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NON-RELATIVISTIC AND LOW MACH NUMBER LIMITS OF
TWO P1 APPROXIMATION MODEL ARISING IN

RADIATION HYDRODYNAMICS∗

JISHAN FAN† , FUCAI LI‡ , AND GEN NAKAMURA§

Abstract. In this paper we study the non-relativistic and low Mach number limits of two P1
approximation model arising in radiation hydrodynamics in T

3, i.e. the barotropic model and the
Navier–Stokes–Fourier model. For the barotropic model, we consider the case that the initial data is
a small perturbation of stable equilbria while for the Navier–Stokes–Fourier model, we consider the
case that the initial data is large. For both models, we prove the convergence to the solution of the
incompressible Navier–Stokes equations with/without stationary transport equations.
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1. Introduction
Radiation hydrodynamics studies the propagation of thermal radiation through a

fluid, and the effect of this radiation on the hydrodynamics describing the fluid motion
[3, 16, 18]. Usually, the state of the radiation can described by a kinetic or transport
equation. However, from the computation of view, the total system to the Radiation
hydrodynamics are too complicated to compute effective and some simplified models are
introduced [2, 10, 11, 20]. The simplified models can also be derived by taking singular
limits, for example, the diffusion limit [6, 7, 10, 12], low Mach number limit [5, 9] and
non-relativistic limit [14, 17,19].

In this paper we study the non-relativistic and low Mach number limits of two
P1 approximation model arising in radiation hydrodynamics in T

3, i.e. the barotropic
model and the Navier–Stokes–Fourier model. We first consider the following barotropic
model of radiative flow:

∂tρ+div(ρu)=0, (1.1)

∂t(ρu)+div(ρu⊗u)+
1

ε21
∇p(ρ)−μΔu−(λ+μ)∇divu= ε2I1, (1.2)

ε2∂tI0+divI1=B(ρ)−I0, (1.3)

ε2∂tI1+∇I0=−I1 in T
3×(0,∞). (1.4)

Recently, Danchin and Ducomet [5] studied the low Mach number limit (ε1→0 and
ε2>0 is fixed) for the system (1.1)–(1.4) in the critical regularity framework. Here
we study the limit of ε := (ε1,ε2)→0. It is convenient to consider the flow with small
density variation, i.e.,

ρ=1+ε1σ,
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and we will take p′(1)=1, B(1)=1, and setting b :=B(ρ)−B(1),j0 := I0−B(1) and
j1 := I1. Then we can rewrite the system (1.1)–(1.4) as follows:

∂tσ+div(σu)+
1

ε1
divu=0, (1.5)

ρ∂tu+ρu ·∇u+
1

ε1
p′(ρ)∇σ−μΔu−(λ+μ)∇divu= ε2j1, (1.6)

ε2∂tj0+divj1= b−j0, (1.7)

ε2∂tj1+∇j0=−j1, (1.8)

with the initial condition

(σ,u,j0,j1)(·,0)=(σ0,u0,j00,j10) in T
3. (1.9)

Here, we impose the following regularity conditions on the initial data:⎧⎨
⎩

σ0,u0∈H2, j00,j10∈H1, (∂tσ,∂tu,∂tj0,∂tj1)(·,0)∈L2,∫
σ0dx=0,

∫
ρ0u0dx=0,

∫
j10dx=0,

1

2
≤ρ0≤

3

2
.

(1.10)

We will prove the following theorem.

Theorem 1.1. Let 0<ε1, ε2<1, and assume that condition (1.10) holds. Then, there
exists a positive constant α such that if

‖(σε
0,u

ε
0)‖H2 +‖(jε00,jε10)‖H1 +‖∂t(σε,uε,jε0,j

ε
1)(0)‖L2 ≤α, (1.11)

then for any ε1,ε2∈ (0,ε0] where 0<ε0<1 is some constant, the problem (1.5)–(1.9) has
a unique strong solution (σε,uε,jε0,j

