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A RELAXATION MODEL FOR LIQUID-VAPOR PHASE CHANGE
WITH METASTABILITY∗

FRANÇOIS JAMES† AND HÉLÈNE MATHIS‡

Abstract. We propose a model that describes phase transition including metastable states present
in the van der Waals equation of state. From a convex optimization problem on the Helmholtz free
energy of a mixture, we deduce a dynamical system that is able to depict the mass transfer between
two phases, for which equilibrium states are either metastable states, stable states or a coexistent state.
The dynamical system is then used as a relaxation source term in an isothermal 4×4 two-phase model.
We use a finite volume scheme that treats the convective part and the source term in a fractional step
way. Numerical results illustrate the ability of the model to capture phase transition and metastable
states.
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1. Introduction

In the last decades considerable research has been devoted to the simulation of
liquid-vapor phase change, which is of major importance in several industrial applica-
tions. For instance liquid-vapor flows are present in water circuit of pressurized water
reactors in which the water can be submitted to saturation pressure and tempera-
ture [11,12]. The phenomena we are interested in are complex phase changes including
the possible appearance of metastable states. An example is the metastable vapor which
is a gaseous state where the pressure is higher than the saturation pressure. Such states
are very unstable and a very small perturbation will bring out a droplet of liquid inside
of the gas [25]. This phenomenon can appear at saturated pressure (or at saturated
temperature for metastable liquid). It is the case in pressurized water reactor during
a loss of coolant accident when sudden vaporization occurs due to the drop of pressure
inside the superheated liquid [21].

In this paper, we focus on situations where the heterogeneity of the fluid and the
thermodynamic conditions allow the diphasic flow to be described by a compressible
averaged model using Euler type equations. Other models can be considered, which
account for very smale scale by means of Korteweg type tensors including dispersive
and dissipative effects. Such models allow to preserve metastable states but give only a
microscopic description of the flow, see [1,6,22,27,33,34] and the references cited herein.
In the averaged models framework, one can distinguish between one-fluid and two-fluid
models.

The one-fluid model approach consists in describing the fluid flow as a single sub-
stance that can be present in its vapor or its liquid phase. Assuming that the thermo-
dynamic equilibrium is reached instantaneously (quasi-static process), then the Euler
system has to be closed by an equation of state (EoS) able to depict either the pure
phases (liquid or vapor) and the phase transition. A typical example is the van der
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Waals EoS, which is well-known to depict stable and metastable states below the crit-
ical temperature. However this EoS is not valid in the so-called spinodal zone where
the pressure is a decreasing function of the density. This forbids the use of instanta-
neous kinetic exchanges, since the pressure is always given by the EoS, and a decreasing
pressure leads to a loss of hyperbolicity in Euler equations, hence to instabilities and
computational failure.

To overcome this defect and recover that the phase transition happens at constant
pressure, temperature, and chemical potential, the van der Waals pressure is commonly
corrected by the Maxwell equal area rule [8]. This construction leads to a correct
constant pressure in the spinodal zone but removes the metastable regions.

Another way to provide a unique EoS able to depict pure phases and phase transition
has been studied in [2,14,17,24,28]. It consists in considering that each phase is depicted
by its own convex energy (that is its own monotone pressure law). According to the
second principle of thermodynamics, the mixture equilibrium energy corresponds to
the inf-convolution of the partial energies. As a result the mixture equilibrium energy
coincides with the convex hull of the minimum of the two partial energies. The resulting
pressure law of the mixture turns out to be composed of the monotone branches of the
liquid and vapor pressure laws and is constant in the phase transition zone. Hence, it
is clear that such a construction prevents the appearance of metastable phases.

Still in the context of one-fluid models, it is also possible to drop out the assumption
of instantaneous equilibrium. The model involves then relaxation terms, which can be
of various forms, but are the expression of a pulling back force to the equilibrium. We
have to consider extended versions of the Euler system, which is supplemented by partial
differential equations on additional quantities such as the volume fraction of the vapor
phase or partial masses. This approach has been used in [5,18,26,30,32] and in [10,15]
in the isothermal case. In the later references the question of preservation of metastable
states is addressed.

We mention briefly another way to describe diphasic flows, which consists in con-
sidering a two-fluid approach to model liquid-vapor phase change. Initially developed
to depict the motion of multicomponent flows [4], such a modeling assumes that the
fluid can locally be present under both phase. Hence the model admits two pressures,
two velocities and two temperatures and is supplemented by additional equations on
the volume fraction. Phase transition is achieved by chemical and mechanical relax-
ation processes, in the limit where the kinetics is considered infinitely fast, see for
instance [30,32,35].

One of the present drawbacks of the averaged models (one or two-fluid) with relax-
ation is that there is no global agreement on the equations satisfied by the fractions and
on the transfer terms [13]. Moreover the preservation of the metastable states seems to
be out of reach in this framework.

In this paper, we intend to provide a model able to depict liquid-vapor phase change
and metastable states of a single component, say some liquid in interaction with its own
vapor. We focus on a one-fluid description of the motion while the phase transition
is driven by transfer terms that will be coupled to fluid equations through a finite
relaxation speed.

The modelling of the phase transition is the core of this work. For the sake of
simplicity we assume the system to be isothermal. We propose transfer terms obtained
through the minimization of the Helmholtz free-energy of the two-phase system. We use
for both phases the same equation of state which has to be non monotone, typically the
reduced van der Waals equation. This choice allows us to recover all possible equilibria:
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pure phases (liquid or vapor), metastable states, and coexistence states characterized by
the equality of pressures and chemical potentials. These are physically admissible states,
but the set of equilibrium states also contains the spinodal zone, which is irrelevant.
Thus the key point now is to characterize the physical stability, and hence admissibility,
of these states. It turns out that this has to be done in terms of their dynamical
behaviour. More precisely, we design a dynamical system which is able to depict all
the stable equilibria of the system as attraction points. In particular we show that
metastable states and mixtures have different basins of attraction, so that they can
be differentiated only by their long-time behaviour with respect to initial conditions.
Hence there is no hope to recover both metastable states and coexistent states under
the assumption of instantaneous equilibrium, which amounts precisely to choose a priori
this long-time behaviour.

This dynamical system is used as a transfer term in an isothermal two-phase model
in the spirit of [29] and [3]. The extended Euler system we obtain in this way provides
a regularization of the isothermal Euler equation with van der Waals EoS, which takes
the form of a mixture zone surrounding the physical interfaces, see Section 5 below.

The paper is organized as follows. Section 2 is devoted to the thermodynamics
of a two-phase fluid. We provide the definitions of the common potentials and give
some details on the reduced van der Waals model. Assuming that both phases follow
the same non monotone EoS, we describe the thermodynamic equilibrium as the result
of a minimization process on the Helmholtz free energy of the two-phase fluid. The
section ends with the study of the equilibria of the optimality system. Section 3 is the
core of this work. It is devoted to the construction of the dynamical system based on
the results of the previous section. A few numerical simulations illustrate the ability
of the system to catch both the Maxwell line and the metastable states in the van
der Waals EoS. The dynamical system is then plugged as a source term in a 4×
4 isothermal model in Section 4. We provide a study of the homogeneous system,
which is conditionally hyperbolic. However we prove that for smooth solutions the
hyperbolicity regions are invariant domains of the system with relaxation. In Section 5
we present several numerical illustrations which assess the ability of the model to deal
with metastable states. They are obtained using a classical finite volume schemes that
treats the convective part and the source terms with a time-splitting technique.

2. Thermodynamics and the van der Waals EoS

2.1. Thermodynamics of a single fluid. Consider a fluid of mass M ≥0
occupying a volume V ≥0, assumed to be at constant temperature T . If the fluid is
homogeneous and at rest, its behavior is entirely described by its mass, its volume
and its Helmholtz free-energy F . According to Gibbs’ formalism [16], the fluid is at
equilibrium if its Helmholtz free-energy is a function, also denoted by F , of its mass M ,
and volume V

F : (M,V )→F (M,V ). (2.1)

Notice that we do not address yet the stability of equilibrium states. At this level
the involved quantities are extensive, which means that they share the same scaling as
the volume V . This corresponds to the notion of homogeneous sample: for twice the
volume, the mass is double, and the energy, as well. The mathematical consequence of
this notion is that extensive variables have to be related through positively homogeneous
functions of degree 1 (PH1), namely

∀λ>0, F (λM,λV )=λF (M,V ). (2.2)
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We assume in addition, and without loss of generality, that the energy function F
belongs to C2(R+×R

+).

Remark 2.1. The regularity of F seems to preclude phase transitions, but this is not
the case because no convexity assumption is made at this stage. We shall come back to
this in more details in the next section.

We now introduce intensive quantities, by which we mean that they do not depend
on the volume scaling. A typical example is the density ρ=M/V , but such quantities
also appear as derivatives of the equilibrium relation (2.2), which are homogeneous of
degree 0 by construction. In this way two fundamental quantities are to be considered,
namely the pressure p and the chemical potential μ, defined by

p=−∂F

∂V
(M,V ), μ=

∂F

∂M
(M,V ). (2.3)

Notice that these quantities are defined only when the system is at equilibrium, and we
recover the classical thermodynamic relation for isothermal flows

dF =−pdV +μdM. (2.4)

Another classical property of thermodynamic potentials is the so-called Gibbs’ relation,
which results from the Euler relation for PH1 functions

F (M,V )=∇F (M,V ) ·
(
M
V

)
.

