ρp,n‖2∞‖∇x(Φ̃p,n− Φ̃p)‖∞
∫
|x|≤R

|∇x(Φ̃p,n− Φ̃p)|dx

+‖ρp,n‖∞‖∇x(Φ̃p,n− Φ̃n)‖2∞
∫
|x|≥R

ρp,ndx.

On the one hand, since ρp,n lies in CT , we can find Υ(T )>0 such that ‖ρp,n‖∞≤
Υ(T ), and we also have ‖∇xΦ̃p,n‖∞≤Υ(T ), ‖∇xΦ̃p‖∞≤Υ(T ). On the other hand, by
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Equation (3.11), we get supn
∫
|x|≥R

ρp,ndx≤ Υ(T )
R2 . Similar observations hold for ρc,n.

Therefore, we obtain

d

dt

∫
(|ρp,n−ρp|2+ |ρc,n−ρc|2)dx+

∫
(|∇xρp,n−∇xρp|2+ |∇xρc,n−∇xρc|2)dx

≤Υ(T )

(∫
(|ρp,n−ρp|2+ |ρc,n−ρc|2)dx

+
1

R2
+

∫
|x|≤R

(|∇x(Φ̃p,n− Φ̃p)|+ |∇x(Φ̃c,n− Φ̃c)|)dx
)
.

Let δ>0. We apply Grönwall’s lemma again. For T >0 fixed, we can find R large
enough, depending on T and δ, such that∫

(|ρp,n−ρp|2+ |ρc,n−ρc|2)dx

≤ δ+Υ(T )

∫ T

0

∫
|x|≤R

(|∇x(Φ̃p,n− Φ̃p)|+ |∇x(Φ̃c,n− Φ̃c)|)dxds.

Going back to Lemma 3.8, we conclude that (ρp,n,ρc,n)→ (ρp,ρc) in L∞(0,T ;L2(RN ))
as n→∞. We deduce that the convergence also holds in L1((0,T )×R

N ) since∫ T

0

∫
|ρp,n−ρp|dxdt≤T

√
|B(0,R)|

(
sup

0≤t≤T

∫
|ρp,n−ρp|2dx

)1/2

+
T

R2
sup
n

sup
0≤t≤T

∫
x2(ρp,n+ρp)dx︸ ︷︷ ︸

≤Υ(T )

, (3.12)

where we choose R large enough and then let n→∞. A similar estimate applies for
ρc,n−ρc.

Next, we establish that T is a compact mapping for the L1 norm. Let(
(ρ̃p,n, ρ̃c,n)

)
n∈N

be a sequence in CT . We already know that ρp,n and ρc,n are both

bounded in L∞(0,T ;L2(RN ))∩L2(0,T ;H1(RN )). Furthermore, ∂tρp,n=divx(∇xρp,n+

ρp,n∇xΦ̃p,n) is bounded in L2(0,T ;H−1(RN )). The Aubin–Lions–Simon lemma [36,
Sec. 8, Cor. 4] tells us that ρp,n is compact in L2((0,T )×B(0,R)) for any 0<R<∞.
Reasoning as in Equation (3.12), we deduce that ρp,n is compact in L1((0,T )×R

2). A
similar conclusion applies to ρc,n. The Schauder theorem ensures the existence of a
fixed point (ρp,ρc)=T (ρp,ρc)∈CT and thus a solution of the system (1.1)–(1.2).

3.4.3. Uniqueness (N =2). It remains to discuss the uniqueness of the solu-
tions in dimension N =2 (the case of higher dimension being treated through Equation
(3.10)). To this end, our argument is inspired by [34] (note that the necessary adapta-
tions are not fully detailed in [13] for the specific case of dimension N =2). The proof
uses the following claims (we refer the reader for instance to [12, Lemma 1] and [8,
Thm. 3.1.3], respectively).

Lemma 3.9. Assume N =2. Let ρ∈L1∩L2(R2) such that x �→ |x|ρ(x)∈L1(R2) and∫
ρdx=0. Let Φ= 1

2π

∫
ln(|x−y|)ρ(y)dy. Then ∇xΦ belongs to L2(R2).

Lemma 3.10 (Calderón–Zygmung inequality). There exists K�>0 such that for any

1<q0≤ q<∞ and any g∈Lq(RN ), the function V (x)=
∫

x−y
|x−y|

g(y)
|x−y|N−1 dy satisfies

‖∇xV ‖q≤K� q‖g‖q.
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Let ρp,j ,ρc,j , with j∈{1,2}, be two solutions of the system (1.1)–(1.2) associated
to the same initial data. We set P =ρp,1−ρp,2, C=ρc,1−ρc,2, ΨP =Φp,1−Φp,2, ΨC =
Φc,1−Φc,2. We have

∂tP −divx(P∇xΦp,1+ρp,2∇xΨP )=ΔxP,

∂tC−divx(C∇xΦc,1+ρc,2∇xΨC)=ΔxC,

with

−ΔxΦP =αC, ΔxΦC =P.

The solutions constructed above are such that the non-negative functions ρp,j ,ρc,j are
bounded in L∞(0,T ;L1∩L∞(R2)), with x2(ρp,j+ρc,j) bounded in L∞(0,T ;L1(R2)).
In particular, we have P,C ∈L∞(0,T ;L1∩L∞(R2)), with x2P,x2C ∈L∞(0,T ;L1(R2))
and

∫
P dx=0=

∫
Cdx. According to Lemma 3.9, we thus have ∇xΨP ,∇xΨC ∈

L∞(0,T ;L2(R2)). We compute

1

2

d

dt

∫ (|∇xΨP |2+ |∇xΨC |2
)
dx=α

∫
ΨP∂tCdx−

∫
ΨC∂tP dx

=−α
∫
∇xΨP ·(C∇xΦc,1+ρc,2∇xΨC)dx−α

∫
∇xΨP ·∇xCdx

+

∫
∇xΨC ·(P∇xΦp,1+ρp,2∇xΨP )dx+

∫
∇xΨC ·∇xP dx

=I+

∫
∇xΨP ·∇xΨC(ρp,2−αρc,2)dx

−α
∫
∇xΨP ·∇xCdx+

∫
∇xΨC ·∇xP dx

where we have set

I =

∫
(−αC∇xΦc,1 ·∇xΨP +P∇xΦp,1 ·∇xΨC)dx

=

∫
(ΔxΨP∇xΦc,1 ·∇xΨP +ΔxΨC∇xΦp,1 ·∇xΨC)dx.

Using several integrations by parts, this integral can be recast as

I = −
∫

D2
xΦc,1∇xΨP ·∇xΨP dx+

1

2

∫
ρp,1|∇xΨP |2dx

−
∫

D2
xΦp,1∇xΨC ·∇xΨC dx− α

2

∫
ρc,1|∇xΨC |2dx.