ε
1) satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
σεdx=0,

∫
ρεuεdx=0,

∫
jε1dx=0,

1

2
≤ρε≤ 3

2
,

σε∈L∞(0,∞;H2), ∂tσ
ε∈L∞(0,∞;L2)∩L2(0,∞;H1),

uε∈L∞(0,∞;H2)∩L2(0,∞;H3), ∂tu
ε∈L∞(0,∞;L2)∩L2(0,∞;H1),

jε0,j
ε
1∈L∞(0,∞;L2)∩L2(0,∞;H1), ∂t(j

ε
0,j

ε
1)∈L2(0,∞;L2),

(1.12)

with the corresponding norms that are uniformly bounded with respect to ε. Furthermore,
(σε,uε,jε0,j

ε
1) converge to (σ,u,j0=0,j1=0) in certain Sobolev space as ε→0, and there

exists a function π(x,t) such that (u,π) in C(0,∞;H2) solves the following problem of
the incompressible Navier–Stokes equations:{

∂tu+u ·∇u+∇π−μΔu=0, divu=0,
u(·,0)=u0 in T

3,
(1.13)

where u0 is the weak limit of uε
0 in H2 with divu0=0 in T

3.

Remark 1.1. In the assumption (1.11), ∂tσ
ε(0) is indeed defined by −div(σε

0,u
ε
0)

+ 1
ε1
divuε

0 through the density equation. Further, ∂tu
ε(0), ∂tj

ε
0(0), and ∂tj

ε
1(0) are

defined by an analogous way.

Next we consider the singular limits of the following compressible Navier–Stokes–
Fourier-P1 approximate model arising in radiation hydrodynamics [3, 5]:
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∂tρ+div(ρu)=0, (1.14)

∂t(ρu)+div(ρu⊗u)+
1

ε21
∇p−μΔu−(λ+μ)∇divu= ε2I1, (1.15)

∂t(ρe)+div(ρue)+pdivu−div(κ∇T )= ε21

(μ
2
|∇u+∇ut|2+λ(divu)2

)
+I0−T 4,

(1.16)

ε2∂tI0+divI1=T 4−I0, (1.17)

ε2∂tI1+∇I0=−I1 in T
3×(0,∞). (1.18)

For simplicity, we will consider the case that the fluid is a polytropic ideal gas, that
is

e :=CV T , p :=RρT . (1.19)

In the following, we introduce the new unknowns σ and θ with

ρ :=1+ε1σ, T :=1+ε1θ. (1.20)

Then the non-dimensional system (1.14)–(1.18) can be rewritten as

∂tσ+div(σu)+
1

ε1
divu=0, (1.21)

ρ∂tu+ρu ·∇u+
R

ε1
(∇σ+∇θ)+R∇(σθ)−μΔu−(λ+μ)∇divu= ε2I1, (1.22)

CV ρ(∂tθ+u ·∇θ)+R(ρθ+σ)divu+
R

ε1
divu−κΔθ

=ε1

(μ
2
|∇u+∇ut|2+λ(divu)2

)
+I0−(1+ε1θ)

4, (1.23)

ε2∂tI0+divI1=(1+ε1θ)
4−I0, (1.24)

ε2∂tI1+∇I0=−I1 in T
3×(0,∞). (1.25)

We impose the initial conditions

(σ,u,θ,I0,I1)(·,0)=(σ0,u0,θ0,I00,I10) in T
3. (1.26)

Very recently, Jiang–Li–Xie [14] studied the singular limit ε2→0, when ε1=1. The
aim of this paper is to study the singular limit ε := (ε1,ε2)→0.

Definition 1.1.

|||u|||k,j :=
j∑

i=0

‖∂i
tu‖Hk−i(T3),

|||u|||k,j(0) :=
j∑

i=0

‖∂i
tu(0)‖Hk−i(T3).

Remark 1.2. To simplify the statement, similar to Remark 1.1, we have used ∂tu(0)
to signify the quantity ∂tu|t=0 obtained through Equation (1.22), and ∂2

t u(0) is given
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recursively by ∂t(1.22) in the same manner. Similarly, we can define ∂tσ(0), ∂tθ(0),
∂tI0(0), ∂tI1(0), ∂

2
t σ(0), ∂

2
t θ(0), ∂

2
t I(0), and ∂2

t I1(0).

A local existence result for the problem (1.21)–(1.26) in the following sense can be
shown in a similar way as in [22]. Thus we omit the details of the proof.