Using Equation (2.3), we obtain

F (M,V )=μM−pV. (2.5)

For most of the following computations it is useful to rewrite the preceding relations
using intensive variables. For a fixed volume V , we denote f the Helmholtz free-energy
per unit volume, which is a function of the density ρ=M/V

f(ρ)=f

(
M

V

)
=

1

V
F (M,V )=F

(
M

V
,1

)
. (2.6)

We keep the notations p and μ the pressure and the chemical potential as functions of
the density ρ:

p(ρ)=p

(
M

V

)
=−∂F

∂V

(
M

V
,1

)
, μ(ρ)=μ

(
M

V

)
=

∂F

∂M

(
M

V
,1

)
. (2.7)

Thus we obtain an intensive form of the Gibbs’ relation (2.5)

f(ρ)=ρμ(ρ)−p(ρ). (2.8)

On the other hand, from the definitions of p, μ, and f we obtain easily the following
relations

μ(ρ)=f ′(ρ), p(ρ)=ρf ′(ρ)−f(ρ), ρμ′(ρ)=p′(ρ). (2.9)
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2.2. Example: the van der Waals EoS. The extensive energy of a van der
Waals (monoatomic) fluid is

F (M,V )=−aM2

V
+RT

(
M log

M

V −Mb
−M

)
, (2.10)

whereR stands for the perfect gases constant and a and b are positive constants (a= b=0
leads to the perfect gases law). Since we consider the isothermal model, the temperature
T is a parameter here. We refer to [25, Ch. 7] for a justification of this law from statistical
thermodynamics. The constant b is proportional to the proper volume of a particle such

that V >Mb, and the potential
a

V
depicts the interaction between particles.

The pressure and the chemical potential associated read

p

(
M

V

)
=− aM2

V 2
+RT

M

V −Mb
,

μ

(
M

V

)
=−2

aM

V
+RT log

M

V −Mb
+RT

Mb

V −Mb
.

(2.11)

The intensive quantities are

f(ρ)=−aρ2+RTρ

(
log

(
ρ

1−bρ

)
−1

)
,

p(ρ)=−aρ2+
ρRT

1−bρ
,

μ(ρ)=−2aρ+RT log
ρ

1−bρ
+RT

bρ

1−bρ
.

(2.12)
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Fig. 2.1. Phase diagram for the van der Waals EoS in the (p,ρ) plane. Below the critical
temperature TC , the isotherm curve decreases in the spinodal zone which is delimited by the densities
ρ−<ρ+. In that area the isotherm is commonly replaced by an horizontal segment (dashed line)
which coincides with the isobaric line at constant pressure p=p∗. Such a construction defines the two
densities ρ∗1 and ρ∗2.

The behavior of the isotherm curves in the pressure-density plane is depicted in
Figure 2.1. The critical temperature Tc is the lower limit of temperatures such that the
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pressure is an increasing function of the density. At T =Tc the pressure curve admits
an unique horizontal inflection point, called the critical point, denoted C on Figure 2.1.

In the sequel we will consider the reduced form of the van der Waals equation
(see [25, Ch. 8]). Denoting (ρc,pc) the coordinates of the critical point one has

p′(ρc)=−2aρc+
RTC

(1−bρc)2
=0,

p′′(ρc)=−2a+
2bRTc

(1−bρc)3
=0.

Considering normalized critical quantities, that is setting ρc=1, pc=1, and Tc=1, one
obtains the reduced van der Waals EOS with R=8/3, a=3, and b=1/3 and

f(ρ)=−3ρ2+
8

3
ρ(log(3ρ/(3−ρ))−1) ,

p(ρ)=−3ρ2+
8ρ

3−ρ
,

μ(ρ)=−6ρ+
8

3
log(3ρ/(3−ρ))+

8

3
(3ρ/(3−ρ))

(2.13)

for 0<ρ<3.
Below the critical temperature Tc the pressure is not monotone with respect to the

density (see the red curve on Figure 2.1): in a region called spinodal zone, delimited
for a given temperature by the densities ρ−<ρ+, the pressure decreases with respect
to the density and thus leading to unstable states. According to the relations (2.9) the
energy f is non-convex in the spinodal zone.

In that region the isotherm is commonly replaced by the Maxwell area rule in order
to recover that phase transition happens at constant pressure and constant chemical
potential. The Maxwell construction is commonly applied on the pressure (see [8] for
instance) in such a way that the two zones delimited by the van der Waals isotherm and
the Maxwell line (above and below the Maxwell line respectively) have the same area.
This is not the case in Figure 2.1 because in our context, the equal area rule is obtained
on the chemical potential, see Section 2.4 below (Proposition 2.1). In any case, the idea
is that the isotherm curve is replaced locally by the horizontal segment, the so-called
Maxwell line, that coincides with some isobaric line p=p∗. Such a construction defines
two densities, denoted ρ∗1 and ρ∗2, as well as the value of p∗. An equivalent way to
compute this correction is to build the convex hull of the function f , see [2] and [17].

However this construction removes the admissible regions delimited by the densities
where the pressure law is still nondecreasing. Such regions are called metastable regions.
At a given temperature these regions correspond to densities belonging to the range
[ρ∗1,ρ

−] and [ρ+,ρ∗2].

2.3. Thermodynamics of phase transition. The van der Waals model de-
picts the thermodynamic behavior of a pure substance under its liquid state, gaseous
state and the coexistence state. The non-convexity of the EoS allows to capture
metastable states but does not give a relevant representation of the coexistence phase.
A convenient way to cope with this problem is to represent the fluid under consideration
as a set of several copies of itself under different pure phases (liquid or gaseous phases).
Such a representation is used in [2, 5, 14, 17, 18, 24, 26, 30, 32] assuming that the fluid
is described by two copies, each one satisfying a convex EoS that differs from the one
of another copy. See also [23] where such a representation is used in the context of
adsorption-desorption of a mixture.
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We adopt here a slightly modified approach. Let us consider I copies of the pure
substance, I≥1 being some a priori arbitrary integer. Each copy is depicted by its
mass Mi≥0 and its volume Vi>0, and is assumed to be at equilibrium. Hence a copy
can occupy a volume with zero mass. We suppose that each copy follows the same non-
convex energy function F (Mi,Vi), typically the van der Waals extensive energy given by
Equation (2.10). This assumption contrasts with the aforementioned references where
different convex energy functions are considered, and the number of copies is prescribed.

Thanks to the mass conservation, the complete system has a total mass M =∑I
i=1Mi. Assuming that the copies are immiscible, the total volume is V =

∑I
i=1Vi

(for a mixture of gas, one has Vi=V , ∀i=1, . . . ,I, and this condition implies Dalton’s
law, see [8]). Out of thermodynamic equilibrium the free Helmholtz energy of the system
reads

F(
(Mi,Vi)i

)
=

I∑
i=1

F (Mi,Vi).

Let us fix the total mass M and volume V of the system. According to the sec-
ond principle of thermodynamics (see [8] for instance), the thermodynamic equilibrium
corresponds to the solutions of the constrained optimization problem

inf
I≥1,Mi≥0,Vi≥0

{
I∑

i=1

F (Mi,Vi);

I∑
i=1

Vi=V,

I∑
i=1

Mi=M}.

We stress the fact that the total number I of possible copies is not a priori fixed here.
However, as a consequence of Carathéodory’s theorem in dimension 2 (see e.g. [31, Ch.
17]), we can state the Gibbs’ phase rule (see [25, Ch. 9]), which gives the expected result
in this context.

Lemma 2.1 (Gibbs’ phase rule). We have I≤2.

In the sequel we use just as well the term phase as the term copy.
Taking into account Lemma 2.1 and the above intensive formulations, we rewrite

the constrained optimization problem for a fixed mass M and volume V , hence for a
fixed ρ, as

inf
ρ1≥0
ρ2≥0

{α1f(ρ1)+α2f(ρ2)}, (2.14)

under the constraints

α1+α2=1, (2.15)

α1ρ1+α2ρ2=ρ. (2.16)

Here αi=
Vi

V
∈ [0,1] denotes the volume fraction and ρi=

Mi

Vi
≥0 the density of the phase

i=1,2. Notice that we removed the optimization on the phase number I, since single
phases can be recovered by ρ1=ρ2 (and any αi) or one αi=0 (with undetermined ρj ,
j 	= i).

We rule out the equality case by noticing that, provided ρ1 	=ρ2, we can rewrite the
constraints (2.15)–(2.16) as

α1 :R
+×R

+×R
+→ [0,1] α2 :R

+×R
+×R

+→ [0,1]

(ρ,ρ1,ρ2) 
→ ρ−ρ2
ρ1−ρ2

, (ρ,ρ1,ρ2) 
→− ρ−ρ1
ρ1−ρ2

.
(2.17)
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We have α1≥0 if and only if ρ1≤ρ≤ρ2 or ρ1≥ρ≥ρ2. Therefore, accounting on the
reduced form of the van der Waals model (2.13), we shall assume in the sequel that the
densities ρ, ρ1, and ρ2 satisfy

0<ρ1≤ρ≤ρ2<3 and ρ1<ρ2. (H1)

This is not a restriction, as we shall see below (see Proposition 3.1).

One can also introduce the mass fraction ϕi=
Mi

M
, i=1,2 defined by

ϕ1 :R
+×R

+×R
+→ [0,1] ϕ2 :R

+×R
+×R

+→ [0,1]

(ρ,ρ1,ρ2) 
→
1

ρ
− 1

ρ2
1

ρ1
− 1

ρ2

, (ρ,ρ1,ρ2) 
→
1

ρ
− 1

ρ1
1

ρ2
− 1

ρ1

,
(2.18)

that satisfy ϕ1+ϕ2=1 and ϕ1ϕ2≥0 if and only if the assumption (H1) is satisfied.
Such quantities will be useful in the mathematical study of the isothermal two-phase
flow model introduced in Section 4.

Remark 2.2. In the aforementioned references [2,5,14,17,18,24] the method consists
in describing the two-phase fluid by a coexistence of two copies of the same substance.
The description can be made either on the extensive variables or the intensive one.
Unlike our present approach the two copies do not follow the same EoS: each copy is
described by its own strictly convex extensive energy Fi, i=1,2, which is a function
of the mass Mi and the volume Vi of the phase. Following the second principle of
thermodynamics [8], at equilibrium, the extensive energy of the two-phase fluid is given
by

F ((M,V )) :=F1�F2(M,V )= min
V1≥0,M1≥0

F1(M1,V1)+F2(M−M1,V −V1), (2.19)

under the constraints of mass conservation M =M1+M2 and immiscibility (without
vacuum) V =V1+V2. This operation � is called inf-convolution operation in the con-
vex analysis framework [19]. In [17] the authors investigate the link between the inf-
convolution, the Legendre transform and the (max,+) algebra. The Legendre transform
of a energy F is a convex function (M∗,V ∗)→F ∗(M∗,V ∗) defined by

F ∗(M∗,V ∗)= inf
M∗≥0,V ∗≥0

{M∗M+V ∗V −F (M,V )}.

