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REGULARITY CRITERIA OF THE 4D NAVIER–STOKES
EQUATIONS INVOLVING TWO VELOCITY FIELD COMPONENTS∗

KAZUO YAMAZAKI†

Abstract. We study the Serrin-type regularity criteria for the solutions to the four-dimensional
Navier–Stokes equations and magnetohydrodynamics system. We show that the sufficient condition
for the solution to the four-dimensional Navier–Stokes equations to preserve its initial regularity for
all time may be reduced in the following ways: from a bound on the four-dimensional velocity vector
field to any two of its four components; from a bound on the gradient of the velocity vector field to
the gradient of any two of its four components; and from a gradient of the pressure scalar field to any
two of its partial derivatives. Results are further generalized to the magnetohydrodynamics system.
These results may be seen as a four-dimensional extension of many analogous results that exist in the
three-dimensional case and also component reduction results of many classical results.
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1. Introduction
We study the N -dimensional (N ≥2) Navier–Stokes equations (NSE) and magne-

tohydrodynamics (MHD) system defined respectively as follows:

du

dt
+(u ·∇)u+∇π=νΔu, (1.1a)

∇·u=0, u(x,0)=u0(x), (1.1b)

du

dt
+(u ·∇)u+∇π=νΔu+(b ·∇)b, (1.2a)

db

dt
+(u ·∇)b=ηΔb+(b ·∇)u, (1.2b)

∇·u=∇·b=0, (u,b)(x,0)=(u0,b0)(x), (1.2c)

where u=(u1, . . . ,uN ) :RN ×R
+ �→R

N ,b=(b1, . . . ,bN ) :RN ×R
+ �→R

N ,π :RN ×R
+ �→R

represent the velocity vector field, magnetic vector field, and pressure scalar field, re-
spectively. We denote by the parameters ν,η≥0 the viscosity and magnetic diffusivity
respectively. Hereafter, we also denote d

dt by ∂t and
d

dxi
by ∂i,i=1, . . . ,N . Further, we

denote by ∇i,j the gradient vector field with ∂i,∂j on the ith, jth component respec-
tively and zero elsewhere and by Δi,j the sum of second derivatives in the ith and jth

directions, e.g., ∇1,2=(∂1,∂2,0, . . . ,0),Δ1,2=
∑2

k=1∂
2
kk.

The importance and difficulty of the global regularity issue of the solution to these
two systems are well known. In short, this is because the systems are both energy-
supercritical in any dimension bigger than two, even with ν,η>0. Indeed, e.g., for the
MHD system, taking L2-inner products with (u,b) on the system (1.2), respectively, and
integrating in time lead to

sup
t∈[0,T ]

(‖u‖2L2 +‖b‖2L2)(t)+

∫ T

0

‖∇u‖2L2 +‖∇b‖2L2dτ ≤‖u0‖2L2 +‖b0‖2L2 . (1.3)
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On the other hand, it can be shown that if (u,b)(x,t) solves the system (1.2), then so
does (uλ,bλ)(x,t)�λ(u,b)(λx,λ2t). A direct computation shows that

‖uλ(x,t)‖2L2 +‖bλ(x,t)‖2L2 =λ2−N (‖u(x,λ2t)‖2L2 +‖b(x,λ2t)‖2L2).

We call an equation with a scaling symmetry critical when the strongest norm for which
an a priori estimate is available is scaling-invariant. Thus, it is standard to classify the
two-dimensional NSE and the MHD system as energy-critical, while for any dimen-
sion higher, energy-supercritical; in fact, it can be considered that the supercriticality
increases in dimension.

In the two-dimensional case with ν,η>0, the authors in [23, 28] have shown the
uniqueness of the solution to the NSE and the MHD system, respectively. In fact, in
the two-dimensional case, due to the simplicity of the form after taking curls, when the
dissipative and diffusive terms are replaced by fractional Laplacians, their powers may
be reduced furthermore below one; we refer interested readers to [36] for the NSE with
ν=0, [6] and references found therein for the MHD system. In any dimension strictly
higher than two, the problem concerning the global regularity of the strong solution
and the uniqueness of the weak solution to both systems remain open and hence much
effort has been devoted to provide criteria so that they hold. We now review some of
them, emphasizing those of most relevance to the current manuscript.

Initiated by the author in [29], it has been established that, if a weak solution u of
the NSE with ν >0 satisfies

u∈Lr(0,T ;Lp(RN )),
N

p
+

2

r
≤1, p∈ (N,∞], (1.4)

then u is smooth (see [10, 12] for the endpoint case). In [2], the author showed that, if
u solves the NSE (1.1) with ν >0 and

∇u∈Lr(0,T ;Lp(RN )), N ≥3,
N

p
+

2

r
=2, 1<r≤min{2, N

N−2
}, (1.5)

then u is a regular solution. For the MHD system, the authors in [16, 39] independently
showed that the sufficient condition for the regularity of the solution pair (u,b) to the
MHD system (1.2) may be reduced to just u. For many more important results in this
direction of research, all of which we cannot list here, we refer to the prominent work
of [1, 15] and references found therein. We do mention that the author in [40] showed
that only in the case of N =3,4, u, the solution to the NSE (1.1) with ν >0, is regular
and unique if

∇π∈Lr(0,T ;Lp(RN )),
N

p
+

2

r
≤3,

N

3
≤p≤∞. (1.6)

We emphasize that the norm ‖·‖Lr
TLp

x
in Equation (1.4) is scaling invariant precisely

when N
p + 2

r =1; i.e.

∫ T

0

‖uλ(x,t)‖rLpdt=

∫ λ2T

0

‖u(x,t)‖rLpdt if and only if
N

p
+

2

r
=1,

where uλ(x,t)=λu(λx,λ2t), and similarly for the norm in Equation (1.5) at the endpoint
of 2.
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We now survey some component reduction results of such criteria. The authors in
[21] showed that, if u solves the NSE with N =3,ν >0 and

u3∈Lr(0,T ;Lp(R3)),
3

p
+

2

r
≤ 5

8
, r∈ [

54

23
,
18

5
], (1.7)

or ∇u3∈Lr(0,T ;Lp(R3)),
3

p
+

2

r
≤ 11

6
, r∈ [

24

5
,∞],

then the solution is regular (see also [3, 41] for similar results on u3,∇u3). For the
MHD system, in particular the authors in [18] showed that if (u,b) solves the system
(1.2) with N =3,ν,η>0 and

u3,b∈Lr(0,T ;Lp(R3)),
3

p
+

2

r
≤ 3

4
+

1

2p
, p>

10

3
, (1.8)

then the solution pair (u,b) remains smooth for all time. In [31], the author reduced
this constraint on u3,b to u3,b1,b2 in special cases making use of the special structure
of the system (1.2). For more interesting component reduction results of the regularity
criteria, we refer to, e.g., [4, 5, 13, 17, 22, 26, 30, 32, 38]. In particular, the authors
in [7] obtained a regularity criterion for the three-dimensional NSE in terms of only u3

in a scaling-invariant norm, although no longer Lr
TL

p
x-space (see also [8, 24, 35]). In

relation to our discussion below, we already emphasize that every component reduction
result listed here is of the case of N =3.

We now motivate the study of the systems (1.1) and (1.2) in the fourth dimension
specifically. It has been realized by many mathematicians working in the research direc-
tion of the NSE that dimension four deserves special attention (see, e.g., [19, Section 4]).
The significance of the fourth dimension for the NSE (and six-dimensional stationary
NSE) has motivated much investigation in the research direction of partial regularity
theory (see, e.g., [9, 11, 27]); we also recall Equation f(1.6), which holds only for N =3,4.
In fact, the fourth dimension being a certain threshold to the component reduction reg-
ularity criteria can be seen clearly as follows. To the best of the author’s knowledge, all
such component reduction results to the systems (1.1) and (1.2) are obtained through
an H1-estimate. Due to Lemma 2.3, higher regularity follows once we show that the so-

lution, e.g., u in the case of the NSE (1.1) satisfies
∫ T

0
‖∇u‖2LN (RN )dτ <∞. This implies

that, because H1(RN ) ↪→LN (RN ) only for N =2,3,4 but not N >4 by Sobolev embed-
ding, H1-bound, from which u∈L2(0,T ;H2(RN )) follows from the dissipative term, is
sufficient for higher regularity only if N =2,3,4. Thus, in dimension strictly higher than
four, one needs to bound beyond H1-norm; however, because the decomposition of the
non-linear terms is the most important ingredient of component reduction results (see
Proposition 3.1), this will complicate the proof significantly. To the best of the author’s
knowledge, component reduction results for dimension strictly larger than three does
not exist in the literature.