Therefore, we arrive at the following estimate:

1

2

d

dt

∫ (|∇xΨP |2+ |∇xΨC |2
)
dx

≤Υ(T )

∫ (|∇xΨP |2+ |∇xΨC |2
)
dx+

1

2

∫ (|∇xP |2+ |∇xC|2
)
dx

−
∫

D2
xΦc,1∇xΨP ·∇xΨP dx−

∫
D2

xΦp,1∇xΨC ·∇xΨC dx,
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where, as above, Υ(T )>0 depends on the L1- and L∞-norms of the initial data. We
are going to combine this estimate to

1

2

d

dt

∫
P 2dx+

∫
|∇xP |2dx=−

∫
∇xP ·(P∇xΦp,1+ρp,2∇xΨP )dx

=−α

2

∫
ρc,1P

2dx−
∫

ρp,2∇xΨP ·∇xP dx

≤ α‖ρc,1‖∞
2

∫
P 2dx+

‖ρp,2‖2∞
2

∫
|∇xΨP |2dx+ 1

2

∫
|∇xP |2dx,

and, similarly,

1

2

d

dt

∫
C2dx+

∫
|∇xC|2dx

≤ ‖ρp,1‖∞
2

∫
C2dx+

‖ρc,2‖2∞
2

∫
|∇xΨC |2dx+ 1

2

∫
|∇xC|2dx.

Let us denote

E (t)=

∫
(|C(t,x)|2+ |P (t,x)|2)dx+

∫ (|∇xΨP (t,x)|2+ |∇xΨC(t,x)|2
)
dx.

The previous manipulations allow us to obtain

d

dt
E ≤Υ(T )E −

∫
D2

xΦc,1∇xΨP ·∇xΨP dx−
∫

D2
xΦp,1∇xΨC ·∇xΨC dx.

The last integrals can be dominated by using Hölder’s inequality; we are led to

‖D2
xΦc,1‖q

(∫
|∇xΨP |2q′ dx

)1/q′

+‖D2
xΦp,1‖q

(∫
|∇xΨC |2q′ dx

)1/q′

≤‖D2
xΦc,1‖q‖∇xΨP ‖2/q∞

(∫
|∇xΨP |2dx

)1/q′

+‖D2
xΦp,1‖q‖∇xΨC‖2/q∞

(∫
|∇xΨC |2dx

)1/q′

.

The second derivatives can be controlled by appealing to Lemma 3.10. Note that

• on the one hand, both ρ=ρp,j and ρ=ρc,j satisfy the rough estimate ‖ρ‖q≤
‖ρ‖1+‖ρ‖∞;

• on the other hand, for any q≥2, ‖∇xΨP ‖2/q∞ ≤1+‖∇xΦp,1‖∞+‖∇xΦp,2‖∞
holds, as well as a similar estimate for ∇xΨC .

We can thus find a constant Υ(T )>0 which does not depend on q≥2, such that

d

dt
E ≤Υ(T )(E +qE 1−1/q).

We simply write E =( 1qE 1/q)×qE 1−1/q, where q≥2 and we already know that t �→E (t)

is bounded on [0,T ]. We arrive at

d

dt
E ≤ qΥ(T )E 1−1/q.

We remind the reader that E (0)=0. Pick η>0 and let t∈ [0,T ] �→zη(t) be the solution
of the ODE d

dtzη(t)=Υ(T )q(η+zη(t))
1−1/q, with zη(0)=η. We find zη(t)=((2η)1/q+
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Υ(T )t)q−η. Clearly E (t)≤ zη(t) holds for any η>0. Letting η go to 0, we deduce that
E ≤ (Υ(T )t)q holds for any 2≤ q<∞. We now let q go to ∞, which yields E (t)=0
provided 0≤ t≤1/Υ(T ). We repeat the argument on successive time intervals of length
1/Υ(T ), and we conclude that E vanishes on the whole interval [0,T ]. It implies∇xΨP =
∇xΨC =0, P =C=0.

3.4.4. Unbounded data. We detail in the case of N =2 how to extend the
existence result to unbounded data. If the initial data (ρp,0,ρc,0) lies in C∞

c (R2), stan-
dard results about the regularity of solutions of parabolic equations can be used, and
we can justify for these solutions the derivation of the a priori estimates. In particular,
they are uniformly bounded. Finally, we wish to extend the set of initial data, con-
sidering possibly unbounded data. The regularity analysis provides a priori estimates
in Lq for any 1<q≤∞, depending only on the L1 norm of the data, for any positive
time. However, the estimates blow up as t→0, and the singularity is not integrable on
[0,T ]. Therefore, we are still facing the difficulty of defining the product ρ∇xΦ. For the
Keller–Segel system (1.6), a symmetrisation trick can be used in order to compensate
in dimension N =2 (and N =1) for the singularity of the convolution kernel (see the
formulation in [12, 33, 35]). Due to the crossing in the coupling, this trick does not
operate here. Moreover, we shall work by approximation from bounded data, and we
are facing the difficulty of the lack of compactness in Lebesgue’s spaces of sequences
which are only bounded in L1. For these reasons, we work with initial data in L1+δ(R2),
δ>0.

Let ρp,0,ρc,0 be in L1+δ(R2). We take a sequence of smooth initial data ρnp,0,ρ
n
c,0∈

C∞
c (R2) that converges to ρp,0,ρc,0 in L1+δ(R2). As said above, the a priori estimates

apply to the solution (ρnp ,ρ
n
c ) associated with (ρnp,0,ρ

n
c,0): ρ

n
p ,ρ

n
c are bounded in the space

L∞(0,T ;L1+δ(R2)), with ∇x(ρ
n
p )

(1+δ)/2 and ∇x(ρ
n
c )

(1+δ)/2 bounded in L2((0,T )×R
2).

Owing to (3.5), we deduce that ρnp and ρnc are bounded in L2+δ((0,T )×R
2). Since,

by Lemma 3.8, ∇xΦ
n
p and ∇xΦ

n
c are bounded in Lq

loc((0,T )×R
2), for any 1≤ q<2, the

products ρnp∇xΦ
n
p and ρnc∇xΦ

n
c lie in a bounded set of L1

loc((0,T )×R
2). We are left with

the task of passing to the limit in the non-linear terms. We only treat the prey equation,
the chaser equation being treated in a similar way. We can assume, possibly at the price
of extracting subsequences, that ρnp ⇀ρp weakly in L2+δ((0,T )×R

2) and ∇xΦ
n
p ⇀∇xΦp

weakly in Lq((0,T )×B(0,R)) for any 1≤ q<2 and 0<R<∞. Furthermore, on the one
hand, by Lemma 3.8, we have the following “compactness property with respect to the
space variable”:

lim
|h|→0

(
sup
n
‖∇xΦ

n
p (t,x+h)−∇xΦ

n
p (t,x)‖Lq((0,T )×B(0,R))

)
=0.