The inf-convolution is transformed into an addition by the Legendre transform which
implies that

(F1�F2)
∗=F ∗

1 +F ∗
2 .

Moreover in the case of convex lower semi continuous (slc) functions Fi, i=1,2, one has

F1�F2=(F1�F2)
∗∗=(F ∗

1 +F ∗
2 )

∗.

It means that the energy Feq of the two-phase fluid at equilibrium is given by

Feq =F ∗∗, (2.20)

where F ∗∗ is the convex hull of the energy F . As it is proved in [2] the construction of
the convex hull of the energy F is equivalent to the Maxwell construction. Hence the
operation (2.20) removes the metastable regions.
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2.4. Equilibrium states. This section is devoted to the characterization of the
equilibrium states of the thermodynamic system, that is states that realize the infimum
in the optimization problem (2.14)–(2.16). The function we minimize is defined by:

F̃ : [0,1]× [0,1]×R
+×R

+→R

(α1,α2,ρ1,ρ2) 
→α1f(ρ1)+α2f(ρ2),

and is C1 on the space {ρi≥0, i=1,2}. The constraints (2.15)–(2.16) are affine, so they
are also C1. We are thus in position to use the Lagrange multipliers characterization
of the infimum (see [31, Ch. 28]): λα∈R and λρ∈R respectively correspond to the
constraints (2.15) and (2.16).

Using the definition (2.8) of the free-energy f and the pressure and chemical poten-
tial definitions (2.9), one deduces the following optimality system of equations

f(ρ1)+λα+λρρ1=0, (2.21)

f(ρ2)+λα+λρρ2=0, (2.22)

α1μ(ρ1)+λρα1=0, (2.23)

α2μ(ρ2)+λρα2 =0. (2.24)

From this optimality system we deduce immediately that there are two different
kinds of equilibria.

Lemma 2.2. Under hypothesis (H1), the equilibrium states are

1. Pure liquid or gaseous states: α1=0 (resp. α2=0), with ρ2=ρ, ρ1<ρ
arbitrary (resp. ρ1=ρ, ρ<ρ2 arbitrary)

2. Coexistence states: α1α2 	=0, with (ρ1,ρ2) satisfying

μ(ρ1)=μ(ρ2) and p(ρ1)=p(ρ2).

Proof. The case α1=0 corresponds to the saturation of the constraint α1+α2=1;
see Equation (2.15). It leads to α2=1 and thus ρ2=ρ that is only the phase 2 is present.
Conversely if α2=1 only the phase 1 remains.

On the other hand let us assume α1α2 	=0. Then Equations (2.23) and (2.24) lead
to the equality of the chemical potentials

μ(ρ1)=μ(ρ2)=−λρ.

Then the intensive Gibbs’ relation (2.8) allows to rewrite the conditions (2.21) and (2.22)
as

ρiμ(ρi)−p(ρi)+λα+λρρi=0, i=1,2.

Since −λρ=μ(ρi), this leads to the pressures equality

p(ρ1)=p(ρ2)=λα.

To proceed further we need the following result for coexistence states.

Proposition 2.1. Under hypothesis (H1) and if α1α2 	=0, the following propositions
are equivalent and uniquely define the couple of densities ρ∗1<ρ∗2.
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1. The chemical potentials and the pressures are equal

μ(ρ∗1)=μ(ρ∗2), (2.25)

p(ρ∗1)=p(ρ∗2). (2.26)

2. The Maxwell’s area rule on the chemical potential holds∫ 1

0

μ(ρ2+ t(ρ1−ρ2))dt=μ(ρ∗1)=μ(ρ∗2). (2.27)

3. The difference of the Helmholtz free energies reads

f(ρ∗2)−f(ρ∗1)=μ(ρ∗1)(ρ
∗
2−ρ∗1)=μ(ρ∗2)(ρ

∗
2−ρ∗1). (2.28)

Proof. The identities (2.27) and (2.28) are equivalent since f ′(ρ)=μ(ρ); see
Equation (2.9). Now assume Equations (2.25)–(2.26) hold. Then the intensive Gibbs’
relation (2.8) gives Equation (2.28). Conversely, Equation (2.28) implies the chemical
potentials equality and thus the pressures equality. Now the uniqueness of (ρ∗1,ρ

∗
2)

follows easily form a geometrical argument using the Maxwell’s area rule.

The most famous characterizations of diphasic equilibria are Equations (2.25)–(2.26)
and (2.27), although the latter is usually written in terms of pressure. We can recover
this form by writing the intensive relations with the specific volume τ =V/M instead of
ρ. The third relation (2.28) is not so classic but will be useful in the sequel.

The density ρ∗1 (resp. ρ∗2) separates the range of pure gaseous state and the range of
metastable gas (resp. the range of pure liquid state and the range of metastable liquid),
see Figure 2.1. These densities define the coexistence pressure p∗ and the coexistence
chemical potential μ∗ as follows:

p∗=p(ρ∗1)=p(ρ∗2), μ∗=μ(ρ∗1)=μ(ρ∗2). (2.29)

We emphasize that the necessary conditions for equilibrium contain both unstable
(spinodal zone), metastable, and stable states. Nothing at this stage can make the
difference, which turns out to be of dynamical nature, in a way we make precise now.

3. Dynamical system and phase transition
This section is devoted to the construction and the analysis of a dynamical system

deduced from the optimality conditions given in Lemma 2.2 and Proposition 2.1. We will
prove that the equilibria of this dynamical system are either pure liquid/vapor states,
pure metastable states or coexistence states in the spinodal zone (that is states satisfy-
ing the properties (2.25)–(2.27) of Proposition 2.1). We emphasize that the difference
between metastable states and coexistent states actually relies on the long-time dynam-
ical behaviour of the solutions to the dynamical system. No static characterization can
be given.

The section ends with numerical illustrations that assess the ability of the dynamical
system to preserve metastable states.

3.1. Construction of the dynamical system. We want to construct a dy-
namical system which equilibria coincide with the equilibria of the optimization prob-
lem depicted in Lemma 2.2. To do so, we force the dynamical system to dissipate the
Helmholtz free energy defined by

F :R+×R
+×R

+→R

(ρ,ρ1,ρ2) 
→α1(ρ,ρ1,ρ2)f(ρ1)+α2(ρ,ρ1,ρ2)f(ρ2),
(3.1)
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under the optimization constraints (2.15) and (2.16).
Assuming that ρ, ρ1, and ρ2 are now time-dependent functions, we can compute

the derivative of the total Helmholtz free-energy F with respect to time and deduce
appropriate time derivatives of ρ, ρ1, and ρ2 such that F is dissipated in time. Moreover
we want pure states (either liquid, vapor, or metastable) to be equilibria of the dynamical
system. Hence we have forced the time derivatives of ρ, ρ1, and ρ2 to vanish in case of
pure state (that is when α1α2=0).

For the sake of readability we denote

r=

⎛
⎝ ρ
ρ1
ρ2

⎞
⎠ (3.2)

the vector of admissible densities satisfying the assumption(H1). By the definition (2.17)
of the volume fractions αi, i=1,2, one has

∇rα1(r)=−∇rα2(r)=
1

ρ1−ρ2

⎛
⎝ 1
−α1(r)
−α2(r)

⎞
⎠ .

From this and the definition (3.1) of F , we easily get the gradient of the free-energy

∇rF(r)=
1

ρ1−ρ2

⎛
⎝ f(ρ1)−f(ρ2)
α1(r)(ρ2(μ(ρ2)−μ(ρ1))+p(ρ1)−p(ρ2))
α2(r)(ρ1(μ(ρ2)−μ(ρ1))+p(ρ1)−p(ρ2))

⎞
⎠ . (3.3)

Note at once that it can be expressed in terms of relative free-energy

∇rF(r)=
1

ρ1−ρ2

⎛
⎝ f(ρ1)−f(ρ2)

α1(r)f(ρ2|ρ1)
−α2(r)f(ρ1|ρ2)

⎞
⎠ , (3.4)

where the relative free-energy of ρ2 with respect to ρ1 is defined by

f(ρ2|ρ1) :=f(ρ2)−f(ρ1)−μ(ρ1)(ρ2−ρ1). (3.5)

We turn now to the definition of our dynamical system. Because of the mass conserva-
tion, we obviously impose that

ρ̇=0.

The main idea to proceed further is that we want the system to dissipate the total
Helmholtz free-energy F . Combining the definition (3.1) of F and the expression of
∇rF(r), one computes the time derivative of F along some trajectory, that is

Ḟ(r)=
1

ρ1−ρ2

(
α1(r)f(ρ2|ρ1)ρ̇1−α2(r)f(ρ1|ρ2)ρ̇2

)
. (3.6)

We now propose the following dynamical system⎧⎪⎨
⎪⎩
ρ̇= 0,

ρ̇1= −(ρ−ρ1)(ρ−ρ2)f(ρ2|ρ1),
ρ̇2= +(ρ−ρ1)(ρ−ρ2)f(ρ1|ρ2).

(3.7)
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An easy computation shows that this system dissipates F along its trajectories (under
the assumption (H1)). Indeed using the expression (3.6) of Ḟ and the equations of ρ̇1
and ρ̇2, one gets

Ḟ(r)=−(ρ−ρ1)[α1(r)f(ρ2|ρ1)]2+(ρ−ρ2)[α2(r)f(ρ1|ρ2)]2 .

The multiplicative term (ρ−ρ1)(ρ−ρ2) in the equations on ρ̇1 and ρ̇2 ensures that the
right-hand side of the system vanishes in case of pure states (either pure liquid, vapor
or metastable states).

Remark 3.1. We emphasize that the choice of the right-hand side of Equation (3.7)
is somewhat arbitrary. Other terms might be more efficient, but this one was chosen
for its simplicity and its interpretation in terms of relative free-energy.

One can check easily that
˙︷ ︸︸ ︷

α1ρ1+α2ρ2=0 so that it is consistent with the total mass
conservation equation ρ̇=0.

