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NONLINEAR STABILITY OF VISCOUS SHOCK WAVE
TO ONE-DIMENSIONAL COMPRESSIBLE ISENTROPIC

NAVIER–STOKES EQUATIONS WITH DENSITY DEPENDENT
VISCOUS COEFFICIENT∗

ALEXIS F. VASSEUR† AND LEI YAO‡

Abstract. We prove the nonlinear stability of viscous shock waves of arbitrary amplitudes to one-
dimensional compressible isentropic Navier–Stokes equations with density dependent viscosity. Under
the assumption that the viscous coefficient is given as a power function of density, any viscous shock
wave is shown to be nonlinear stable for small initial perturbations with integral zero. In contrast
to previous related results [A. Matsumura, K. Nishihara, Japan J. Appl. Math., 2, 17–25, 1985; A.
Matsumura, Y. Wang, Methods Appl. Anal., 17, 279–290, 2010], there is no restriction on the power
index of the viscous coefficient and the amplitudes of the viscous shock wave in our result.
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1. Introduction
In this paper, we study the nonlinear stability of viscous shock waves (traveling

wave solution) to the following compressible isentropic Navier–Stokes equations:⎧⎨
⎩

vt−ux=0,

ut+p(v)x=
(

μ(v)
v ux

)
x
,

(1.1)

with initial data

(v,u)(x,0)=(v0,u0)(x), x∈R1, (1.2)

and far field condition

(v,u)(x,t)→ (v±,u±), as x→±∞, (1.3)

where v(>0) is the specific volume, u is the fluid velocity, p(v)=av−γ is the pressure,
γ(≥1) is the adiabatic constant, μ(v)= bv−α(α∈R1) is the viscosity coefficient, and a,b
are giving positive constants, which will be normalized to be 1.

The viscosity coefficient is often assumed to be a positive constant. However, it is
well-known that the viscosity of the flow is not constant and depends on the tempera-
ture. For example, we can get that the viscosity is proportional to the square root of
the temperature when we use the Chapman–Enskog expansion to derive Navier–Stokes
equations from the Boltzmann equation, cf. [4, 5]. Especially for isentropic flow, this
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2216 NONLINEAR STABILITY OF VISCOUS SHOCK WAVE TO NS EQUATIONS

dependence on the viscosity is translated into the dependence on the density. For more
physical background, please refer to [12, 22] and references therein.

About the compressible Navier–Stokes equation (1.1) in Euler coordinates,
Matsumura–Nishida [18, 19] considered the global existence of the smooth solutions
in multi-dimensional whole space and obtained that the global solutions tended to its
equilibrium state in large time. They obtained decay rates of Navier–Stokes equations
as

‖(ρ− ρ̄,u)(t)‖L2(R3)≤C(1+ t)−
3
4 , t≥0,

where ρ̄>0 is a constant. We are interested in the asymptotic behavior of the non-
constant equilibrium state about the model (1.1), such as the nonlinear stability of its
viscous shock wave. It is easily seen that Equation (1.1) admits a traveling wave solution
with shock profile, which can be called viscous shock wave

(v,u)=(ṽ, ũ)(x−st), (ṽ, ũ)(±∞)=(v±,u±), (1.4)

under Rankine–Hugoniot and entropy conditions (see Equations (1.7) and (1.9)); here
s is the shock speed and v±>0, u±∈R1 are far field states, as given in Equation (1.3).

Now we look for the viscous shock wave solution (ṽ, ũ)(x−st) to system (1.1). Let
ξ=x−st, substituting (v,u)(ξ) into Equations (1.1) and (1.3), and one has the following
system of differential equations:⎧⎪⎪⎨

⎪⎪⎩
−sṽξ− ũξ =0,

−sũξ+p(ṽ)ξ =(
ũξ

ṽα+1 )ξ,

(ṽ, ũ)(±∞)=(v±,u±).

(1.5)

Integrating the system (1.5) with respect to ξ over (±∞,ξ) and using the fact that
ũξ→0 as ξ→±∞, we have⎧⎨

⎩
sṽ+ ũ=sv±+u±,

−sũ+p(ṽ)− ũξ

ṽα+1 =−su±+p(v±),
(1.6)

and this implies the Rankine–Hugoniot jump condition for shock waves⎧⎨
⎩
−s(v+−v−)=(u+−u−),

−s(u+−u−)=−(p(v+)−p(v−)).
(1.7)

From this, we can obtain

s=±
√
−p(v+)−p(v−)

v+−v−
. (1.8)

We only consider the case where s<0 (first shock) and the analysis for when s>0
(second shock) is similar, which together with the Rankine–Hugoniot jump condition
implies the entropy condition

v−>v+, u−>u+. (1.9)
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Under condition (1.9), it is easily to check that the ODE (1.6) has a global smooth solu-
tion (ṽ, ũ)(ξ)(see [10, 20]), which implies the existence of a viscous shock wave solution
of the system (1.1) which translates at shock speed s and interpolate the asymptotic
values (v±,u±) at x=±∞.