On the other hand, ∂tρ
n appears as the sum of the first and second derivatives of

sequences bounded in L1((0,T )×B(0,R)). Directly applying [25, Lemma 5.1] al-
lows us to conclude that ρnp∇xΦ

n
p ⇀ρp∇xΦp in the sense of distributions, as n→∞,

with ΔxΦp=−αρc. The estimates also imply that, for any ϕ∈C∞
c (R2), the sequence∫

ρnp (t,x)ϕ(x)dx can be assumed to converge in C([0,T ]) to
∫
ρp(t,x)ϕ(x)dx. The uni-

form bound on the second-order moment also allows us to justify the mass conservation.
This ends the proof of Theorem 2.2, once we use the improved regularity proven in
Lemma 3.6 and 3.3.

3.5. Comments on space dimensions N 
=2. Let us discuss the role of
space dimension. To this end, let us go back to a more general form of the Gagliardo–
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Niremberg–Sobolev inequality [29](∫
RN

|ξ|pdx
)1/p

≤C

(∫
RN

|∇ξ|rdx
)a/r(∫

RN

|ξ|qdx
)(1−a)/q

,

which holds with

1

p
=a

(
1

r
− 1

N

)
+

1−a

q
.

We naturally control the L1 norm through the mass conservation property, which leads
to select q=1. Besides, the De Giorgi analysis relies on the estimate on the L2 norm,
which leads to p=2+1=3 and r=2. With such a choice of parameters, we get a=
2
3× 2N

N+2 . We can absorb the gradient by using the dissipation induced by the diffusion

as in the proof of Lemma 3.2 provided pa
r = 2N

N+2 ≤1, which thus restricts to dimensions
N =1 or N =2. For N =1, we can thus establish the analog to Theorem 2.2.

Theorem 3.1. Theorem 2.2 also holds in dimension N =1.

Proof. We sketch the proof and leave the details to the reader. Going back to the
proof of Lemma 3.2, for N =1, the Gagliardo–Nirenberg–Sobolev inequality∫

ρ3dx≤C

(∫ ∣∣∣ d

dx
ρ
∣∣∣2dx)2/3(∫

ρdx

)5/3

yields

d

dt

∫
ρ2c dx+2

∫ ∣∣∣ d

dx
ρc

∣∣∣2dx
≤2
√
δ

∫
ρ3c dx+

1

δ

∫
ρ3pdx

≤2C
√
δ

(∫ ∣∣∣ d

dx
ρc

∣∣∣2dx)2/3(∫
ρcdx

)5/3

+
C

δ

(∫ ∣∣∣ d

dx
ρp

∣∣∣2dx)2/3(∫
ρpdx

)5/3

.

Young’s inequality and mass conservation permit us to find a,b>0 such that

d

dt

∫
ρ2c dx+

∫ ∣∣∣ d

dx
ρc

∣∣∣2dx≤a+b

∫ ∣∣∣ d

dx
ρp

∣∣∣2dx.
Since the estimate on ρp is clear, see (3.3), we deduce that the analog of Lemma 3.2
in dimension N =1 provides an estimate with linear growth on

∫
ρ2c(t,x)dx and∫ t

0

∫ | d
dxρc|2dx when ρp,0 and ρc,0 lie in L2(R).

Similarly, we turn to the adaptation of Lemma 3.5 for N =1. With q=2, (3.6)
becomes

d

dt

∫
ρ2pdx+2

∫ ∣∣∣ d

dx
ρp

∣∣∣2dx≤0,

d

dt

∫
ρ2c dx+C1

∫ ∣∣∣ d

dx
ρc

∣∣∣2dx≤C2

∫
ρ3pdx+C3.

(3.13)

We combine again the Gagliardo–Nirenberg–Sobolev inequality with the Cauchy–
Schwarz inequality∫

ρ2dx=

∫
ρ1/2ρ3/2dx≤

(∫
ρdx

)1/2(∫
ρ3dx

)1/2

,
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and we eventually arrive at

d

dt
X +βX 3≤α,

with

X =

∫
ρ2pdx+A

∫
ρ2c dx

for some constants A,α,β >0. Then, the argument in Appendix A justifies that
Lemma 3.5 applies for N =1 as well. Then, we can reproduce the proof of Lemma 3.6
to conclude that the solution becomes instantaneously bounded.

It is equally possible to elaborate further on the behaviour of the solutions when
N >2, at the price of a suitable smallness condition on the data. The argument, directly
inspired by [31, Section 5.2.2] and the references therein for the Keller–Segel system,
also provides decay estimates.

Theorem 3.2. Let N >2. There exists a constant κN such that, if the initial data
ρp,0,ρc,0∈L1(RN ) satisfies

‖ρp,0‖N/2+‖ρc,0‖N/2≤κN ,

then the system (1.1)–(1.2) admits a global weak solution such that ρp and ρc belong to

L∞(0,∞;LN/2(RN )), with ∇ρ
N/4
p and ∇ρ

N/4
c in L2((0,∞)×R

N ). Furthermore, there
exists a constant CN such that

‖ρp(t, ·)‖N/2+‖ρc(t, ·)‖N/2≤CN
1

t(N−2)/2
.

Proof. The generalization of Equation (3.5) to any space dimension reads∫
RN

|ξ|q+1dx≤Cq

∫
RN

|∇ξq/2|2dx
(∫

RN

|ξ|N/2dx

)2/N

.

Of course, the difficulty relies on the fact we do not control naturally the LN/2 norm,
while the L1 norm is preserved by the equation. We go back to Equations (3.3) and

(3.4). The former tells us that ρp is bounded in L∞(0,∞;Lq(RN )), with ∇ρ
q/2
b bounded

in L2((0,∞)×R
N ) when ρp,0∈Lq(RN ), as noticed in Lemma 3.1. Proceeding as in the

proof of Lemma 3.2, the latter becomes

d

dt

∫
ρqc dx+4

q−1

q

∫
|∇ρq/2c |2dx

≤ q

∫
ρq+1
c dx+

∫
ρq+1
p dx

≤ qCq

(∫
ρN/2
c dx

)2/N ∫
|∇ρq/2c |2dx+Cq

(∫
ρN/2
p dx

)2/N ∫
|∇ρq/2p |2dx.