An equivalent dynamical system can be written in terms of the time derivatives of
the volume fractions αi and of the partial masses αiρi, i=1,2. Accounting for the con-
straints (2.15) and (2.16), and for the system (3.7), some straightforward computations
lead to ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α̇1 =−α̇2

=α2
1(ρ−ρ1)f(ρ2|ρ1)+α2

2(ρ−ρ2)f(ρ1|ρ2),
˙︷︸︸︷

α1ρ1 =− ˙︷︸︸︷
α2ρ2

=α2
1ρ2(ρ−ρ1)f(ρ2|ρ1)+α2

2ρ1(ρ−ρ2)f(ρ1|ρ2).

(3.8)

This formulation does not allow to compute single phase systems, since the determi-
nation of the partial densities ρi is impossible when αi=0. Thus we rather use the
dynamical system (3.7).

3.2. Equilibria of the dynamical system. The major result of this para-
graph is that the attractors of the system are either pure liquid/vapor states, including
metastable states, or the coexistence state defined by (2.26)–(2.27), see Proposition 2.1.

Proposition 3.1. The dynamical system (3.7) satisfies the following properties.

1. If the assumption (H1) is satisfied at t=0, then it is preserved in time (in
particular, the assumption ρ1<ρ2 is preserved).

2. If α1(0)=0 (resp. α1(0)=1) then α1(t)=0 (resp. α1(t)=1), for all time.

Proof. First we address the preservation of the hypothesis (H1). Some straight-
forward computations lead to

ρ̇1− ρ̇2=(ρ−ρ1)(ρ−ρ2)(ρ1−ρ2)(μ(ρ2)−μ(ρ1)). (3.9)

Thus if ρ1−ρ2 is zero at t=0 then this property is preserved for all time and the sign
of the difference ρ1−ρ2 is also preserved. The property on the volume fraction α1 is
proved in the same way noting that

α̇1(r)=−α1(r)(ρ−ρ1)(ρ1(μ(ρ1)−μ(ρ2))−p(ρ1)+p(ρ2)). (3.10)
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We turn now to the characterization of the equilibria of the dynamical system.
Since the total mass ρ is constant in time, they are parametrized by ρ. Moreover it
arises that their thermodynamic characterization can be given in terms of attraction
basins. We refer the reader for graphical references to figures 3.1, 3.2, and 3.3, where
attraction basins are drawn as hatched zones. The last two figures correspond to the
gaseous phase, similar pictures can be drawn for the liquid phase.

Theorem 3.1. Assume that the initial data (ρ(0),ρ1(0),ρ2(0)) of the system (3.7)
satisfy (H1). Then the equilibria are given by

1. spinodal zone: ρ∗1<ρ(0)<ρ∗2. The unique equilibrium is (ρ∗1,ρ
∗
2) characterized

by Proposition 2.1, with αi given by Equation (2.17). The attraction basin is
(0,ρ)×(ρ,3).

2. pure gaseous states: ρ(0)<ρ∗1 (resp. pure liquid states: ρ(0)>ρ∗2). The
set of equilibria is {ρ}×(ρ,3), with α1=1 (resp. (0,ρ)×{ρ} with α2=1). The
attraction basin is (0,ρ)×(ρ,3).

3. metastable states: ρ∗1≤ρ(0)≤ρ− (resp. ρ+≤ρ(0)≤ρ∗2). There are two sets
of equilibria

(a) perturbation within the phase: ρ2(0)≤ρ− (resp. ρ1(0)≥ρ+). The set
of equilibria is {ρ}×(ρ,ρ−), with α1=1 (resp. (ρ+,ρ)×{ρ} with α2=1).
The attraction basin is then (0,ρ)×(ρ,ρ−) (resp. (ρ+,ρ)×(ρ,3)).

(b) outside perturbation: ρ−≤ρ2(0)≤ρ∗2 (resp. ρ+≥ρ1(0)≥ρ∗1). There
is a unique equilibrium (ρ∗1,ρ

∗
2), characterized by Proposition 2.1, with αi

given by Equation (2.17). The attraction basin is (0,ρ)×(ρ−,3) (resp.
(0,ρ+)×(ρ,3)).

Proof. We look for Lyapunov functions for each case.

Spinodal zone. Let us define

G(r)=α1f(ρ1)+α2f(ρ2)−μ∗(α1ρ1+α2ρ2)+p∗(α1+α2), (3.11)

where μ∗ and p∗ are defined by the Maxwell area rule (2.29) on the chemical potential
μ, and αi are the functions of ρ,ρ1,ρ2 given by Equation (2.17). The intensive version
of the Gibbs’ relation (2.8) implies that G(r∗)=0 where r∗=(ρ,ρ∗1,ρ

∗
2)

T . Straightfor-
ward computations show that ∇rG=∇rF−(μ∗,0,0)T , this implies that ∇rG(r∗)=0,
and that Ġ(r(t))≤0 since the free-energy is dissipated. Hence the function G is a Lya-
punov function on the admissible domain defined by (H1), which contains the unique
equilibrium r∗, see Figure 3.1.

Pure stable states. The expected equilibrium states are now r̄=(ρ,ρ,ρ2) for any
ρ2≥ρ, see Figure 3.2. We introduce the function

G(1)(r)=f(ρ1)− μ̄ρ1+ p̄, where μ̄=μ(ρ), p̄=p(ρ). (3.12)

Once again, the Gibbs’ relation leads to G(1)(r̄)=0 for any equilibrium r̄, and we easily
get ∇rG

(1)(r̄)=0. Now we have

d

dt
G(1)(r(t))=−(

μ(ρ1)−μ(ρ)
)
(ρ−ρ1)(ρ−ρ2)f(ρ2|ρ1).

Since ρ1≤ρ≤ρ2 and μ is nondecreasing on ]0,ρ∗1] the right-hand side in the preceding
relation is nonpositive if f(ρ2|ρ1)≥0. But using again the Gibbs’ relation and Equation
(3.5), this can be rewritten

f(ρ2)−f(ρ1)≥μ(ρ1)(ρ2−ρ1). (3.13)
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Fig. 3.1. Spinodal states. The blue area refers to unattainable states according to the hypothesis
(H1). The attraction basin is the hatched area (///). The unique attraction point (ρ∗1,ρ

∗
2) appears in

red. The green zone corresponds to the invariant hyperbolicity region (see Section 4.4).
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Fig. 3.2. Pure gaseous states. The blue area refers to unattainable states according to (H1). The
attraction basin is the hatched area (\\\). The set of attraction points appears in red. The two green
zones correspond to the invariant hyperbolicity regions (see Section 4.4).

This convexity inequality holds true for all (ρ1,ρ2) such that ρ1≤ρ∗1, by the very defi-
nition of ρ∗1 (see the definition (2.20) of F ∗∗). Since we consider pure liquid states, one
has ρ1≤ρ≤ρ∗1. Hence G(1) is dissipated in time, leading to the conclusion.

Metastable states. Two types of equilibria are encountered in this situation, with
two distinct attraction basins, see Figure 3.3.

• the metastable basin, which appears with \\\ hatches in the figure, corresponds
to perturbation of a given state within the same phase. It is actually an attrac-
tion basin, because the function G(1) defined above in Equation (3.12) is also
a Lyapunov function in this domain. Indeed the convexity argument still holds
true for any (ρ1,ρ2) such that ρ2≤ρ−, since f is convex below ρ−.

• the unstable basin, corresponding to perturbations of the state by the other
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Fig. 3.3. Pure gaseous metastable states. The blue area refers to unattainable states according to
(H1). The attraction points appear in red. The corresponding attraction basins are the hatched areas.
For any state belonging to the hatched area (\\\), the attraction points are metastable vapor sates such
that {ρ1=ρ}. For any state belonging to the hatched area (///), the attraction point is the coexistence
state (ρ∗1,ρ

∗
2). The two green zones correspond to the invariant hyperbolicity regions (see Section 4.4).

phase (/// hatched zone). This basin is governed by the same Lyapunov func-
tion as for the spinodal zone (3.11).

Remark 3.2. This is a formalization of the remark in Landau & Lifshitz [25, §21]
“[...]we must distinguish between metastable and stable equilibrium states. A body in
a metastable state may not return to it after a sufficient deviation” .

ρ p(ρ) μ(ρ)
ρ−=0.5810799446067 0.62055388470356498 −3.68447967881140137
ρ+=1.4888047089018 0.04962960899844759 −4.24339302065563029
ρ∗1=0.31972996451885 0.504491649787487 −3.97717851100986
ρ∗2=1.8071403273364

Table 3.1. Characteristic densities at T =0.85 and corresponding pressure and chemical potential
values

3.3. Numerical illustrations of the dynamical system behavior
We provide in this paragraph some numerical examples to illustrate the behavior of

the dynamical system (3.7). First we give the characteristic values of the reduced van
der Waals EoS at a fixed nondimensionalized temperature T =0.85. Figure 3.4 presents
the corresponding isothermal curve in the (ρ,μ) plane.

The densities ρ− and ρ+ correspond to the extrema of the chemical potential. The
densities ρ∗1 and ρ∗2 are obtained by the Maxwell’s equal area rule construction on the
chemical potential (2.27) or equivalently by solving the system (2.25)–(2.26).

Table 3.1 contains the values of the characteristic densities and the corresponding
values of the pressure and chemical potential at T =0.85.

Using a backward differentiation formula (provided by Scilab for stiff problem), we
provide numerical illustrations of the attraction basins depicted in Theorem 3.1. To do
so, we fix 50 initial values of ρ(0) in a given interval and set the partial densities ρi(0)
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Fig. 3.4. Isotherm curve in the (ρ,μ) plane at T =0.85.

Fig. 3.5. Numerical illustration of a perturbation within the metastable vapor zone. The initial
density ρ(0) takes on 50 values in [ρ∗1,ρ

−] and ρi(0) are perturbations of ρ(0) under the assump-
tion (H1). The top-left figure corresponds to the mixture pressure at final time Tf =103. For densities
ρ(0)<0.45, the pressure coincides with the reduced van der Waals pressure, while for ρ(0)>0.45 it
matches with the Maxwell line. One notices that the volume fraction α1(Tf ) is either constant equal
to 1 (for ρ(0)<0.45), correspondong to pure phase 1, or takes on values in ]0,1[, which means that
the system reached the coexistent state.
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as perturbations of ρ(0). Then the dynamical system is solved for a final time Tf =103

with a time step set to 10−3s. We provide the graphs of the quantities α1(Tf ), ρi(Tf )
and α1(Tf )p(ρ1(Tf ))+α2(Tf )p(ρ2(Tf )), plotted with respect to the density ρ(0), for
each one of the 50 initial conditions (ρ(0),ρ1(0),ρ2(0)). The mixture pressure profile is
compared with the classical van der Waals pressure curve and the Maxwell line.

