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SOBOLEV AND MAX NORM ERROR ESTIMATES FOR
GAUSSIAN BEAM SUPERPOSITIONS∗

HAILIANG LIU† , OLOF RUNBORG‡ , AND NICOLAY M. TANUSHEV§

Abstract. This work is concerned with the accuracy of Gaussian beam superpositions, which are
asymptotically valid high frequency solutions to linear hyperbolic partial differential equations and the
Schrödinger equation. We derive Sobolev and max norms estimates for the difference between an exact
solution and the corresponding Gaussian beam approximation, in terms of the short wavelength ε.
The estimates are performed for the scalar wave equation and the Schrödinger equation. Our result
demonstrates that a Gaussian beam superposition with kth order beams converges to the exact solution
as O(εk/2−s) in order s Sobolev norms. This result is valid in any number of spatial dimensions and it
is unaffected by the presence of caustics in the solution. In max norm, we show that away from caustics
the convergence rate is O(ε�k/2�) and away from the essential support of the solution, the convergence
is spectral in ε. However, in the neighborhood of a caustic point we are only able to show the slower,
and dimensional dependent, rate O(ε(k−n)/2) in n spatial dimensions.
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1. Introduction
In this paper we consider the accuracy of Gaussian beam approximations for two

time-dependent partial differential equations (PDEs) with highly oscillatory solutions:
the dispersive Schrödinger equation in the semi-classical regime,

−iεut− ε2

2
�u+V (y)u=0, (t,y)∈ (0,T ]×R

n, (1.1)

u(0,y)=B0(y)e
iϕ0(y)/ε,

and the scalar wave equation,

utt−c(y)2Δu=0, (t,y)∈ (0,T ]×R
n, (1.2)

u(0,y)=B0(y)e
iϕ0(y)/ε,

ut(0,y)=ε−1B1(y)e
iϕ0(y)/ε.

In these equations, V (y) is an external potential, c(y) is the speed of propagation and
ε�1 is the short wavelength, or the scaled Planck constant for Equation (1.1). Since ε
is small, the initial data for both PDEs are highly oscillatory. The amplitude functions
B� and phase ϕ0 are real valued functions on R

n. We will assume that c,V,ϕ0,B� are
all smooth and that B� are supported in the compact set K0⊂R

n.
Direct numerical simulation of these PDEs is expensive when ε is small. A large

number of grid points is needed to resolve the wave oscillations and the computational
cost to maintain constant accuracy grows rapdily with the frequency. As an alternative
one can use high frequency asymptotic models for wave propagation, such as geometrical
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optics [3,16,36], which is obtained in the limit when ε→0. The solution of the PDE is
then written as

u(t,y)=a(t,y,ε)eiφ(t,y)/ε, (1.3)

where φ is the phase, and a is the amplitude of the solution, which both vary on a
much coarser scale than u. When ε→0 the phase and amplitude are independent of the
frequency. Therefore, they can be computed at a computational cost independent of
the frequency. However, at caustics where rays concentrate, geometrical optics breaks
down, and the predicted amplitude becomes unbounded [19,28].

Gaussian beams form another high frequency asymptotic model which is closely
related to geometrical optics [2,5,10,15,17,31,33]. Unlike geometrical optics, there is no
breakdown at caustics. The solution is assumed to be of the same form as Equation (1.3),
but a Gaussian beam is a localized solution that concentrates near a single geometrical
optics ray x(t) in space-time. We write it as

v(t,y)=A(t,y−x(t))eiΦ(t,y−x(t))/ε.

The concentration comes from the fact that, although the phase function is real-valued
along x(t), it has a positive imaginary part away from x(t). Moreover, the imaginary

part is quadratic in y so that �Φ(t,y)∼|y|2>0, and therefore |v(t,y)|∼ e−|y−x(t)|2/ε,
which means that the beams have essentially a Gaussian shape of width

√
ε, centered

around x(t). Because of this localization one can approximate the amplitude and phase
away from x(t) by Taylor expansion, both Φ(t,y) and A(t,y) are polynomials in y. For
instance, in first order beams Φ(t,y) is a second order polynomial, and A(t,y) is a zeroth
order (constant) polynomial. The coefficients in the polynomials satisfy ODEs. Higher
order Gaussian beams are created by using an asymptotic series for the amplitude and
using higher order Taylor expansions for Φ(t,y) and A(t,y). For higher order beams, a
cutoff function is also necessary to avoid spurious growth away from the center ray.

In numerical methods one must consider more general high frequency solutions,
which are not necessarily concentrated on a single ray. Superpositions of Gaussian
beams are then used. This is natural since the PDEs are linear. If we let v(t,y,z) be a
beam starting from the point y= z, the Gaussian beam superposition is defined as

uGB(t,y)=

(
1

2πε

)n
2
∫
K0

v(t,y,z)dz, (1.4)

for the set K0 where initial data is concentrated. The prefactor normalizes the su-
perposition appropriately, so that uGB =O(1). More details about the construction of
Gaussian beam superpositions are given in Section 3.

Numerical methods based on Gaussian beam type superpositions go back to the
1980’s for the wave equation [2, 15, 17, 31, 39] and for the Schrödinger equation [6, 7].
Since then a great many such methods have been developed for various applications
[4,8,9,20,30,32,37,38,40]. Typically, the ODEs for the Taylor coefficients of the phase
and amplitude are solved using numerical ODE methods like Runge–Kutta and the
superposition integral (1.4) is approximated by the trapezoidal rule. There are also
Eulerian methods [13,14,21] in which PDEs are solved to get the Taylor coefficients on
fixed grids. For more discussions of numerical methods using Gaussian beams, see [12,
sections 8–9].

The topic of this paper is the accuracy of Gaussian beam approximations in terms
of the wavelength ε. Several such studies have been carried out in recent years. One
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of the reasons have been to give a rigorous foundation for the beam based numerical
methods above. For the time-dependent case error estimates were first derived for the
initial data [18, 37], and later for the solution of scalar hyperbolic equations and the
Schrödinger equation [22–24, 26, 41]. For the Helmholtz equation estimates have been
given in [25,29]. The general result in those papers is that the error between the exact
solution and the Gaussian beam approximation decays as εk/2 for kth order beams in the
appropriate Sobolev norm. However, numerical evidence strongly suggested a faster rate
when k is odd, and in the recent paper [41], Zheng was for the first time able to show the
improved rate ε for first order beams (k=1) applied to the Schrödinger equation. This
is most likely the optimal rate. It also agrees with the ε�k/2� rate shown in a simplified
setting for the (pointwise) Taylor expansion error away from caustics in [29]. These
sharper estimates come from exploiting error cancellations between adjacent beams;
the higher rate is not present for single beams. There are also estimates for other
Gaussian beam like superpositions, in particular for so-called frozen Gaussians [27, 34]
and for the acoustic wave equation with superpositions in phase space [1].

In this paper we first derive error estimates in general higher order Sobolev norms
for the Schrödinger equation and the scalar wave equation. The result is in Theorem 5.1
where we obtain a convergence rate of εk/2−s for sth-order Sobolev norms. Since the
solution oscillates with period ε, this reduced rate is expected. The proof follows closely
the proof in [26] for the case s=0. Second, we derive the main result of this paper. It
is a max norm estimate given in Theorem 6.1. All earlier estimates for Gaussian beam
approximations that we are aware of, have been in integrated (Sobolev) norms. We
believe this is the first max norm estimate. We show that, away from caustics, the error
has, uniformly, the faster rate ε�k/2� shown in [29, 41]. Close to caustics, our estimate
degenerates and we only get the dimensional dependent rate ε(k−n)/2. This rate can
likely be improved, at least for certain types of caustics, and a better understanding of
this error will be the subject of future research. Finally, away from the essential support
of the solution the error, as well as the solution itself, decays at a spectral rate in ε.

The proof of the max norm estimate uses the Sobolev estimates derived in the first
part of the paper, together with Sobolev inequalities to first get a rough estimate. It
is subsequently refined by analyzing the difference between beam approximations of
different orders. We show in Theorem 6.2 that the difference can be written as a sum of
oscillatory integrals with certain properties. The main difficulty lies in making uniform
estimates of these integrals; see Theorem 6.3.

The paper is organized as follows: In Section 2 we introduce notation and state
our main assumptions. Section 3 introduces Gaussian beam superpositions for the
Schrödinger equation and the wave equation. In Section 4 we show some simple con-
sequences of our assumptions as well as some known results about Gaussian beams.
Section 5 and Section 6 are then devoted to proving the error estimates in Sobolev
norms and max norm, respectively.

2. Preliminaries
In this section we introduce some notation and describe the assumptions made for

the PDEs and their initial data. We also summarize some key well-posedness results.
We write |x| for the Euclidean norm of a vector x∈Rn. However, for a multi-

index α=(α1, . . . ,αn)∈Zn
+, we use the standard convention that |α|=α1+ · · ·+αn. We

frequently use the simple estimate,

|xα|≤ |x||α|, x∈Rn, α∈Zn
+.

For a function f :Rn �→R we let ∇f(x) denote its gradient, and D2f(x) its Hessian
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matrix. Partial derivatives of order α is written as ∂α
x f(x). For a function f :Rn �→R

n

we denote the Jacobian matrix by Df(x).
For function spaces we let C∞b (Rn) be the functions in C∞(Rn) whose derivatives

are all bounded. Moreover, Hs(Rn) denotes the usual Sobolev spaces, with H0(Rn)=
L2(Rn). For these spaces we use the standard norm, and an ε-scaled norm defined as

‖f‖Hs(Rn) :=
∑
|α|≤s

∥∥∂α
y f

∥∥
L2(Rn)

, ‖f‖Hs
ε (R

n) :=
∑
|α|≤s

ε|α|−s
∥∥∂α

y f
∥∥
L2(Rn)

. (2.1)

We finally define, for continuous f ,

||f ||L∞(K) := sup
z∈K

|f(z)|, |f |Lip(K) := sup
z,z′∈K

|f(z)−f(z′)|
|z−z′| , (2.2)

and note that for all T >0, compact set K⊂R
n and f(t,z)∈C∞([0,T ]×K),

sup
t∈[0,T ]

||f(t, ·)||L∞(K), sup
t∈[0,T ]

|f(t, ·)|Lip(K), (2.3)

are both finite.
We then make the following precise assumptions:

(A1) Smooth and bounded potential; strictly-positive smooth and bounded speed of
propagation,

c,V ∈C∞b (Rn), inf
y∈Rn

c(y)>0.

(A2) Smooth and compactly supported initial amplitudes,

B�∈C∞(Rn), suppB�⊂K0, �=0,1,

where K0⊂R
n is a compact set.

(A3) Smooth initial phase,

ϕ0∈C∞(Rn).

For the wave equation we also assume that the initial phase gradient is bounded
away from zero,

inf
y∈Rn

|∇ϕ0(y)|>0.

(A4) High frequency,

0<ε≤1.

These assumptions imply that there are unique, smooth, solutions of Equation (1.1)
and Equation (1.2). To be precise, the solutions and their time-derivatives belong to
L∞([0,T ];Hs(Rn)) for all s≥0 and T >0; see [11, Chapter 23].

The corner stone of our error estimates are the energy estimates for the PDEs. To
facilitate the presentation we will use the following notation for the partial differential
operators,

P [u] :=utt−c(y)2Δu, P ε[u] :=−iεut− ε2

2
Δu+V (y)u. (2.4)
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The estimate of the solution of the Schrödinger equation uses the norm in Equation
(2.1). For s≥0 and T >0, there is a constant Cs(T ) such that whenever ε∈ (0,1],

sup
0≤t≤T

‖u(t, ·)‖Hs ≤Cs(T )

(
||u(0, ·)||Hs

ε (R
n)+

1

ε
sup

0≤t≤T
||P ε[u](t, ·)||Hs

ε (R
n)

)
. (2.5)

This estimate is standard for s=0. For s>0 it follows by induction upon differentiating
the Schrödinger equation s times. For the wave equation, there is a constant Cs(T ) for
each s≥1 and T >0, such that

sup
0≤t≤T

(‖u(t, ·)‖Hs(Rn)+‖∂tu(t, ·)‖Hs−1(Rn)

)
≤Cs(T )

(
‖u(0, ·)‖Hs(Rn)+‖∂tu(0, ·)‖Hs−1(Rn)+ sup

0≤t≤T
‖P [u](t, ·)‖Hs−1(Rn)

)
. (2.6)

See e.g. [11, Lemma 23.2.1].

Remark 2.1. For the Schrödinger equation, we do not need to assume the lower
bound on |∇ϕ0|. This means that non-oscillatory initial data is allowed in this case,
since we can take ϕ0 constant.

Remark 2.2. The assumption of C∞ smoothness for all functions is made for sim-
plicity to avoid an overly technical discussion about precise regularity requirements. In
this sense, the error estimates given below can be sharpened, since they will be true
also for less regular functions.

3. Gaussian beams
In this section, we briefly describe the Gaussian beam approximation. We restrict

the description to the points that are relevant for the accuracy analysis in subsequent
sections. For a more detailed account with a general derivation for hyperbolic equations,
dispersive wave equations, and Helmholtz equation, we refer to [12, 23–26,33,37].