Let us also discuss the two major obstacles in extending the component reduction
results of regularity criteria from dimension three to dimension four. In the case of
the NSE (1.1) with N =3,ν >0, the standard procedure to obtain a criteria in terms
of u3 may be, e.g., to first estimate every partial derivative except the last and hence
‖∇1,2u‖L2 and in this process separate u3 in the non-linear term

∫
(u ·∇)u ·Δ1,2udx≤ c

∫
|u3||∇u||∇∇1,2u|dx, (1.9)
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where ∇1,2=(∂1,∂2,0),Δ1,2=
∑2

k=1∂
2
kk (cf. [21] Lemma 2.3). Thereafter, upon a full

gradient and hence an H1-estimate, on the non-linear term one separates |∇1,2u|∫
(u ·∇)u ·Δudx≤ c

∫
|∇1,2u||∇u|2dx (1.10)

(cf. [41]) so that the ‖∇1,2u‖L2 -estimate may be applied in Equation (1.10). In the
case of N =4, it seems difficult to separate u3 or even u3 and u4 in

∫
(u ·∇)u ·Δ1,2,3udx.

Our first key observation is that we can separate u3,u4 from
∫
(u ·∇)u ·Δ1,2udx (see

Proposition 3.1). However, this leaves two other directions, namely x3,x4, instead of
only one in contrast to the case of N =3 and prevents us from obtaining an inequality
analogous to Equation (1.10) upon the full H1-estimate due to a sum of this type

4∑
j=1

4∑
i,k=3

∫
∂kui∂iuj∂kujdx

(see Equation (3.24)). We observe that, in the three-dimensional case, i, j, and k sum
up to only 3 so that, using ∇·u=0 from Equation (1.1), one may deduce

3∑
j=1

3∑
i,k=3

∫
∂kui∂iuj∂kujdx=

3∑
j=1

∫
∂3u3∂3uj∂3ujdx

=−
3∑

j=1

∫
(∂1u1+∂2u2)∂3uj∂3ujdx

and hence Equation (1.10) follows. However, in the four-dimensional case, there are
cross-terms such as ∂3u4, which prevents us from reaching Equation (1.10). Our second
key observation is that the non-linear term may be seen as an operator as a sum of

u ·∇=

4∑
i=1

ui∂i=

2∑
i=1

ui∂i+

4∑
i=3

ui∂i

so that in the first sum the ∇1,2-estimate may be applied while in the second we use
our hypothesis on u3,u4 (see Equation (3.24) and also Equation (3.27)).

We now present our results

Theorem 1.1. Let N =4 and let

u∈C([0,T );Hs(R4))∩L2([0,T );Hs+1(R4)) (1.11)

be the solution to the NSE (1.1) for a given u0∈Hs(R4),s>4. Suppose u3,u4 with their
corresponding pi,ri,i=3,4 satisfy the following roles of f :∫ T

0

‖f‖riLpidτ ≤ c,
4

pi
+

2

ri
≤ 1

pi
+

1

2
, 6<pi≤∞, (1.12)

or supt∈[0,T ]‖f(t)‖L6 being sufficiently small. Then u remains in the same regularity
class (1.11) on [0,T ′] for some T ′>T .

Theorem 1.2. Let N =4 and let u be in the regularity class (1.11) of the solution to
the NSE (1.1) for a given u0∈Hs(R4),s>4. Suppose ∇u3,∇u4 with their corresponding
pi,ri,i=3,4 satisfy the following roles of f :∫ T

0

‖f‖riLpidτ ≤ c,
4

pi
+

2

ri
≤
{

5
4 +

1
pi
, if 12

5 <pi≤4

1+ 2
pi
, if 4<pi≤∞ , (1.13)
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or supt∈[0,T ]‖f(t)‖L 12
5

being sufficiently small. Then u remains in the same regularity

class (1.11) on [0,T ′] for some T ′>T .

Theorem 1.3. Let N =4 and let

u,b∈C([0,T );Hs(R4))∩L2([0,T );Hs+1(R4)) (1.14)

be the solution pair to the MHD system (1.2) for a given u0,b0∈Hs(R4),s>4. Suppose
u3,u4,b with their corresponding pi,ri,i=3,4, . . . ,b satisfy the following roles of f :∫ T

0

‖f‖riLpidτ ≤ c,
4

pi
+

2

ri
≤ 1

pi
+

1

2
, 6<pi≤∞, (1.15)

or supt∈[0,T ]‖f(t)‖L6 being sufficiently small. Then u,b remain in the same regularity
class (1.14) on [0,T ′] for some T ′>T .

Theorem 1.4. Let N =4 and let u,b be in the regularity class (1.14) be the solution
pair to the MHD system (1.2) for a given u0,b0∈Hs(R4),s>4. Suppose ∇u3,∇u4,∇b
with their corresponding pi,ri,i=3,4, . . . ,b satisfy the following roles of f :

∫ T

0

‖f‖riLpidτ ≤ c,
4

pi
+

2

ri
≤
{

5
4 +

1
pi
, if 12

5 <pi≤4

1+ 2
pi
, if 4<pi≤∞ , (1.16)

or supt∈[0,T ]‖f(t)‖L 12
5

being sufficiently small. Then u,b remain in the same regularity

class (1.14) on [0,T ′] for some T ′>T .

Theorem 1.5. Let N =4 and let u be in the regularity class (1.11) be the solution to
the NSE (1.1) for a given u0∈Hs(R4),s>4. Suppose ∂3π,∂4π with their corresponding
pi,ri,i=3,4 satisfy the following roles of f :∫ T

0

‖f‖riLpidτ ≤ c,
4

pi
+

2

ri
<

8

3
,

12

7
<pi<6. (1.17)

Then u remains in the same regularity class (1.11) on [0,T ′] for some T ′>T .

Remark 1.1.
(1) In comparing Theorem 1.1 with Equation (1.4), Theorem 1.2 with Equation

(1.5), and Theorem 1.5 with Equation (1.6), we may consider the results of this
manuscript as component reduction of many previous works. Moreover, in com-
paring theorems 1.1 and 1.2 with Equation (1.7) and Theorem 1.3 with Equa-
tion (1.8), we may consider the results of this manuscript as a four-dimension
extension of many previous work in three-dimension.

(2) Lemma 2.3 of [21] has found many applications, e.g., in the study on the
anisotropic NSE (e.g. [37]). We note that our Proposition 3.1 can be read-
ily generalized further to any R

N ,N ≥3; we chose to state the case N =4 for
the simplicity of presentation.

(3) In [34], the author showed that, for dimensions N =3,4,5, N -many component
regularity criteria may be reduced to (N−1)-many components for the gener-
alized MHD system following the method in [30]; the results in [34] and this
manuscript do not cover each other. In [33] the author also obtained a regular-
ity criteria of and N -dimensional porous media equation governed by Darcy’s
law in terms of one partial derivative of the scalar-valued solution. The method
in [33] cannot be applied to the systems (1.1) and (1.2).
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In Section 2, we set up notations and state key facts. Local theory is well-known
(cf. [25]); hence, by the standard argument of continuation of local theory, we only
need to obtain Hs-bounds. We present the proofs of theorems 1.3, 1.4 and 1.5. Because
the NSE is the MHD system at b≡0, the proofs of theorems 1.3, and 1.4 immediately
deduce theorems 1.1 and 1.2, respectively. Thereafter, we conclude with a brief further
discussion.

2. Preliminaries
Throughout the rest of the manuscript, we shall assume ν,η=1 for simplicity. For

brevity, we write
∫
f for

∫
RN f(x)dx and A�a,bB when there exists a constant c≥0 of

significant dependence only on a,b such that A≤ cB, and similarly A≈a,bB in the case

of A= cB. We denote the fractional Laplacian operator Λs� (−Δ)
s
2 and

W (t)� (‖∇1,2u‖2L2 +‖∇1,2b‖2L2)(t), X(t)� (‖∇u‖2L2 +‖∇b‖2L2)(t),

Y (t)� (‖∇∇1,2u‖2L2 +‖∇∇1,2b‖2L2)(t), Z(t)� (‖Δu‖2L2 +‖Δb‖2L2)(t).

The following is a special case of Troisi’s inequality (cf. [14]). The proof of the case
N =3 in the appendix of [5] can be readily generalized to the case N =4.