Metastable states: The initial density ρ(0) takes on 50 values in [ρ∗1,ρ
−]. For this

computation, we set ρ1(0)=ρ(0)−0.1 and ρ2(0)=ρ(0)+0.2 so that we can observe the
perturbation within and outside the metastable vapor zone. According to Figure 3.5
(top-left), the mixture pressure presents two different parts: the left part (for ρ<0.45)
remains on the van der Waals pressure curve and a second part coincides with the
Maxwell line. The first part corresponds to the perturbation of the metastable vapor
state within the phase, while the right part corresponds to the perturbation outside the
metastable vapor, that is when ρ−≤ρ2(0)≤ρ∗2. One can check on the volume fraction
curve (see Figure 3.5(top-right)) that α1(Tf )=1 for ρ(0)≤0.45, that is only the phase 1
is present. Then 0<α1<1 and the corresponding final partial densities ρi(Tf ), i=1,2,
coincide with the densities ρ∗1 and ρ∗2 respectively, which explains that the pressure
matches with the Maxwell line.

Fig. 3.6. Numerical illustration of a perturbation of ρ(0) in the whole domain. The mixture
pressure α1(Tf )p(ρ1(Tf ))+α2(Tf )p(ρ2(Tf )) coincides with the admissible branches of the reduced van
der Waals pressure in the pure liquid/vapor states, including metastable state. In the spinodal zone it
corresponds to the Maxwell line.

Perturbation of the density ρ in the whole domain: Figure 3.6 corresponds
to an initial density ρ(0) which takes on 50 values between 0.2 and 1.8, while ρ1(0)=
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ρ(0)−0.1 and ρ2(0)=ρ(0)+0.1. One observes that an initial perturbation of the density
ρ(0) leads to final states which belong to either pure vapor/liquid states, including
metastable states, or the coexistent state. Hence the mixture pressure coincides with
the admissible branches of the van der Waals pressure curve or with the Maxwell line.

However the convergence is not obvious for ρ(0) close to ρ− on the left (resp. to
ρ+ on the right). This can be observed in Figure 3.6(top-right) (plot of the volume
fraction), where the parts on the left and on the right should be straight lines. Actually,
since for ρ close to ρ− the perturbation chosen is in the spinodal zone, we expect the
equilibrium to be on the Maxwell line, which is not the case. We suppose that the final
time is not large enough to ensure the actual convergence. As a matter of a fact, we
observed that the requested time to reach convergence is larger in the metastable zone
than in the spinodal one.

4. The isothermal model
This section is devoted to the definition and study of a 4×4 van der Waals isother-

mal two-phase flow model. Since we are interested in the modeling of phase transitions
with possible metastable states, the liquid-vapor flows that we consider are submitted
to strong thermodynamic perturbations. Hence we propose to depict the dynamic of
the flows by a compressible averaged model, namely Euler type equations.

In order to model phase transitions, the hydrodynamic part of the model is classi-
cally coupled with a relaxation source term which carries on the mass transfer. Since we
wish to take into account possible metastable states, the equilibria of the source term
have to be either pure liquid/vapor states, metastable states, or the coexistence state
given by Equations (2.26)–(2.27). Hence we propose a coupling between the dynamical
system (3.7) introduced in the previous section and a modified version of the isothermal
two-phase model proposed in [3].

After defining the model, we study several properties of the system, such as existence
of a decreasing energy, hyperbolicity, and Riemann invariants for the homogeneous
system. Notice at once that we have only partial results for hyperbolicity, as noticed
before in the literature, because of the spinodal zone. This leads to a formal study of
invariant hyperbolicity domains in the last subsection.

4.1. Definition of the model. The basic isothermal Euler system contains
the balance equations accounting for the conservation of the total mass and the total
momentum of the two-phase flow. We propose to extend this system with two equations
describing the evolution of the partial densities ρ1 and ρ2 which are now functions of
time t and space x. The two phases evolve with the same velocity u. The momentum
equation involves a pressure term which is the mixture pressure α1p(ρ1)+α2p(ρ2). Here
α1 and α2 are given by Equation (2.17) but for the sake of readability we skip this
dependence in what follows.

The system we propose is the following⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tρ+∂x(ρu)=0,

∂tρ1+∂x(ρ1u)=−1

ε
(ρ−ρ1)(ρ−ρ2)f(ρ2|ρ1),

∂tρ2+∂x(ρ2u)=
1

ε
(ρ−ρ1)(ρ−ρ2)f(ρ1|ρ2),

∂t(ρu)+∂x(ρu
2+α1p(ρ1)+α2p(ρ2))=0,

(4.1)

where ε is a relaxation parameter that determines the rate at which the chemical po-
tentials and pressures of the two phases reach equilibrium. The chemical potential μ
and the pressure p follow the van der Waals model (2.11). The source terms on the
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partial densities equations are exactly those of the system (3.7), and involve the relative
free-energy f(ρi|ρj) which is defined in Equation (3.5). System (4.1) is supplemented
with initial conditions on the velocity u and on the densities ρ and ρi, i=1,2 satisfying
the assumption (H1).

Combining the mass conservation Equation (4.1)1 and the equations on the partial
densities ρi, i=1,2, one can compute the equation satisfied by the volume fraction α1

∂tα1+u∂xα1=
1

ε

(ρ−ρ1)(ρ−ρ2)

ρ1−ρ2
[α1f(ρ2|ρ1)−α2f(ρ1|ρ2)] . (4.2)

From the system (4.1) one can also recover the two equations on the partial masses
αiρi and deal with a system of the classical form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ+∂x(ρu)=0,

∂t(α1ρ1)+∂x(α1ρ1u=
1

ε

(ρ−ρ1)(ρ−ρ2)

ρ1−ρ2
[α1ρ2f(ρ2|ρ1)−α2ρ1f(ρ1|ρ2)] ,

∂t(α2ρ2)+∂x(α2ρ2u=−1

ε

(ρ−ρ1)(ρ−ρ2)

ρ1−ρ2
[α1ρ2f(ρ2|ρ1)−α2ρ1f(ρ1|ρ2)] ,

∂t(ρu)+∂x(ρu
2+α1p(ρ1)+α2p(ρ2))=0.

In the present paper we choose to focus on the system (4.1), which allows us to
define the densities ρi even when αi=0, which is not the case in the last system.

Remark 4.1. An interesting feature is that the system boils down to the classical
p-system in pure phases that is when α1α2=0, including the metastable regions.

4.2. Hyperbolicity and entropy for the homogeneous system. We intro-
duce the mechanical energy

E(ρ,ρ1,ρ2,u)= ρu2

2
+F(ρ,ρ1,ρ2), (4.3)

where the total Helmholtz free-energy F is defined by Equation (3.1). The first result
we obtain is the decrease in time of this energy.

Proposition 4.1. The function E, defined in Equation (4.3), satisfies the following
equation

∂tE+∂x(u(E+α1p(ρ1)+α2p(ρ2))≤0. (4.4)

Proof. On the one hand, using the notation (3.2), one has

∂tF(r)=∇rF(r)∂tr=−∇rF(r)∂x(ur)+∇rF(r) ·Q,

where Q=
1

ε
(0,−(ρ−ρ1)(ρ−ρ2)f(ρ2|ρ1),(ρ−ρ1)(ρ−ρ2)f(ρ1|ρ2))t. Hence it comes

∂tF(r)=−u∂xF(r)−∇rF(r) ·r∂xu+∇rF(r) ·Q.

Now the expression ∇rF(r) given in Equation (3.4) leads to

∇rF(r) ·r= 1

ρ1−ρ2
(((f(ρ1)−f(ρ2))ρ+α1ρ1f(ρ2|ρ1)−α2ρ2f(ρ1|ρ2)) .
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Because of the definition of the relative free-energy (3.5), this yields

∇rF(r) ·r=F(r)+α1p(ρ1)+α2p(ρ2).

Thus one has

∂tF(r)=−u∂xF(r)−(F(r)+α1p(ρ1)+α2p(ρ2))∂xu+∇rF(r) ·Q.

=−∂x(F(r)u)−(α1p(ρ1)+α2p(ρ2))∂xu+∇rF(r) ·Q.

On the other hand, a classical Euler type computation gets

∂t
ρu2

2
+∂x

(
u
ρu2

2

)
+u∂x(α1p(ρ1)+α2p(ρ2))=0.

Combining the previous two relations gives

∂tE+∂x(u(E+α1p(ρ1)+α2p(ρ2)))=F(r) ·Q≤0,

where the final inequality follows again from the expression (3.4) of ∇rF(r).

However, the function E is not convex everywhere, so that it cannot be considered
as a mathematical entropy. Indeed E is convex where F is, and we have the following
result.

Theorem 4.1. The total Helmholtz free-energy F defined by Equation (3.1) is convex
for ρ∈]0,3[, u∈R and

• (ρ1,ρ2)∈ (0,ρ)×(
(ρ,ρ−)∪(ρ+,3)

)
, if ρ≤ρ−

• (ρ1,ρ2)∈ (0,ρ−)×(ρ+,3), if ρ∈ (ρ−,ρ+)
• (ρ1,ρ2)∈

(
(0,ρ−)×(ρ+,ρ)

)×(ρ,3), if ρ≥ρ+

Proof. The function F is a convex combination of f(ρ1) and f(ρ2) where f is the
intensive Helmholtz free energy (2.8). By definition of ρ− and ρ+ (see Figure 2.1), f is
convex on (0,ρ−]∪ [ρ+,3), so the result follows.