We use this relation in the specific case q=N/2>1. Let Λ>0. We thus get

d

dt

{∫
ρN/2
c dx+Λ

∫
ρN/2
p dx

}
+

(
4
N−2

N
−N

2
CN/2

(∫
ρN/2
c dx

)2/N
)∫

|∇ρN/4
c |2dx

+

(
4
N−2

N
Λ−N

2
CN/2

(∫
ρN/2
p dx

)2/N
)∫

|∇ρN/4
p |2dx

≤0.
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By Lemma 3.1, we know that
∫
ρ
N/2
p dx≤∫

ρ
N/2
p,0 dx. Hence, let us pick

Λ>
N2

8(N−2)
CN/2

(∫
ρ
N/2
p,0 dx

)2/N

.

We are led to∫
ρN/2
c (t,x)dx≤

∫
ρN/2
c (t,x)dx+Λ

∫
ρN/2
p (t,x)dx

≤∫
ρ
N/2
c,0 (x)dx+Λ

∫
ρ
N/2
p,0 (x)dx

+

∫ t

0

(
N

2
CN/2

(∫
ρN/2
c (s,x)dx

)2/N

−4
N−2

N

)∫
|∇ρN/4

c (s,x)|2dxds.

Finally, a simple continuity argument shows that, if initially(∫
ρ
N/2
c,0 (x)dx+Λ

∫
ρ
N/2
p,0 (x)dx

)2/N

<8
N−2

N2CN/2

holds, then, this property is preserved. It proves the uniform bound on the LN/2-norm
of the densities, under the smallness condition.

This analysis shows that ‖ρp(t, ·)‖N/2 and ‖ρc(t, ·)‖N/2 are uniformly bounded. More
precisely, we can find a constant κ>0 such that

d

dt

{∫
ρN/2
c dx+Λ

∫
ρN/2
p dx

}
≤−κ

(∫
|∇ρN/4

c |2dx+
∫
|∇ρN/4

p |2dx
)

≤− κ

CN/2

((∫
ρN/2
c dx

)−2/N ∫
ρ1+N/2
c dx+

(∫
ρN/2
p dx

)−2/N ∫
ρ1+N/2
p dx

)

by using the Gagliardo–Nirenberg–Sobolev inequality. Next, we use the simple interpo-
lation inequality

∫
ξN/2dx≤

(∫
ξdx

)2/N(∫
ξ1+N/2dx

)(N−2)/N

,

which, combined to the mass conservation, allows us to obtain

d

dt

{∫
ρN/2
c dx+Λ

∫
ρN/2
p dx

}
≤− κ

CN/2

(
m−2/(N−2)

c

(∫
ρN/2
c dx

)N/(N−2)−2/N

+m
−2/(N−2)
p

(∫
ρN/2
p dx

)N/(N−2)−2/N

dx

)
.

Let us set

U (t)=

∫
ρN/2
c (t,x)dx+Λ

∫
ρN/2
p (t,x)dx.
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Owing to the elementary inequalities Cθ(a
θ+bθ)≤ (a+b)θ≤Cθ(a

θ+bθ), which hold for
any a,b≥0, and θ∈ (0,1), we obtain the differential inequality

d

dt
U (t)≤−CU (t)N/(N−2)−2/N

for a certain C>0. We set αN = 4
N(N−2) >0 so that

d

dt
(U (t))

−αN ≥CαN .

We deduce the decay with a rate given by t−1/αN by integrating this ODE.

4. Analysis of the kinetic model
As said in the Introduction, we adopt the functional framework introduced in [33].

Differences with the analysis in [33] are due to the following facts:

• We are dealing with a system of kinetic equations instead of considering a mere
scalar unknown.

• The coupling crosses the influence of a population on the other; accordingly,
the structure of the system changes and we cannot use important properties of
the Vlasov–Poisson–Fokker–Planck system (like the compensation between the
time evolution of the kinetic energy and the potential energy, etc.).

It is likely that our existence result is not optimal; it could certainly be improved by
adapting the techniques in [5]. However, Theorem 2.3 provides a unified functional
framework to handle the asymptotic issues in Theorem 2.4. It would be tempting to
extend the latter by working with renormalisation methods, as in [9]. However, we are
still facing the lack of estimates on the potentials (which in the present analysis lie in
L∞) and of energy/entropy structure as for the usual Vlasov–Poisson–Fokker–Planck
system.

4.1. A priori estimates. What makes the norm ||| · |||q well-adapted to handle
this problem can be recapped in the following statement.

Lemma 4.1. Let f :RN ×R
N→ [0,∞] be an integrable function such that |||f |||q <∞

for some N <q<∞. Then

i) f ∈Lq(RN ×R
N ),

ii) For any 1≤s≤ q, we have |||f |||ss≤‖f‖1+ |||f |||qq.
iii) ρ(x)=

∫
f(x,v)dv lies in Lq(RN ). In fact, we have ‖ρ‖p≤|||f |||q.

iv) We set Ψ(x)=
∫

x−y
|x−y|N ρ(y)dy. If q>N , then Ψ∈L∞(RN ). Furthermore, there

exists a constant C>0 such that

‖Ψ‖∞≤C‖ρ‖βq ‖ρ‖1−β
1 , β=

q(N−1)

(q−1)N
, 1−β=

q−N

(q−1)N
.

Note that 2β
q <N when q>N ≥2.

Proof. The first item comes from the obvious relation∫∫
|f |qdvdx=

∫∫ ( |f |
M

)q

M×Mq−1dvdx≤‖M‖q−1
∞ |||f |||q,
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where M is given by Equation (1.4). Property (ii) follows by interpolation: writing
s=θ+(1−θ)q, 0≤θ≤1, we obtain

∫∫ ∣∣∣ f
M

∣∣∣sM dvdx =

∫∫ ( |f |
M

)θ

Mθ×
( |f |
M

)(1−θ)q

M1−θdvdx

≤
(∫∫

|f |dvdx
)θ(∫∫ ∣∣∣ f

M

∣∣∣qM dvdx

)1−θ

and we conclude by convexity. Next, Hölder’s inequality yields

∫
ρqdx=

∫ (∫
f

M
M1/qM1/q′ dv

)q

dx≤
∫ (∫ (

f

M

)q

M dv

)(∫
Mdv

)q/q′

dx.

Since
∫
M dv=1, we are led to ‖ρ‖q≤|||f |||q. Eventually, with A>0, we split

Ψ(x)=

∫
|x−y|≤A

· · · dy+
∫
|x−y|≥A

· · · dy.

The second integral is dominated by ‖f‖1

AN−1 , while we get

∫
|x−y|≤A

|ρ(y)|
|x−y|N−1

dy≤‖ρ‖q
(
|SN−1|

∫ A

0

dr

r(q′−1)(N−1)

)1/q′

.

The right-hand side is finite since q>N implies (q′−1)(N−1)<1. Optimizing with
respect to A, we obtain the desired result.