The stability of the viscous shock wave for system (1.1) is a very important problem
from both mathematical and physical points of view. When the viscosity coefficient μ is a
positive constant, Matsumura–Nishihara [20] showed the viscous shock waves are asymp-
totically stable, provided the initial disturbance is suitably small and of integral zero, but
there are the following additional conditions: “(γ−1) ·(total variation of initial data) is
small”, this amounted to the amplitude of viscous shock being small. For the results
with nonzero integral, Mascia–Zumbrun [17] obtained the asymptotic stability of viscous
shock wave with small amplitude for the system (1.1) and related physical systems; Liu–
Zeng [16] proved a similar result in their treatment of systems with artificial viscosity.
When the viscosity coefficient μ depends on the density, i.e., μ=v−α, Matsumura–
Wang [22] proved the stability of viscous shock wave for small initial perturbations with
integral zero by a weighted energy method(cf. [6,21]), in order to deal with the nonlinear
terms, they needed extra assumption α≥ 1

2 (γ−1).

But there are no relevant results for the nonlinear stability of viscous shock with
large amplitudes and an arbitrary power index of the viscous coefficient μ(=v−α), i.e.,
α∈R1 is arbitrary. The main aim of this paper is to extend Matsumura’s result [20,22]
in these two aspects. Here, it is worth mentioning the recent results of Kang, Leger,
and Vasseur: they used the relative entropy method to study the stability of shock (or
viscous shock) waves for the scalar or system of conservation laws, we can refer to the
results in [11, 14,15] and references cited therein.

In order to deal with the nonlinear term better, we introduce the new effective
velocity h=u+ 1

α (v
−α)x, if α �=0; h=u−(lnv)x, if α=0, then (v,h) satisfies

⎧⎨
⎩

vt−hx=
(

vx
vα+1

)
x
,

ht+p(v)x=0,
(1.10)

with initial data

(v,h)(x,0)=(v0,h0)(x), x∈R1, (1.11)

and far field condition

(v,h)(x,t)→ (v±,u±), as x→±∞, t≥0. (1.12)

Let us mention that this change of unknown transforms the system (1.1) as a parabolic
equation on the specific volume and a transport equation for the new effective velocity,
this new system will help us to deal with the nonlinear terms G and p(v|ṽ) in (2.3)
without any restriction on α. It is worth mentioning that Bresch–Desjardins [1–3] and
Shelukhin [23] used the new velocity h (in Euler coordinates) to obtain the entropy
estimates, for density dependent viscosity in multi-dimensional and constant viscosity
in one-dimensional respectively, which gives the estimate of derivative of the density.
Recently, by introducing new effective velocity h (in Euler coordinates), Haspot gave a
new formulation of the compressible Navier–Stokes to deal with the well-posedness of
the compressible Navier–Stokes equations with density dependent viscosity (please refer
to [7–9] and references therein).
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Furthermore, let h̃= ũ+ 1
α (ṽ

−α)ξ, α �=0, h̃= ũ−(ln ṽ)ξ. If α=0, then by the exis-
tence result of the system (1.5), the equivalent problem⎧⎪⎪⎨

⎪⎪⎩
−sṽξ− h̃ξ =(

ṽξ
ṽα+1 )ξ,

−sh̃ξ+p(ṽ)ξ =0,

(ṽ, h̃)(±∞)=(v±,u±),

(1.13)

has a global smooth solution (ṽ, h̃)(ξ), with

ṽξ =
ṽα+1

s
[s2(v−− ṽ)+p(v−)−p(ṽ)]=

ṽα+1

s
H(ṽ)<0, (1.14)

and |ṽξ|, |ṽξξ|, |ṽξξξ| are bounded.

Assume that {
(v0− ṽ,h0− h̃)∈H1∩L1, inf

x∈R1
v0(x)>0,∫

(v0− ṽ)(x)dx=0,
∫
(h0− h̃)(x)dx=0,

(1.15)

and

V0(x)=

∫ x

−∞
[v0(z)− ṽ(z)]dz, H0(x)=

∫ x

−∞
[h0(z)− h̃(z)]dz. (1.16)

We further assume that

(V0,H0)∈L2. (1.17)

The main theorem of this paper is as follows.