Individual Gaussian beams concentrate around a central ray in space-time. We
denote the kth order Gaussian beam and the central ray starting at z∈K0 by vk(t,y,z)
and x(t,z) respectively. The beam has the following form,

vk(t,y,z)=Ak(t,y−x(t,z),z)eiΦk(t,y−x(t,z),z)/ε, (3.1)

where

Φk(t,y,z)=φ0(t,z)+y ·p(t,z)+ 1

2
y ·M(t,z)y+

k+1∑
|β|=3

1

β!
φβ(t,z)y

β , (3.2)

and

Ak(t,y,z)=

� k
2 �−1∑
j=0

εj āj,k(t,y,z), (3.3)

āj,k(t,y,z)=

k−2j−1∑
|β|=0

1

β!
aj,β(t,z)y

β . (3.4)

Note that none of φ0, p, M , φβ , or aj,β depend on k.
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Single beams are summed together to form the kth order Gaussian beam superpo-
sition solution uk(t,y),

uk(t,y)=

(
1

2πε

)n
2
∫
K0

vk(t,y,z)
η(y−x(t,z))dz, (3.5)

where the integration in z is over the support of the initial data K0⊂R
n. The function


η ∈C∞(Rn) is a real-valued cutoff function with radius 0<η≤∞ satisfying,


η(z)≥0 and 
η(z)=

⎧⎨
⎩

1 for |z|≤η,
0 for |z|≥2η,

for 0<η<∞,

1, for η=∞.
(3.6)

As shown below in Lemma 4.1, if η>0 is sufficiently small, it is ensured that �Φk>0
on the support of 
η and the Gaussian beam superposition is well-behaved. For first
order beams, k=1, the cutoff function is not needed and we can take η=∞.

Since the wave equation (1.2) is a second order equation two modes and two Gaus-
sian beam superpositions are needed, one for forward and one for backward propagating
waves. We denote the corresponding coefficients by a + and − superscript, respectively,
and write

uk(t,y)=

(
1

2πε

)n
2
∫
K0

[v+k (t,y,z)+v−k (t,y,z)]
η(y−x(t,z))dz, (3.7)

where v±k are built from the central rays x±(t,z) and coefficients φ±0 , p
±, M±, φ±β , and

a±j,β .

3.1. Governing ODEs. The central rays x(t,z) and all the coefficients φ0, p,
M , φβ , and aj,β satisfy ODEs in t. The dependence on z is only via the initial data.

For the Schrödinger equation, the leading order ODEs are

∂tx=p, (3.8a)

∂tp=−∇V (x), (3.8b)

∂tφ0=
|p|2
2
−V (x), (3.8c)

∂tM =−M2−D2V (x), (3.8d)

∂ta0=−1

2
Tr(M)a0. (3.8e)

The ODEs for the higher order coefficients φβ and aj,β are more complicated. The
phase derivatives φβ can be solved recursively in such a way that all ODEs are linear.
They are of the form

∂tφβ =−1

2

n∑
j=1

|β|−1∑
|γ|=1

γ≤β

β!

(β−γ)!γ!
φβ−γ+ejφγ+ej −∂β

y V, |β|≥3 .

The amplitude terms aj,β satisfy a big linear system of ODEs of the form

∂a(t,z)=A(t,z)a(t,z), (3.9)
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where a is a vector containing all coefficients {aj,β} and A is a matrix determined
from the phase terms {φβ}. Moreover, A is lower block triangular if the elements of
a is ordered with increasing |β|; ∂taj,β only depends on aj,β′ with |β′|≤ |β|. We refer
to [33, 37] for more detailed discussions.

The leading order ODEs for the two modes of the wave equation are

∂tx
±=±c(x±) p±

|p±| , (3.10a)

∂tp
±=∓∇c(x±)|p±|, (3.10b)

∂tφ
±
0 =0, (3.10c)

∂tM
±=∓(E+BTM±+M±B+M±CM±), (3.10d)

∂ta
±
0 =± 1

2|p±|
(
p± ·∇c(x±)+

c(x±)p± ·Mp±

|p±|2 −c(x±)Tr(M±)
)
a±0 , (3.10e)

with

E= |p±|D2c(x±), B=
p±⊗∇c(x±)

|p±| , C=
c(x±)
|p±| Idn×n− c(x±)

|p±|3 p
±⊗p±.

The higher order phase terms {φ±β } again satisfy linear ODEs, if solved in the right

order, and the higher order amplitude terms {a±j,β} satisfy a linear ODE system of the
same type as Equation (3.9).

Remark 3.1. The leading order ODEs for both equations, and for general hyperbolic
equations, actually have a Hamiltonian structure,

∂tx=∇pH(x,p), (3.11a)

∂tp=−∇xH(x,p), (3.11b)

∂tφ0=−H(x,p)+p ·∇pH(x,p), (3.11c)

where H= |p|2/2+V (x) for the Schrödinger equation and H=±c(x)|p| for the two
modes of the wave equation.

3.2. Initial Data. Each Gaussian beam vk(t,y,z) requires initial values for
the central ray and all of the amplitude and phase Taylor coefficients. The appropriate
choice of these initial values will make uk(0,y) asymptotically converge to the initial
conditions in Equation (1.1) and Equation (1.2). As shown in [26], initial data for the
central ray and phase coefficients should be chosen as follows, for the Schrödinger as
well as the two modes of the wave equation.

x(0,z)= z, (3.12a)

p(0,z)=∇ϕ0(z), (3.12b)

φ0(0,z)=ϕ0(z), (3.12c)

M(0,z)=D2ϕ0(z)+ i Idn×n, (3.12d)

φβ(0,z)=∂β
yϕ0(z), |β|=3, . . . ,k+1 . (3.12e)

For the Schrödinger equation, initial values for the amplitude coefficients should be
given as

aj,β(0,z)=

{
∂β
yB0(z), j=0,

0, j >0.
(3.13)
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The construction is more complicated for the wave equation. Let

Ā±0 (y,z)=
1

2

(
B0(y)+

B1(y)

idtΦ
±
k (0,y−z,z)

)
,

Ā±j+1(y,z)=−
1

2

dtā
+
j,k(0,y−z,z)+dtā

−
j,k(0,y−z,z)

idtΦ
±
k (0,y−z,z)

,

where

dtΦ
±
k (0,y−z,z) :=∂tΦ

±
k (0,y−z,z)−∂tx

±(0,z) ·∇yΦ
±
k (0,y−z,z),

dtā
±
j,k(0,y−z,z) :=∂tā

±
j,k(0,y−z,z)−∂tx

±(0,z) ·∇yā
±
j,k(0,y−z,z).

Then

a±j,β(0,z)=∂β
y Ā

±
j (y,z)|y=z. (3.14)

Note that the time derivatives ∂tΦ
±
k , ∂tx

±, and ∂tā
±
j,k are given by the right-hand side

of the ODE system.

4. Gaussian beam properties
In this section we collect some simple consequences of assumptions (A1)–(A4) for

the Gaussian beam approximations, as well as some other known results.

4.1. Existence and Regularity. From (A1) and (A3) it follows that the
Gaussian beam coefficient functions are well-defined for all times t≥0 and initial po-
sitions z∈Rn. We briefly motivate why. By (A1) the right-hand sides of the ODEs
for (x(t,z), p(t,z)) are globally Lipschitz, for the Schrödinger equation. For the two
modes of the wave equation, we use (A3) and the fact that the Hamiltonian ±c(x)|p| is
constant along the flow. From this it follows that for all t,

0<pmin :=
cmin

cmax
inf
y∈R

|∇ϕ0(y)|≤ |p±(t,z)|≤ cmax

cmin
|∇ϕ0(z)|=:pmax(z)<∞,

where cmin=inf c(y) and cmax=supc(y). The right-hand sides of the ODE for
(x±(t,z), p±(t,z)) are globally Lipschitz for these values of p±. It follows that unique
solutions to the ODEs exist for all times. Moreover, the choice of initial data and a
result in [33, Section 2.1] ensure that the non-linear Riccati equations for M and M±

also have solutions for all times. The remaining coefficient functions are well-defined
since they satisfy linear ODEs with variable, continuous, coefficients.

Furthermore, the coefficient functions are smooth functions of t and z. By (A2) and
(A3) all coefficient functions are solutions to ODEs with initial data that is C∞(Rn)
in z. The right-hand sides of the ODEs are also smooth, for both equations, since
|p±|≥pmin>0 for the wave equation. The regularity of the initial data therefore persists
for t>0. Hence,

x, x±, p, p±, φ0, φ
±
0 ,M,M±, φj,β , φ

±
j,β , aj,β , a

±
j,β ∈C∞([0,∞)×R

n), (4.1)

for all j,β. Moreover, by the form of the ODEs for the amplitude coefficients in Equation
(3.9) and the fact that initial data is compactly supported, all amplitude coefficients
will be compactly supported in z for t≥0,

suppaj,β(t, ·)⊂K0, suppa±j,β(t, ·)⊂K0, t∈ [0,∞). (4.2)
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We finally note that none of the coefficient functions x, p, φ0, M , φj,β , aj,β , and
the corresponding functions for the wave equation, depend on the order k of the beam.
This is true since the ODEs and the initial data for higher order coefficients functions
only involve lower order coefficient functions. Hence, the higher order beams have the
same lower order coefficient functions as the lower order beams.

4.2. Initial data. For the initial data chosen as in Section 3.2, the following
error estimate follows from a result in [26].

Theorem 4.1. Let uk be either the Gaussian beam superposition approximation in
Equation (3.5) to the Schrödinger equation (1.1) or the one in Equation (3.7) to the
wave equation (1.2). Let the initial data for the Gaussian beams be determined as in
Section 3.2. Then, if u is the corresponding exact solution, there is a constant C such
that

‖uk(0, ·)−u(0, ·)‖Hs ≤‖uk(0, ·)−u(0, ·)‖Hs
ε
≤Cε

k
2−s , ∀ε∈ (0,1], (4.3)

and, for the wave equation,

‖∂tuk(0, ·)−∂tu(0, ·)]‖Hs−1 ≤Cε
k
2−s ,∀ε∈ (0,1], (4.4)

for s≥1.

Proof. It was shown in [26, Lemma 3.6] that there are constants C0,α and C1,α

such that ∥∥∂α
y uk(0, ·)−∂α

y u(0, ·)
∥∥
L2 ≤C0,αε

k
2−|α| ,

and, for the wave equation (1.2)∥∥∂α
y ∂tuk(0, ·)−∂α

y ∂tu(0, ·)
∥∥
L2 ≤C1,αε

k
2−|α|−1 .

Clearly || · ||Hs ≤|| · ||Hs
ε
when ε≤1, and from the definition in Equation (2.1),

‖uk(0, ·)−u(0, ·)‖Hs
ε
=

∑
|α|≤s

ε|α|−s
∥∥∂α

y uk(0, ·)−∂α
y u(0, ·)

∥∥
L2(Rn)

≤ε
k
2−s

∑
|α|≤s

C0,α=:Cε
k
2−s.

This shows Equation (4.3). The estimate (4.4) follows in a similar way.

4.3. Phase and ray properties. The Gaussian beam phases and central rays
have the following properties, as shown in [26, Lemma 3.4].

Lemma 4.1. Under assumptions (A1)–(A4), for a given compact set K0⊂R
n, final

time T >0 and beam order k, there is a Gaussian beam cutoff width η0>0 such that the
Gaussian beam phase Φ and central ray x have the following properties for all 0<η≤η0:

(P1) x(t,z)∈C∞([0,T ]×R
n),

(P2) Φ(t,y,z)∈C∞([0,T ]×R
n×R

n),

(P3) ∇Φ(t,0,z) is real and there is a constant C such that

|∇yΦ(t,0,z)−∇yΦ(t,0,z
′)|+ |x(t,z)−x(t,z′)|≥C|z−z′| ,

for all t∈ [0,T ] and z,z′∈K0.
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(P4) there exists a constant w4>0 such that

�Φ(t,y,z)≥w4|y|2 , ∀t∈ [0,T ], z∈K0,

when |y|≤2η (or for all y if η=∞).

Here, Φ and x can be either the phase and central ray of the Schrödinger equation,
Φk and x, or of one of the wave equation modes, Φ±k and x±. When k=1, η can take
any value in (0,∞], that is η0=∞.

These properties of the phase and the central ray are of great importance in the
subsequent estimates. In fact, they are necessary for the Gaussian beam approximation
to be accurate. Following this lemma we therefore make the definition:

Definition 4.1. The cutoff width η used for the Gaussian beam approximation of
Equation (1.1) and Equation (1.2) is called admissible for K0, T , and Φ if it is small
enough in the sense of Lemma 4.1.

We note that if η is admissible then η′ is also admissible if η′≤η. Moreover, the
difference between two solutions with different admissible cutoff widths, is exponentially
small in ε, as seen in the following lemma.