Lemma 2.1. Let f ∈C∞
0 (R4). Then

‖f‖L4 �‖∂1f‖
1
4

L2‖∂2f‖
1
4

L2‖∂3f‖
1
4

L2‖∂4f‖
1
4

L2 . (2.1)

We will use the following elementary inequality frequently:

(a+b)p≤2p(ap+bp), for 0≤p<∞ and a,b≥0. (2.2)

We will also use the following commutator estimate to prove another lemma con-
cerning higher regularity.

Lemma 2.2. (cf. [20]) Let f,g be smooth such that ∇f ∈Lp1 ,Λs−1g∈Lp2 ,Λsf ∈
Lp3 ,g∈Lp4 ,p∈ (1,∞), 1p =

1
p1

+ 1
p2

= 1
p3

+ 1
p4
,p2,p3∈ (1,∞),s>0. Then

‖Λs(fg)−fΛsg‖Lp � (‖∇f‖Lp1 ‖Λs−1g‖Lp2 +‖Λsf‖Lp3 ‖g‖Lp4 ).

An immediate application of Lemma 2.2 gives the following result:

Lemma 2.3. Let (u,b) be the solution to the MHD system (1.2) in [0,T ] with u0,b0∈
Hs(RN ),N ≥3,s>2+ N

2 . If
∫ T

0
‖∇u‖2LN +‖∇b‖2LNdτ �1, then

sup
t∈[0,T ]

(‖Λsu‖2L2 +‖Λsb‖2L2)(t)+

∫ T

0

‖Λs∇u‖2L2 +‖Λs∇b‖2L2dτ �1.

Proof. This is a standard computation; we sketch it for completeness. We apply
Λs on the system (1.2) and take L2-inner products with Λsu,Λsb, respectively, to obtain

1

2
∂t(‖Λsu‖2L2 +‖Λsb‖2L2)+‖Λs∇u‖2L2 +‖Λs∇b‖2L2

=−
∫
[Λs((u ·∇)u)−u ·∇Λsu] ·Λsu−

∫
[Λs((u ·∇)b)−u ·∇Λsb] ·Λsb

+

∫
[Λs((b ·∇)b)−b ·∇Λsb] ·Λsu+

∫
[Λs((b ·∇)u)−b ·∇Λsu] ·Λsb
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�(‖∇u‖LN +‖∇b‖LN )(‖Λsu‖L2 +‖Λsb‖L2)(‖Λs∇u‖L2 +‖Λs∇b‖L2)

≤1

2
(‖Λs∇u‖2L2 +‖Λs∇b‖2L2)+c(‖∇u‖2LN +‖∇b‖2LN )(‖Λsu‖2L2 +‖Λsb‖2L2)

by Hölder’s inequalities, Lemma 2.2, Sobolev embedding of Ḣ1(RN ) ↪→L
2N

N−2 (RN ),
Young’s inequalities, and Equation (2.2). Thus, after absorbing, Gronwall’s inequal-
ity completes the proof of Lemma 2.3.

Due to Lemma 2.3, the proof of our theorems are complete once we obtain the
H1-bound.

3. Proof of Theorem 1.3

3.1. ‖∇1,2u‖2L2 +‖∇1,2b‖2L2-estimate. We first prove an important decomposi-
tion which we present as a proposition.

Proposition 3.1. Let N =4 and (u,b) be the solution pair to the MHD system (1.2).
Then ∫

(u ·∇)u ·Δ1,2u+(u ·∇)b ·Δ1,2b−(b ·∇)b ·Δ1,2u−(b ·∇)u ·Δ1,2b

�
∫
(|u3|+ |u4|)|∇u||∇∇1,2u|+ |b|(|∇u|+ |∇b|)(|∇∇1,2u|+ |∇∇1,2b|). (3.1)

Moreover, ∫
(u ·∇)u ·Δ1,2u+(u ·∇)b ·Δ1,2b−(b ·∇)b ·Δ1,2u−(b ·∇)u ·Δ1,2b

�
∫
(|∇u3|+ |∇u4|)|∇1,2u||∇u|+ |∇b||∇1,2b||∇u|. (3.2)

Proof. We write components-wise and integrate by parts to obtain

∫
(u ·∇)u ·Δ1,2u=−

4∑
i,j=1

2∑
k=1

∫
∂kui∂iuj∂kuj

=−
4∑

j=1

2∑
i,k=1

∫
∂kui∂iuj∂kuj−

4∑
i=3

4∑
j=1

2∑
k=1

∫
∂kui∂iuj∂kuj

=−
2∑

i,j,k=1

∫
∂kui∂iuj∂kuj−

4∑
j=3

2∑
i,k=1

∫
∂kui∂iuj∂kuj−

4∑
i=3

4∑
j=1

2∑
k=1

∫
∂kui∂iuj∂kuj .

(3.3)

For the second and third integrals of Equation (3.3), we integrate by parts to obtain

−
4∑

j=3

2∑
i,k=1

∫
∂kui∂iuj∂kuj−

4∑
i=3

4∑
j=1

2∑
k=1

∫
∂kui∂iuj∂kuj

=

4∑
j=3

2∑
i,k=1

∫
uj∂i(∂kui∂kuj)+

4∑
i=3

4∑
j=1

2∑
k=1

∫
ui∂k(∂iuj∂kuj)
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�
∫
(|u3|+ |u4|)|∇u||∇∇1,2u|. (3.4)

On the other hand, we write the first integral of Equation (3.3) explicitly

−
2∑

i,j,k=1

∫
∂kui∂iuj∂kuj

=−
∫
(∂1u1)

3+∂2u1∂1u1∂2u1+∂1u1∂1u2∂1u2+∂2u1∂1u2∂2u2

+∂1u2∂2u1∂1u1+∂2u2∂2u1∂2u1+∂1u2∂2u2∂1u2+(∂2u2)
3�

8∑
i=1

Ii. (3.5)

We combine and use the incompressibility condition of u to obtain

I1+I8=−
∫
(∂1u1)

3+(∂2u2)
3

=

∫
(∂1u1)

2∂2u2+(∂1u1)
2(∂3u3+∂4u4)+(∂2u2)

2∂1u1+(∂2u2)
2(∂3u3+∂4u4). (3.6)

We combine the first and third terms to obtain∫
(∂1u1)

2∂2u2+(∂2u2)
2∂1u1=−

∫
∂1u1∂2u2(∂3u3+∂4u4)

so that we may continue Equation (3.6) by

I1+I8=−
∫

∂1u1∂2u2(∂3u3+∂4u4)

+

∫
(∂1u1)

2(∂3u3+∂4u4)+(∂2u2)
2(∂3u3+∂4u4)

=

∫
u3∂3(∂1u1∂2u2)+u4∂4(∂1u1∂2u2)

−
∫

u3∂3[(∂1u1)
2+(∂2u2)

2]+u4∂4[(∂1u1)
2+(∂2u2)

2]

�
∫
(|u3|+ |u4|)|∇u||∇∇1,2u|. (3.7)

Similarly,

I2+I6=−
∫

∂2u1∂1u1∂2u1+∂2u2∂2u1∂2u1

=

∫
(∂2u1)

2(∂3u3+∂4u4)�
∫
(|u3|+ |u4|)|∇u||∇∇1,2u|, (3.8)

I3+I7=−
∫

∂1u1∂1u2∂1u2+∂1u2∂2u2∂1u2

=

∫
(∂1u2)

2(∂3u3+∂4u4)�
∫
(|u3|+ |u4|)|∇u||∇∇1,2u|, (3.9)

I4+I5=−
∫

∂2u1∂1u2∂2u2+∂1u2∂2u1∂1u1
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=

∫
∂2u1∂1u2(∂3u3+∂4u4)�

∫
(|u3|+ |u4|)|∇u||∇∇1,2u|. (3.10)

Next, we may estimate the other three terms as follows:∫
(u ·∇)b ·Δ1,2b−(b ·∇)b ·Δ1,2u−(b ·∇)u ·Δ1,2b

=−
4∑

i,j=1

2∑
k=1

∫
∂kui∂ibj∂kbj+

4∑
i,j=1

2∑
k=1

∫
∂kbi∂ibj∂kuj+∂kbi∂iuj∂kbj

=

4∑
i,j=1

2∑
k=1

∫
∂kuibj∂

2
ikbj−

4∑
i,j=1

2∑
k=1

∫
∂kbibj∂

2
ikuj+bi∂k(∂iuj∂kbj)

�
∫
|b|(|∇u|+ |∇b|)(|∇∇1,2u|+ |∇∇1,2b|). (3.11)