Theorem 1.1. Under the assumptions (1.15) and (1.17), for any α∈R1, there exists
a positive constant δ0 such that if ‖V0,H0‖2≤ δ0, then the Cauchy problem (1.1)–(1.3)
has a unique global solution (v,u) satisfyying

(v− ṽ,h− h̃)∈C0([0,+∞);H1), v− ṽ∈L2([0,+∞);H2),

h− h̃∈L2([0,+∞);H1), (1.18)

and

sup
x∈R1

|v(x,t)− ṽ(x−st)|→0, sup
x∈R1

|u(x,t)− ũ(x−st)|→0, as t→∞, (1.19)

here h=u+ 1
α (v

−α)x, h̃= ũ+ 1
α (ṽ

−α)ξ, if α �=0; h=u−(lnv)x, h̃= ũ−(ln ṽ)ξ, if α=0.

Remark 1.1. Compared to the results of [20, 22], there is no restrictions on α and
the amplitude of the viscous shock wave.

Theorem 1.1 is the direct consequence of the following result about the equivalent
problem (1.10)–(1.12).

Theorem 1.2. Under the assumptions (1.15) and (1.17), for any α∈R1, there exists
a positive constant δ0 such that if ‖V0,H0‖2≤ δ0, then the Cauchy problem (1.10)–(1.12)
has a unique global solution (v,h), satisfies

(v− ṽ,h− h̃)∈C0([0,+∞);H1), v− ṽ∈L2([0,+∞);H2),
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h− h̃∈L2([0,+∞);H1), (1.20)

and

sup
x∈R1

|(v,h)(x,t)−(ṽ, h̃)(x−st)|→0, as t→∞. (1.21)

The rest of this paper is organized as follows. In Section 2, we reformulate the
problem in terms of the anti-derivatives of the deviation functions from the viscous
shock wave. In Section 3, we establish the a priori estimates and prove the Theorem
2.1. And we complete the proof of the main theorem in Section 4.

Notation: In the following, C from line to line denotes the generic positive con-
stants depending only on the initial data and the physical coefficients but independent
of time T . We use the standard notations Lp, Hs to denote the Lp and Sobolev space
in R1 with norms ‖·‖Lp and ‖·‖s, respectively. For simplicity, ‖·‖ :=‖·‖L2(R1).

2. Reformulation of the problem
For the convenience of the analysis, changing the variables (x,t)→ (ξ=x−st,t) in

Equation (1.10), we have ⎧⎨
⎩

vt−svξ−hξ =
( vξ

vα+1

)
ξ
,

ht−shξ+p(v)ξ =0.
(2.1)

Next, define the new functions (V,H)(ξ,t) as follows:

V (ξ,t)=

∫ ξ

−∞
[v(z,t)− ṽ(z)]dz, H(ξ,t)=

∫ ξ

−∞
[h(z,t)− h̃(z)]dz. (2.2)

Then with Equation(1.13), we have⎧⎨
⎩

Vt−sVξ−Hξ− 1
ṽα+1Vξξ =( 1

vα+1 − 1
ṽα+1 )Vξξ+( 1

vα+1 − 1
ṽα+1 )ṽξ =G,

Ht−sHξ+p′(ṽ)Vξ =−[p(v)−p(ṽ)−p′(ṽ)(v− ṽ))]=−p(v|ṽ), (2.3)

with the initial data

(V,H)(ξ,0)=(V0,H0)(ξ)∈H2, (2.4)

where

V0(ξ)=

∫ ξ

−∞
[v0(z)− ṽ(z)]dz, H0(ξ)=

∫ ξ

−∞
[h0(z)− h̃(z)]dz.

We look for the global existence of the solution to the problem (2.3)–(2.4). At first,
we define the solution space X(0,T ) for any 0≤T <+∞

X(0,T )={(V,H)∈C(0,T ;H2)|Vξ ∈L2(0,T ;H2),Hξ ∈L2(0,T ;H1),

sup
0≤t≤T

‖(V,H)(t)‖2≤ 1

2
v−}.

By the previous arguments as in [13,18–20], the global smooth solution in X(0,∞)
is constructed by the combination of the local existence and the a priori estimate. The
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proof of the existence of local solution is standard, and we are mainly concerned about
the a priori estimate.

Proposition 2.1. For any α∈R1, there exists a positive constant δ such
that, if (V,H)∈X(0,T ) is the solution of the Cauchy problem (2.3)–(2.4) and
sup

t∈[0,T ]

‖(V,H)(t)‖2≤ δ, it holds for t∈ [0,T ] that

‖(V,H)(t)‖22+
∫ t

0

(‖Vξ(τ)‖22+‖Hξ(τ)‖21)dτ ≤C‖(V0,H0)‖22, (2.5)

here C is a positive constant independent of T .