Lemma 4.2. If η, η′ are both admissible cutoff widths, and uk,u
′
k are the corresponding

Gaussian beam superpositions for the Schrödinger equation or the wave equation, then

sup
t∈[0,T ]

||uk(t, ·)−u′k(t, ·)||L∞(Rn)≤Ce−w/ε,

for some constants C and w>0.

Proof. We consider the Schrödinger case. Suppose η′<η≤∞. From the construc-
tion of beams in Section 3 together with Equation (2.2) and Equation (4.1), there is
a constant C such that |Ak(t,y,z)|≤C(1+ |y|k−1) for all t∈ [0,T ], z∈K0 and ε∈ (0,1].
Then using (P4) in Lemma 4.1, with t∈ [0,T ],

|uk(t,y)−u′k(t,y)|=
(

1

2πε

)n
2
∣∣∣∣
∫
K0

vk(t,y,z)[
η(y−x(t,z))−
η′(y−x(t,z))]dz

∣∣∣∣
≤
(

1

2πε

)n
2
∫
K0\{z ;|y−x|≤η′}

|vk(t,y,z)|dz

=

(
1

2πε

)n
2
∫
K0\{z ;|y−x|≤η′}

|Ak(t,y−x,z)|e−
Φ(t,y−x,z)/εdz

≤C ′ε−n/2

∫
K0\{z ;|y−x|≤η′}

(
1+ |y−x|k−1

)
e−w4|y−x|2/εdz.

We now use the fact that for given p≥0 and c>0 there is a constant D such that
|x|p exp(−cx2/ε)≤Dexp(−cx2/2ε) for all x. Then,

|uk(t,y)−u′k(t,y)|≤C ′ε−n/2

∫
K0\{z ;|y−x|≤η′}

(1+D)e−w4|y−x|2/2εdz

≤C ′ε−n/2|K0|(1+D)e−w4η
′2/2ε≤C ′′e−w/ε,

for some 0<w<w4η
′2/2. The wave equation case is proved by considering each mode

separately, in the same way.
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4.4. Representation with oscillatory integrals. An important step in the
Gaussian beam error estimates in [26] is to bound the residual that appears when the
Gaussian beam approximation is entered into the PDE. Up to a small term in ε, this
residual can be written as a sum of oscillatory integrals belonging to a family defined
as follows. For a phase Φ, central ray x, multi-index α, compact set K0⊂R

n, cutoff
function 
η as given in Equation (3.6), and a continuous function g(t,y,z,ε), we let

IαΦ,x,g(t,y)

:=ε−
n+|α|

2

∫
K0

g(t,y,z,ε)(y−x(t,z))αeiΦ(t,y−x(t,z),z)/ε
η(y−x(t,z))dz . (4.5)

Indeed, the following lemma was shown in [26].

Lemma 4.3. Under assumptions (A1)–(A4) the Schrödinger operator P ε and the
wave equation operator P in Equation (2.4) acting on the Gaussian beam superposition
uk can be accurately approximated by a finite sum of oscillatory integrals of the same
type as Equation (4.5),

P ε[uk](t,y)=ε
k
2+1

J∑
j=1

ε�jIαj

Φk,x,gj
(t,y)+O(ε∞),

P [uk](t,y)=ε
k
2−1

J∑
j=1

ε�j
(
Iαj

Φ+
k ,x+,g+

j

(t,y)+Iαj

Φ−
k ,x−,g−

j

(t,y)

)
+O(ε∞),

where �j≥0, and η is assumed to be admissible for K0, T and the corresponding Gaus-
sian beam phase(s), Φk or Φ±k . Moreover, (Φk,x) or (Φ±k ,x

±), have properties (P1)–
(P4), and all gj,g

±
j have the following property:

(P5) g(t,y,z)∈C∞([0,T ]×R
n×K0) is independent of ε and for any multi-index β

there exists a constant Cβ such that

sup
y∈Rn

∣∣∂β
y g(t,y,z)

∣∣≤Cβ , ∀t∈ [0,T ], z∈K0.

Remark 4.1. A closer inspection of the proof of this lemma in [26] reveals that
also the derivatives with respect to (t,y) of the exponentially small terms O(ε∞) are
exponentially small in ε.

The key estimate in [26] used to bound the residuals P ε[uk] and P ε[u] is the following
theorem, which gives an ε-independent L2 estimate of the integrals in Equation (4.5).

Theorem 4.2. If the phase Φ and central ray x have properties (P1)–(P4), and g has
property (P5), then there is a constant C such that, for all ε∈ (0,1],

sup
t∈[0,T ]

∥∥IαΦ,x,g(t, ·)
∥∥
L2 ≤C. (4.6)

In [26, Theorem 3.2], an integral operator of the same form was estimated. That result
immediately gives Equation (4.6).

5. Error estimates in Sobolev norms
Here we show the following theorem.

Theorem 5.1. Let uk be the kth order Gaussian beam superposition given in Sec-
tion 3 for the Schrödinger equation (1.1) or the wave equation (1.2), with an η that is
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admissible for K0,T >0 and the corresponding Gaussian beam phases, Φk or Φ±k . If u
is the exact solution to Schrödinger’s equation (1.1) and s≥0, there is a constant C
such that

sup
0≤t≤T

||u(t, ·)−uk(t, ·)||Hs(Rn)≤Cε
k
2−s , ∀ε∈ (0,1]. (5.1)

If u is the exact solution to the wave equation (1.2) and s≥1, there is a constant C
such that

sup
0≤t≤T

(‖uk(t, ·)−u(t, ·)‖Hs(Rn)+‖∂tuk(t, ·)−∂tu(t, ·)‖Hs−1(Rn)

)≤Cε
k
2−s , (5.2)

for all ε∈ (0,1].
The results (5.1) with s=0 and (5.2) with s=1 were proved earlier in [26]. This

theorem extends the results to higher order Sobolev norms. Note that ε−s is the rate at
which the norm of the initial data for the PDEs go to infinity as ε→0, because of their
oscillatory nature. The decreased rate for larger s is therefore expected also for the
solution error. Still, for large enough k the Gaussian beam approximation will converge
as ε→0 also in higher order Sobolev norms.

We now prove the results for the two types of PDEs separately. For the Schrödinger
equation (1.1), applying the well-posedness estimate given in Equation (2.5) to the
difference between the true solution u and the kth order Gaussian beam superposition,
uk we obtain

sup
0≤t≤T

‖uk(t, ·)−u(t, ·)‖Hs(Rn)

≤Cs(T )

(
||uk(0, ·)−u(0, ·)||Hs

ε (R
n)+

1

ε
sup

0≤t≤T
||P ε[uk](t, ·)||Hs

ε (R
n)

)
.

The first term of the right-hand side, which represents the difference in the initial data,
can be estimated by Theorem 4.1 and the second term, which represents the evolution
error, can be rewritten using Lemma 4.3 and then estimated to obtain

sup
0≤t≤T

‖uk(t, ·)−u(t, ·)‖Hs

≤Cs(T )

⎛
⎝Cε

k
2−s+ sup

0≤t≤T
ε

k
2

J∑
j=1

∥∥∥Iαj

Φk,x,gj
(t, ·)

∥∥∥
Hs

ε (R
n)

⎞
⎠+O(ε∞), (5.3)

since �j≥0 in Lemma 4.3. Here we also used Remark 4.1, which implies that the Sobolev
norm of O(ε∞) is again O(ε∞).

To continue, we need to estimate Iαj

Φ,x,gj
in Sobolev norms. In Theorem 4.2, such

estimates were given in L2-norm. In Section 5.1, we extend this result to general Sobolev
spaces by proving the following theorem.

Theorem 5.2. If the phase Φ and central ray x have properties (P1)–(P4), and g has
property (P5), then there is a constant C such that, for all ε∈ (0,1],

sup
t∈[0,T ]

∥∥IαΦ,x,g(t, ·)
∥∥
Hs(Rn)

≤ sup
t∈[0,T ]

∥∥IαΦ,x,g(t, ·)
∥∥
Hs

ε (R
n)
≤Cε−s.

Upon applying Theorem 5.2 to Equation (5.3) we obtain Equation (5.1).
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For the wave equation (1.2) we use Equation (2.6) and obtain

sup
0≤t≤T

(‖uk(t, ·)−u(t, ·)‖Hs(Rn)+‖∂tuk(t, ·)−∂tu(t, ·)‖Hs−1(Rn)

)
≤Cs(T )

(
‖uk(0, ·)−u(0, ·)‖Hs(Rn)+‖∂tuk(0, ·)−∂tu(0, ·)‖Hs−1(Rn)

+ sup
0≤t≤T

‖P [uk](t, ·)‖Hs−1(Rn)

)
. (5.4)

From Theorem 4.1 we can again estimate the initial data terms,

‖uk(0, ·)−u(0, ·)‖Hs(Rn)+‖∂tuk(0, ·)−∂tu(0, ·)‖Hs−1(Rn)≤Cε
k
2−s. (5.5)

Moreover, by Lemma 4.3, Remark 4.1, and Theorem 5.2

sup
0≤t≤T

‖P [uk](t, ·)‖Hs−1(Rn)

≤ε k
2−1

J∑
j=1

ε�j
(

sup
0≤t≤T

∥∥∥∥Iαj

Φ+
k ,x+,g+

j

(t, ·)
∥∥∥∥
Hs−1(Rn)

+ sup
0≤t≤T

∥∥∥∥Iαj

Φ−
k ,x−,g−

j

(t, ·)
∥∥∥∥
Hs−1(Rn)

)
+O(ε∞)

≤ε k
2−1

J∑
j=1

Cε�j−s+1≤Cε
k
2−s. (5.6)

Together Equation (5.4), Equation (5.5), and Equation (5.6) give Equation (5.2) and
the proof of Theorem 5.1 is complete. We now turn to proving Theorem 5.2.

5.1. Proof of Theorem 5.2. The main idea of the proof is to reduce the
derivative of the oscillatory integral to a sum of the same type of integrals, scaled by
ε, and then apply Theorem 4.2. We begin by proving a lemma giving the form of the
derivatives of a monomial multiplying the exponential of a polynomial.

Lemma 5.1. Suppose Q(y,r) is a polynomial in y with coefficients that depend smoothly
on r. Then for multi-indices α and β,

∂β
y

(
yαeiQ(y,r)/ε

)
=ε|α|−|β|

|α|∑
|γ|=0

(y
ε

)γ

Qγ,β(y,r)e
iQ(y,r)/ε, (5.7)

for some Qγ,β(y,r) which are also polynomials in y with coefficients depending smoothly
on r.

Proof. We use induction and first note that Equation (5.7) holds for β=0 with
Qα,0≡1 and Qγ,0≡0 for γ �=α. Let ej be the unit vector multi-index and suppose
γ=(γ1, . . . ,γn). Then, assuming Equation (5.7) holds for β,

∂β+ej
y yαeiQ(y,r)/ε=ε|α|−|β|∂yj

|α|∑
|γ|=0

(y
ε

)γ

Qγ,β(y,r)e
iQ(y,r)/ε

=ε|α|−|β|−1

|α|∑
|γ|=0

(y
ε

)γ−ej
[γjQγ,β(y,r)+yj∂yj

Qγ,β(y,r)]e
iQ(y,r)/ε
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+ iε|α|−|β|−1

|α|∑
|γ|=0

(y
ε

)γ

Qγ,β(y,r)[∂yj
Q(y,r)]eiQ(y,r)/ε.

This is of the same form as Equation (5.7) if we identify

Qγ,β+ej = iQγ,β∂yjQ+(γj+1)Qγ+ej ,β+yj∂yj+ejQγ+ej ,β

for |γ|< |α| and Qγ,β+ej = iQγ,β∂yj
Q when |γ|= |α|. Moreover Qγ,β+ej (y,r) depends

smoothly on r since Qγ,β and Q do. The lemma is therefore proved by induction.
We now continue with the proof of Theorem 5.2. Let

W (t,y,z)=yαeiΦ(t,y,z)/ε.