Applying Equations (3.7)–(3.10) in Equation (3.5), considering Equations (3.3), (3.4),
and (3.11), we obtain Equation (3.1). Now we go back to Equation (3.3) and estimate
the second and third integrals by

−
4∑

j=3

2∑
i,k=1

∫
∂kui∂iuj∂kuj−

4∑
i=3

4∑
j=1

2∑
k=1

∫
∂kui∂iuj∂kuj

�
4∑

j=3

2∑
k=1

∫
|∂ku||∇uj ||∂ku|+

4∑
i=3

2∑
k=1

∫
|∇ui||∇u||∂ku|

�
∫
(|∇u3|+ |∇u4|)|∇1,2u||∇u|, (3.12)

whereas, continuing from Equation (3.7),

I1+I8=−
∫

∂1u1∂2u2(∂3u3+∂4u4)+
(
(∂1u1)

2+(∂2u2)
2
)
(∂3u3+∂4u4)

�
∫
|∇1,2u|2(|∂3u3|+ |∂4u4|); (3.13)

continuing from Equation (3.8),

I2+I6=

∫
(∂2u1)

2(∂3u3+∂4u4)�
∫
|∇1,2u|2(|∂3u3|+ |∂4u4|); (3.14)

continuing from Equation (3.9),

I3+I7=

∫
(∂1u2)

2(∂3u3+∂4u4)�
∫
|∇1,2u|2(|∂3u3|+ |∂4u4|); (3.15)

and, continuing from Equation (3.10),

I4+I5=

∫
∂2u1∂1u2(∂3u3+∂4u4)�

∫
|∇1,2u|2(|∂3u3|+ |∂4u4|). (3.16)

Thus, considering Equations (3.12)–(3.16) in Equation (3.3), we have shown∫
(u ·∇)u ·Δ1,2u�

∫
(|∇u3|+ |∇u4|)|∇1,2u||∇u|. (3.17)
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Next, we estimate continuing from Equation (3.11)∫
(u ·∇)b ·Δ1,2b−(b ·∇)b ·Δ1,2u−(b ·∇)u ·Δ1,2b

=−
4∑

i,j=1

2∑
k=1

∫
∂kui∂ibj∂kbj−∂kbi∂ibj∂kuj−∂kbi∂iuj∂kbj �

∫
|∇b||∇1,2b||∇u|. (3.18)

Considering Equations (3.17) and (3.18), we obtain Equation (3.2). This completes the
proof of Proposition 3.1.

With this proposition, we now obtain our first estimate.

Proposition 3.2. Let N =4 and let (u,b) be the solution pair to the MHD system
(1.2) that satisfies the hypothesis of Theorem 1.3. Then, for all t∈ (0,T ] and pi∈ [6,∞],

sup
τ∈[0,t]

W (τ)+

∫ t

0

Y (τ)dτ

≤W (0)+c

4∑
i=3

∫ t

0

‖ui‖
2pi

pi−2

Lpi X
pi−4

pi−2 (τ)Z
2

pi−2 (τ)+‖b‖
2pb

pb−2

Lpb X
pb−4

pb−2 (τ)Z
2

pb−2 (τ)dτ

with the usual convention at the case pi=∞,i=3,4,b; i.e., 2pi

pi−2 =2, pi−4
pi−2 =1, 2

pi−2 =0.

Proof. We treat the case 6≤pi<∞ i=3,4, . . . ,b first. We take L2-inner products
on the system (1.2) with −Δ1,2u,−Δ1,2b, respectively, to obtain in sum

1

2
∂tW (t)+Y (t)

�
4∑

i=3

∫
|ui||∇u||∇∇1,2u|+ |b|(|∇u|+ |∇b|)(|∇∇1,2u|+ |∇∇1,2b|)� II1+II2 (3.19)

by Equation (3.1). Now we estimate

II1≈
4∑

i=3

∫
|ui||∇u||∇∇1,2u|�

4∑
i=3

‖ui‖Lpi ‖∇u‖
L

2pi
pi−2

‖∇∇1,2u‖L2

�
4∑

i=3

‖ui‖Lpi ‖∇u‖
pi−4

pi

L2 ‖∇u‖
4
pi

L4‖∇∇1,2u‖L2

�
4∑

i=3

‖ui‖Lpi ‖∇u‖
pi−4

pi

L2 ‖∇∇1,2u‖
2
pi

+1

L2 ‖Δu‖
2
pi

L2

≤1

4
‖∇∇1,2u‖2L2 +c

4∑
i=3

‖ui‖
2pi

pi−2

Lpi X
pi−4

pi−2 (t)Z
2

pi−2 (t) (3.20)

by Hölder’s and interpolation inequalities, Equation (2.1), and Young’s inequalities.
Similarly,

II2≈
∫
|b|(|∇u|+ |∇b|)(|∇∇1,2u|+ |∇∇1,2b|)
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�‖b‖Lpb (‖∇u‖
pb−4

pb

L2 +‖∇b‖
pb−4

pb

L2 )(‖∇u‖
4
pb

L4 +‖∇b‖
4
pb

L4 )(‖∇∇1,2u‖L2 +‖∇∇1,2b‖L2)

�‖b‖LpbX
pb−4

2pb (t)(‖∇∇1,2u‖
2
pb

L2‖Δu‖
2
pb

L2 +‖∇∇1,2b‖
2
pb

L2‖Δb‖
2
pb

L2 )Y
1
2 (t)

≤1

4
Y (t)+c‖b‖

2pb
pb−2

Lpb X
pb−4

pb−2 (t)Z
2

pb−2 (t) (3.21)

by Hölder’s and interpolation inequalities, Equations (2.2) and (2.1), and Young’s in-
equality. In sum of Equations (3.20) and (3.21) in Equation (3.19), after absorbing and
integrating over time [0,t],t∈ (0,T ], we obtain the desired result in case 6≤pi<∞. In
case, pi=∞, the estimate is in fact simpler: we have

II1�
4∑

i=3

‖ui‖L∞‖∇u‖L2‖∇∇1,2u‖L2 ≤ 1

4
‖∇∇1,2u‖2L2 +c

4∑
i=3

‖ui‖2L∞‖∇u‖2L2 ,

II2�‖b‖L∞(‖∇u‖L2 +‖∇b‖L2)(‖∇∇1,2u‖L2 +‖∇∇1,2b‖L2)≤ 1

4
Y (t)+c‖b‖2L∞X(t).

Thus, in case pi=∞, Proposition 3.2 holds with 2pi

pi−2 =2, pi−4
pi−2 =1, 2

pi−2 =0.

3.2. ‖∇u‖2L2 +‖∇b‖2L2-estimate. The next important step of the proof is to make
use of the ‖∇1,2u‖2L2 +‖∇1,2b‖2L2 -estimate to obtain the bound on ‖∇u‖2L2 +‖∇b‖2L2 ,
which requires another key decomposition (see Equations (3.24) and (3.27)).

Proposition 3.3. Let N =4 and let (u,b) be the solution pair to the MHD system
(1.2) that satisfies the hypothesis of Theorem 1.3. Then

sup
t∈[0,T ]

X(t)+

∫ T

0

Z(τ)dτ �1.

Proof. Firstly, we assume 6≤pi<∞ again. We take L2-inner products on the
system (1.2) with (−Δu,−Δb), respectively, to obtain

1

2
∂tX(t)+Z(t)

=

∫
(u ·∇)u ·Δ1,2u+(u ·∇)u ·Δ3,4u+(u ·∇)b ·Δ1,2b+(u ·∇)b ·Δ3,4b

−(b ·∇)b ·Δ1,2u−(b ·∇)b ·Δ3,4u−(b ·∇)u ·Δ1,2b−(b ·∇)u ·Δ3,4b�
8∑

i=1

IIIi. (3.22)

From Equations (3.19)–(3.21), we already have the estimates of

III1+III3+III5+III7� II1+II2

�
4∑

i=3

‖ui‖Lpi ‖∇u‖
pi−4

pi

L2 ‖∇∇1,2u‖
2+pi
pi

L2 ‖Δu‖
2
pi

L2 +‖b‖LpbX
pb−4

2pb (t)Z
1
pb (t)Y

1
pb

+ 1
2 (t)

≤ 1

16
Z(t)+c

4∑
i=3

(‖ui‖
2pi

pi−4

Lpi +‖b‖
2pb

pb−4

Lpb )X(t) (3.23)

by Young’s inequalities. Next, we work on III2, which we first integrate by parts and
decompose as follows:

III2=

∫
(u ·∇)u ·Δ3,4u=−

4∑
i,j=1

4∑
k=3

∫
∂kui∂iuj∂kuj
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=−
2∑

i=1

4∑
j=1

4∑
k=3

∫
∂kui∂iuj∂kuj−

4∑
j=1

4∑
i,k=3

∫
∂kui∂iuj∂kuj

=−
2∑

i=1

4∑
j=1

4∑
k=3

∫
∂kui∂iuj∂kuj+

4∑
j=1

4∑
i,k=3

∫
ui∂k(∂iuj∂kuj)

�
∫
|∇u|2|∇1,2u|+

4∑
i=3

∫
|ui||∇u||∇2u|� IV1+IV2. (3.24)

We estimate

IV1≈
∫
|∇1,2u||∇u|2�‖∇1,2u‖L2‖∇u‖2L4

�‖∇1,2u‖L2‖∇∇1,2u‖L2‖Δu‖L2 �W
1
2 (t)Y

1
2 (t)Z

1
2 (t) (3.25)

by Hölder’s inequalities and Equation (2.1). On the other hand,

IV2�
4∑

i=3

‖ui‖Lpi ‖∇u‖
L

2pi
pi−2

‖∇2u‖L2

�
4∑

i=3

‖ui‖Lpi ‖∇u‖1−
4
pi

L2 ‖Δu‖1+
4
pi

L2 ≤ 1

16
Z(t)+c

4∑
i=3

‖ui‖
2pi

pi−4

Lpi X(t) (3.26)

by Hölder’s, Gagliardo–Nirenberg, and Young’s inequalities. Next, again we carefully
decompose

III4=

∫
(u ·∇)b ·Δ3,4b=−

4∑
i,j=1

4∑
k=3

∫
∂kui∂ibj∂kbj

=−
2∑

i=1

4∑
j=1

4∑
k=3

∫
∂kui∂ibj∂kbj−

4∑
j=1

4∑
i,k=3

∫
∂kui∂ibj∂kbj

=−
2∑

i=1

4∑
j=1

4∑
k=3

∫
∂kui∂ibj∂kbj+

4∑
j=1

4∑
i,k=3

∫
ui∂k(∂ibj∂kbj)

�
∫
|∇u||∇1,2b||∇b|+

4∑
i=3

∫
|ui||∇b||∇2b|� IV3+IV4. (3.27)

We estimate

IV3≈
∫
|∇u||∇1,2b||∇b|�‖∇1,2b‖L2‖∇u‖L4‖∇b‖L4

�‖∇1,2b‖L2‖∇∇1,2u‖
1
2

L2‖∇∇1,2b‖
1
2

L2‖Δu‖ 1
2

L2‖Δb‖ 1
2

L2 �W
1
2 (t)Y

1
2 (t)Z

1
2 (t) (3.28)

by Hölder’s inequalities, Equation (2.1), and Young’s inequalities. On the other hand,
we estimate, similarly to IV2 in Equation (3.26),

IV4�
4∑

i=3

‖ui‖Lpi ‖∇b‖
L

2pi
pi−2

‖∇2b‖L2
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�
4∑

i=3

‖ui‖Lpi ‖∇b‖1−
4
pi

L2 ‖Δb‖1+
4
pi

L2 ≤ 1

16
Z(t)+c

4∑
i=3

‖ui‖
2pi

pi−4

Lpi X(t) (3.29)

by Hölder’s, Gagliardo–Nirenberg, and Young’s inequalities. Finally, similarly to IV2 in
Equation (3.26) again

III6+III8=−
∫
(b ·∇)b ·Δ3,4u+(b ·∇)u ·Δ3,4b

�‖b‖Lpb (‖∇b‖1−
4
pb

L2 +‖∇u‖1−
4
pb

L2 )(‖Δu‖1+
4
pb

L2 +‖Δb‖1+
4
pb

L2 )

≤ 1

16
Z(t)+c‖b‖

2pb
pb−4

Lpb X(t) (3.30)

by Hölder’s, Gagliardo–Nirenberg, and Young’s inequalities. Thus, applying Equations
(3.23)–(3.30) in Equation (3.22), we obtain after absorbing

1

2
∂tX+

1

2
Z(t)�

4∑
i=3

(‖ui‖
2pi

pi−4

Lpi +‖b‖
2pb

pb−4

Lpb )X(t)+W
1
2 (t)Y

1
2 (t)Z

1
2 (t). (3.31)

Now we assume 6<pi<∞. Integrating over [0,t],t∈ (0,T ], we obtain

X(t)+

∫ t

0

Z(τ)dτ

≤X(0)+c
4∑

i=3

∫ t

0

(‖ui‖
2pi

pi−4

Lpi +‖b‖
2pb

pb−4

Lpb )X(τ)dτ+c

∫ t

0

W
1
2 (τ)Y

1
2 (τ)Z

1
2 (τ)dτ.

We focus only on the last integral which we bound by a constant multiples of

sup
τ∈[0,t]

W
1
2 (τ)

(∫ t

0

Y (τ)dτ

) 1
2
(∫ t

0

Z(τ)dτ

) 1
2

�
(
W (0)+

4∑
i=3

∫ t

0

‖ui‖
2pi

pi−2

Lpi X
pi−4

pi−2 (τ)Z
2

pi−2 (τ)+‖b‖
2pb

pb−2

Lpb X
pb−4

pb−2 (τ)Z
2

pb−2 (τ)dτ

)

×
(∫ t

0

Z(τ)dτ

) 1
2

�
(∫ t

0

Z(τ)dτ

) 1
2

+

4∑
i=3

(∫ t

0

‖ui‖
2pi

pi−4

Lpi X(τ)dτ

) pi−4

pi−2
(∫ t

0

Z(τ)dτ

) pi+2

2(pi−2)

+

(∫ t

0

‖b‖
2pb

pb−4

Lpb X(τ)dτ

) pb−4

pb−2
(∫ t

0

Z(τ)dτ

) pb+2

2(pb−2)

≤1

2

∫ t

0

Z(τ)dτ+c(1+

4∑
i=3

(∫ t

0

‖ui‖
4pi

pi−6

Lpi X(τ)dτ

)(∫ t

0

X(τ)dτ

) pi−2

pi−6

+

(∫ t

0

‖b‖
4pb

pb−6

Lpb X(τ)dτ

)(∫ t

0

X(τ)dτ

) pb−2

pb−6

)

≤1

2

∫ t

0

Z(τ)dτ+c

(
1+

4∑
i=3

∫ t

0

(‖ui‖
4pi

pi−6

Lpi +‖b‖
4pb

pb−6

Lpb )X(τ)dτ

)
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by Hölder’s inequalities, Proposition 3.2, Young’s inequalities, and Equation (1.3). After
absorbing, Gronwall’s inequality implies the desired result in the case of 6<pi<∞,ri<
∞.

We now consider the case pi=∞, assuming for the simplicity of presentation that
p3=p4=pb=∞. Firstly, we could have computed in contrast to Equations (3.23),
(3.24), (3.27), and (3.30), respectively

III1+III3+III5+III7

�II1+II2

�
4∑

i=3

‖ui‖L∞‖∇u‖L2‖Δu‖L2 +‖b‖L∞(‖∇u‖L2 +‖∇b‖L2)(‖Δu‖L2 +‖Δb‖L2)

≤ 1

16
Z(t)+c

4∑
i=3

(‖ui‖2L∞+‖b‖2L∞)X(t), (3.32)

III2≤IV1+IV2

�‖∇1,2u‖L2‖∇u‖2L4 +

4∑
i=3

‖ui‖L∞‖∇u‖L2‖∇2u‖L2

≤ 1

16
Z(t)+c

(
W

1
2 (t)Y

1
2 (t)Z

1
2 (t)+

4∑
i=3

‖ui‖2L∞X(t)

)
, (3.33)

III4�IV3+IV4

�‖∇u‖L4‖∇1,2b‖L2‖∇b‖L4 +

4∑
i=3

‖ui‖L∞‖∇b‖L2‖Δb‖L2

�‖∇1,2b‖L2‖∇∇1,2u‖
1
2

L2‖Δu‖ 1
2

L2‖∇∇1,2b‖
1
2

L2‖Δb‖ 1
2

L2 +

4∑
i=3

‖ui‖L∞‖∇b‖L2‖Δb‖L2

≤ 1

16
Z(t)+c

(
W

1
2 (t)Y

1
2 (t)Z

1
2 (t)+

4∑
i=3

‖ui‖2L∞X(t)

)
, (3.34)

III6+III8�‖b‖L∞(‖∇b‖L2 +‖∇u‖L2)(‖∇2u‖L2 +‖∇2b‖L2)