Remark 2.1. In the proof of Proposition 2.1, we can’t obtain ‖(V,H)(t)‖≤
C‖(V0,H0)‖ directly, it will be controlled by the another term Cδ

∫ t

0

∫
V 2
ξξdξdτ, see

Lemma 3.3. Using the smallness of δ, we enclose the one order derivative estimates
in Lemma 3.4, and obtain ‖(V,H)(t)‖≤C‖(V0,H0)‖1.

Once the Proposition 2.1 is obtained, we can show the following global existence
theorem, which implies Theorem 1.2 by defining v= ṽ+Vξ, h= h̃+Hξ.

Theorem 2.1. Assume (V0,H0)∈H2, then for any α∈R1, there exists a positive
constant δ0 such that if ‖V0,H0‖2≤ δ0, then the Cauchy problem (2.3)–(2.4) has a unique
global solution (V,H)∈X(0,∞), satisfies

sup
ξ∈R1

|(V,H)ξ(ξ,t)|→0, as t→∞. (2.6)

3. Proof of Proposition 2.1
Throughout this section, we assume that the problem (2.3)–(2.4) has a solution

(V,H)∈X(0,T ) for some T >0. We will derive the a priori energy estimates for the
system (2.3)–(2.4). To begin with, we make the following a priori assumptions for
sufficiently small δ>0:

sup
t∈[0,T ]

‖(V,H)(t)‖2≤ δ, (3.1)

where T ∈ (0,∞], which implies

sup
t∈[0,T ]

{‖(V,H)(t)‖L∞ +‖(v− ṽ,h− h̃)(t)‖L∞}≤ δ, (3.2)

where T ∈ (0,∞].

Let us start with some useful inequalities.

Lemma 3.1. Under the assumption (3.1), we have

p(v|ṽ)≤CV 2
ξ , (3.3)

|p(v|ṽ)ξ|≤C(|Vξξ||Vξ|+ |ṽξ|V 2
ξ ), (3.4)

|p(v|ṽ)ξξ|≤C(|Vξξξ||Vξ|+V 2
ξ +V 2

ξξ+ |ṽξ||Vξ||Vξξ|). (3.5)



A.F. VASSRUR AND L. YAO 2221

Proof. By the representation of p(v|ṽ)=v−γ− ṽ−γ+γṽ−γ−1(v− ṽ)), through the
tedious calculations, we have

p(v|ṽ)ξ =−γVξξ(v
−γ−1− ṽ−γ−1)−γṽξ(v

−γ−1− ṽ−γ−1+(γ+1)ṽ−γ−2Vξ) (3.6)

and

p(v|ṽ)ξξ =−γVξξξ(v
−γ−1− ṽ−γ−1)−γṽξξ(v

−γ−1− ṽ−γ−1+(γ+1)ṽ−γ−2Vξ)

+γ(γ+1)v−γ−2V 2
ξξ+γ(γ+1)ṽ2ξ [v

−γ−2− ṽ−γ−2+(γ+2)ṽ−γ−3Vξ]

+2γ(γ+1)Vξξ ṽξ(v
−γ−2− ṽ−γ−2). (3.7)

Then by the mean value theorem, Taylor’s formula, and Equation (3.2), we complete
the proof of Lemma 3.1.

Lemma 3.2. Under the assumption of (3.1), we have

|G|≤C(|Vξ||Vξξ|+ ||ṽξ|Vξ|), (3.8)

|Gξ|≤C(V 2
ξξ+ |Vξ||Vξξ|+ |Vξ||Vξξξ|+ |Vξξ|+ |Vξ|). (3.9)

Proof. By the representation of G=( 1
vα+1 − 1

ṽα+1 )Vξξ+( 1
vα+1 − 1

ṽα+1 )ṽξ, we have

Gξ =−(α+1)
Vξξ ṽ

α+2+ ṽξ[ṽ
α+2−(Vξ+ ṽ)α+2]

vα+2ṽα+2
Vξξ

+(
1

vα+1
− 1

ṽα+1
)Vξξξ

−(α+1)
Vξξ ṽ

α+2+ ṽξ[ṽ
α+2−(Vξ+ ṽ)α+2]

vα+2ṽα+2
ṽξ

+(
1

vα+1
− 1

ṽα+1
)ṽξξ

=−(α+1)
Vξξ ṽ

α+2−(α+2)ṽξ(ṽ+θVξ)
α+1Vξ

vα+2ṽα+2
Vξξ

+(
1

vα+1
− 1

ṽα+1
)Vξξξ

−(α+1)
Vξξ ṽ

α+2−(α+2)ṽξ(ṽ+θVξ)
α+1Vξ

vα+2ṽα+2
ṽξ

+(
1

vα+1
− 1

ṽα+1
)ṽξξ, for θ∈ (0,1), (3.10)

and using, the smallness of |Vξ| by Equation (3.2) and the boundedness of |ṽξ| and |ṽξξ|,
the proof of Lemma 3.2 is completed.