Let us start by establishing a priori estimates, following [33, Lemmas 2.3 & 3.1].
Let f be a solution of the Fokker–Planck equation

∂tf+
1

ε
(v ·∇xf−∇xΦ ·∇vf)=

1

ε2
Lf, (4.1)

where we assume, for the time being, that Φ is a given potential. Let H : [0,∞)→ [0,∞)
be a convex function. We obtain

d

dt

∫∫
H

(
f

M

)
M dvdx+

1

2ε2

∫∫
H ′′

(
f

M

)∣∣∣∣∇v

(
f

M

)∣∣∣∣2M dvdx

≤1

2
‖∇xΦ‖2∞

∫∫
H ′′

(
f

M

)∣∣∣∣∇v

(
f

M

)∣∣∣∣2M dvdx. (4.2)

We use this relation with H (z) :=zq, where q≥1. We remark that H ′′(f/M)f2/M =
q(q−1)H (f/M)M . It allows us to conclude that

d

dt

∫∫ (
f

M

)q

M dvdx+
q(q−1)

2ε2

∫∫ (
f

M

)q−2 ∣∣∣∣∇v

(
f

M

)∣∣∣∣2M dvdx

≤q(q−1)

2
‖∇xΦ‖2∞

∫∫ (
f

M

)q

M dvdx (4.3)

holds. We obtain useful estimates by applying these observations to the solutions of
the system (1.5). The following statement brings out that Cq,T is an adapted set to
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establish existence-uniqueness of solutions of the system (1.3) and to investigate the
asymptotic behaviour of solutions of the system (1.5) as ε→0.

Lemma 4.2. Let (f ε
p,f

ε
c ) be a solution of the system (1.5). We assume that

sup
ε>0

(
|||f ε

p,0|||qq+ |||f ε
c,0|||qq

)
<∞.

For any T >0 small enough, there exists a constant CT such that

sup
0≤t≤T, ε>0

(
|||f ε

p(t, ·)|||qq+ |||f ε
c (t, ·)|||qq

)
≤CT ,

sup
0≤t≤T, ε>0

(
‖∇xΦ

ε
p(t, ·)‖∞+‖∇xΦ

ε
c(t, ·)‖∞

)
≤CT .

Proof. Estimate (4.3) and Lemma 4.1 apply for both the equations for f ε
p and f ε

c

in the system (1.5). Let q>N . Let us set

Z(t)= |||f ε
c (t, ·)|||qq+ |||f ε

c (t, ·)|||qq
We arrive at

d

dt
Z(t)≤C Z(t)1+2β/q

with C = q(q−1)
2 (m

2(1−β)
c +m

2(1−β)
p ). We can compare Z to the solution y : t �→y(t) of

the non-linear ODE y′(t)=C y1+2β/q(t), with y(0)=supε>0(|||f ε
p,0|||qq+ |||f ε

c,0|||qq)≥Z(0).
Let T� stand for the lifespan of this solution (note that it does not depend on ε). We
conclude that 0≤Z(t)≤y(t) holds for every t∈ [0,T�).

We shall need further estimates, which will be useful to control moments and entropy
dissipation. To be more specific, we shall make use of the following claim.

Lemma 4.3. Let (f ε
p,f

ε
c ) be a solution of the system (1.5). In addition to the hypothesis

of Lemma 4.2, we assume that

sup
ε>0

(∫∫
f ε
j,0

(
| ln(f ε

j,0)|+ |x|+
v2

2

)
dvdx

)
<∞

holds for j∈{p,c}. Then, for any T >0 small enough (as in Lemma 4.2), there exists
a constant CT such that

sup
0≤t≤T, ε>0

(∫∫
f ε
j

(
| ln(f ε

j )|+ |x|+
v2

2

)
dvdx

)
≤CT ,

sup
ε>0

1

2ε2

∫ T

0

∫∫
|v
√

f ε
j +2∇v

√
f ε
j |2dxdxdt≤CT .

Proof. Let us go back to the generic Equation (4.1). We use (4.2) with H (z)=
z ln(z)

d

dt

∫∫
f ln

(
f

M

)
dvdx+

1

2ε2

∫∫ ∣∣∣v√f+2∇v

√
f
∣∣∣2 dvdx

=
d

dt

∫∫
f
(
ln(f)+

v2

2

)
dvdx+

1

2ε2

∫∫ ∣∣∣v√f+2∇v

√
f
∣∣∣2 dvdx

≤ 1

2
‖∇xΦ‖2∞

∫∫
f dvdx=

m

2
‖∇xΦ‖2∞
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with m=
∫∫

f0dvdx, by mass conservation. We shall combine this estimate with the
time evolution of the first space moment

d

dt

∫∫
|x|f dvdx =

1

ε

∫∫
x

|x| ·vf dvdx=
∫∫

x

|x|
√
f · v

√
f+2∇v

√
f

ε
dvdx

≤ 1

2

∫∫
f dvdx+

1

2ε2

∫∫ ∣∣∣v√f+2∇v

√
f
∣∣∣2 dvdx.

These inequalities do not directly provide a useful estimate since z ln(z) changes sign.
We use the decomposition

z| ln(z)| = z ln(z)−2z ln(z)10≤z≤e−ω−2z ln(z)1e−ω<z≤1

≤ z ln(z)+
4

e
e−ω/2+2ωz.

With ω= 1
4 (

v2

2 + |x|), we are led to

∫∫
f
(
| ln(f)|+ |x|

2
+

v2

4

)
dvdx+

1

2ε2

∫ t

0

|v
√
f+2∇v

√
f |2dxdxds

≤
∫∫

f0

(
| ln(f0)|+ |x|+ v2

2

)
dvdx+

‖∇xΦ‖2∞
2

m+
4

e

∫∫
e−v2/16−|x|/8dvdx.

We readily adapt the argument to deal with the system (1.5).

4.2. Asymptotics analysis. We are now dealing with the rescaled system
(1.5). We are going to use the uniform estimates in Lemma 4.2 (where we remind the
reader that q>N) and Lemma 4.3. In what follows, we consider T >0 as given by
Lemma 4.2.

Lemma 4.4. We can find CT >0 such that for j∈{p,c},

1

ε2

∫ T

0

∫∫ ∣∣∣∣∇v

(
f ε
j

M

)∣∣∣∣2M dvdxdt≤CT . (4.4)

Moreover, we have

lim
ε→0

∫ T

0

∫∫
|f ε

j −ρεjM |2
dvdxdt

M
=0,

(precisely, it is of order O(ε2)) where we have set ρεj =
∫
f ε
j dv.