≤ 1

16
Z(t)+c‖b‖2L∞X(t), (3.35)

all by Hölder’s and Young’s inequalities and Equation (2.1) only in Equations (3.33)
and (3.34). Thus, applying Equations (3.32)–(3.35) in Equation (3.22), absorbing and
integrating in time [0,t], we obtain

X(t)+
3

2

∫ t

0

Z(τ)dτ

≤X(0)+c
4∑

i=3

∫ t

0

(‖ui‖2L∞+‖b‖2L∞)X(τ)dτ
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+c sup
τ∈[0,t]

W
1
2 (τ)

(∫ t

0

Y (τ)dτ

) 1
2
(∫ t

0

Z(τ)dτ

) 1
2

≤1

2

∫ t

0

Z(τ)dτ+X(0)+c

4∑
i=3

∫ t

0

(‖ui‖2L∞+‖b‖2L∞)X(τ)dτ

+c

(
W (0)+

4∑
i=3

∫ t

0

(‖ui‖2L∞+‖b‖2L∞)X(τ)dτ)

)2

≤1

2

∫ t

0

Z(τ)dτ

+c

(
4∑

i=3

∫ t

0

(‖ui‖2L∞+‖b‖2L∞)X(τ)dτ+1+

4∑
i=3

∫ t

0

(‖ui‖4L∞+‖b‖4L∞)X(τ)dτ

)

by Hölder’s inequality, Proposition 3.2, Young’s inequality, Equation (2.2), and Equation
(1.3). This completes the proof in case pi=∞.

We now prove the second statement of Theorem 1.3, namely the smallness result
when pi=6,ri=∞. For simplicity of presentation, we assume pi=6 for all i=3,4, . . . ,b.
We integrate in time on Equation (3.31) to obtain

X(t)+

∫ t

0

Z(τ)dτ

≤X(0)+c(

4∑
i=3

sup
τ∈[0,t]

(‖ui‖6L6 +‖b‖6L6)(τ)

∫ t

0

X(τ)dτ+ sup
τ∈[0,t]

W
1
2 (t)

(∫ t

0

Y (τ)dτ

) 1
2

×
(∫ t

0

Z(τ)dτ

) 1
2

)

�1+

(
W (0)+

4∑
i=3

∫ t

0

(‖ui‖3L6 +‖b‖3L6)X
1
2 (τ)Z

1
2 (τ)dτ

)(∫ t

0

Z(τ)dτ

) 1
2

�1+

(∫ t

0

Z(τ)dτ

) 1
2

+

4∑
i=3

sup
τ∈[0,t]

(‖ui‖3L6 +‖b‖3L6)(τ)

(∫ t

0

X(τ)dτ

) 1
2
(∫ t

0

Z(τ)dτ

)

≤1

2

∫ t

0

Z(τ)dτ+c

for
∑4

i=3 supτ∈[0,t](‖ui‖3L6 +‖b‖3L6)(τ) sufficiently small, where we used Hölder’s inequal-
ity, Proposition 3.2, Young’s inequality, and Equation (1.3). Absorbing, Gronwall’s
inequality completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4
We assume for simplicity of presentation that for all i=3,4, . . . ,b and pi∈ [ 125 ,4] or

pi∈ [4,∞]. A combination of mixed cases can be obtained following the proofs below.

Proposition 4.1. Let N =4 and let (u,b) be the solution pair to the MHD system
(1.2) that satisfies the hypothesis of Theorem 1.4. Then for all t∈ (0,T ],
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sup
τ∈[0,t]

W (τ)+

∫ t

0

Y (τ)dτ

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
W (0)+c

∑4
i=3

∫ t

0
‖∇ui‖

4pi
3pi−4

Lpi X
4(pi−2)

3pi−4 (τ)Z
4−pi
3pi−4 (τ)

+‖∇b‖
4pb

3pb−4

Lpb X
4(pb−2)

3pb−4 (τ)Z
4−pb
3pb−4 (τ)dτ, if pi∈ [ 125 ,4],

W (0)+c
∑4

i=3

∫ t

0
(‖∇ui‖

pi
pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb )X(τ)dτ, if pi∈ [4,∞],

with the usual convention at pi=∞,i=3,4, . . . ,b; i.e. pi

pi−2 =1.

Proof. We first assume pi∈
[
12
5 ,4

]
. We take L2-inner products of the system (1.2)

with −Δ1,2u,−Δ1,2b, respectively, and estimate

1

2
∂tW (t)+Y (t)�

4∑
i=3

∫
|∇ui||∇1,2u||∇u|+ |∇b||∇1,2b||∇u| (4.1)

by Equation (3.2). Now we estimate

4∑
i=3

∫
|∇ui||∇1,2u||∇u|�

4∑
i=3

‖∇ui‖Lpi ‖∇1,2u‖L4‖∇u‖
L

4pi
3pi−4

�
4∑

i=3

‖∇ui‖Lpi ‖∇∇1,2u‖L2‖∇u‖2(
pi−2

pi
)

L2 ‖∇u‖
4−pi
pi

L4

�
4∑

i=3

‖∇ui‖Lpi ‖∇∇1,2u‖
4+pi
2pi

L2 ‖∇u‖2(
pi−2

pi
)

L2 ‖Δu‖
4−pi
2pi

L2

≤1

4
Y (t)+c

4∑
i=3

‖∇ui‖
4pi

3pi−4

Lpi X
4(pi−2)

3pi−4 (t)Z
4−pi
3pi−4 (t) (4.2)

by Hölder’s inequalities, Sobolev embedding of Ḣ1(R4) ↪→L4(R4), interpolation inequal-
ity, Equation (2.1), and Young’s inequality. Similarly, we obtain∫

|∇b||∇1,2b||∇u|�‖∇b‖Lpb ‖∇∇1,2b‖L2‖∇u‖
L

4pb
3pb−4

�‖∇b‖LpbY
1
2 (t)‖∇u‖2(

pb−2

pb
)

L2 ‖∇u‖
4−pb
pb

L4

�‖∇b‖LpbY
1
2 (t)X

pb−2

pb (t)‖∇∇1,2u‖
4−pb
2pb

L2 ‖Δu‖
4−pb
2pb

L2

≤1

4
Y (t)+c‖∇b‖

4pb
3pb−4

Lpb X
4(pb−2)

3pb−4 (t)Z
4−pb
3pb−4 (t). (4.3)

With Equations (4.2) and (4.3) applied to Equation (4.1), absorbing and integrating in
time lead to

W (t)+

∫ t

0

Y (τ)dτ

≤W (0)+c

4∑
i=3

∫ t

0

‖∇ui‖
4pi

3pi−4

Lpi X
4(pi−2)
3pi−4 (τ)Z

4−pi
3pi−4 (τ)+‖∇b‖

4pb
3pb−4

Lpb X
4(pb−2)

3pb−4 (τ)Z
4−pb
3pb−4 (τ)dτ.

(4.4)
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We now work on the case 4<pi<∞
4∑

i=3

∫
|∇ui||∇1,2u||∇u|�

4∑
i=3

‖∇ui‖Lpi ‖∇1,2u‖
L

2pi
pi−2

‖∇u‖L2

�
4∑

i=3

‖∇ui‖Lpi ‖∇1,2u‖
pi−4

pi

L2 ‖∇1,2u‖
4
pi

L4‖∇u‖L2

�
4∑

i=3

‖∇ui‖Lpi ‖∇1,2u‖
pi−4

pi

L2 ‖∇∇1,2u‖
4
pi

L2‖∇u‖L2

≤1

4
Y (t)+c

4∑
i=3

‖∇ui‖
pi

pi−2

Lpi X(t) (4.5)

by Hölder’s and interpolation inequalities, Sobolev embedding of Ḣ1(R4) ↪→L4(R4), and
Young’s inequality. Similarly, we estimate∫

|∇b||∇1,2b||∇u|�‖∇b‖Lpb ‖∇1,2b‖
pb−4

pb

L2 ‖∇1,2b‖
4
pb

L4‖∇u‖L2

�‖∇b‖Lpb ‖∇1,2b‖
pb−4

pb

L2 ‖∇∇1,2b‖
4
pb

L2‖∇u‖L2

≤1

4
Y (t)+c‖∇b‖

pb
pb−2

Lpb X(t). (4.6)

We apply Equations (4.5) and (4.6) in Equation (4.1), absorb and integrate in time to
obtain

W (t)+

∫ t

0

Y (τ)dτ ≤W (0)+c

4∑
i=3

∫ t

0

(‖∇ui‖
pi

pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb )X(τ)dτ. (4.7)

The case of pi=∞ requires only a standard modification as done in the proof of Theorem
1.3; that is,

4∑
i=3

∫
|∇ui||∇1,2u||∇u|�

4∑
i=3

‖∇ui‖L∞‖∇1,2u‖L2‖∇u‖L2 �
4∑

i=3

‖∇ui‖L∞X(t),

∫
|∇b||∇1,2b||∇u|�‖∇b‖L∞‖∇1,2b‖L2‖∇u‖L2 �‖∇b‖L∞X(t)

so that summing and integrating in time leads to the desired result. This completes the
proof of Proposition 4.1.