With the above useful inequalities at hand, we begin to give the a priori estimates.
The first is the basic energy estimate.

Lemma 3.3. Under the assumptions of Theorem 1.2, it holds that

∫
(V 2+H2)dξ−s

∫ t

0

∫
(

1

p′(ṽ)
)ξH

2dξdτ+

∫ t

0

∫
V 2
ξ dxdτ

≤C‖(V0,H0)‖2+Cδ

∫ t

0

∫
V 2
ξξdξdτ. (3.11)
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Proof. Multiplying Equations (2.3)1 and (2.3)2 by V and − H
p′(ṽ) , respectively,

summing them up, and then integrating the resulting equality over R1 by parts, we
obtain

1

2

d

dt

∫
(− H2

p′(ṽ)
+V 2)dξ− s

2

∫
(

1

p′(ṽ)
)ξH

2dξ+

∫
V 2
ξ

ṽα+1
dξ

=

∫
p(v|ṽ) H

p′(ṽ)
dξ+

∫
GV dξ+(α+1)

∫
Vξ

ṽα+2
ṽξV dξ

≤Cδ

∫
V 2
ξ dξ+

∫
{( 1

vα+1
− 1

ṽα+1
)Vξξ+(

1

vα+1
− 1

ṽα+1
+(α+1)

Vξ

ṽα+2
)ṽξ}V dξ

≤Cδ

∫
V 2
ξ dξ+Cδ

∫
V 2
ξξdξ+C

∫
|ṽξ|V 2

ξ |V |dξ

≤Cδ

∫
V 2
ξ dξ+Cδ

∫
V 2
ξξdξ. (3.12)

Here we have used Equation (3.2) and Lemma 3.1. Next, taking δ sufficiently small and
integrating the above inequality with respect to t, we obtain Equation (3.11).

Remark 3.1. Since we consider the first shock, s<0, and ( 1
p′(ṽ) )ξ =−γ+1

γ ṽγ ṽξ >0,

we see that −s∫ t

0

∫
( 1
p′(ṽ) )ξH

2dξdτ is a good term in Lemma 3.3.

Lemma 3.4. Under the assumptions of Theorem 1.2, it holds that

‖(V,H)(t)‖21+
∫ t

0

‖Vξ(τ)‖21dτ ≤C‖(V0,H0)‖21. (3.13)

Proof. Multiplying Equations (2.3)1 and (2.3)2 by −Vξξ and
Hξξ

p′(ṽ) respectively,

summing up and then integrating the resulting equality over R1 by parts, yields

d

dt

∫
(− H2

ξ

2p′(ṽ)
+

V 2
ξ

2
)dξ− s

2

∫
(

1

p′(ṽ)
)ξH

2
ξ dξ+

∫
V 2
ξξ

ṽα+1
dξ

=−
∫

p(v|ṽ) Hξξ

p′(ṽ)
dξ−

∫
Hξ(p(v)−p(ṽ))(

1

p′(ṽ)
)ξdξ−

∫
GVξξdξ

=

∫
p(v|ṽ)Hξ(

1

p′(ṽ)
)ξdξ−

∫
Hξ(p(v)−p(ṽ))(

1

p′(ṽ)
)ξdξ+

∫
p(v|ṽ)ξ Hξ

p′(ṽ)
dξ−

∫
GVξξdξ

=−
∫

p′(ṽ)VξHξ(
1

p′(ṽ)
)ξdξ+

∫
p(v|ṽ)ξ Hξ

p′(ṽ)
dξ−

∫
GVξξdξ, (3.14)

then by lemmas 3.1–3.2 and Equations (3.1)–(3.2), we have

d

dt

∫
(− H2

ξ

2p′(ṽ)
+

V 2
ξ

2
)dξ− s

2

∫
(

1

p′(ṽ)
)ξH

2
ξ dξ+

∫
V 2
ξξ

ṽα+1
dξ

≤−s

4

∫
(

1

p′(ṽ)
)ξH

2
ξ dξ+C

∫
V 2
ξ dξ+C

∫
(|Vξξ||Vξ|+ |ṽξ|V 2

ξ )|Hξ|dξ

+C

∫
(|Vξ||Vξξ|+ ||ṽξ|Vξ|)|Vξξ|dξ

≤−s

4

∫
(

1

p′(ṽ)
)ξH

2
ξ dξ+C

∫
V 2
ξ dξ+Cδ

∫
V 2
ξξdξ+Cδ

∫
V 2
ξ dξ
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+ε

∫
V 2
ξξdξ+C(ε)