We turn now to the determination of the eigenvalues of the homogeneous sys-
tem (4.1). If we set Y=(ρ,ρ1,ρ2,u), for smooth solutions, the homogeneous system
can be written as

∂tY+A(Y)∂XY=0, (4.5)

where the matrix A(Y) is defined by

A(Y)=

⎛
⎜⎜⎝

u 0 0 ρ
0 u 0 ρ1
0 0 u ρ2

A1(Y) A2(Y) A3(Y) u

⎞
⎟⎟⎠ , (4.6)

where

A1(Y)=
p(ρ1)−p(ρ2)

ρ(ρ1−ρ2)
,

A2(Y)=
α1

ρ(ρ1−ρ2)
(p(ρ2)−p(ρ1))+

α1

ρ
p′(ρ1),

A3(Y)=
α2

ρ(ρ1−ρ2)
(p(ρ2)−p(ρ1))+

α2

ρ
p′(ρ2).

(4.7)
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The characteristic equation of A(Y) is given by

(u−λ)2(u−c−λ)(u+c−λ),

with the speed of sound

c := c(r)=

√
1

ρ
(α1(ρ,ρ1,ρ2)ρ1p′(ρ1)+α2(ρ,ρ1,ρ2)ρ2p′(ρ2)). (4.8)

Thus we obtain three distinct eigenvalues for the matrix A(Y):

λ1(Y)=u−c, λ2(Y)=λ3(Y)=u, λ4(Y)=u+c. (4.9)

Note that the eigenvalues are real if r satisfies

α1(r)ρ1p
′(ρ1)+α2(r)ρ2p

′(ρ2)≥0.

Accounting on relations (2.9), it is equivalent to the following hyperbolicity condition

α1(r)ρ
2
1μ

′(ρ1)+α2(r)ρ
2
2μ

′(ρ2)≥0. (4.10)

The right eigenvectors ri(Y), i=1, . . . ,4, that satisfy A(Y)ri(Y)=λi(Y)ri(Y) can
be chosen as

r1(Y)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ρ

c

−ρ1
c

−ρ2
c

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r2(Y)=

⎛
⎜⎜⎜⎜⎜⎝
−A3

A1

0
1
0

⎞
⎟⎟⎟⎟⎟⎠ , r3(Y)=

⎛
⎜⎜⎜⎜⎜⎝
−A2

A1

1
0
0

⎞
⎟⎟⎟⎟⎟⎠ , r4(Y)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

c

ρ1
c

ρ2
c

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.11)

where the quantities A1, A2 and A3 are defined in Equation (4.7).
If the densities ρ, ρ1, and ρ2 satisfy Equations (H1) and (4.10), the matrix A(Y) is

diagonalizable in R and its eigenvectors span the whole space R
4 so that the system is

hyperbolic.

4.3. Structure of the waves. In this paragraph we study the structure of the
waves. Assuming that the densities ρ, ρ1, and ρ2 satisfy Equations (H1) and (4.10), one
can observe that the waves are either genuinely nonlinear or linearly degenerate.

Straightforward computations lead to the following property which will be useful in
the sequel.

Proposition 4.2. The speed of sound c, function of state r, satisfies the following
properties relations

∇p(r) ·r=ρc2(r), (4.12)

∇c(r)=
1

2c(r)

⎛
⎜⎜⎜⎜⎜⎜⎝

−c(r)2

ρ
+

1

ρ(ρ1−ρ2)
(ρ1p

′(ρ1)−ρ2p
′(ρ2))

α1(r)

ρ

(
ρ2p

′(ρ2)−ρ1p
′(ρ1)

ρ1−ρ2
+p′(ρ1)+ρ1p

′′(ρ1)
)

α2(r)

ρ

(
ρ2p

′(ρ2)−ρ1p
′(ρ1)

ρ1−ρ2
+p′(ρ2)+ρ2p

′′(ρ2)
)

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.13)
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Let us start with the waves associated to the wave speed u−c and u+c.

Proposition 4.3. The characteristic fields associated to the waves speed λ1(Y)=
u−c and λ4(Y)=u+c are genuinely nonlinear i.e. ∇Yλ1(Y) ·r1(Y) 	=0 and ∇Yλ4(Y) ·
r4(Y) 	=0 for admissible state vector Y that is for densities (ρ,ρ1,ρ2) satisfying (H1)
and (4.10).

Proof. We introduce the notation D(r)=(c(r))2. We consider the wave associated
to the eigenvalue λ1(Y). One has

∇Yλ1(Y) ·r1(Y)=

(∇rc(r)
1

)
·r1(Y)

=− 1

2c(r)2

(
ρ
∂D

∂ρ
+ρ1

∂D

∂ρ1
+ρ2

∂D

∂ρ2

)
+1

=− 1

2ρc(r)2
(α1(r)ρ

2
1p

′′(ρ1)+α2(r)ρ
2
2p

′′(ρ2))+1. (4.14)

The densities are assumed to be strictly positive. Under the hypothesis (H1) and
Equation (4.10) the mass fractions αi are positive and the second derivative of the
van der Waals pressure (2.11) is a strictly negative function of the density. Thus
∇Yλ1(Y) ·r1(Y) 	=0. Similarly we can state that ∇Yλ4(Y) ·r4(Y) 	=0 that conclude
the proof.

We now study the wave associated to the speed u.

Proposition 4.4. The characteristic fields associated to the waves λ2(Y)=λ3(Y)=u
linearly degenerate i.e. ∇Yλ2(Y) ·r2(Y)=0 and ∇Yλ3(Y) ·r3(Y)=0 for admissible
state vector Y that is for densities (ρ,ρ1,ρ2) satisfying Equation (4.10).

Proof. We deduce from the eigenvalues (4.9) the relation

∇Yλi(Y) ·ri(Y)=(0,0,0,1)T ·ri(Y), (4.15)

for i={1,2}. Then introducing the right eigenvectors (4.11) in Equation (4.15), it is
easily checked that ∇Yλi(Y) ·ri(Y)=0 for i={1,2} and this complete the proof.

We now address the determination of the Riemann invariants of the system. These
computations are made easier using the following property.

Proposition 4.5. The mass and volume fractions α1 and ϕ1, defined by Equa-
tions (2.17) and (2.18), satisfy the following nonconservative equations

∂tα1+u∂xα1=0,

∂tϕ1+u∂xϕ1=0.
(4.16)

Proposition 4.6. The Riemann invariants associated to the wave of speed u are

{u,p̄}, (4.17)

with p̄(r)=α1(r)p(ρ1)+α2(r)p(ρ2). The volume and mass fractions are Riemann in-
variants associated to the wave of speed u±c

{α1,ϕ1}. (4.18)
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Proof. Because the field associated to the speed u is linearly degenerate, u is
clearly a Riemann invariant for this wave. Using the gradient of p̄ with respect to r, a
straightforward computation gives

∇Yp̄(Y) ·r2(Y)=0. (4.19)

On the other hand the volume fractions αi and the mass fractions ϕi satisfy Equa-
tion (4.16). Thus the fractions are Riemann invariants for the waves of speed u±c.

The characterization of the third Riemann invariant for the waves of speed u±c is
more intricate and is not addressed here.

4.4. Invariant domains of hyperbolicity for the relaxed system. Accord-
ing to Section 4.2, it is clear that the homogeneous system (4.1) is hyperbolic if and only
if the densities ρ, ρ1, and ρ2 satisfy the hypothesis (H1) and the constraint (4.10) on the
speed of sound. Nonetheless we are interested in the study and the numerical approxi-
mation of the whole relaxed system (4.1), that is taking into account the relaxation term
with a finite relaxation parameter ε>0. Actually the domains of hyperbolicity of the
system (4.1) strongly depend on the attraction basins of the dynamical system (3.7). In
the present section, we introduce the notion of invariant domains in the same spirit as
in [9] for diffusive systems. We show that invariant domains Ω of hyperbolicity for the
relaxed system (4.1) are subsets of the attraction basins of the dynamical system (3.7).
First note that the hyperbolicity of the homogeneous system (4.1) solely depends on
the densities r(t,x)=(ρ,ρ1,ρ2)

t(t,x), ∀(t,x)∈R
+×R, according to the constraint (4.10)

on the speed of sound and not on the velocity u(t,x). Hence we consider the following
definition of an invariant region.

Definition 4.1. Let Ω={r=(ρ,ρ1,ρ2)∈]0,3[3|0<ρ1≤ρ≤ρ2 and ρ1<ρ2} a subset
of the phase space (ρ,ρ1,ρ2) with a Lipschitz continuous boundary ∂Ω. The region Ω is
said to be a invariant domain if

{∀x∈R, r(0,x)∈Ω}⇔∀t>0, {∀x∈R, r(t,x)∈Ω}.

We now define some kind of indicator function for such a domain Ω: let S be defined
by

S : ]0,3[3 → R

r=(ρ,ρ1,ρ2) 
→ ρs(ρ1/ρ,ρ2/ρ),
(4.20)

where s(β1,β2)=1−1{β−
i ≤βi≤β+

i }. Obviously we have

S(r)=0⇔r∈Ω.

Next we introduce the nonnegative quantity J

J : R+ → R

t 
→ ∫
R
S(r(t,x))dx.

(4.21)

Proposition 4.7. Consider Ω a subset of the phase space (ρ,ρ1,ρ2) with a Lipschitz
continuous boundary ∂Ω and the associated function S defined by Equation (4.20). Then
one has the following properties:
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1. In the sense of distributions we have

〈∇S,φ〉=[S]

∫
∂Ω

nφ(σ)dσ, (4.22)

where dσ is the surface measure on ∂Ω, n the outer normal of Ω and
[S]=Sout−Sin is the jump of S across the boundary ∂Ω.

2. The function S is positively homogeneous of degree 1 so that it verifies the Euler
relation S(r)=∇rS(r) ·r.

3. The function S satisfies

〈∇rS(r),∂tr+∂x(ur)〉=∂tS(r)+∂x(uS(r)). (4.23)

Proof. The first item is a consequence of the Stokes theorem. By construction the
function S is positively homogeneous of degree 1. Then it satisfies the Euler relation
given in the second item. Finally following the same steps as in the energy estimate
(4.4), we have

∇rS(r)∂tr+∇rS(r)∂x(ur)

=∂tS(r)+u∂xS(r)+∇rS(r) ·r∂xu
=∂tS(r)+∂x(uS(r)),

where we use the above Euler relation for S to obtain the last equality.

We now relate the definition of an invariant domain to the functions S and J through
several propositions.