Then, since Φ(t,y,z) is a k+1 degree polynomial in y with coefficients depending
smoothly on t and z we can use Lemma 5.1 to obtain

∂β
y IαΦ,x,g(t,y)=ε−

n+|α|
2

∫
K0

∂β
y

(
g(t,y,z)W (t,y−x(t,z),z)
η(y−x(t,z))

)
dz

=ε−
n+|α|

2

∑
β1+β2+β3=β

Cβ1,β2,β3

∫
K0

[∂β1
y g][∂β2

y W ][∂β3
y 
η]dz

=
∑

β1+β2+β3=β

|α|∑
|γ|=0

Cβ1,β2,β3ε
−n+|α|

2 ε|α|−|β2|−|γ|Iβ1,β2,β3,γ(t,z),

where

Iβ1,β2,β3,γ(t,y)=

∫
K0

[∂β1
y g(t,y,z)](y−x(t,z))γQγ,β2

(t,y−x(t,z),z)

×eiΦ(t,(y−x(t,z),z)/ε[∂β3
y 
η(y−x(t,z))]dz,

with Qγ,β2
(t,y,z) being polynomials in y depending smoothly on t and z. We now first

consider the terms Iβ1,β2,β3,γ where |β3|>0. Since the derivatives of 
η(y−x(t,z))≡0
except when η≤|y−x(t,z)|≤2η, and by properties (P4), and (P5),

|Iβ1,β2,β3,γ |≤C(T )

∫
K0

e−w4η
2/εdz≤C(T )e−w4η

2/ε,

for all 0≤ t≤T . The remaining terms Iβ1,β2,0,γ are all of the form∫
K0

g̃(t,y,z)(y−x(t,z))γQ̃(t,y−x(t,z),z)eiΦ(t,y−x(t,z),z)/ε
η(y−x(t,z))dz,

for some smooth function g̃, which is a y-derivative of g, and Q̃(t,y,z) which is a
polynomial in y with coefficients that are smooth in t and z. Suppose the degree of
Q̃ is d and denote the coefficients by q�(t,z). Then the term can be written as

I(t,y)=

d∑
|�|=0

∫
K0

g̃(t,y,z)q�(t,z)(y−x(t,z))γ+�eiΦ(t,y−x(t,z),z)/ε
η(y−x(t,z))dz

=
d∑

|�|=0

ε
n+|γ|+|�|

2 Iγ+�
Φ,x,g̃q�

(t,y).
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Clearly (P5) holds also for g̃q� and then, if 0<ε≤1, we get from Theorem 4.2,

sup
t∈[0,T ]

||I(t, ·)||L2(Rn)≤
d∑

|�|=0

ε
n+|γ|+|�|

2 sup
t∈[0,T ]

||Iγ+�
Φ,x,g̃q�

(t, ·)||L2(Rn)≤C(T )ε
n+|γ|

2 .

Therefore,

sup
t∈[0,T ]

||∂β
y IαΦ,x,g(t, ·)||L2(Rn)

≤C(T )

⎛
⎝ ∑

β1+β2=β

|α|∑
|γ|=0

ε−
n+|α|

2 ε|α|−|β2|−|γ|ε
n+|γ|

2 +e−w4η
2/ε

⎞
⎠≤C(T )ε−|β|,

for all ε∈ (0,1]. From this last estimate it immediately follows that also

sup
t∈[0,T ]

||IαΦ,x,g(t, ·)||Hs
ε (R

n)= sup
t∈[0,T ]

∑
|β|≤s

ε|β|−s||∂β
y IαΦ,x,g(t, ·)||L2(Rn)≤C(T )ε−s.

Since when 0<ε≤1, we clearly have || · ||Hs(Rn)≤|| · ||Hs
ε (R

n) the theorem is proved.

6. Error estimates in max norm
We will here consider max norm estimates for Gaussian beams applied to Equation

(1.1) and Equation (1.2). The main result is Theorem 6.1 in Section 6.2. Also in the
case of max norm estimates the oscillatory integrals in Equation (4.5) play a crucial
role. However, here slightly different assumptions are made for the functions in the
integrals, and they are estimated pointwise. In Section 6.1, we define notation and the
sets used in Theorem 6.1. The statement of the theorem and the general steps of the
proof are then given in Section 6.2. Finally, the details of these steps, in the form of
two secondary theorems, are proved in Section 6.3 and Section 6.4.

6.1. Preliminaries. For the proof of the max norm estimates the assumptions
(A1)–(A4) must hold for a slightly larger set than K0, where the initial amplitude is
supported. We therefore define the family of compact sets that “fatten” the set K0,

Kd={z∈Rn : dist(z,K0)≤d}⊃K0.

We also introduce the corresponding space-time set,

Kd=[0,T ]×Kd.

Clearly (A1), (A2), and (A4) hold with K0 replaced by Kd, for any d>0. Since the
initial phase ϕ0 is smooth, we can also always find some, small enough, d such that (A3)
holds. We will henceforth consider a fixed such d. Then, all results in previous sections
will be true, if Kd is used instead of K0. Note that the cutoff width η must now be
admissible for Kd rather than K0. The oscillatory integrals can still be taken over K0

though, since it contains the support of the amplitude functions.
For the remaining definitions we recall that by Section 4.1 the ray function x(t,z)

is smooth under our assumptions. We define the Jacobian J by

J(t,z) :=Dzx(t,z).

Furthermore, we introduce the set of caustic points on [0,T ]×R
n for a central ray

function x(t,z),

Cx={(t,y)∈ [0,T ]×R
n : ∃(t,z)∈Kd such that y=x(t,z), detJ(t,z)=0} ,
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K0 Dx,0

X−1(Cx) and K0 Cx and K0

K0 and X−1(Cx) at t=0.8 Dx,0 and Cx at t=0.8

Fig. 6.1: Examples of the the various sets used in this section for a two-dimensional case, where
ϕ0(x,y)=−x+y2+0.4x2, T =1.2, and K0 is the unit circle. In the last row the intersection of the
sets with the plane t=0.8 is shown; the solid black line indicates X−1(Cx) and Cx, respectively.

and the fattened caustic set,

Cx,δ ={(t,y)∈ [0,T ]×R
n : dist((t,y),Cx)<δ} .

We also let Dx,δ be the fattened domain of x(t,z),

Dx,δ ={(t,y)∈ [0,T ]×R
n : dist(y,x(t,K0))≤ δ}.

Note that when ε→0 the solution will concentrate on the set Dx,0. Hence, Dx,δ can be
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thought of as approximating the essential support of the solution. In Figure 6.1, the
sets are visualized for an example in two dimensions.

The total caustic set Cδ and domain Dδ are finally defined as the union of the
corresponding sets of each mode,

Cδ =
{
Cx,δ, Schrödinger,

Cx+,δ∪Cx−,δ, wave equation,
Dδ =

{
Dx,δ, Schrödinger,

Dx+,δ∪Dx−,δ, wave equation.

Note that for the wave equation an equivalent definition of Cδ is the δ-fattened version
of Cx+ ∪Cx− . Moreover, we always consider [0,T ]×R

n to be the universal set and
complements of sets are taken with respective to this, i.e. for U ⊂ [0,T ]×R

n,

Uc=[0,T ]×R
n \U .

Finally, in the proofs we will typically not use property (P4) the way it is written
in Lemma 4.1, but rather the following simple consequence, which we denote (P4′),

(P4′) there exists a constant w4>0 such that∣∣∣eiΦ(t,y,z)/ε
η(y)
∣∣∣≤ e−w4|y|2/ε,

for all (t,z)∈Kd and y∈Rn.

Remark 6.1. Note that the caustic set is fattened both in space and time. This is
necessary for the estimates derived below to be true; the rate ε�k/2� is only obtained
uniformly away from the caustics, in space and time.

6.2. Main result. We are now ready to state the main theorem of this section. It
gives max norm error estimates in terms of ε, over different parts of the solution domain.
The theorem shows that uniformly away from caustics, (t,y)∈Ccδ , the convergence rate
is the same O(εk/2) as in [26] when k is even. For odd k, however, error cancellations
between adjacent beams can be exploited, and the better rate O(ε(k+1)/2) is obtained,
similar to the results in [29,41]. We believe this rate is sharp. Close to a caustic point,
(t,y)∈Cδ, the theorem gives the rather coarse rate estimate O(ε(k−n)/2), which can
likely be improved for many types of caustics. Finally, away from the essential support
of the solution, (t,y)∈Dc

δ, the convergence is exponential in ε. In fact, the solution itself
is also exponentially small in ε on this domain.

Theorem 6.1. Let uk be the kth order Gaussian beam superposition given in Section 3
for the Schrödinger equation (1.1) or the wave equation (1.2), with a cutoff width η that
is admissible for Kd, T >0 and the correspondning Gaussian beam phases, Φk or Φ±k .
If u is the exact solution to Schrödinger’s equation or the wave equation, then we have
the following estimate. For each δ>0 and m>0, there is a constant Cδ,m such that

|uk(t,y)−u(t,y)|≤Cδ,m

⎧⎪⎨
⎪⎩
ε�k/2�, (t,y)∈Ccδ ,
ε(k−n)/2, (t,y)∈Cδ,
εm, (t,y)∈Dc

δ,

(6.1)

for all ε∈ (0,1].
The theorem also immediately gives us an estimate for the initial data in all Lp-

norms.
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Corollary 6.1. Under the same conditions as in Theorem 6.1, there is a constant
Cp for each 1≤p≤∞ such that

||uk(0,y)−u(0,y)||Lp(Rn)≤Cpε
�k/2�, 1≤p≤∞, ∀ε∈ (0,1]. (6.2)

Proof. Since x(0,z)= z and Kd is compact, there exists δ>0 such that detJ(t,z) �=
0 for t∈ [0,δ] and z∈Kd. Hence, there is a caustic free initial interval [0,δ] and for T = δ,
the fattened caustic set Cδ is empty. Theorem 6.1 then shows that there is a constant
C such that for all ε∈ (0,1].

|uk(t,y)−u(t,y)|≤Cε�k/2�, ∀(t,y)∈ [0,δ]×R
n.

Since initial data for both uk and u is compactly supported, the result extends to all
Lp-norms at t=0.

We prove Theorem 6.1 starting from a standard Sobolev inequality and the result
in the previous section, namely

sup
t∈[0,T ]

||u(t, ·)−uk(t, ·)||L∞(Rn)≤C sup
t∈[0,T ]

||u(t, ·)−uk(t, ·)||Hs(Rn)≤Cε
k
2−s, (6.3)

for any s>n/2, and s≥1 for the wave equation. We take s= �n/2�+1 to ensure this.
The estimate (6.3) is rather pessimistic. However, we can improve it by using the
fact that better estimates can be proved for the difference between beams of different
orders. Let p=2�n/2�+3+m′=2s+1+m′ wherem′∈Z+ andm′≥max(2m−k−1,0).
Assume that η is admissible also for Kd, T and the higher order Gaussian beam phase
Φk+p, for the Schrödinger equation, or Φ±k+p for the wave equation. Then, by Equation
(6.3)

|u(t,y)−uk(t,y)|≤ ||u(t, ·)−uk+p(t, ·)||L∞(Rn)+ |uk+p(t,y)−uk(t,y)|
≤Cε(k+p)/2−s+ |uk+p(t,y)−uk(t,y)|, (6.4)

for (t,y)∈ [0,T ]×R
n. We now need to use a representation result similiar to Lemma 4.3

showing that the difference between beams of different orders can be written as a sum
of oscillatory integrals of the same type as Equation (4.5), but where the property (P5)
is replaced by three new properties, namely:

(P6) Φ(t,0,z) and ∇yΦ(t,0,z) are real and

J(t,z)T∇yΦ(t,0,z)=∇zΦ(t,0,z), (6.5)

for all t≥0 and z∈Rn.

(P7) g(t,y,z,ε)∈L∞([0,T ]×R
n×Kd×R

+) is compactly supported in K0 for fixed
(t,y,ε), and there are positive constants D7, w7, such that for all (t,z)∈Kd,
ε>0 and y∈Rn,∣∣∣g(t,y,z,ε)eiΦ(t,y−x(t,z),z)/ε
η(y−x(t,z))

∣∣∣≤D7e
−w7|y−x(t,z)|2/ε, (6.6)

(P8) when y0=x(t,z0), there are positive constants D8, w8, such that for all t∈ [0,T ],
z,z0∈Kd, ε>0 and y0∈Rn,∣∣∣(g(t,y0,z,ε)−g(t,y0,z0,ε)

)
eiΦ(t,y0−x(t,z),z)/ε
η(y0−x(t,z))

∣∣∣
≤D8|z−z0|

(
1+

|z−z0|q
ε�

)
e−w8|y0−x(t,z)|2/ε, (6.7)

with q≥2�.



H. LIU, O. RUNBORG, AND N.M. TANUSHEV 2055

We are then able to prove the following theorem.

Theorem 6.2. Let uk and uk+p be the kth and (k+p)th order Gaussian beam su-
perpositions given in Section 3 for the Schrödinger equation (1.1) or the wave equation
(1.2). Suppose the same cutoff width η is used for both uk and uk+p. Then there is a
finite J such that

uk+p(t,y)−uk(t,y)=ε
k
2

J∑
j=0

ε�jIβj

Ψj ,xj ,gj
(t,y), (6.8)

where (Ψj ,xj) is one of (Φk,x), (Φk+p,x), for the Schrödinger equation, or (Φ±k ,x
±),

(Φ±k+p,x
±), for the wave equation. Moreover, �j≥0 and when �j =0, the parity

(odd/even) of |βj | is the same as that of k.
In addition, if η is admissible for Kd, T >0 and the corresponding Gaussian beam

phases, Φk, Φk+p, for the Schrödinger equation, or Φ±k , Φ
±
k+p, for the wave equation,

then each triplet (Ψj ,xj ,gj) have properties (P1)–(P4) and (P6)–(P8).