∫
V 2
ξ dξ. (3.15)

Integrating Equation (3.15) with respect to t and using Lemma 3.3 yields

∫
(− H2

ξ

2p′(ṽ)
+

V 2
ξ

2
)dξ− s

4

∫ t

0

∫
(

1

p′(ṽ)
)ξH

2
ξ dξdτ+

∫ t

0

∫
V 2
ξξ

ṽα+1
dξdτ

≤C‖(H0,V0)‖21+Cδ

∫ t

0

∫
V 2
ξξdξdτ+ε

∫ t

0

∫
V 2
ξξdξdτ+C(1+δ+C(ε))

∫ t

0

∫
V 2
ξ dξdτ

≤C‖(V0,H0)‖21+Cδ

∫ t

0

∫
V 2
ξξdξdτ+ε

∫
V 2
ξξdξ+C(1+δ+C(ε))δ

∫ t

0

∫
V 2
ξξdξdτ.

(3.16)

Choosing ε appropriately small and δ sufficiently small, we obtain

∫
(V 2

ξ +H2
ξ )dξ+

∫ t

0

∫
V 2
ξξdξdτ ≤C‖(V0,H0)‖21, (3.17)

and this together with Lemma 3.3 completes the proof of Lemma 3.4.

Lemma 3.5. Under the assumptions of Theorem 1.2, it holds that

∫ t

0

‖Hξ(τ)‖2dτ ≤C‖(V0,H0)‖21. (3.18)

Proof. Multiplying Equation(2.3)1 by Hξ and using Equation (2.3)2, we have

H2
ξ =(V Hξ)t−V [sHξξ−(p(v)−p(ṽ))ξ]−sVξHξ− Vξξ

ṽα+1
Hξ−GHξ. (3.19)

Integrating the above equality with respect to ξ and t, and using integration by parts,
Lemma 3.4, and Equation (3.1), we obtain

∫ t

0

∫
H2

ξ dξdτ

=−
∫

VξHdξ−
∫

V0H0,ξdξ−
∫ t

0

∫
Vξ(p(v)−p(ṽ))dξdτ

−
∫ t

0

∫
Vξξ

ṽα+1
Hξdξdτ−

∫ t

0

∫
GHξdξdτ

≤C‖(V0,H0)‖21+
1

4

∫ t

0

∫
H2

ξ dξdτ+

∫ t

0

∫
(|Vξ||Vξξ|+ ||ṽξ|Vξ|)|Hξ|dξdτ

≤C‖(V0,H0)‖21+
1

2

∫ t

0

∫
H2

ξ dξdτ, (3.20)

and this completes the proof of Lemma 3.5.

Lemma 3.6. Under the assumptions of Theorem 1.2, it holds that

‖(Vξξ,Hξξ)(t)‖2+
∫ t

0

∫
V 2
ξξξdξdτ ≤C‖(V0,H0)‖22. (3.21)
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Proof. Multiplying Equation(2.3)2 by 1
−p′(ṽ) , differentiating the resulting equation

with respect to ξ twice, and differentiating Equation (2.3)1 with respect to ξ twice, then
multiplying them by Hξξ and Vξξ, respectively, summing them up, and integrating the
results with respect to ξ, we obtain by integration by parts

1

2

d

dt

∫
(− H2

ξξ

p′(ṽ)
+V 2

ξξ)dξ−
s

2

∫
(

1

p′(ṽ)
)ξH

2
ξξdξ+

∫
V 2
ξξξ

ṽα+1
dξ

=−2
∫
(

1

p′(ṽ)
)ξ(p(v)−p(ṽ))ξHξξdξ−2

∫
p(v)−p(ṽ)

(p′(ṽ))3
(p′(ṽ)ξ)2Hξξdξ

+

∫
p(v)−p(ṽ)

(p′(ṽ))2
p′(ṽ)ξξHξξdξ+2

∫
p(v|ṽ)ξ( 1

p′(ṽ)
)ξHξξdξ

+

∫
p(v|ṽ){2((p

′(ṽ))ξ)2

(p′(ṽ))3
−p′(ṽ)−2p′(ṽ)ξξ}Hξξdξ

+

∫
p(v|ṽ)ξξ 1

p′(ṽ)
Hξξdξ+

∫
GξξVξξdξ+(1+α)