Proof. Since 2≤N <q, we use Lemma 4.1-ii): we go back to Equation (4.3) for
H (z)=z2, bearing in mind that

∫∫ |f ε
j |2/M dvdx is uniformly bounded with respect to

ε>0 and t∈ [0,T ], by virtue of Lemma 4.2. Integrating Equation (4.3) over [0,T ] we
conclude that Equation (4.4) holds. The next step follows by applying the following
Sobolev inequality (see [4, Corollary 2.18 and Theorem 3.2]): there exists Λ>0 such
that, for any admissible function f ¡

∫ ∣∣∣∣f(v)−M(v)

∫
f(w)dw

∣∣∣∣2 dv

M(v)
≤Λ

∫ ∣∣∣∣∇v

(
f

M

)∣∣∣∣2M dv.
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Having at hand these estimates, the asymptotic analysis is now understood by
looking at the moment system, obtained by velocity averaging the equations. Integrate
Equation (1.5) with respect to v. We obtain the following conservation equations:

∂tρ
ε
c+divxJ

ε
c =0, ∂tρ

ε
p+ε−1divxJ

ε
p=0, (4.5)

where we have set

Jε
j =

1

ε

∫
vf ε

j dv.

Similarly, multiplying Equation (1.5) by v and integrating yield

ε2∂tJ
ε
c +Divx

∫
(v⊗v)f ε

c dv+ρεc∇xΦ
ε
c=−Jc,ε,

ε2∂tJ
ε
p+Divx

∫
(v⊗v)f ε

pdv+ρεp∇xΦ
ε
p=−Jp,ε.

(4.6)

Lemma 4.5. For j∈{p,c}, on the one hand, the sequence
(
Jε
j

)
ε>0

is bounded in

L2((0,T )×R
N ), and on the other hand, we can rewrite∫

v⊗vf ε
j dv=ρεjI+εRε

j ,

where
(
Rε

j

)
ε>0

is bounded in L2((0,T )×R
N ).

Proof. We write∫ T

0

∫
|Jε

j |2dxdt =
∫ T

0

∫ ∣∣∣∣
∫

f ε
j

M

(−∇vM)

ε
dv

∣∣∣∣2 dxdt
=

∫ T

0

∫ ∣∣∣∣
∫

M

ε
∇v

(
f ε
j

M

)
dv

∣∣∣∣2 dxdt
≤ 1

ε2

∫ T

0

∫∫
M

∣∣∣∣∇v

(
f ε
j

M

)∣∣∣∣2 dvdxdt≤CT ,

and we conclude by going back to Equation (4.4). Next, Rε
j is defined by

Rε
j =

∫
v⊗v

√
M

f ε
j −ρεjM

ε
√
M

dv,

so that

|Rε
j |2≤

∫
|v|4M dv×

∫ |f ε
j −ρεjM |2
ε2M

dv,

and we conclude by using the estimates that have led to Lemma 4.4.

Possibly at the price of extracting subsequences, we can assume that

ρεj ⇀ρj weakly in Lq((0,T )×R
N ,

Jε
j ⇀Jj weakly in L2((0,T )×R

N ),
∇xΦ

ε
j ⇀∇xΦ weakly−� in L∞((0,T )×R

N ).

Hence, the only difficulty for passing to the limit in Equations (4.5)–(4.6) relies on the
non-linear term ρεj∇xΦ

ε
j .
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Lemma 4.6. Up to a subsequence, ρεj converges to ρj, for j∈{p,c}, strongly in

Ls(0,T ;Lr(RN )) for any 1≤s<∞, 1≤ r<q.

Proof. The proof relies on a suitable application of the average lemma. Indeed,
by Lemma 4.2 and Lemma 4.1, f ε

j is bounded in L∞(0,T ;Lq(RN ×R
N )), with q≥N ,

thus, by a mere interpolation argument, it is bounded also in L2((0,T )×R
N ×R

N ). It
satisfies

(ε∂t+v ·∇x)f
ε
j =∇v ·gε

with

gε=f ε
j∇xΦ

ε
j+
√
M×

√
M

ε
∇v

(
f ε
j

M

)
.

It follows from Equation (4.4) that gε is bounded in L2((0,T )×R
N ×R

N ). Then, the
average lemma (see for instance [11] or [26, Lemma 4.2]) tells us that

lim
|h|→0

{
sup
ε>0

∫ T

0

∫
B(0,R)

∣∣∣∣
∫

f ε
j (t,x+h,v)ψ(v)dv−

∫
f ε
j (t,x,v)ψ(v)dv

∣∣∣∣2 dxdt
}
=0

holds for any ψ∈C∞
c (RN ), 0<R<∞. Since the kinetic energy is uniformly bounded, we

can work with smooth functions ψ not necessarily compactly supported. In particular,
we have

lim
|h|→0

{
sup
ε>0

∫ T

0

∫
B(0,R)

∣∣ρεj(t,x+h)−ρεj(t,x)
∣∣2 dxdt

}
=0.

Furthermore ∂tρ
ε
j =−∇x ·Jε

j is bounded in L2(0,T ;H−1(RN )), by virtue of Lemma 4.5.

We deduce that ρεj is relatively compact in L2((0,T )×B(0,R)) for any 0<R<∞ and

thus in L1((0,T )×B(0,R)) too (see for instance Appendix B in [3]). Going back to
Lemma 4.3, we see that |x|ρεj is bounded in L∞(0,T ;L1(RN )), which allows us to con-

clude that ρεj converges to ρj strongly in L1((0,T )×B(0,R)) (up to a subsequence).

Finally, by lemmas 4.1 and 4.2, we know that ρεj is bounded in L∞(0,T ;Lq(RN )). In-

terpolation estimates then tell us that the convergence holds in any Lr(0,T ;Ls(RN ))
for 1≤ r<∞, 1≤s<q.

Combining Lemma 4.1 and Lemma 4.6, we can pass to the limit in the product
ρεj∇xΦ

ε
j , say weakly in Lr(0,T ;Ls(RN )), for 1≤ r<∞, 1≤s<q, at least for a suitable

subsequence. Accordingly, we obtain

∂tρj+divxJj =0, −Jj =∇xρj+ρj∇xΦj ,

when we let ε go to 0 in Equations (4.5) and (4.6). We thus find the system (1.1)–(1.2).
Finally, since ∂tρ

ε
j is bounded in L2(0,T ;H−1(RN )), we can also assume that

lim
ε→0

∫
ρεj(t,x)ϕ(x)dx=

∫
ρj(t,x)ϕ(x)dx

uniformly on [0,T ] for any trial function ϕ∈Lq′(RN ), so that the initial data for the
limiting equation also makes sense.
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4.3. Existence of solutions. Let (fc,fp) be the solution of the linear system

∂tfc+v ·∇xfc−∇xΦ̃c ·∇vfc=L(fc)

∂tfp+v ·∇xfp−∇xΦ̃p ·∇vfp=L(fp),

with initial condition fc,0,fp,0≥0, where the potentials are given by the convolution
formulae

∇xΦ̃c=−CN

∫
ρ̃p(t,y)

x−y

|x−y|N dy, ∇xΦ̃p=αCN

∫
ρ̃c(t,y)

x−y

|x−y|N dy.