Applying Theorem 6.2 to Equation (6.4) yields for t∈ [0,T ],

|u(t,y)−uk(t,y)|≤Cε(k+1+m′)/2+ε
k
2

J∑
j=0

ε�j
∣∣∣Iβj

Ψj ,xj ,gj
(t,y)

∣∣∣ , (6.9)

where we used the fact that (k+p)/2−s=(k+1+m′)/2. The last piece needed to
prove Theorem 6.1 is a pointwise estimate of IαΦ,x,g(t,y), which is contained in the final
theorem of this section,

Theorem 6.3. If (Φ,x,g) have properties (P1)–(P4) and (P6)–(P8), then, for each
δ>0 there are constants Cδ and wδ >0 such that

∣∣IαΦ,x,g(t,y)
∣∣≤Cδ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, |α| even, (t,y)∈Ccx,δ,
ε1/2, |α| odd, (t,y)∈Ccx,δ,
ε−n/2, (t,y)∈Cx,δ,
exp(−wδ/ε), (t,y)∈Dc

x,δ,

(6.10)

for all ε∈ (0,1]. The constants Cδ and wδ depend on α, Φ, x, and g.

Using Theorem 6.3 in Equation (6.9), we have for (t,y)∈Ccδ ⊂ (∪jCxj ,δ)
c=∩jCcxj ,δ

,

ε�j
∣∣∣Iβj

Ψj ,xj ,gj
(t,y)

∣∣∣≤C

⎧⎪⎨
⎪⎩
1, �j =0 and k even,

ε1/2, �j =0 and k odd,

ε�j , �j≥1,

≤C

{
1, k even,

ε1/2, k odd,

since k and |βj | have the same parity when �j =0 and ε∈ (0,1]. Therefore,

ε
k
2 ε�j

∣∣∣Iβj

Ψj ,xj ,gj
(t,y)

∣∣∣≤Cε�k/2�,

and because m′≥0, the first case in Equation (6.1) is proved. When (t,y)∈Dc
δ⊂

(∪jDxj ,δ)
c=∩jDc

xj ,δ
, the second term in Equation (6.9) is asymptotically smaller than

all powers of ε, so the first term in Equation (6.9) dominates, irrespective of m′≥0.
This shows the third case in Equation (6.1) since (k+1+m′)/2≥m. The second case
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is finally estimated simply by the largest term in Theorem 6.3. Theorem 6.1 is thereby
proved, if η is indeed admissible for the higher order phase Φk+p or Φ±k+p. If not, let
η̃ <η be an admissible cutoff width for Kd, T , and the higher order phase. Lemma 4.1
ensures the existence of such η̃. Denote by ũk and ũk+p the Gaussian beam superposi-
tions of orders k and k+p respectively, which (both) use η̃ as cutoff width. This width
is clearly admissible for both of them and therefore the theorem holds for ũk. Moreover,
by Lemma 4.2, the difference |uk− ũk| is exponentially small in ε, which implies that
the theorem also holds for uk.

The remainder of this section is dedicated to proving Theorem 6.2 and Theorem 6.3.

6.3. Proof of Theorem 6.2. As we will show below, the Gaussian beam phase
Ψj of the oscillatory integrals in Equation (6.8) is always one of Φk, Φk+p, for the
Schrödinger equation, and one of Φ±k , Φ

±
k+p, for the wave equation. All these phases,

and their corresponding central rays x, x±, have properties (P1)–(P4) by Lemma 4.1,
and the assumption on η. The first step in the proof is a lemma proving that these
phases also satisfy (P6).

Lemma 6.1. For all k≥0, property (P6) is true for the Schrödinger phase Φk and its
central ray x, as well as for the phases Φ±k and central rays x± of the wave equation.

Proof. As noted in Remark 3.1, the first three equations in Equation (3.8) and
Equation (3.10) have the Hamiltonian structure of Equation (3.11). Let φ and H rep-
resent the phase and Hamiltonian for the Schrödinger equation or one of the modes of
the wave equation. Moreover, let φ0, x and p be the corresponding phase, central ray
and ray direction. They are well-defined for all t≥0 and z∈Rn by the discussion in
Section 4.1. They are also real, since the initial data Equation (3.12) is real and H(x,p)
is real whenever x and p are real. The first part of (P6) is then proved by noting that
φ(t,0,z)=φ0(t,z) and ∇φ(t,0,z)=p(t,z). Next, let J(t,z)=Dzx(t,z) and define

S(t,z) :=J(t,z)T∇yφ(t,0,z)−∇zφ(t,0,z)=J(t,z)T p(t,z)−∇zφ0(t,z),

which is zero at t=0 by Equation (3.12). From Equation (3.11), with P (t,z)=Dzp(t,z),
it then follows that

∂tS=(Dz∂tx)
T p+JT∂tp−∇z∂tφ0

=(Dz∇pH)T p−JT∇yH−∇z(−H+(∇pH)T p)

=(Dz∂pH)T p−JT∇yH+JT∇yH+PT∇pH−(Dz∇pH)T p−PT∇pH=0.

This shows that S is zero for all times, which proves the lemma.

We will now continue with the proof for the Schrödinger case. Since the wave
equation beams are just sums of beams for its two modes, the proof for the wave
equation case will be identical, and we leave it out.

By Equation (3.5) we have for the Schrödinger equation

uk+p(t,y)−uk(t,y)=

(
1

2πε

)n
2
∫
K0

[vk+p(t,y,z)−vk(t,y,z)]
η(y−x(t,z))dz,

since the same η is used for the kth and the (k+p)th order beams.
Starting from the expressions for Φk and Ak in (3.2) and Equations (3.3) and (3.4),

we can analyze the differences vk+p−vk. We obtain

vk+p−vk=Ak+pe
iΦk+p/ε−Ake

iΦk/ε
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=(Ak+p−Ak)e
iΦk+p/ε+Ak

(
eiΦk+p/ε−eiΦk/ε

)
. (6.11)

By the discussion in Section 4.1 none of x, p, φ0,M , φβ , and aj,β depend on k. Therefore,

Ak+p(t,y,z)−Ak(t,y,z)

=

� k
2 �−1∑
j=0

εj [āj,k+p(t,y,z)− āj,k(t,y,z)]+

�(k+p)/2�−1∑
j=� k

2 �
εj āj,k+p(t,y,z)

=

� k
2 �−1∑
j=0

k+p−2j−1∑
|β|=k−2j

1

β!
aj,β(t,z)ε

jyβ+

�(k+p)/2�−1∑
j=� k

2 �

k+p−2j−1∑
|β|=0

1

β!
aj,β(t,z)ε

jyβ .

This is a finite sum of terms having the form aj,β(t,z)ε
jyβ/β!. It can easily be checked

that j+ |β|/2≥ k
2 for all terms. Therefore, for some finite Na, functions gj , multi-indices

αj and powers �j≥0, we can write the sum as

Ak+p(t,y,z)−Ak(t,y,z)=ε
k
2

Na∑
j=0

ε�j−|αj |/2gj(t,z)yαj ,

where the gj functions are equal to scaled amplitude coefficients, which satisfy Equation
(4.1) and Equation (4.2). Moreover, if �j =0 then |αj |=k−2j, so |αj | then has the same
parity as k. In Equation (6.11) the amplitudes and phases are evaluated at y−x(t,z)
and hence, the first term there contributes to uk+p−uk as

(
1

2πε

)n
2
∫
K0

(Ak+p−Ak)e
iΦk+p/ε
ηdz=ε

k
2

Na∑
j=0

ε�jIαj

Φk+p,x,gj
, (6.12)

where |αj | has the same parity as k when �j =0. For this case the gj functions are
independent of both y and ε, and by Equation (4.2) they have supp gj⊂K0. Therefore,
by Equation (4.1) and Equation (2.3), property (P4′) implies (P7) and (P8), with w7=
w8=w4 and

D7= sup
t∈[0,T ]

||gj(t, ·)||L∞(Kd), D8= sup
t∈[0,T ]

|gj(t, ·)|Lip(Kd), q= �=0.

We conclude that the oscillatory integrals in Equation (6.12) all satisfy (P1)–(P4) and
(P6)–(P8).

We now consider the second term in Equation (6.11) and define the function

g̃(t,y,z,ε) :=

∫ 1

0

eis(Φk+p(t,y,z)−Φk(t,y,z))/εds. (6.13)

By Equation (4.1) we have g̃(t,y,z,ε)∈C∞([0,T ]×R
n×Kd×R

+). A simple calculation
shows that

eiΦk+p/ε−eiΦk/ε=
(
ei(Φk+p−Φk)/ε−1

)
eiΦk/ε=

i

ε
g̃(Φk+p−Φk)e

iΦk/ε.

Then we have

Ak(t,y,z)
(
eiΦk+p(t,y,z)/ε−eiΦk(t,y,z)/ε

)
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=
i

ε
g̃(t,y,z,ε)Ak(t,y,z)

(
Φk+p(t,y,z)−Φk(t,y,z)

)
eiΦk(t,y,z)/ε

=
i

ε
g̃(t,y,z,ε)Ak(t,y,z)

k+p+1∑
|β|=k+2

1

β!
φβ(t,z)y

βeiΦk(t,y,z)/ε

=ig̃(t,y,z,ε)eiΦk(t,y,z)/ε

� k
2 �−1∑
j=0

k−2j−1∑
|β1|=0

k+p+1∑
|β2|=k+2

εj−1

β1!β2!
aj,β1(t,z)φβ2(t,z)y

β1+β2 .

As before, this is a finite sum, now with terms of the form

ig̃(t,y,z,ε)
εj−1

β1!β2!
aj,β1

(t,z)φβ2
(t,z)yβ1+β2eiΦk(t,y,z)/ε. (6.14)

It is again easy to check that j−1+ |β1+β2|/2≥k/2 for all terms. There are therefore
functions gj , multi-indices αj and powers �j≥0 such that for some finite Nq,

Ak

(
eiΦk+p/ε−eiΦk/ε

)
=ε

k
2

Nq∑
j=0

ε�j−|αj |/2gj(t,y,z,ε)(y−x(t,z))αjeiΦk(t,y−x(t,z),z)/ε,

where |αj |=k−2j+2 if �j =0, so, again, |αj | then has the same parity as k. Hence,
the second term in Equation (6.11) contributes to uk+p−uk as

(
1

2πε

)n
2
∫
K0

Ak

(
eiΦk+p/ε−eiΦk/ε

)

ηdz=ε

k
2

Nq∑
j=0

ε�jIαj

Φk,x,gj
, (6.15)

where, as before, Φk and x have properties (P1)–(P4) and (P6).
We have left to prove that Φk, x, and gj have properties (P7) and (P8).

By Equation (6.14), Equation (4.1), and Equation (4.2), each gj is of the form
fj(t,z)g̃(t,y−x(t,z),z,ε) where fj(t,z)∈C∞(Kd) and suppfj(t, ·)⊂K0 for t∈ [0,T ].
Hence, gj(t,y,z,ε)∈C∞([0,T ]×R

n×Kd×R
+), with compact support in K0 for fixed

t,y,ε.
To show Equation (6.6) and Equation (6.7), we note first that since both the phases

Φk, Φk+p satisfy (P4′), we have for any s∈ [0,1], (t,z)∈Kd, y∈Rn and ε>0,∣∣∣ei[sΦk+p(t,y,z)+(1−s)Φk(t,y,z)]/ε
η(y)
∣∣∣= e−s
Φk+p(t,y,z)−(1−s)
Φk(t,y,z)]/ε
η(y)

≤ e−sw4,k+p|y|2/ε−(1−s)w4,k|y|2/ε

≤ e−w̃4|y|2 , (6.16)

where w4,� is the constant in (P4′) for Φ� and w̃4=min(w4,k+p,w4,k). To simplify the
presentation in the remainder of the proof, we let ỹ=y0−x(t,z) and drop the index j
from gj and fj . Then by Equation (6.16) and Equation (2.3),∣∣∣g(t,y0,z,ε)eiΦk(t,y0−x(t,z),z)/ε
η(y0−x(t,z))

∣∣∣
=
∣∣∣f(t,z)g̃(t,ỹ,z,ε)eiΦk(t,ỹ,z)/ε
η(ỹ)

∣∣∣
=

∣∣∣∣f(t,z)
∫ 1

0

ei[sΦk+p(t,ỹ,z)+(1−s)Φk(t,ỹ,z)]/ε
η(ỹ)ds

∣∣∣∣≤C1e
−w̃4|ỹ|2/ε,
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for all (t,z)∈Kd. This shows Equation (6.6) and therefore (P7) with D7=C1 and
w7= w̃4.

Finally, for Equation (6.7) we use the fact that Φk(t,0,z)=Φk+p(t,0,z)=φ0(t,z),
which means that g̃(t,0,z,ε)=1. We can therefore split(

g(t,y0,z,ε)−g(t,y0,z0,ε)
)
eiΦk(t,y0−x(t,z),z)/ε
η(y0−x(t,z))

=
(
f(t,z)g̃(t,ỹ,z,ε)−f(t,z0)g̃(t,0,z0,ε)

)
eiΦk(t,ỹ,z)/ε
η(ỹ)

=f(t,z)
(
g̃(t,ỹ,z,ε)−1

)
eiΦk(t,ỹ,z)/ε
η(ỹ)+

(
f(t,z)−f(t,z0)

)
eiΦk(t,ỹ,z)/ε
η(ỹ).