Proposition 4.8. The domain Ω is an invariant region if and only if

{J(0)=0⇒∀t>0, J(t)=0}.
The proof of the Proposition 4.8 relies on the following Lemma.

Lemma 4.1. Let Ω be a subset of the phase space (ρ,ρ1,ρ2) and S defined by (4.20).
Then one has

∀x∈R, r(.,x)∈Ω⇔J(.)=

∫
R

S(r(.,x))dx=0.

The proof of the Lemma relies on the definition of S and its positivity.

Proof. (Proof of Proposition 4.8.) According to the Lemma 4.1 and by the definition
of J in Equation (4.21) of the quantity J , it follows

∀x∈R, r(0,x)∈Ω⇔J(0)=0.

Using the Lemma 4.1 again, one gets

∀x∈R, r(t,x)∈Ω⇔J(t)=0.

Combining these two equivalences leads to the conclusion.

Proposition 4.9. Let Ω be a subset of the phase space (ρ,ρ1,ρ2) and J given by
Equation (4.21). Assume J is differentiable. Then it follows{

d

dt
J(t)≤0

}
⇒Ω is an invariant domain.
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Proof. Assume that J(0)=0. By assumption on the time derivative of J , J(t)≤
J(0) and J(t)≥0 by positivity. Thus J(t)=0, ∀t. Hence according to Proposition 4.8,
the domain Ω is invariant.

Corollary 4.1. Let Ω be a subset of the plane (ρ,ρ1,ρ2) and S and J the associated
functions given by Equations (4.21) and (4.20). Denote

Q=
1

ε
(0,−(ρ−ρ1)(ρ−ρ2)f(ρ2|ρ1),(ρ−ρ1)(ρ−ρ2)f(ρ1|ρ2))t

the right-hand side of the relaxed model (4.1). Then for any r∈Ω such that

lim
x→+∞r(.,x)= lim

x→−∞r(.,x),

one has the following assertions

〈Q,∇rS(r)〉≤0 ⇒ d

dt
J(t)≤0 ⇒ Ω is an invariant domain.

Proof. Since Q is the right-hand side of the relaxed model (4.1), this yields

〈Q,∇rS(r)〉= 〈∂tr+∂x(ur),∇rS(r)〉.
According to Equation (4.23) it follows that if 〈Q,∇rS(r)〉≤0 then

〈∂tr+∂x(ur),∇rS(r)〉≤0.

Integrating the above inequality on R gives
∫
R
∂tS(r)dx≤0, that is

d

dt

∫
R

S(r)dx=
d

dt
J(t)≤0.

Proposition 4.9 now leads to the conclusion.

Hence in order to check that Ω is an invariant domain, one has solely to verify that

〈Q,∇rS(r)〉≤0.

Taking the scalar product of ∇S with the right-hand side Q of the relaxation system
we obtain

〈Q,∇rS(r)〉= 1

ε
(ρ−ρ1)(ρ−ρ2)

(−∂ρ1
Sf(ρ2|ρ1)+∂ρ2

Sf(ρ1|ρ2)
)
.

Using Equation (4.22), we obtain formally

〈Q,∇rS(r)〉= 1

ε
(ρ−ρ1)(ρ−ρ2)ρ

(−n1f(ρ2|ρ1)+n2f(ρ1|ρ2)
)
,

where nρ=(n1,n2) is the outer normal of the domain Ωρ={(ρ1,ρ2)|(ρ,ρ1,ρ2)∈Ω}. Note
that the domain Ωρ are rectangles in the phase space (ρ1,ρ2). Now checking the sign of
〈Q,∇rS(r)〉 is quite straightforward on each part of the boundary ∂Ωρ. To character-
ize the invariant regions we study the sign of the relative Helmholtz free-energy f(.|.)
defined by Equation (3.5). According to Figure 4.1, one can determine the sign of f(.|.)
according to the following proposition.
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3ρ− ρ+ ρ∞

f (ρ)

ρ
0 δ

Fig. 4.1. Some reference points on the graph of the Helmholtz energy f(ρ). The blue curve is a
sketch of the graph of f(ρ). The green line is the tangent to the graph of f at the point δ. The red
lines are the tangents of the blue curve at ρ− and ρ+. The dashed line is the tangent of the graph of
f at ρ∞ defined by f(ρ∞,ρ−)=0. Depending on the position of the tangent line to the blue curve at
a given point ρ, one can determine the sign of f(.|ρ), see Proposition 4.10.

ρ1

ρ2

3

ρ∞

3δ

δ

ρ

ρ

ρ∞

Fig. 4.2. A priori estimate for (ρ1,ρ2): the blue area refers to unattainable states according to
(H1), the green zone is an invariant domain, providing in particular that void cannot appear.

Proposition 4.10. Let δ∈]0,ρ∗1[ and ρ∞∈ [ρ∗2,3[ such that f(ρ∞|ρ−)=0. Then the
relative Helmholtz free energy satisfies

• f(ρ|δ)≥0, ∀ρ∈]δ,ρ∞[,

• f(ρ|ρ−)≥0 (resp. ≤0), ∀ρ∈]δ,ρ−[ (resp. ρ∈]ρ−,ρ∞[),

• f(ρ|ρ+)≤0 (resp. ≥0), ∀ρ∈]δ,ρ+[ (resp. ρ∈]ρ+,ρ∞[),

• f(ρ|ρ∞)≥0, ∀ρ∈]δ,ρ∞[.

Proof. The sign of f(.|a) for any remarkable density a depends on the positition
of the tangent to the graph of f at the point a, see Figure 4.1. If the tangent at the
point a is below the curve (resp. above), one has f(.|a)=f(.)−f(a)−f ′(a)(.−a)≥0
(resp. ≤0).

We first state a global a priori estimate which ensures that if the hypothesis (H1)
is satisfied at t=0 then it is preserved for any time by the relaxed system (4.1).
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Proposition 4.11. Let δ∈]0,ρ∗1] and ρ∞∈ [ρ∗2,3[ (see Figure 4.1). Then, for any
0<ρ<3, the domain

Ωρ :={(ρ1,ρ2)∈ (δ,ρ)×(ρ,ρ∞)}
is invariant.

Proof. One has to check the sign of 〈Q,∇rS(r)〉 on each side of the green rectangle
domain, see Figure 4.2. On the sides {ρ1=ρ} and {ρ2=ρ} of the rectangle, Q vanishes.
Now for the side {ρ1= δ}, the outer normal is nρ=(−1,0) and

〈Q,∇rS(r)〉= 1

ε
(ρ−δ)(ρ−ρ2)ρf(ρ2|ρ−).

The product (ρ−δ)(ρ−ρ2)ρ is nonpositive and

f(ρ2|ρ−)=f(ρ2)−f(ρ−)−f ′(ρ−)(ρ2−ρ−)≥0,

for ρ2>ρ∗2, see the green tangent line on Figure 4.1. A similar argument involving
f(ρ1|ρ∞) works for the side {ρ2=ρ∞}.

We turn now to determine the invariant domains of hyperbolicity of the relaxed
model (4.1) depending on the value of the density ρ.

Proposition 4.12. Fix 0<δ<ρ∗1 and let ρ∞ be such that f(ρ∞|ρ−)=0. The follow-
ing subsets Ωρ are invariant domains of hyperbolicity:

1. Pure gaseous stable zone. For any δ<ρ<ρ∗1,

Ωρ :={(ρ1,ρ2)∈]δ,ρ−[×]ρ+,ρ∞[},
see Figure 3.2.

2. Pure liquid stable zone. For any ρ∞>ρ>ρ∗2,

Ωρ :={(ρ1,ρ2)∈]ρ+,ρ[×]ρ,ρ∞[}.
3. Metastable zones. For any δ<ρ<ρ∞,

Ωρ :={(ρ1,ρ2)∈]δ,min(ρ,ρ−)[×]max(ρ,ρ+),ρ∞[},
see Figure 3.3 for the metastable vapor zone.

4. Spinodal zone. For any ρ−<ρ<ρ+,

Ωρ :={(ρ1,ρ2)∈]δ,ρ−[×]ρ+,ρ∞[},
see Figure 3.1.

Proof. We only give the proof for the spinodal zone. Following the proof of
Proposition 4.11 one has to check that 〈Q,∇rS(r)〉 on the boundary of the green domain
Ωρ of Figure 3.1. On the side {ρ1=ρ−}, the outer normal is nρ=(1,0)t. Thus one has

〈Q,∇rS(r)〉= 1

ε
(ρ−ρ−)(ρ−ρ2)ρ(−f(ρ2|ρ−)).

The product (ρ−ρ−)(ρ−ρ2)ρ is nonpositive since ρ>0, ρ>ρ− (because ρ is fixed in
[ρ−,ρ+[) and ρ2>ρ thanks to hypothesis (H1). Moreover f(ρ2|ρ−)≤0 for any ρ2∈
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]ρ−,ρ∞[ according to Proposition 4.10. Indeed the red tangent line of the blue curve
of f at ρ− is above the graph of f . Hence 〈Q,∇rS(r)〉≤0 on the side {ρ1=ρ−}. The
same kind of arguments are used to prove that 〈Q,∇rS(r)〉≤0 on the three other sides
of Ωρ.

Note that this characterization of invariant domains of hyperbolicity is formal since
it relies on the smoothness of the densities r. A possible way to generalize to weak
solutions is to follow the definition of Hoff [20].

5. Numerical approximation
This section is devoted to numerical experiments. We do not wish to elaborate here

on efficient numerical schemes for this problem, but merely to illustrate some typical
behaviours of the model. Hence we limit ourselves to a simple finite volume scheme,
coupled to a time-splitting method for the source terms. Considering the stiffness of the
problem, a complete numerical study is mandatory but far beyond the aim of this paper.
We emphasize that we did not implement any specific strategy for the non hyperbolicity
of the homogeneous system. However for all the cases we present, the computed sound
velocity is real. This does not prevent from possible losses of hyperbolicity, probably
due to lack of convergence in the source term treatment (see in particular sections 5.2.3
and 5.2.4).