Proposition 1.1 (Local existence). Let 0<ε1,ε2<1. Suppose that the initial data
(σε

0,u
ε
0,θ

ε
0,I

ε
00,I

ε
10) satisfies that 1+ε1σ

ε
0≥m>0 for some positive constant m, and

∂k
t σ

ε(0),∂k
t u

ε(0),∂k
t θ

ε(0),∂k
t I

ε
0(0),∂

k
t I

ε
1(0)∈H2−k(T3), k=0,1,2.

Then there exists a positive constant T ε>0 such that the problem (1.21)–(1.26) has
a unique solution (σε,uε,θε,Iε0,I

ε
1), satisfying that 1+ε1σ

ε>0 in T
3×(0,T ε), and for

k=0,1,2,

∂k
t σ

ε,∂k
t I

ε
0,∂

k
t I

ε
1 ∈C([0,T ε];H2−k),

∂k
t u

ε,∂k
t θ

ε∈C([0,T ε];H2−k)∩L2(0,T ε,H3−k).

Theorem 1.2. Assume that (σε,uε,θε,Iε0,I
ε
1) is the unique solution obtained in Propo-

sition 1.1, where the initial data (σε
0,u

ε
0,θ

ε
0,I

ε
00,I

ε
10) satisfies

|||(σε,uε,θε,Iε00,I
ε
10)|||2,2(0)+‖(1+ε1σ

ε
0)

−1‖L∞ ≤D0. (1.27)

Then there exist positive constants T0 and D such that (σε,uε,θε,Iε0,I
ε
1) satisfies the

following uniform estimates:

sup
0≤t≤T0

(|||(σε,uε,θε)|||2,2+‖(1+ε1σ
ε)−1‖L∞)(t)+

(∫ T0

0

|||(uε,θε)|||23,2dt
) 1

2

+ sup
0≤t≤T0

(
√
ε2‖(Iε0,Iε1)‖H2 +‖(Iε0,Iε1)‖H1 +‖∂t(Iε0,Iε1)‖L2)(t)

+

(∫ T0

0

(‖(Iε0,Iε1)‖2H2 +‖∂t(Iε0,Iε1)‖2H1 +‖∂2
t (I

ε
0,I

ε
1)‖2L2)dt

) 1
2

≤D, (1.28)

with D0,T0, and D independent of ε>0. Furthermore, (σε,uε,θε,Iε0,I
ε
1) converges to

(σ,u,θ,I0=1,I1=0) in certain Sobolev space as ε→0, and there exists a function π(x,t)
such that (u,π) in C([0,T0];H

2) solves the following problem of the incompressible
Navier–Stokes equations{

∂tu+u ·∇u+∇π−μΔu=0, divu=0,
u(·,0)=u0 in T

3,
(1.29)

where u0 is the weak limit of uε
0 in H2 with divu0=0 in T

3.

Definition 1.2. We denote

M ε(t) := sup
0≤s≤t

(|||(σε,uε,θε)|||2,2(s)+‖(1+ε1σ
ε)−1‖L∞(s))

+ sup
0≤s≤t

(
√
ε2‖(Iε0,Iε1)‖H2 +‖(Iε0,Iε1)‖H1 +‖∂t(Iε0,Iε1)‖L2)(s)

+

(∫ t

0

|||(uε,θε)|||23,2ds
) 1

2

+

(∫ t

0

|||(Iε0,Iε1)|||22,2ds
) 1

2

,
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M ε
0 :=M ε(t=0).

Theorem 1.3. Let T ε be the maximal time of existence for the problem (1.21)–(1.26)
in the sense of Proposition 1.1. Then for any t∈ [0,T ε), we have that

M ε(t)≤C0(M
ε
0)exp

[
t
1
4C(M ε(t))

]
, (1.30)

for some given nondecreasing continuous function C0(·) and C(·).
Below we shall use C to denote the generic positive constant which may change

from line to line and is independent of ε1 and ε2.
The remainder of this paper is devoted to the proofs of theorems 1.1, 1.2, and 1.3.