Since f is smooth, t∈ [0,T ] and z,z0∈Kd, it follows from Equation (2.3) and (P4′) that
the second term can be estimated as∣∣∣(f(t,z)−f(t,z0))e

iΦk(t,ỹ,z)/ε
η(ỹ)
∣∣∣≤C2|z−z0|e−w4,k|ỹ|2/ε. (6.17)

For the first term we consider(
g̃(t,ỹ,z,ε)−1

)
eiΦk(t,ỹ,z)/ε

=

∫ 1

0

(
eis(Φk+p(t,ỹ,z)−Φk(t,ỹ,z))/ε−1

)
ds×eiΦk(t,ỹ,z)/ε

=
i

ε
(Φk+p(t,ỹ,z)−Φk(t,ỹ,z))

∫ 1

0

∫ 1

0

sei(srΦk+p(t,ỹ,z)+(1−sr)Φk(t,ỹ,z))/εdsdr.

Hence, upon again using Equation (6.16), Equation (4.1), and Equation (2.3),∣∣∣f(t,z)(g̃(t,ỹ,z,ε)−1
)
eiΦk(t,ỹ,z)/ε
η(ỹ)

∣∣∣
≤C1

ε
|Φk+p(t,ỹ,z)−Φk(t,ỹ,z)|e−w̃4|ỹ|2/ε

≤C1

ε

k+p+1∑
|β|=k+2

1

β!
|φβ,�(t,z)||ỹ||β|e−w̃4|ỹ|2/ε

≤C ′1
ε
|ỹ|k+2e−w̃4|ỹ|2/ε≤ C3

ε
|z−z0|k+2e−w̃4|ỹ|2/ε,

where we also used the fact that by Equation (2.3),

|ỹ|= |x(t,z0)−x(t,z)|≤C|z−z0|,

whenever t∈ [0,T ] and z,z0∈Kd. Together with Equation (6.17) we thus get an estimate
of the type Equation (6.7) withD8=max(C1,C2,C3), w8= w̃4, q=k+1 and �=1, which
satisfy q≥2� as k≥1. This completes the proof of Theorem 6.2.

6.4. Proof of Theorem 6.3. We henceforth consider a fixed δ>0 and start
by proving the two most simple cases in the theorem: when (t,y) is either outside the
essential support of the solution, (t,y)∈Dc

x,δ, or close to a caustic point, (t,y)∈Cx,δ.
We next consider the most difficult case, when (t,y)∈Ccx,δ. In particular, showing the

extra ε1/2 factor when |α| is odd, requires careful estimates. To avoid breaking the flow
of the arguments we move most of the proofs of the various lemmas to Appendix A.
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6.4.1. Cases (t,y)∈Dc
x,δ and (t,y)∈Cx,δ. For both these cases we make use of

the following integral estimate.

Lemma 6.2. Let U ⊂R
n be a bounded measurable set. Suppose |y−x(t,z)|≥a≥0

when z∈U for a fixed t∈ [0,T ]. If b≥0 and c>0 then∫
U

|y−x(t,z)|be−c|y−x(t,z)|2/εdz≤C|U |εb/2e−ca2/2ε, (6.18)

where C only depends on b and c; it is independent of a, (t,y)∈ [0,T ]×R
n, and ε>0.

Proof. When b=0 the result is obviously true for C=1. When b>0 we use the
fact that xpe−x≤ (p/e)p for p>0 and x≥0. Then∫

U

|y−x(t,z)|be−c|y−x(t,z)|2/εdz≤
∫
U

|y−x(t,z)|be−c|y−x(t,z)|2/2εe−ca2/2εdz

≤
(
εb

c

)b/2

e−b/2e−ca2/2ε

∫
U

dz.

This shows the lemma with C=(b/c)
b/2

e−b/2.

We now first suppose that (t,y)∈Dc
x,δ. If z∈K0, then by definition

|y−x(t,z)|>δ.

Therefore, by (P7) and Lemma 6.2, with b= |α|, c=w7, and a= δ,

∣∣IαΦ,x,g(t,y)
∣∣≤ε−

n+|α|
2

∫
K0

∣∣∣g(t,y,z,ε)(y−x(t,z))αeiΦ(t,y−x(t,z),z)/ε
η(y−x(t,z))
∣∣∣dz

≤D7ε
−n+|α|

2

∫
K0

|y−x(t,z)||α|e−w7|y−x(t,z)|2/εdz

≤D7C|K0|ε−n
2 e−w7δ

2/2ε≤C ′e−w/ε,

for w<w7δ
2/2, which proves the case (t,y)∈Dc

x,δ since D7 and C are uniform constants
in t and y.

Second, suppose (t,y)∈Cx,δ. Here, we simply use Lemma 6.2 with a=0. This does
not give an optimal estimate, but slightly better than Equation (6.3). Hence, by (P7)
and Lemma 6.2 as above, with b= |α|, c=w7 and a=0,

∣∣IαΦ,x,g(t,y)
∣∣≤D7ε

−n+|α|
2

∫
K0

|y−x(t,z)||α|e−w7|y−x(t,z)|2/εdz

≤D7C|K0|ε−n
2 ≤C ′ε−

n
2 ,

where again C ′ is independent of (t,y)∈ [0,T ]×R
n. This proves the theorem when

(t,y)∈Cx,δ.
6.4.2. Case (t,y)∈Ccx,δ. This is the most complicated case, in particular when

|α| is odd. The key idea of the proof is that the ray function x(t,z) is locally invertible
in z on the set Ccx,δ. We derive this property from a uniform version of the inverse
function theorem; see Theorem 6.4 below. In order to carefully track the constants
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in the estimates, and verify that they are independent of (t,y)∈Ccx,δ, we define the
following finite numbers

R1= sup
t∈[0,T ]

z∈conv(Kd)

|J(t,z)|, R2=

n∑
j=1

sup
t∈[0,T ]

z∈conv(Kd)

∣∣D2
zxj(t,z)

∣∣ , (6.19)

where conv(K) represents the convex hull of K and x=(x1, . . . ,xn)
T . This means that

whenever z,z′∈Kd and t∈ [0,T ],
|x(t,z)−x(t,z′)|≤R1|z−z′|, (6.20)

|J(t,z)−J(t,z′)|≤R2|z−z′|, (6.21)

|x(t,z)−x(t,z′)−J(t,z′)(z−z′)|≤ 1

2
R2|z−z′|2. (6.22)

We also define the extended mapping X :Kd �→ [0,T ]×R
n as

X(t,z)=(t,x(t,z)),

and we let Br(z) be the open ball of radius r centered at z. We then have the following
theorem for the ray function x(t,z).

Theorem 6.4 (Uniform inverse function theorem). Suppose d′∈ (0,d) and δ′>0.
Then there are numbers R−1, ρ>0, and 0<r≤d−d′ such that, for all (t,z0)∈Kd′ \
X−1(Cx,δ′),

• B̄r(z0)⊂Kd,

• x(t, ·) restricted to Br(z0) is a diffeomorphism on its image Vr(t,z0) :=
x(t,Br(z0)),

• Vr(t,z0) is open; if y0=x(t,z0), then Bρ(y0)⊂Vr(t,z0), and
• the inverse of the Jacobian J(t,z) is bounded on Br(z0),

sup
z∈Br(z0)

|J−1(t,z)|≤R−1.

Note that R−1, r, and ρ are uniform in (t,z0) but in general depend on d′ and δ′. See
Equation (A.1), Equation (A.2), and Equation (A.4) for their precise definitions.

This result follows essentially in the same way as the standard inverse function
theorem. For completeness, a proof is given in Appendix A.1.

We let {zj} be the set of all solutions in Kd/2 to the equation y=x(t,z). Since
(t,y)∈Ccx,δ⊂Ccx,δ/2 all points (t,zj) belong to Kd/2 \X−1(Cx,δ/2). This set will be used
extensively, and we introduce the shorthand notation

K̄ :=Kd/2 \X−1(Cx,δ/2).
We then apply Theorem 6.4 with the parameters d′=d/2 and δ′= δ/2, and, henceforth,
we let R−1, r, and ρ be as given by the theorem with these parameters. They then
satisfy

0<r≤d/2, R−1,ρ>0. (6.23)

We stress that the four bullet points in the theorem are then valid with these numbers
for all (t,z0)∈K̄.
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In the remainder of the proof we will make use of a few consequences of Theorem 6.4
which we collect in a corollary.

Corollary 6.2. The number of solutions {zj} in Kd/2 is bounded by a number
Mδ <∞, independently of (t,y)∈Ccx,δ. The balls {Br/2(zj)} are all disjoint. Moreover,

if (t,z0)∈K̄ and x(t,z),x(t,z′)∈Bρ(x(t,z0)), then

|z−z′|≤R−1|x(t,z′)−x(t,z)|. (6.24)

Proof. If the number of solutions {zj} is more than one, suppose |zj−zk|<r for
some indices j,k. Then zj ∈Br(zk) and x(t,zj)=x(t,zk) so x(t,z) is not one-to-one on
Br(zk). This contradicts the second point of Theorem 6.4. Hence, |zj−zj |≥ r for all
j �=k and the balls {Br/2(zj)} are disjoint. Moreover, by the first point in Theorem 6.4,
each disjoint ball Br/2(zj) is a subset of Kd and their total volume is therefore bounded
by the volume of Kd. The number of solutions must hence be finite, say M , and

|Kd|≥
M∑
j=1

|Br/2(zj)|=Mωn(r/2)
n ⇒ M ≤Mδ =

|Kd|2n
ωnrn

, ωn=
πn/2

Γ(n/2+1)
,

where ωn is the volume of the unit n-sphere. This shows the first statement since Mδ

only depends on Kd, r, and n. For Equation (6.24), we note that by Theorem 6.4 there
is a smooth inverse m(t,x) satisfying m(t,x(t,z))= z for all z∈Br(z0). Let y0=x(t,z0).
Then

|z−z′|= |m(t,x(t,z))−m(t,x(t,z′))|≤ sup
y∈Bρ(y0)

|Dxm(t,y)| |x(t,z)−x(t,z′)|

≤ sup
q∈Br(z0)

∣∣J−1(t,q)
∣∣ |x(t,z)−x(t,z′)|≤R−1|x(t,z)−x(t,z′)|.

For the last inequality we used the fourth point in Theorem 6.4. This shows the corollary.

Hence, by Corollary 6.2 the number of solutions M to y=x(t,z) in Kd/2 is finite.
We define the set S⊂K0 as the points away from these solutions {zj},

S=

{
K0, M =0,

K0 \
⋃M

j=1Br/2(zj), M ≥0.

Since {Br/2(zj)} are disjoint by Corollary 6.2 we can then split the integral as

IαΦ,x,g(t,y)=ε−
n+|α|

2

∫
K0

g(t,y,z,ε)(y−x(t,z))αeiΦ(t,y−x(t,z),z)/ε
η(y−x(t,z))dz

=

∫
S

· · · dz+
M∑
j=1

∫
Br/2(zj)∩K0

· · · dz

=

∫
S

· · · dz+
M∑
j=1

∫
Br/2(zj)

· · · dz=: IS+

M∑
j=1

IBj
.

Here we also used the fact from (P7) that g(t,y, · ,ε) is compactly supported in K0. We
will show below that there are positive constants ws, CS , and CB that are independent
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of (t,y)∈Ccx,δ and ε∈ (0,1] such that

|IS |≤CSe
−ws/ε, |IBj |≤CB

{
1, |α| is even,√
ε, |α| is odd. (6.25)

From Corollary 6.2 we have that M is bounded by Mδ uniformly in (t,y). We therefore
get the desired estimate,

∣∣IαΦ,x,g(t,y)
∣∣≤|IS |+Mδmax

j
|IBj

|≤CSe
−ws/ε+MδCB

{
1, |α| is even,√
ε, |α| is odd,

≤C

{
1, |α| is even,√
ε, |α| is odd,

for all (t,y)∈Ccx,δ and ε∈ (0,1].
We now turn to proving Equation (6.25). It will be done in three steps, one for

each case.

Estimate of IS.
For this estimate we show that when z∈S then

|y−x(t,z)|≥ ρ̄ :=min(ρ,r/2R−1,δ/2).

Suppose first that X(t,z) �∈ Cx,δ/2. This implies that (t,z)∈K̄ and Theorem 6.4 applies.
Assume |y−x(t,z)|<ρ̄≤ρ. Then y∈Bρ(x(t,z)) and by Theorem 6.4 there is a z′∈Br(z)
such that y=x(t,z′). Since z∈S⊂K0 and r≤d/2 by Equation (6.23), we have z′∈Kd/2,
so that z′∈{zj} and M>0. Hence, by Equation (6.24), and the fact that z∈S,

r

2
≤|z−z′|≤R−1|x(t,z)−x(t,z′)|<R−1ρ̄≤ r

2
,

a contradiction. So |y−x(t,z)|≥ ρ̄ if X(t,z) �∈ Cx,δ/2.
Suppose instead that X(t,z)∈Cx,δ/2. Then

|x(t,z)−y|=dist(X(t,z),(t,y))≥dist((t,y),Cx)−dist(X(t,z),Cx)≥ δ−δ/2= δ/2≥ ρ̄,

since (t,y)∈Ccx,δ. We have thus shown that if z∈S, then |y−x(t,z)|≥ ρ̄. Therefore, by
(P7) and Lemma 6.2, with C and D7 independent of (t,y) and ε>0,

|IS |=
∣∣∣∣ε−n+|α|

2

∫
S

g(t,y,z,ε)(y−x(t,z))αeiΦ(t,y−x(t,z),z)/ε
η(y−x(t,z))dz

∣∣∣∣
≤D7ε

−n+|α|
2

∫
S

|y−x(t,z)||α|e−w7|y−x(t,z)|2/εdz

≤D7Cε−
n
2 |S|e−w7ρ̄

2/2ε≤CSe
−ws/ε,

for ws<w7ρ̄
2/2. Here we also used the fact that |S|≤ |K0|<∞. This shows the first

inequality in Equation (6.25).