Note that fc,fp≥0. We denote S (ρ̃c, ρ̃p)=(ρc,ρp), with (ρc,ρp)=
∫
(fc,fp)dv. Owing

to Lemma 4.1 and reproducing the estimates in the proof of Lemma 4.2, we readily
find an invariant set for S . To be more specific, let us set R0= |||fc,0|||q+ |||fp,0|||q. Let
R>R0. Suppose sup0≤t≤T (‖ρ̃c(t, ·)‖q+‖ρ̃p(t, ·)‖q)≤R, with q>N . By Equation (4.3),
Lemma 4.1, and Grönwall’s lemma, we get

sup
0≤t≤T

(|||fc(t, ·)|||q+ |||fp(t, ·)|||q)≤R0e
C̄R2βT ,

for a certain constant C̄ >0, which depends on q,N,mc,mp. From now on, we can thus
fix 0<T <T� small enough such that (ρ̃c, ρ̃p) �→ (fc,fp) leaves the ball with radius R in
Cq,T invariant. Accordingly, the convex set

G =

{
ρc,ρp : (0,T )×R

N→ [0,∞],

∫
(ρc,ρp)dx=(mc,mp),

sup
0≤t≤T

(
‖ρc(t, ·)‖q+‖ρp(t, ·)‖q≤R

}

is left invariant by the mapping S . Furthermore, reproducing the arguments of the
proof of Lemma 4.3, we observe that

sup
0≤t≤T

∫∫
(v2+ |x|)(fc+fp)dvdx≤C(T,R) (4.7)

holds.
Next, let us pick two pairs (ρ̃c,1, ρ̃p,1) and (ρ̃c,2, ρ̃p,2) in this set G , and consider the

associated solutions (fc,j ,fp,j). We define (δc,δp)=(fc,2−fc,1,fp,2−fp,1). We check
that (δc,δp) verifies the system

∂tδc+v ·∇xδc−∇xΦ̃c,1 ·∇vδc=L(δc)+∇x

(
Φ̃c,2− Φ̃c,1

)
·∇vfc,2,

∂tδp+v ·∇xδp−∇xΦ̃p,1 ·∇vδp=L(δp)+∇x

(
Φ̃p,2− Φ̃p,1

)
·∇vfp,2.

Repeating the manipulations that have led to Equation (4.3), we get

d
dt

∫∫
H

(
δ
M

)
M dvdx+ 1

2

∫∫
H ′′( δ

M

)∣∣∇v

(
δ
M

)∣∣2M dvdx

≤ q(q−1)

2

∥∥∥∇xΦ̃1

∥∥∥2
∞

∫∫
H

(
δ

M

)
M dvdx

+

∫∫
H ′′

(
δ

M

)
f2∇x

(
Φ̃2− Φ̃1

)
∇v

(
δ

M

)
dvdx
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with δ (resp. Φ̃j , fj) either δp or δc (resp. Φ̃p,j) or Φ̃c,j , fp,j , or fc,j). The additional
term is dominated by using the Cauchy–Schwarz inequality∫∫

H ′′
(

δ

M

)
f2∇x

(
Φ̃2− Φ̃1

)
∇v

δ

M
dvdx

≤
∥∥∥∇x

(
Φ̃2− Φ̃1

)∥∥∥
∞

∫∫
H ′′

(
δ

M

)
f2

∣∣∣∣∇v

(
δ

M

)∣∣∣∣ dvdx
≤
∥∥∥∇x

(
Φ̃2− Φ̃1

)∥∥∥
∞

(∫∫
H ′′

(
δ

M

)∣∣∣∣∇v

(
δ

M

)∣∣∣∣2M dvdx

)1/2

×
(∫∫

H ′′
(

δ

M

)
f2
2

M
dvdx

)1/2

≤1

2

∫∫
H ′′

(
δ

M

)∣∣∣∣∇v

(
δ

M

)∣∣∣∣2M dvdx+
1

2

∥∥∥∇x

(
Φ̃2− Φ̃1

)∥∥∥2
∞

∫∫
H ′′

(
δ

M

)
f2
2

M
dvdx.

We use this relation with H (z)= zs, with 1<s<q. The last integral can be estimated
by using Hölder’s inequality as follows:∫∫

H ′′
(

δ

M

)
f2
2

M
dvdx=s(s−1)

∫∫ (
δ

M

)s−2(
f2
M

)2

M dvdx

≤s(s−1)

(∫∫ (
δ

M

)s

M dvdx

)1−2/s(∫∫ (
f2
M

)s

M dvdx

)2/s

≤s(s−1)

((
1− 2

s

)∫∫ (
δ

M

)s

M dvdx+
2

s

∫∫ (
f2
M

)s

M dvdx

)
.

We arrive at

d

dt

∫∫ (
δ

M

)s

M dvdx

≤s(s−1)

2

∥∥∥∇xΦ̃1

∥∥∥2
∞

∫∫ (
δ

M

)s

M dvdx+
s(s−1)

2

∥∥∥∇x

(
Φ̃2− Φ̃1

)∥∥∥2
∞

×
((

1− 2

s

)∫∫ (
δ

M

)s

M dvdx+
2

s

∫∫ (
f2
M

)s

M dvdx

)
.

Then, using the definition of ||| · |||s together with Grönwall’s lemma, we obtain

|||δ(t, ·)|||ss≤ (s−1)

∫ t

0

∥∥∥∇x

(
Φ̃2− Φ̃1

)
(τ, ·)

∥∥∥2
∞
|||f2(τ, ·)|||ssdτ

×exp

{∫ t

0

(s−1)(s−2)

2

∥∥∥∇x

(
Φ̃2− Φ̃1

)
(τ, ·)

∥∥∥2
∞

+
s(s−1)

2

∥∥∥∇xΦ̃1(τ, ·)
∥∥∥2
∞

dτ

}
.

Going back to Lemma 4.1, we can find a constant C̃(T,R) such that

|||δ(t, ·)|||ss≤TC̃(T,R) sup
0≤t≤T

∥∥∥∇x

(
Φ̃2− Φ̃1

)
(τ, ·)

∥∥∥2
∞
,

for any 0≤ t≤T . Using the estimates in Lemma 4.1 again, we obtain∥∥∥∇x

(
Φ̃2− Φ̃1

)
(τ, ·)

∥∥∥2
∞
≤C‖(ρ̃2− ρ̃1)(τ, ·)‖2βs ‖(ρ̃2− ρ̃1)(τ, ·)‖2−2β

1 .
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It allows to conclude that the following continuity property holds: if
(
(ρ̃c,n, ρ̃p,n)

)
n∈N

is a sequence of elements of G which converges to (ρ̃c, ρ̃p) in L2β(0,T ;Ls(RN )), then(
(fc,n,fp,n)

)
n∈N

converges to (fc,fp) strongly in Cs,T , and therefore
(
(ρc,n,ρp,n)

)
n∈N

converges to (ρc,ρp) in L2β(0,T ;Ls(RN )). (We remind the reader that 1<2β<s.)