Proposition 4.2. Let N =4 and let (u,b) be the solution pair to the MHD system
(1.2) that satisfies the hypothesis of Theorem 1.4. Then

sup
t∈[0,T ]

X(t)+

∫ T

0

Z(τ)dτ �1.

Proof. Similarly to the proof of Theorem 1.3, we estimate from Equation (3.22).
For pi∈ [ 125 ,4], we continue our estimate from Equations (4.1), (4.2), and (4.3) to obtain

III1+III3+III5+III7�
4∑

i=3

‖∇ui‖Lpi ‖∇∇1,2u‖
4+pi
2pi

L2 ‖∇u‖2(
pi−2

pi
)

L2 ‖Δu‖
4−pi
2pi

L2
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+‖∇b‖LpbY
4+pb
4pb (t)X

pb−2

pb (t)‖Δu‖
4−pb
2pb

L2

≤ 1

16
Z(t)+c

4∑
i=3

(
‖∇ui‖

pi
pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb

)
X(t) (4.8)

by Young’s inequality. We now decompose integrating by parts

III2=−
4∑

i,j=1

4∑
k=3

∫
∂kui∂iuj∂kuj

=−
2∑

i=1

4∑
j=1

4∑
k=3

∫
∂kui∂iuj∂kuj−

4∑
j=1

4∑
i,k=3

∫
∂kui∂iuj∂kuj

�
∫
|∇u|2|∇1,2u|+

4∑
i=3

∫
|∇ui||∇u|2�V1+V2 (4.9)

where V1 is estimated in an identical manner as IV1 in Equation (3.25), while we
estimate

V2�
4∑

i=3

‖∇ui‖Lpi ‖∇u‖2
L

2pi
pi−1

�
4∑

i=3

‖∇ui‖Lpi ‖∇u‖2(
pi−2

pi
)

L2 ‖Δu‖2(
2
pi

)

L2 ≤ 1

16
Z(t)+c

4∑
i=3

‖∇ui‖
pi

pi−2

Lpi X(t) (4.10)

by Hölder’s, Gagliardo–Nirenberg, and Young’s inequalities. Next, we decompose

III4=−
4∑

i,j=1

4∑
k=3

∫
∂kui∂ibj∂kbj

=−
2∑

i=1

4∑
j=1

4∑
k=3

∫
∂kui∂ibj∂kbj−

4∑
j=1

4∑
i,k=3

∫
∂kui∂ibj∂kbj

�
∫
|∇u||∇1,2b||∇b|+

4∑
i=3

∫
|∇ui||∇b|2�V3+V4 (4.11)

where we estimate V3 as IV3 in Equation (3.28), while the same estimate of V2 in
Equation (4.10) leads to

V4�
4∑

i=3

‖∇ui‖Lpi ‖∇b‖2
L

2pi
pi−1

�
4∑

i=3

‖∇ui‖Lpi ‖∇b‖2(
pi−2

pi
)

L2 ‖Δb‖2(
2
pi

)

L2 ≤ 1

16
Z(t)+c

4∑
i=3

‖∇ui‖
pi

pi−2

Lpi X(t). (4.12)

Finally,

III6+III8

=

4∑
i,j=1

4∑
k=3

∫
∂kbi∂ibj∂kuj+∂kbi∂iuj∂kbj
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�
∫
|∇b|2|∇u|

�‖∇b‖Lpb ‖∇b‖
L

2pb
pb−1

‖∇u‖
L

2pb
pb−1

�‖∇b‖Lpb ‖∇b‖
pb−2

pb

L2 ‖Δb‖
2
pb

L2‖∇u‖
pb−2

pb

L2 ‖Δu‖
2
pb

L2

≤ 1

16
Z(t)+c‖∇b‖

pb
pb−2

Lpb X(t) (4.13)

by Hölder’s, Gagliardo–Nirenberg, and Young’s inequalities. Thus, we obtain by apply-
ing Equations (4.8)–(4.13) in Equation (3.22), absorbing, and integrating in time

X(t)+
3

2

∫ t

0

Z(τ)dτ

�1+
4∑

i=3

∫ t

0

(‖∇ui‖
pi

pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb )X(τ)dτ

+ sup
τ∈[0,t]

W
1
2 (τ)

(∫ t

0

Y (τ)dτ

) 1
2
(∫ t

0

Z(τ)dτ

) 1
2

, (4.14)

where we also used Hölder’s inequality. Now we assume pi∈ ( 125 ,4]. For the last term
only, we bound it by a constant multiples of(

1+
4∑

i=3

∫ t

0

‖∇ui‖
4pi

3pi−4

Lpi X
4(pi−2)

3pi−4 (τ)Z
4−pi
3pi−4 (τ)+‖∇b‖

4pb
3pb−4

Lpb X
4(pb−2)

3pb−4 (τ)Z
4−pb
3pb−4 (τ)dτ

)

×
(∫ t

0

Z(τ)dτ

) 1
2

�
(∫ t

0

Z(τ)dτ

) 1
2

+

4∑
i=3

(∫ t

0

‖∇ui‖
pi

pi−2

Lpi X(τ)dτ

) 4(pi−2)

3pi−4
(∫ t

0

Z(τ)dτ

) 4+pi
2(3pi−4)

+

(∫ t

0

‖∇b‖
pb

pb−2

Lpb X(τ)dτ

) 4(pb−2)

3pb−4
(∫ t

0

Z(τ)dτ

) 4+pb
2(3pb−4)

≤1

2

∫ t

0

Z(τ)dτ

+c

⎛
⎝1+

4∑
i=3

(∫ t

0

‖∇ui‖
pi

pi−2

Lpi X(τ)dτ

) 8(pi−2)

5pi−12

+

(∫ t

0

‖∇b‖
pb

pb−2

Lpb X(τ)dτ

) 8(pb−2)

5pb−12

⎞
⎠

≤1

2

∫ t

0

Z(τ)dτ+c

(
1+

4∑
i=3

(∫ t

0

‖∇ui‖
8pi

5pi−12

Lpi X(τ)dτ

)
+

(∫ t

0

‖∇b‖
8pb

5pb−12

Lpb X(τ)dτ

))

due to Proposition 4.1, Hölder’s, and Young’s inequalities and (1.3).
Next, we consider the case of 4<pi<∞. We restart from Equation (3.22), where

we continue our estimates from Equations (4.1), (4.5), and (4.6) to obtain

III1+III3+III5+III7

�
4∑

i=3

‖∇ui‖Lpi ‖∇1,2u‖
pi−4

pi

L2 ‖∇∇1,2u‖
4
pi

L2‖∇u‖L2
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+‖∇b‖Lpb ‖∇1,2b‖
pb−4

pb

L2 ‖∇∇1,2b‖
4
pb

L2‖∇u‖L2

≤ 1

16
Z(t)+c

4∑
i=3

(‖∇ui‖
pi

pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb )X(t) (4.15)

by Young’s inequality. The rest of the estimates of III2,III4,III6,III8 all go through as
in the case pi∈ [ 125 ,4]. Indeed, continuing from Equation (4.9), we bound III2�V1+V2,
where V1 is estimated as IV1 in Equation (3.25) and V2 is estimated identically as for
Equation (4.10). The estimates of III4 also go through as in Equation (4.11): III4�
V3+V4, where V3 is estimated as IV3 in Equation (3.28) and V4 in (4.12). Finally, we
use the estimate of III6+III8 in Equation (4.13). Thus, in sum, after absorbing and
integrating in time, we obtain

X(t)+
3

2

∫ t

0

Z(τ)dτ ≤X(0)+c

4∑
i=3

∫ t

0

(‖∇ui‖
pi

pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb )X(τ)dτ

+c sup
τ∈[0,t]

W
1
2 (τ)