Estimate of IBj
.

The integrals IBj are all of the form

IB(t,z0)=ε−
n+|α|

2

∫
B r

2
(z0)

g(t,y0,z,ε)(y0−x(t,z))αeiΦ(t,y0−x(t,z),z)/ε
η(y0−x(t,z))dz



2064 ERROR ESTIMATES FOR GAUSSIAN BEAM SUPERPOSITIONS

where (t,z0)∈K̄, y0=x(t,z0), and the number r is determined using Theorem 6.4. It
follows in particular that Br/2(z0)⊂Kd so that the estimates in properties (P4′), (P7),
and (P8) can be used. We now need to bound IB(t,z0) with constants independent of
(t,z0)∈K̄ and ε∈ (0,1]. For this we use the following lemma.

Lemma 6.3. Suppose r is given as above and y0=x(t,z0). If a,b≥0 and c>0 there
is a constant C such that for all (t,z0)∈K̄ and ε>0,∫

B r
2
(z0)

|z−z0|a|y0−x(t,z)|be−c|y0−x(t,z)|2/εdz≤Cε
n+a+b

2 . (6.26)

The proof is given in Appendix A.2.

Case when |α| even.
For |α| even we directly apply (P7) and Lemma 6.3 to IB with a=0, b= |α|, and c=w7

to get

|IB(t,z0)|≤D7ε
−n+|α|

2

∫
B r

2
(z0)

|y0−x(t,z)||α|e−w7|y0−x(t,z)|2/εdz≤C ′B ,

for all (t,z0)∈K̄ and ε>0. This shows the first half of the second estimate in Equation
(6.25).

Case when |α| odd.
In this case we can gain an additional factor of ε1/2 if we make a careful estimate. To do
this, we approximate the phase Φ by its leading order Taylor expansion in z and show
that the integral using the approximate Φ gives negligible contribution to the integral.
The following lemma details the phase approximation. It is proved in Appendix A.3.

Lemma 6.4. Suppose r is given as above and y0=x(t,z0). If the phase Φ(t,y,z) and
central ray x(t,z) have properties (P1)–(P4) and (P6), then there is a bound R3 such
that for all (t,z0)∈K̄ and z∈Br/2(z0),∣∣∣∣Φ(t,y0−x(t,z),z)−

(
Φ(t,0,z0)+

1

2
(z−z0)

TA(t,z0)(z−z0)

)∣∣∣∣≤R3|z−z0|3,

where A(t,z0)∈Cn×n. The imaginary part of A is symmetric positive definite, and there
exists wa>0 such that for all (t,z0)∈K̄,

�A(t,z0)≥waI. (6.27)

We thus start by approximating Φ≈ Φ̃ and IB≈ ĨB on Br/2(z0), where

Φ̃(t,z,z0) :=Φ(t,0,z0)+
1

2
(z−z0)

TA(t,z0)(z−z0),

with A(t,z0) as in Lemma 6.4, and

ĨB(t,z0) :=ε−
n+|α|

2

∫
B r

2
(z0)

g(t,y0,z0,ε)(J(t,z0)(z0−z))αeiΦ̃(t,z,z0)/ε
η(y0−x(t,z))dz.

We will now show that ĨB is exponentially small in ε. To do this we use the following
lemma describing cancellations occurring in integrals over odd mononomials multiplied
by a Gaussian.
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Lemma 6.5. Let α be an n-dimensional multi-index such that |α| is odd. For A,R∈
C

n×n and any r>0, ∫
Br(z0)

(R(z−z0))
αe(z−z0)

TA(z−z0)dz=0.

The proof of the lemma is given in Appendix A.4. It shows that the ĨB integral, without

η, vanishes, since∫

B r
2
(z0)

g(t,y0,z0,ε)(J(t,z0)(z0−z))αeiΦ̃(t,z,z0)/εdz

=eiΦ(t,0,z0)/εg(t,y0,z0,ε)

∫
B r

2
(z0)

(J(t,z0)(z0−z))αe
i
2 (z−z0)

TA(t,z0)(z−z0)/εdz=0.

Therefore,

ĨB(t,z0)=ε−
n+|α|

2 eiΦ(t,0,z0)/εg(t,y0,z0,ε)

×
∫
B r

2
(z0)

(J(t,z0)(z0−z))αe
i
2 (z−z0)

TA(t,z0)(z−z0)/ε(
η(y0−x(t,z))−1)dz.

Moreover, 
η(y−x)−1 is identically zero for |y−x|≤η, and since |y0−x(t,z)|=
|x(t,z0)−x(t,z)|≤R1|z−z0| when z∈Br(z0), we have by the positive definiteness of
�A given in Lemma 6.4,∣∣∣∣∣

∫
B r

2
(z0)

(J(t,z0)(z0−z))αe
i
2 (z−z0)

TA(t,z0)(z−z0)/ε(
η(y0−x(t,z))−1)dz

∣∣∣∣∣
≤
∫
B r

2
(z0)

|J(t,z0)||α||z0−z||α|e− 1
2 (z−z0)

T
A(t,z0)(z−z0)/ε|
η(y0−x(t,z))−1|dz

≤
(
R1r

2

)|α|∫
B r

2
(z0)

e−
wa
2 |z−z0|2/ε|
η(y0−x(t,z))−1|dz

≤
(
R1r

2

)|α| ∣∣B r
2
(z0)

∣∣e−waη
2/R2

12ε.

Since Φ(t,0,z0) is real by (P6), then by (P7), noting that y0−x(t,z0)=0,

|g(t,y0,z0,ε)|= |g(t,y0,z0,ε)eiΦ(t,0,z0)/ε
η(0)|≤D7, (6.28)

where D7 is clearly uniform in (t,z0). Hence, there are constants C̃B and w̃ such that
for all (t,z0)∈K̄ and ε>0,

|ĨB(t,z0)|≤ε−
n+|α|

2 D7

(
R1r

2

)|α| ∣∣B r
2
(z0)

∣∣ e−waη
2/R2

12ε≤ C̃Be
−w̃/ε, (6.29)

with w̃<waη
2/2R2

1.
We next write the difference as

ε
n+|α|

2 (IB− ĨB)=

∫
B r

2
(z0)

(E1+E2+E3)dz,
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where

E1=[g(t,y0,z,ε)−g(t,y0,z0,ε)](y0−x(t,z))αeiΦ(t,y0−x(t,z),z)/ε
η(y0−x(t,z)),

E2=g(t,y0,z0,ε)[(y0−x(t,z))α−(J(t,z0)(z0−z))α]eiΦ(t,y0−x(t,z),z)/ε
η(y0−x(t,z)),

E3=g(t,y0,z0,ε)(J(t,z0)(z0−z))α
[
eiΦ(t,y0−x(t,z),z)/ε−eiΦ̃(t,z,z0)/ε

]

η(y0−x(t,z)).

We will now consider these integrands in sequence.
From (P8) it follows that for all (t,z0)∈K̄, z∈Br/2(z0), and ε>0,

|E1|≤D8|z−z0|
(
1+

|z−z0|q
ε�

)
|y0−x(t,z)||α|e−w8|y0−x(t,z)|2/ε, (6.30)

with q≥2�.
For E2 we note first that

|aα−bα|= |(a−b+b)α−bα|=

∣∣∣∣∣∣∣∣
∑

β1+β2=α

β2 �=α

α!

β1!β2!
(a−b)β1bβ2

∣∣∣∣∣∣∣∣
≤ C̄(α)

|α|∑
j=1

|a−b|j |b||α|−j .

Therefore, by using (P4′), Equation (6.28), and Equation (6.22) we get for all (t,z0)∈K̄,
z∈Br/2(z0) and ε>0,

|E2|≤ C̄(α)D7e
−w4|y0−x(t,z)|2/ε

|α|∑
j=1

|y0−x(t,z)−J(t,z0)(z0−z)|j |y0−x(t,z)||α|−j

≤ C̄(α)D7

|α|∑
j=1

Rj
2

2j
|z−z0|2j |y0−x(t,z)||α|−je−w4|y0−x(t,z)|2/ε

≤C2

|α|∑
j=1

|z−z0|2j |y0−x(t,z)||α|−je−w4|y0−x(t,z)|2/ε, (6.31)

where C2= C̄(α)D7max(R2/2,(R2/2)
|α|).

For E3 we first need to approximate the phase difference factor when z∈Br/2(z0)
and (t,z0)∈K̄. By Lemma 6.4 and Equation (6.20),

|Φ− Φ̃|≤R3|z−z0|3,

�Φ̃=
1

2
(z−z0)

T�A(t,z0)(z−z0)≥ wa|z−z0|2
2

≥ wa|y0−x(t,z)|2
2R2

1

.

Therefore, upon using (P4′),

∣∣∣eiΦ/ε−eiΦ̃/ε
∣∣∣
η =

∣∣∣∣∣ i(Φ− Φ̃)

ε

∫ 1

0

ei(sΦ+(1−s)Φ̃)/ε
ηds

∣∣∣∣∣≤R3
|z−z0|3

ε
e−min(
Φ,
Φ̃)/ε

≤R3
|z−z0|3

ε
e−min(w4,wa/2R

2
1)|y0−x(t,z)|2/ε.

Then from Equation (6.28), with w′=min(w4,wa/2R
2
1) and C3=R3D7R

|α|
1 ,

|E3|≤ C3

ε
|z−z0||α|+3e−w′|y0−x(t,z)|2/ε, (6.32)
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for all (t,z0)∈K̄, z∈Br/2(z0), and ε>0. We note that all the Ej terms can be bounded
by a form that can be estimated by Lemma 6.3. Indeed, if we define

Uε(a,b) := |z−z0|a|y0−x(t,z)|be−c|y0−x(t,z)|2/ε, c=min(w8,w
′),

and set Ce=max(D8,C2,C3), we can summarize Equation (6.30), Equation (6.31), and
Equation (6.32) as

ε
n+|α|

2 |IB(t,z0)− ĨB(t,z0)|

≤Ce

∫
B r

2
(z0)

Uε(1, |α|)+ 1

ε�
Uε(q+1, |α|)+

|α|∑
j=1

Uε(2j, |α|−j)+
1

ε
Uε(|α|+3,0)dz.

We then use Lemma 6.3, the constant in which we denote CL. We get for 0<ε≤1,

ε
n+|α|

2 |IB(t,z0)− ĨB(t,z0)|

≤CeCL

⎛
⎝ε

n+1+|α|
2 +ε

n+q+1−2�+|α|
2 +

|α|∑
j=1

ε
n+2j+|α|−j

2 +ε
n+|α|+3+0−2

2

⎞
⎠≤C ′ε

n+1+|α|
2 ,

since q≥2�. Together with Equation (6.29) we finally obtain

|IB(t,z0)|≤ |IB(t,z0)− ĨB(t,z0)|+ |ĨB(t,z0)|≤C ′
√
ε+ C̃Be

−w̃/ε≤C ′′B
√
ε,

for all (t,z0)∈K̄ and 0<ε≤1. This shows the last part of the second inequality in
Equation (6.25), and completes the proof with CB =max(C ′B ,C

′′
B).

Appendix A. Proofs.