2. Proof of Theorem 1.1
Because the local existence for the problem (1.5)–(1.9) with fixed ε is standard [21],

we only need to prove Equation (1.12). To this end, we only need to prove that there
exists a constant η�1 such that if

sup
0≤t≤T

(‖(σ,u)(·,t)‖H2 +‖∂t(σ,u)(·,t)(·,t)‖)≤η, (2.1)

then for any t∈ [0,T ], it holds

‖(σ,u)(·,t)‖2H2 +‖∂t(σ,u)(·,t)‖2L2 +ε2‖(j0,j1)(·,t)‖2H1

+

∫ t

0

(‖u‖2H3 +‖∂t(σ,u)‖2H1 +‖(j0,j1)‖2H1 +‖∂t(j0,j1)‖2L2)ds

≤C‖(σ0,u0)‖2H2 +Cε2‖(j0,j1)‖2H1 +C‖∂t(σ,u,j0,j1)(·,0)‖2L2 . (2.2)

In fact, once Equation (2.2) is obtained, Equation (1.12) can be obtained directly and
the limit process is just an easy application of the uniform estimates and Arzelá–Ascoli
theorem.

First, we have that∫
σdx=0,

∫
j1dx=0,

∫
ρudx=0,

∫
ρ∂tudx=0, (2.3)

and

1

2
≤ρ≤ 3

2
. (2.4)

Testing Equation (1.5) with σ, we see that

1

2

d

dt

∫
σ2dx+

1

ε1

∫
σdivudx=−1

2

∫
σ2divudx≤C‖σ‖2L4‖divu‖L2 ≤Cη‖∇σ‖2L2 . (2.5)

Testing Equation (1.6) with u and using Equations (1.1) and (2.1), we find that

1

2

d

dt

∫
ρ|u|2dx+

∫
(μ|∇u|2+(λ+μ)(divu)2)dx+

1

ε1

∫
u∇σdx

=

∫
p′(1)−p′(ρ)

ε1
u∇σdx+ε2

∫
j1udx

≤C‖u‖L3‖σ‖L6‖∇σ‖L2 +ε2‖j1‖L2‖u‖L2
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≤Cη‖∇σ‖2L2 +ε2‖j1‖L2‖u‖L2 . (2.6)

Summing up Equations (2.5) and (2.6), we infer that

1

2

d

dt

∫
(σ2+ρ|u|2)dx+

∫
(μ|∇u|2+(λ+μ)(divu)2)dx≤Cη‖∇σ‖2L2 +ε2‖j1‖L2‖u‖L2 .

(2.7)
Applying ∇ to Equation (1.5), testing by ∇σ, and using Equation (2.1), we derive

that

1

2

d

dt

∫
|∇σ|2+ 1

ε1

∫
∇divu∇σdx=−

∫
∇div(σu)∇σdx

≤C‖u‖H2‖σ‖H2‖∇σ‖L2 ≤Cη‖σ‖2H2 . (2.8)

Testing Equation (1.6) with ∇divu and using Equation (2.1), we get

(λ+2μ)‖∇divu‖2L2− 1

ε1

∫
∇divu∇σdx

=

∫
(ρut+ρu ·∇u)∇divudx+

∫
p′(ρ)−p′(1)

ε1
∇σ∇divudx+ε2

∫
j1∇divudx

=− 1

2

d

dt

∫
ρ(divu)2dx+

1

2

∫
ρu∇(divu)2dx+

∫
ρu ·∇u ·∇divudx

+

∫
p′(ρ)−p′(1)

ε1
∇σ∇divudx+ε2

∫
j1∇divudx

≤− 1

2

d

dt

∫
ρ(divu)2dx+C‖ρ‖L∞‖u‖L∞‖divu‖L2‖∇divu‖L2

+C‖ρ‖L∞‖u‖L∞‖∇u‖L2‖∇divu‖L2 +C‖σ‖L6‖∇σ‖L3‖∇divu‖L2

+ε2‖j1‖L2‖∇divu‖L2

≤− 1

2

d

dt

∫
ρ(divu)2dx+Cη‖u‖2H2 +Cη‖σ‖2H2 +ε2‖j1‖L2‖∇divu‖L2 . (2.9)

Summing up Equations (2.8) and (2.9), we have that

1

2

d

dt

∫
(|∇σ|2+ρ(divu)2)dx+(λ+2μ)

∫
|∇divu|2dx

≤Cη‖σ‖2H2 +Cη‖u‖2H2 +ε2‖j1‖L2‖∇divu‖L2 . (2.10)

Denote ω := rotu. Applying rot to Equation (1.6), we observe that

ρ∂tω+ρu ·∇ω−μΔω=f+ε2rotj1, (2.11)

with

f =∇ρ×∂tu+
∑
i

∇(ρui)×∂iu.