∫
Vξξ

ṽ2+α
Vξξξ ṽξdξ

=−2
∫
(p′(ṽ)Vξ)ξ(

1

p′(ṽ)
)ξHξξdξ−2

∫
Vξ

(p′(ṽ)ξ)2

(p′(ṽ))2
Hξξdξ

+

∫
Vξ

p′(ṽ)
p′(ṽ)ξξHξξdξ+

∫
p(v|ṽ)ξξ 1

p′(ṽ)
Hξξdξ

+

∫
GξξVξξdξ− α+1

2

∫
V 2
ξξ(

ṽξ
ṽα+2

)ξdξ
.
=

6∑
i=1

Ii. (3.22)

Using lemmas 3.2, 3.4, and 3.5, Equation (3.1), and the boundedness of |ṽξ|, |ṽξξ|, |ṽξξξ|,
we can estimate Ii(i=1, . . . ,6) as follows

I1=−2
∫
(p′(ṽ)Vξξ+p′′(ṽ)ṽξVξ)(

1

p′(ṽ)
)ξHξξdξ

≤−s

4

∫
(

1

p′(ṽ)
)ξH

2
ξξdξ+C

∫
V 2
ξξdξ+C

∫
V 2
ξ dξ, (3.23)

I2=−2(γ+1)2
∫

Vξ(
ṽξ
ṽ
)2Hξξdξ

=2(γ+1)2
∫

Vξξ(
ṽξ
ṽ
)2Hξdξ+2(γ+1)2

∫
Vξ((

ṽξ
ṽ
)2)ξHξdξ

≤C

∫
V 2
ξξdξ+C

∫
H2

ξ dξ+C

∫
V 2
ξ dξ. (3.24)

Similarly

I3=

∫
[(γ+1)(γ+2)ṽ−2ṽ2ξ−(γ+1)ṽ−1ṽξξ]VξHξξdξ

=−
∫
[(γ+1)(γ+2)ṽ−2ṽ2ξ−(γ+1)ṽ−1ṽξξ]VξξHξdξ

−
∫
[(γ+1)(γ+2)ṽ−2ṽ2ξ−(γ+1)ṽ−1ṽξξ]ξVξHξdξ
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≤C

∫
V 2
ξξdξ+C

∫
H2

ξ dξ+C

∫
V 2
ξ dξ. (3.25)

And, by the Sobolev embedding theorem,

I4≤C

∫
(|Vξξξ||Vξ|+V 2

ξ +V 2
ξξ+ |Vξ||Vξξ|)|Hξξ|dξ

≤C‖Vξ‖L∞‖Vξξξ‖‖Hξξ‖+C‖Vξ‖L∞‖Vξ‖‖Hξξ‖
+C‖Vξξ‖L∞‖Vξξ‖‖Hξξ‖+C‖Vξ‖L∞‖Vξξ‖‖Hξξ‖

≤Cδ(‖Vξξ‖+‖Vξ‖)‖Vξξξ‖+Cδ(‖Vξξ‖+‖Vξ‖)(‖Vξξ‖+‖Vξ‖)
+Cδ(‖Vξξ‖+‖Vξξξ‖)‖Vξξ‖

≤Cδ(‖Vξ‖2+‖Vξξ‖2+‖Vξξξ‖2). (3.26)

Similarly

I5=−
∫

GξVξξξdξ

≤C

∫
(V 2

ξξ+ |Vξ||Vξξ|+ |Vξ||Vξξξ|+ |Vξξ|+ |Vξ|)|Vξξξ|
≤Cδ(‖Vξξ‖2+‖Vξξξ‖2)+ε‖Vξξξ‖2+C(ε)(‖Vξ‖2+‖Vξξ‖2). (3.27)

And by the boundedness of |ṽξ| and |ṽξξ|, we have

I6≤C‖Vξξ‖2. (3.28)

Substituting Equations (3.23)–(3.28) into (3.22), taking ε appropriately small and δ suf-
ficiently small, integrating the resulting inequality, by lemmas 3.4–3.5, we can complete
the proof of Lemma 3.6.