A.1. Proof of Theorem 6.4. The proof essentially follows the standard
steps for proving the inverse function theorem; see for instance [35]. We let K′=Kd′ \
X−1(Cx,δ′) and consider the function

φ(z)= z+J−1(t,z0)(y−x(t,z)),

with (t,z0)∈K′ and y∈Rn fixed. Since J is non-singular on K′, finding a fixed point
φ(z)=z is equivalent to finding a solution to the equation y=x(t,z). We note that J is
non-singular also on the slightly larger set K′′=Kd \X−1(Cx,δ′/2)⊃K′ and we let R−1

be an upper bound of J−1 on this (compact) set,

R−1= sup
(t,z)∈K′′

|J−1(t,z)|<∞. (A.1)

We then choose r as

r=min

(
d−d′,

1

2R−1R2
,
δ′

2R1

)
>0. (A.2)

We note that if z∈B̄r(z0) we have

dist(z,K0)≤|z−z0|+dist(z0,K0)≤ r+d′≤d,

Hence, B̄r(z0)⊂Kd and for z1,z2∈B̄r(z0), using Equation (6.21),

|φ(z1)−φ(z2)|≤ max
z∈B̄r(z0)

|Dφ(z)| |z1−z2|= max
z∈B̄r(z0)

∣∣I−J−1(t,z0)J(t,z)
∣∣ |z1−z2|
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≤R−1 max
z∈B̄r(z0)

|J(t,z0)−J(t,z)| |z1−z2|≤R−1R2|z1−z2||z−z0|

≤R−1R2r|z1−z2|≤ 1

2
|z1−z2|. (A.3)

If z1 and z2 are both, different, fixed points of φ we get an impossible inequality. It
follows that φ has at most one fixed point in B̄r(z0) and therefore x(t,z) is one-to-
one on B̄r(z0). We next show that Vr(t,z0) is open. For each y′∈Vr(t,z0) there is a
z′∈Br(z0) and a λ>0, such that y′=x(t,z′) and Bλ(z

′)⊂Br(z0). Let λ′=λ/2R−1.
Then if y∈Bλ′(y′),

|φ(z′)−z′|= ∣∣J−1(t,z0)(y−y′)
∣∣≤R−1|y−y′|<R−1λ

′=
1

2
λ.

Consequentially, by Equation (A.3), if z∈B̄λ(z
′)⊂B̄r(z0),

|φ(z)−z′|≤ |φ(z)−φ(z′)|+ |φ(z′)−z′|< 1

2
|z−z′|+ 1

2
λ<λ.

Hence, φ(z)∈B̄λ(z
′) and φ is a contraction mapping on B̄λ(z

′). This means that φ has
a unique fixed point z∗∈B̄λ(z

′) at which y=x(t,z∗). Thus y∈Vr(t,z0), showing that
Bλ′(y′)⊂Vr(t,z0). Hence, Vr(t,z0) is open. In particular, if y′=y0=x(t,z0) we can take
λ= r and Bρ(y0)⊂Vr(t,z0) with

ρ= r/2R−1. (A.4)

For z∈Br(z0),

dist
(
(t,x(t,z)),Cx

)
≥dist

(
(t,x(t,z0)),Cx

)
−dist

(
(t,x(t,z)),(t,x(t,z0))

)
=dist

(
(t,x(t,z0)),Cx

)
−|x(t,z)−x(t,z0)|≥ δ′−R1|z−z0|

≥ δ′−R1r≥ δ′− δ′

2
=

δ′

2
,

which shows that (t,Vr(t,z0))⊂Ccx,δ′/2. This means that J(t,z) is invertible and (t,z)∈
K′′ for all z∈Br(z0). The last point in the theorem then follows from Equation (A.1).
That the inverse of x(t,z) on Br(z0) is differentiable is proved in the same way as in [35].

A.2. Proof of Lemma 6.3. By Theorem 6.4 there is a smooth inverse of x(t, ·)
on Vr. Let m(t, ·) be this inverse and ρ the number paired with r in Equation (6.23).
Set B̃=m(t,Bρ(y0)). We then split the integral as∫

B r
2
(z0)

· · · dz=
∫
B r

2
(z0)\B̃

· · · dz+
∫
B r

2
(z0)∩B̃

· · · dz=: I1+I2.

By construction we have |y0−x(t,z)|≥ρ for z∈B r
2
(z0)\B̃. Therefore, by Lemma 6.2,

|I1|≤
(r
2

)a
∫
B r

2
(z0)\B̃

|y0−x(t,z)|be−c|y0−x(t,z)|2/εdz

≤C(b,c)
(r
2

)a ∣∣∣B r
2
(z0)\B̃

∣∣∣εb/2e−cρ2/2ε≤C ′(a,b,c,n,r,ρ)ε
n+a+b

2 ,
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for all (t,z0)∈K̄ and ε>0. Furthermore, on B̃ we can use Equation (6.24), and upon
changing variables y=x(t,z), we get

|I2|≤Ra
−1

∫
B̃
|y0−x(t,z)|a+be−c|y0−x(t,z)|2/εdz

=Ra
−1

∫
Bρ(y0)

|y0−y|a+be−c|y0−y|2/ε|detDym(t,y)|dy

≤Ra
−1 sup

y∈Bρ(y0)

|detDym(t,y)|
∫
Rn

|y|a+be−c|y|2/εdy

=Ra
−1 sup

y∈Bρ(y0)

|detDym(t,y)|εn+a+b
2

∫
Rn

|y|a+be−c|y|2dy. (A.5)

For the determinant let λj be the eigenvalues of A∈Rn×n. Then

|detA|=
∏
|λj |≤ |λmax|n= |ATA|n/22 ≤|A|n2 .

Hence, by the fourth point in Theorem 6.4,

sup
y∈Bρ(y0)

|detDym(t,y)|≤ sup
y∈Bρ(y0)

|Dym(t,y)|n=sup
z∈B̃

∣∣J−1(t,z)
∣∣n≤Rn

−1.

Finally,

|I2|≤Ra+n
−1 C ′′(a,b,c,n)ε

n+a+b
2 ,

where C ′′(a,b,c,n) is the value of the last integral in Equation (A.5). The result follows
with C=max(C ′,Ra+n

−1 C ′′), since all these constants are uniform in (t,z0)∈K̄.
A.3. Proof of Lemma 6.4. We consider (t,z0)∈K̄. By Theorem 6.4, we have

Br/2(z0)⊂Kd for these (t,z0). For simplicity we henceforth drop the t-dependence in
the notation. By (P1) and (P2) we can Taylor expand Φ(x(z0)−x(z),z) around z= z0,
and since Kd is compact, we can bound the remainder term using a constant R3 that
is uniform in (t,z0)∈K̄ and z∈Br/2(z0),∣∣∣∣∣Φ(y0−x(z),z)−

(
Φ(0,z0)−

[
J(z0)

T∇yΦ(0,z0)−∇zΦ(0,z0)
] ·(z−z0)

+
1

2
(z−z0) ·D2

z [Φ(x(z0)−x(z),z)]
∣∣
z=z0

(z−z0)
)∣∣∣∣∣≤R3|z−z0|3.

Using also (P6) we get∣∣∣∣∣Φ(y0−x(z),z)−
(
Φ(0,z0)+

1

2
(z−z0) ·A(z0)(z−z0)

)∣∣∣∣∣≤R3|z−z0|3,

where

A(z0)= D2
z [Φ(x(z0)−x(z),z)]

∣∣
z=z0

=J(z0)
TD2

yΦ(0,z0)J(z0)−J(z0)D
2
yzΦ(0,z0)

Dz

(−J(z)T∇yΦ(0,z)+∇zΦ(0,z)
)∣∣

z=z0
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=J(z0)
TD2

yΦ(0,z0)J(z0)−J(z0)D
2
yzΦ(0,z0).

We have left to show the properties of A(z0). Since ∇yΦ(0,z0) is real by (P6), so is
D2

yzΦ(0,z0). Clearly J(z0) is also real. Hence,

�A(z0)=J(z0)
T
(�D2

yΦ(0,z0)
)
J(z0),

which is symmetric. To show the positive definiteness, we note that by (P6) both
Φ(0,z0) and ∇yΦ(0,z0) are real and therefore,

1

2
yT�D2

yΦ(0,z0)y=�Φ(y,z0)+O(|y|3).

Moreover, for |y|≤2η we have from (P4) that �Φ(y,z0)≥w4|y|2, so

1

2
yT�D2

yΦ(0,z0)y≥w4|y|2+O(|y|3).

Setting y=sv for some arbitrary v∈Rn and scalar s>0, we therefore get

1

2
vT�D2

yΦ(0,z0)v=
1

2s2
(sv)T�D2

yΦ(0,z0)(sv)≥w4|v|2+O(s|v|3),

when s is sufficiently small. Letting s→0 shows that �D2
yΦ(0,z0)≥2w4. Thus, finally,

vT�A(z0)v=(J(z0)v)
T�D2

yΦ(0,z0)(J(z0)v)≥2w4|J(z0)v|2≥ 2w4

R2
−1

|v|2,

since |v|= |J−1(z0)J(z0)v|≤R−1|J(z0)v| by Theorem 6.4. This concludes the proof with
wa=2w4/R

2
−1.

A.4. Proof of Lemma 6.5. Without loss of generality we can take z0=0. By
symmetry Br(0) is invariant under the transformation z→−z, so
∫
Br(0)

(Rz)αez
TAzdz=

∫
Br(0)

(R(−z))αezTAzdz=
1

2

∫
Br(0)

((Rz)α+(R(−z))α)ezTAzdz.

Moreover, (Rz)α will be of the form

(Rz)α=
∑

cjz
�j , |�j |= |α|,

for some multi-indices �j and constants cj , determined by the elements of R. Hence,

∫
Br(0)

(Rz)αez
TAzdz=

1

2

∑
cj

∫
Br(0)

(z�j +(−z)�j )ezTAzdz

=
1

2

∑
cj

∫
Br(0)

z�j (1+(−1)|�j |)ezTAzdz=0,

if |�j |= |α| is odd.
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[10] L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equa-
tions, L’Enseignement Mathématique, XVII:99–163, 1971.
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[18] L. Klimeš, Discretization error for the superposition of Gaussian beams, Geophys. J. R. Astr.

Soc., 86, 531–551, 1986.
[19] Yu. A. Kravtsov, On a modification of the geometrical optics method, Izv. VUZ Radiofiz., 7(4),

664–673, 1964.
[20] S. Leung and J. Qian, Eulerian Gaussian beams for Schrödinger equations in the semi-classical

regime, J. Comput. Phys., 228, 2951–2977, 2009.
[21] S. Leung, J. Qian, and R. Burridge, Eulerian Gaussian beams for high frequency wave propagation,

Geophysics, 72, SM61–SM76, 2007.
[22] H. Liu and M. Pryporov, Error estimates of the Bloch band-based Gaussian beam superposition

for the Schrödinger equation, Contemp. Math., 640, 87–114, 2015.
[23] H. Liu and J. Ralston, Recovery of high frequency wave fields for the acoustic wave equation,

Multiscale Model. Sim., 8(2), 428–444, 2009.
[24] H. Liu and J. Ralston, Recovery of high frequency wave fields from phase space–based measure-

ments, Multiscale Model. Sim., 8(2), 622–644, 2010.
[25] H. Liu, J. Ralston, O. Runborg, and N.M. Tanushev, Gaussian beam method for the Helmholtz

equation, SIAM J. Appl. Math., 74(3), 771–793, 2014.
[26] H. Liu, O. Runborg, and N.M. Tanushev, Error estimates for Gaussian beam superpositions,

Math. Comp., 82, 919–952, 2013.
[27] J. Lu and X. Yang, Convergence of frozen Gaussian approximation for high frequency wave

propagation, Comm. Pure Appl. Math., 65, 759–789, 2012.
[28] D. Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math., 19, 215–250,

1966.
[29] M. Motamed and O. Runborg, Taylor expansion and discretization errors in Gaussian beam

superposition, Wave Motion, 47, 421–439, 2010.
[30] M. Motamed and O. Runborg, A wavefront-based Gaussian beam method for computing high

frequency wave propagation problems, Comput. Math. Appl., 69(9), 949–963, 2015.
[31] M.M. Popov, A new method of computation of wave fields using Gaussian beams, Wave Motion,

4, 85–97, 1982.



2072 ERROR ESTIMATES FOR GAUSSIAN BEAM SUPERPOSITIONS

[32] J. Qian and L. Ying, Fast Gaussian wavepacket transforms and Gaussian beams for the
Schrödinger equation, J. Comput. Phys., 229, 7848–7873, 2010.

[33] J. Ralston, Gaussian beams and the propagation of singularities, in Studies in partial differential
equations, MAA Stud. Math., Math. Assoc. America, Washington, DC, 23, 206–248, 1982.

[34] V. Rousse and T. Swart, A mathematical justification for the Herman–Kluk propagator, Comm.
Math. Phys., 286(2), 725–750, 2009.

[35] W. Rudin, Principles of Mathematical Analysis, International Series in Pure and Applied Math-
ematics. McGraw-Hill, 1976.

[36] O. Runborg, Mathematical models and numerical methods for high frequency waves, Commun.
Comput. Phys., 2, 827–880, 2007.

[37] N.M. Tanushev, Superpositions and higher order Gaussian beams, Commun. Math. Sci., 6(2),
449–475, 2008.

[38] N.M. Tanushev, J. Qian, and J.V. Ralston, Mountain waves and Gaussian beams, Multiscale
Model. Simul., 6(2), 688–709, 2007.

[39] B.S. White, A. Norris, A. Bayliss, and R. Burridge, Some remarks on the Gaussian beam sum-
mation method, Geophys. J. R. astr. Soc., 89, 579–636, 1987.

[40] H. Wu, Z. Huang, S. Jin, and D. Yin, Gaussian beam methods for the Dirac equation in the
semi-classical regime, Commun. Math. Sci., 10, 1301–1315, 2012.

[41] C. Zheng, Optimal error estimates for first-order Gaussian beam approximations to the
Schrödinger equation, SIAM J. Num. Anal., 52(6), 2905–2930, 2014.