Finally, let us consider a sequence
(
(ρ̃c,n, ρ̃p,n)

)
n∈N

in G . We have seen that

(fc,n,fp,n) is bounded in Cq,T , and consequently, for j∈{c,p},
• fj,n is bounded in L∞(0,T ;Lq(RN ×R

N )) since∫∫
|f |qdvdx=

∫∫ ∣∣∣ f
M

∣∣∣qM×Mq−1dvdx≤‖M‖q−1
∞ |||f |||q;

• by interpolation sup0≤t≤T |||fj,n(t, ·)|||r is bounded for any 1≤ r≤ q.
Going back to (4.3) with q=2, we deduce that∫ T

0

∫∫ ∣∣∣∣∇v
fj,n
M

∣∣∣∣2M dvdxdt≤CT

is uniformly bounded. It follows that

(∂t+v ·∇x)fj,n=divvgj,n

where

gj,n=fj,n∇xΦ̃j,n+
√
M×

√
M∇v

(
fj,n
M

)

is bounded in L∞(0,T ;L2(RN ×R
N )). The standard average lemma tells us that the

integrals
∫
fj,n(t,x,v)ψ(v)dv belong to a compact in L2

loc((0,T )×R
N ) for any ψ∈

C∞
c (RN ). Owing to Equation (4.7), we deduce that ρj,n is compact in Lr(0,T ;Ls(RN ))

for any 1≤ r<∞ and 1≤s<q. It allows us to apply the Schauder theorem in order to
justify the existence of a fixed point of the mapping S .

Appendix A. A comparison Lemma.
Lemma A.1. Let X : [0,T ]→ (0,∞), for 0≤T ≤∞, which satisfies for any t∈ [0,T ],

X ′(t)+aXγ(t)≤ b

for some given a,b>0 and γ >1. Then, we can find C>0, which depends on a,b,γ,
such that

X(t)≤C
(
1+

1

t1/(γ−1)

)
holds for any t∈ [0,T ].

Proof. The estimate is directly inspired by [2, Appendix A], where a more intricate
statement is proved. Let

Z(t)=A
(
1+

1

t1/(γ−1)

)
.

We observe that t �→Z(t) is non-increasing and thus bounded from below by A=
limt→∞Z(t) Next, we compute

Z ′(t)=−A(γ−1)
(Z(t)

A
−1

)γ

<0



2284 MODELS OF PURSUIT-EVASION DYNAMICS

since γ >1. Therefore, it follows that

Z ′(t)+aZγ(t)≥A
(
aAγ−1−(γ−1)

)(Z(t)

A

)γ

≥A
(
aAγ−1−(γ−1)

)
which can be made larger than b by choosing A large enough.

Since limt→0Z(t)=∞, we have Z(t)>X(t) at least on some interval [0,T�). Let
us set t0=sup{t>0, Z(s)>X(s) on 0≤s≤ t}. Suppose t0<T : we can find t1∈ (t0,T )
such that Z(t1)=X(t1). By definition of t0, we can find two sequences t(k) and s(k)

such that

t0<t(k+1)≤ t(k)≤ t1, t0≤s(k+1)≤s(k)<t1,

t0<s(k)<t(k)≤ t1,

lim
k→∞

t(k)= t0= lim
k→∞

s(k),

X(t(k))>Z(s(k))=X(s(k)), X(t)>Z(t) for s(k)<t<t(k).

(We might have t(k)= t1 and s(k)= t0.) We write

∫ t(k)

s(k)

X ′(t)dt=X(t(k))−X(s(k))>Z(t(k))−Z(s(k))=

∫ t(k)

s(k)

Z ′(t)dt.

By the mean value theorem, we can find ζ(k)∈ (s(k),t(k))—which implies X(ζ(k))>
Z(ζ(k))—such that X ′(ζ(k))>Z ′(ζ(k)). This contradicts the fact that, for any t∈ [0,T ],
we have X ′(t)+aXγ(t)≤ b≤Z ′(t)+aZγ(t), which yields Z ′(t)−X ′(t)≥a(Xγ(t)−
Zγ(t)).

Appendix B. Proof of Lemma 3.8. In fact, we simply discuss the analog of
Lemma 3.8 for the operator

f �−→Tf(x)=

∫
RN

f(y)

|x−y|λ dy.

Let R>0. We pick M>0 and split the integral

∫
|x|≤R

|Tf(x)|qdx=
∫
|x|≤R

∣∣∣∣∣
∫
|x−y|≤M

· · · dy+
∫
|x−y|≥M

· · · dy
∣∣∣∣∣
q

dx

≤2q−1

∫
|x|≤R

(∫
|x−y|≤M

|f(y)|dy
)q−1(∫

|x−y|≤M

|f(y)|
|x−y|λq dy

)
dx

+
2q−1

Mqλ

∫
|x|≤R

(∫
|x−y|≥M

|f(y)|dy
)q

dx

≤2q−1‖f‖q−1
1

∫
|z|≤M

1

|z|λq
(∫

|x|≤R

|f(x−z)|dx
)
dz+

2q−1B(0,R)

Mqλ
‖f‖q1

≤2q−1‖f‖q1|SN−1|
∫ M

0

dr

rλq−N+1
+

2q−1B(0,R)

Mqλ
‖f‖q1.

The integral over [0,M ] is finite when 1≤ q<N/λ. In this case, we end up with∫
|x|≤R

|Tf(x)|qdx≤C‖f‖q1
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with C depending on N , λ, R, and M . It proves that T is a bounded operator from
L1(RN ) to Lq(B(0,R)).

The same estimate, together with Lebesgue’s theorem, shows that

Tδf(x)=

∫
RN

f(y)

δ+ |x−y|λ dy

converges to Tf as δ→0 in Lq(B(0,R)). The convergence is uniform over the unit
ball of L1(RN ). Next, let us consider a sequence

(
fn

)
n∈N

of integrable functions, with

‖fn‖1=1. We readily check that, for any δ>0, Tδfn fulfils the hypothesis of the Arzelà–
Ascoli theorem. Therefore, {Tδfn, n∈N} is relatively compact in C(B(0,R)), and thus
in Lq(B(0,R)) as well. We conclude that T is a compact operator.
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