Lemma 3.7. Under the assumptions of Theorem 1.2, it holds that∫ t

0

‖Hξξ(τ)‖2dτ ≤C‖(V0,H0)‖22. (3.29)

Proof. Multiplying Equation (2.3)1 by Hξξξξ and using Equation (2.3)2 we obtain

H2
ξξ =−(V Hξξξ)t+sVξHξξξ+V [sHξξξξ−(p(v)−p(ṽ))ξξξ]

+
Vξξ

ṽα+1
Hξξξ+GHξξξ+(HξHξξ)ξ. (3.30)

Integrating the above equality with respect to ξ and t, and using integration by parts,
lemmas 3.2 and 3.4–3.6, and Equation (3.1) yields∫ t

0

∫
H2

ξξdξdτ

=

∫
VξHξξdξ−

∫
V0,ξH0,ξξdξ−

∫ t

0

∫
Vξξξ(p(v)−p(ṽ))dξdτ

−
∫ t

0

∫
Vξξξ

ṽα+1
Hξξdξdτ+(α+1)

∫ t

0

∫
ṽξVξξHξξ

ṽα+2
dξdτ−

∫ t

0

∫
GξHξξdξdτ

≤C‖(V0,H0)‖22+
1

4

∫ t

0

∫
H2

ξξdξdτ
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+C

∫ t

0

∫
(V 2

ξξ+ |Vξ||Vξξ|+ |Vξ||Vξξξ|+ |Vξξ|+ |Vξ|)|Hξξ|dξdτ

≤C‖(V0,H0)‖22+(
1

2
+δ)

∫ t

0

∫
H2

ξξdξdτ. (3.31)

Taking δ small enough, we obtain Equation (3.29), and this completes the proof of
Lemma 3.7.

From lemmas 3.4–3.7, if we choose ‖(V0,H0)(t)‖2≤ δ0 and let Cδ20≤ δ2, we can obtain

‖(V,H)(t)‖22+
∫ t

0

(‖Vξ(τ)‖22+‖Hξ(τ)‖21)dτ ≤C‖(V0,H0)‖22(≤ δ), (3.32)

which proves Proposition 2.1.

On the other hand, from the global estimate (3.32) above, we derive

‖(Vξ(·,t),Hξ(·,t))‖1→0, as t→+∞.

Consequently, for all ξ∈R1,

V 2
ξ (ξ,t)=2

∫ ξ

∞
VξVξξ(y,t)dy

≤2‖Vξ(t)‖‖Vξξ(t)‖→0, as t→+∞.

Applying the same argument to Hξ leads, for all ξ∈R1, to

Hξ(ξ,t)→0, as t→+∞.

Hence Equation (2.6) is proved. Thus the proof of Theorem 2.1 is completed.

4. Proof of the main theorem
At last, we prove Equation (1.19). From Equation (2.1), we have

ut−suξ+p(v)ξ =(
uξ

vα+1
)ξ. (4.1)

This together with the equation

ũt−sũξ+p(ṽ)ξ =(
ũξ

ṽα+1
)ξ, (4.2)

implies that w=u− ũ satisfies the following parabolic equation

wt−(
1

vα+1
wξ)ξ =swξ−(p(v)−p(ṽ))ξ+(ũξ(

1

vα+1
− 1

ṽα+1
))ξ. (4.3)

From the global estimate (3.32), we know that the right-hand side of Equation (4.3) is
bounded in L2(0,T ;L2(R1)). Then the classical regularity results for parabolic equation
give that

wt is bounded in L2(0,T ;L2(R1)) (4.4)

and

w is bounded in L2(0,T ;H2(R1)), (4.5)
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which implies

‖w(·,t)‖→0, as t→+∞.

By Equation (4.5), there exists a t0>0 such that

wξ(·,t0) is bounded in L2(R1). (4.6)

Set w̄=wξ. Then w̄ satisfies the following parabolic equation

w̄t−(
1

vα+1
w̄)ξξ =sw̄ξ−(p(v)−p(ṽ))ξξ+(ũξ(

1

vα+1
− 1

ṽα+1
))ξξ. (4.7)

Again, by Equations (3.32) and (4.5), we know that the right-hand side of Equation
(4.7) is bounded in L2(0,T ;L2(R1)). Then the classical regularity results for parabolic
Equation (4.7) with initial data (4.6) gives that

w̄t is bounded in L2(t0,T ;L
2(R1)), (4.8)

and

w̄ is bounded in L2(t0,T ;H
2(R1)), (4.9)

which implies

‖wξ(·,t)‖→0, as t→+∞.

Then we have

‖w(·,t)‖1→0, as t→+∞.

By using the Sobolev inequality, we have

sup
ξ∈R1

|w(ξ,t)|→0, as t→∞, (4.10)

which together with Equation (2.6) implies

sup
x∈R1

|v(x,t)− ṽ(x−st)|→0, sup
x∈R1

|u(x,t)− ũ(x−st)|→0, as t→∞, (4.11)

which is Equation (1.19). Then the proof of Theorem 1.1 is completed.
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