(∫ t

0

Y (τ)dτ

) 1
2
(∫ t

0

Z(τ)dτ

) 1
2

by Hölder’s inequality. We bound the last term by

c(W (0)+

4∑
i=3

∫ t

0

(‖∇ui‖
pi

pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb )X(τ)dτ

(∫ t

0

Z(τ)dτ

) 1
2

≤1

2

∫ t

0

Z(τ)dτ+c

(
1+

4∑
i=3

(∫ t

0

(‖∇ui‖
pi

pi−2

Lpi +‖∇b‖
pb

pb−2

Lpb )X(τ)dτ

)2
)

≤1

2

∫ t

0

Z(τ)dτ+c

(
1+

4∑
i=3

∫ t

0

(‖∇ui‖
2pi

pi−2

Lpi +‖∇b‖
2pb

pb−2

Lpb )X(τ)dτ

)

by Proposition 4.1, Young’s, and Hölder’s inequalities and Equation (1.3). After ab-
sorbing, Gronwall’s inequality implies the desired result. We now consider the case
of pi=∞. For simplicity, we assume pi=∞ for all i=3,4, . . . ,b. We continue from
Equation (3.22), where we estimate in contrast to Equation (4.15)

III1+III3+III5+III7

�
4∑

i=3

∫
|∇ui||∇1,2u||∇u|+ |∇b||∇1,2b||∇u|�

4∑
i=3

(‖∇ui‖L∞+‖∇b‖L∞)X(t)

due to Equation (4.1) and Hölder’s, and Young’s inequalities. Moreover, from III2�
V1+V2 of Equation (4.9), we estimate V1 is estimated as IV1 in Equation (3.25) and

V2≈
4∑

i=3

∫
|∇ui||∇u|2�

4∑
i=3

‖∇ui‖L∞‖∇u‖2L2 .

Moreover, from III4�V3+V4 of Equation (4.11), we have V3 estimated as IV3 in
Equation (3.28), while

V4≈
4∑

i=3

∫
|∇ui||∇b|2�

4∑
i=3

‖∇ui‖L∞‖∇b‖2L2 .
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Finally, continuing our estimate from Equation (4.13),

III6+III8�
∫
|∇b|2|∇u|�‖∇b‖L∞‖∇b‖L2‖∇u‖L2 �‖∇b‖L∞X(t).

In sum, integrating in time, we obtain

X(t)+2

∫ t

0

Z(τ)dτ

�X(0)+

4∑
i=3

∫
(‖∇ui‖L∞+‖∇b‖L∞)X(τ)dτ

+ sup
τ∈[0,t]

W
1
2 (τ)

(∫ t

0

Y (τ)dτ

) 1
2
(∫ t

0

Z(τ)dτ

) 1
2

�X(0)+

4∑
i=3

∫
(‖∇ui‖L∞+‖∇b‖L∞)X(τ)dτ

+

(
W (0)+

4∑
i=3

∫ t

0

(‖∇ui‖L∞+‖∇b‖L∞)X(τ)dτ

)(∫ t

0

Z(τ)dτ

) 1
2

≤
∫ t

0

Z(τ)dτ+c

(
1+

4∑
i=3

(

∫ t

0

‖∇ui‖2L∞+‖∇b‖2L∞)X(τ)dτ)

)

by Hölder’s inequality, Proposition 4.1, Young’s inequality, and Equation (1.3).
Finally, we prove the smallness result in the case pi=

12
5 ,ri=∞, for which for sim-

plicity of presentation, we assume ri=∞,pi=
12
5 , for all i=3,4, . . . ,b. From Equation

(4.14),

X(t)+
3

2

∫ t

0

Z(τ)dτ �X(0)+

4∑
i=3

∫ t

0

(‖∇ui‖6
L

12
5
+‖∇b‖6

L
12
5
)X(τ)dτ

+

(
W (0)+

4∑
i=3

∫ t

0

(‖∇ui‖3
L

12
5
+‖∇b‖3

L
12
5
)X

1
2 (τ)Z

1
2 (τ)dτ

)(∫ t

0

Z(τ)dτ

) 1
2

≤1

4

∫ t

0

Z(τ)dτ+c

4∑
i=3

∫ t

0

(‖∇ui‖6
L

12
5
+‖∇b‖6

L
12
5
)X(τ)dτ

+c

(
1+

4∑
i=3

(

∫ t

0

(‖∇ui‖3
L

12
5
+‖∇b‖3

L
12
5
)X

1
2 (τ)Z

1
2 (τ)dτ)2

)

≤1

4

∫ t

0

Z(τ)dτ+c

4∑
i=3

sup
τ∈[0,t]

(‖∇ui‖6
L

12
5
+‖∇b‖6

L
12
5
)(τ)

∫ t

0

X(τ)dτ

+c

(
1+

4∑
i=3

sup
τ∈[0,t]

(‖∇ui‖6
L

12
5
+‖∇b‖6

L
12
5
)(τ)

∫ t

0

X(τ)dτ

∫ t

0

Z(τ)dτ

)

≤1

2

∫ t

0

Z(τ)dτ+c

for
∑4

i=3 supt∈[0,T ](‖∇ui‖6
L

12
5
+‖∇b‖6

L
12
5
)(t) sufficiently small, where we used Hölder’s

inequality, Proposition 4.1, Young’s inequality, Equation (2.2), and Equation (1.3). This
completes the proof of Theorem 1.4.
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5. Proof of Theorem 1.5
We fix qi∈ ( 127 ,6) and then pi=6+ε for ε>0 sufficiently small so that 2(6+ε)

(6+ε)+1 <qi
and also qi<6<pi. This implies that, for all ε>0 sufficiently small, we have qi∈
( 2pi

pi+1 ,pi). Now we multiply the ith component of the u-equation of the system (1.1)

with |ui|pi−2ui and integrate in space to obtain

1

pi
∂t‖ui‖pi

Lpi +c(pi)‖ui‖pi

L2pi

�‖∂iπ‖Lqi ‖ui‖pi−1

L
(pi−1)qi

qi−1

�‖∂iπ‖Lqi ‖ui‖
piqi−2pi+qi

qi

Lpi ‖ui‖
2(pi−qi)

qi

L2pi

≤c(pi)

2
‖ui‖pi

L2pi
+c‖∂iπ‖

piqi
piqi−2pi+2qi

Lqi ‖ui‖
pi(

piqi−2pi+qi
piqi−2pi+2qi

)

Lpi ,

where we used the lower bound estimate on the dissipative term of

c(pi)‖ui‖pi

L2pi
≈‖|ui|

pi
2 ‖2L4 �‖|ui|

pi
2 ‖2

Ḣ1 ≈
(pi−1)4

p2i

∫
|∇|ui|

pi
2 |2=−

∫
Δu|ui|pi−2ui

for some constant c(pi) that depends on pi, Hölder’s inequality, interpolation, and
Young’s inequality. We absorb and obtain

1

pi
∂t‖ui‖pi

Lpi +
c(pi)

2
‖ui‖pi

L2pi
�‖∂iπ‖

piqi
piqi−2pi+2qi

Lqi (1+‖ui‖pi

Lpi )

by Young’s inequality. By the hypothesis of Theorem 1.5 and Gronwall’s inequality, for
all ε>0 sufficiently small, we have

∑4
i=3 supt∈[0,T ]‖ui‖Lpi (t)�1, where pi=6+ε. By

Theorem 1.1, the proof of Theorem 1.5 is complete.

6. Further Discussion
There are many results on the regularity criteria component reduction theory of

the three-dimensional NSE and the MHD system that we may look forward to being
generalized to the four-dimensional case, as done in our paper. We remark however that
the results beside what we presented in this paper did not seem readily generalizable.

For this precise reason, although the authors in [7] showed that a bound on u3 in a
scaling-invariant norm suffices to obtain the uniqueness of the weak solution to the three-
dimensional NSE (see also [8, 24, 35] for the case of the MHD system), it is not clear to
the author at the time of writing whether these results in [7, 8, 24, 35] may be extended to
a two-component regularity criteria in a scaling-invariant norm for the four-dimensional
NSE or the MHD system. The proofs in [7, 8, 24, 35] are highly nontrivial, employing
anisotropic Littlewood–Paley theory and some key identities due to the divergence-free
property of the solution to the NSE and the MHD system. While the results in our
paper rely heavily on the decomposition of the nonlinear terms in Proposition 3.1, that
decomposition is not sufficient to improve our result to the scaling-invariant level.

Finally, we also note that, in order to reduce our two-component regularity criteria
for the four-dimensional NSE to one component or to extend it to higher dimension
such as five, it seems to require a completely new approach.
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