5.1. Definition of the splitting strategy. We rewrite the system (4.1) in a
more compact form, considering the following Cauchy problem

∂tW +∂xF (W )=S(W ),

W (t=0,x)=W0(x), ∀x∈R,
(5.1)

where

W =(ρ,ρ1,ρ2,ρu)
T ,

F (W )=(ρu,ρ1u,ρ2u,ρu
2+α1p(ρ1)+α2p(ρ2))

T ,

S(W )=
1

ε
(0,−(ρ−ρ1)(ρ−ρ2)f(ρ2|ρ1),(ρ−ρ1)(ρ−ρ2)f(ρ1|ρ2),0),

and ε is the relaxation parameter. Note that we exclude pure phase initial data, so that
the equations on the partial densities are not multiplied by αi anymore.

Convective terms and source terms are taken into account by a fractional step
approach. We denote Δt the time step and Δx the length of the cell (xi−1/2,xi+1/2) on
the regular mesh. Let Wn be the finite volume approximation at time tn=nΔt, n∈N.
The approximated solution Wn+1 of the Cauchy problem{

∂tW +∂xF (W )=S(W ), t∈ (tn,tn+1), x∈R,

W (tn,x)=Wn(x), ∀x∈R,
(5.2)

is approximated by splitting the problem in two steps. The first one corresponds to the
convective part {

∂tW +∂xF (W )=0, t∈ (tn,tn+1), x∈R

W (tn,x)=Wn(x), ∀x∈R,
(5.3)

which provides Wn,−. The second steps corresponds to the relaxation process{
∂tW =S(W ), t∈ (tn,tn+1), x∈R

W (tn,x)=Wn,−(x), ∀x∈R,
(5.4)
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which finally gives Wn+1.
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Fig. 5.1. Riemann problem with phase transition. From top left to bottom right: density ρ,
densities ρ1 and ρ2, volume fraction α1, speed of sound c, pressure p, and velocity u.

Numerical scheme for the convective part. We consider a classical HLL
numerical flux. We adopt the following classical notation:

Wn
i =

1

Δx

∫ xi+1/2

xi−1/2

W (tn,x)dx, n≥0, i∈R. (5.5)

The scheme is the following:

Δx(Wn,−
i −Wn

i )+Δt(Fn
i+1/2−Fn

i−1/2)=0, (5.6)

together with

Fn
i+1/2=

⎧⎪⎪⎨
⎪⎪⎩
F (Wn

i ), if 0≤sL,
sRF (Wn

i )−sLF (Wn
i+1)+sLsR(W

n
i+1−Wn

i )

sR−sL
, if sL≤0≤sR,

F (Wn
i+1), if 0≥sR,
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Fig. 5.2. Cavitation by double rarefaction. From top left to bottom right: density ρ, densities ρ1
and ρ2, volume fraction α1, speed of sound c, pressure p, and velocity u.

where sR=max(un
i +cni ,u

n
i+1+cni+1) and sL=min(un

i −cni ,u
n
i+1−cni+1). The time step

is subjected to the classical CFL condition

Δt

Δx
|λmax|≤1, (5.7)

where λmax is the maximal speed of wave computed on each cell of the mesh.

Numerical treatment of the source terms. The initial condition for this step
is Wn,− which is assumed to be admissible, that is (ρn,−,ρn,−1 ,ρn,−2 )∈R. The total
density ρ and the momentum ρu remain unchanged during this step. Only the densities
ρ1 and ρ2 may vary which leads to the following system

∂tρ=∂t(ρu)=0,

∂tρ1=−1

ε
(ρ−ρ1)(ρ−ρ2)f(ρ2|ρ1),

∂tρ2=
1

ε
(ρ−ρ1)(ρ−ρ2)f(ρ1|ρ2).

(5.8)
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At this stage we merely use a classic explicit order 4 Runge–Kutta method to integrate
the source term.
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Fig. 5.3. Nucleation by double shock. From top left to bottom right: density ρ, densities ρ1 and
ρ2, volume fraction α1, speed of sound c, pressure p, and velocity u.

Such a treatment enforces tough constraints on the time step: the computations
were performed with 1000 iterations using a time step of 10−6. We emphasize that this
does not ensure the actual convergence to the equilibrium state. This pleads for a more
efficient method, for instance a semi-implicit scheme in the spirit of [7].

5.2. Numerical results. We present here numerical results that assess the
ability of the model (4.1) to capture phase transition and metastable states.

We consider the van der Waals pressure in its reduced form (2.13) at a constant
subcritical temperature T =0.85. At this fixed temperature the extrema ρ− and ρ+

of the pressure and the values ρ∗1 and ρ∗2 defined by the Maxwell construction on the
chemical potential are given in Table 3.1.

We propose test cases with Riemann initial conditions that is

W (t=0,x)=w0(x)=

{
WL, if x≤0,

WR, if x>0.
(5.9)
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Fig. 5.4. Perturbation of a metastable state at t=0.1s. From top left to bottom right: density ρ,
densities ρ1 and ρ2, volume fraction α1, speed of sound c, pressure p, and velocity u.

The following test cases are set on the domain [0,1], with an uniform mesh of 10000
cells and Neumann boundary conditions at x=0 and x=1.

5.2.1. Riemann problem with phase transition. The initial state WL and
WR are

ρL=ρ1,L=0.3, ρ2,L=ρ∗2, uL=0,

ρR=ρ2,R=1.9, ρ1,R=ρ∗1, uR=0.

The left state is a pure stable gas and the right state is a pure stable liquid. Various value
of ε are considered. The solution is at time t=0.1s. One can observe the appearance
of a mixture zone on both sides of the interface, see in particular the pressure profile
Figure 5.1(bottom-left). The results with ε=10−4 or 10−6 are similar expect on the
velocity profile (see Figure 5.1 (bottom-right)) where the intermediate state on the left
of the interface is slightly modified for ε=10−4.

5.2.2. Cavitation by double rarefaction. The test consists in a liquid state
submitted to a double rarefaction wave. The initial state is given by ρ=ρ∗2−10−3,
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Fig. 5.5. Perturbation of a metastable state at t=0.2s. From top left to bottom right: density ρ,
densities ρ1 and ρ2, volume fraction α1, speed of sound c, pressure p, and velocity u.

ρ2=ρ∗2, ρ1=ρ∗1 and the velocities are uR=0.3=−uL. The total density corresponds
to a metastable liquid, and the initial volume fraction is α1�0.000672, which means
that phase 2 is predominant. The solution is computed at time t=0.1s. We observe
on the plot of the volume fraction (Figure 5.2 (middle-left)) that a bubble of stable
vapor appears around the interface x=0.5. The value of ε does not modify the profile
of the bubble. However the pressure profile is sharper for ε=10−6 than for 10−4, see
Figure 5.2 (bottom-left).

5.2.3. Nucleation by double shock. The test consists in a pure stable gaseous
state submitted to a double shock wave. The initial state is given by ρ=ρ1=0.3, ρ2=1
and the velocities are uR=−0.3=−uL. The solution is computed at time t=0.4s.
Note that phase 2 is not present initially but is fixed in the spinodal zone. We observe
two different behaviours of the solution depending on the value of ε. For ε=10−6,
the profile of the volume fraction (see Figure 5.3 (middle-left)) shows that a droplet
of liquid appears around x=0.5 which is not the case for ε=10−4 where there is no
droplet. For ε=10−6, one observes on the density plot (see Figure 5.3 (top-left)) that
the liquid state inside the droplet admits a density ρ close to ρ∗2 with small oscillations.
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Fig. 5.6. Perturbation of a metastable state at t=0.4s. From top left to bottom right: density ρ,
densities ρ1 and ρ2, volume fraction α1, speed of sound c, pressure p, and velocity u.

The droplet is surrounded by two mixture areas with ρ=ρ∗1. The pressure curve inside
the droplet presents oscillations (see Figure 5.3 (bottom-left)) which might be due to
a loss of hyperbolicity due to the lack of accuracy in the approximation of the source
(4.21).

5.2.4. Acoustic perturbation of a metastable state. This example consists
in a constant metastable vapor state, with a perturbation in the velocity. The initial
state is ρ=0.42, ρ1=0.32, ρ2=0.52 and the velocities are uL=0.4, uR=0. Both den-
sities ρ1 and ρ2 are in the metastable state, and we impose a compression from the left
with velocity 0.4.

The compression induces the appearance of droplet of pure liquid which moves
from the left to the right, see the time evolution on Figure 5.4. With a smaller velocity
perturbation the structure of the waves is similar, but there is no creation of a droplet at
the interface. One can check on Figure 5.4 (top-left) that the density ρ inside the droplet
is larger than ρ∗2. The droplet is surrounded by two areas with a mixture state with
ρ=ρ∗1. The velocity and pressure profiles exhibit spikes on both sides of the droplet,
which amplitude decreases when ε decreases, see figures 5.4, 5.5, and 5.6. Also notice
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that the pressure in the mixture zone is not at the value p∗. It seems that when ε
decreases the value is closer, this may indicate that the source term has not reached the
equilibrium state yet.

6. Conclusion

The core of this work is the formalization in terms of a dynamical system of the
thermodynamics of phase transition, using the van der Waals EoS. It leads to a mathe-
matical characterization of metastable states, compared to stable coexistent two-phase
states. The dynamical behaviour of the solutions is crucial here, and seems to pre-
clude the use of instantaneous exchange kinetic. When coupled to a simple hydro-
dynamic model, namely the isothermal Euler equations, it evidences abilities to cope
with metastable states as well as bubble or droplet generation. This preliminary study
gives rise to a wide bunch of open questions and problems, and we believe that the
methodology can be used in a much larger context.

First, in the same isothermal context, the construction of the dynamical system
(the right-hand side in the extended Euler equations) can be addressed. We deliberately
used a simple and readable function, which possibly could be improved. In any case, the
behaviour of the coexistence zone around the interface has to be investigated in more
details, as well as the role of ε.

Next, an obvious mandatory issue is the numerical treatment of the coupled system.
We have chosen here the simplest numerical strategy that allowed us to illustrate our
purpose. The explicit treatment of the stiff relaxation term enforces tough constraints
on the time step, and prevents the simulation of more realistic metastable cases.

Finally, we attend to include temperature dependance to obtain a fully heat, mass,
and mechanical transfer model in order to compare our results to those of [32] and [35].
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