Testing Equation (2.11) with ∂tω−Δω, we have that

μ

2

d

dt

∫
|rotω|2dx+

∫
(μ|Δω|2+ρ|∂tω|2)dx

=

∫
[ρ∂tωΔω+(f−ρu ·∇ω)(∂tω−Δω)]dx+ε2

∫
rotj1(∂tω−Δω)dx
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= : 1+2. (2.12)

It has been proved in [13] that

1≤−
1

2

d

dt

∫
ρ|rotω|2dx+Cη‖u‖2H3 +Cη‖∂tu‖2H1 .

We bound 2 as follows.

2≤ ε2‖rotj1‖L2(‖∂tω‖L2 +‖Δω‖L2).

Substituting the above estimates into Equation (2.12), we have that

1

2

d

dt

∫
(μ|rotω|2+ρ|rotω|2)dx+

∫
(μ|Δω|2+ρ|∂tω|2)dx

≤Cη‖u‖2H3 +Cη‖∂tu‖2H1 +ε2‖rotj1‖L2(‖∂tω‖L2 +‖Δω‖L2). (2.13)

Applying ∂t to Equation (1.6), testing by ∇divu, and using Equation (2.1), we
obtain

λ+2μ

2

d

dt

∫
|∇divu|2dx− d

dt

∫
ρ∂tu∇divudx− 1

ε1

∫
∇∂tσ∇divudx

=

∫
{
[
∂t

(
p′(ρ)−p′(1)

ε1
∇σ

)
+ε1∂tσu ·∇u+ρ(∂tu ·∇u+u ·∇∂tu)

]
∇divu

+ρ(div∂tu)
2+∇ρ∂tudiv∂tu}dx+ε2

∫
∂tj1∇divudx

=: 3+4. (2.14)

It has been proved in [13] that

3≤Cη‖∇∂tσ‖2L2 +Cη‖∇divu‖2L2 +C‖∂tu‖2H1 .

We bound 4 as follows.

4≤ ε2‖∂tj1‖L2‖∇divu‖L2 .

Substituting the above estimates into Equation (2.14), we have that

λ+2μ

2

d

dt

∫
|∇divu|2dx− d

dt

∫
ρ∂tu∇divudx− 1

ε1

∫
∇∂tσ∇divudx

≤Cη‖∇∂tσ‖2L2 +Cη‖∇divu‖2L2 +C‖∂tu‖2H1 +ε2‖∂tj1‖L2‖∇divu‖L2 . (2.15)

Applying ∇ to Equation (1.5), testing by ∇∂tσ, and using Equation (2.1), we have
that

‖∇∂tσ‖2L2 +
1

ε1

∫
∇∂tσ∇divudx=−

∫
∇div(σu)∇∂tσdx

≤C‖σ‖H2‖u‖H2‖∇∂tσ‖L2

≤Cη‖u‖2H2 +Cη‖∇∂tσ‖2L2 . (2.16)

Summing up Equations (2.15) and (2.16), we have that

λ+2μ

2

d

dt

∫
|∇divu|2dx− d

dt

∫
ρ∂tu∇divudx+

∫
|∇∂tσ|2dx
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≤Cη‖∇∂tσ‖2L2 +Cη‖u‖2H2 +C‖∂tu‖2H1 +ε2‖∂tj1‖L2‖∇divu‖L2 . (2.17)

Applying ∇2 to Equation (1.5), testing by ∇2σ and using Equation (2.1), we have
that

1

2

d

dt

∫
|∇2σ|2dx+ 1

ε1

∫
∇2divu∇2σdx

=−
∫
[(u ·∇)∇2σ+2∇u ·∇(∇σ)+∇2u ·∇σ+∇2(σdivu)]∇2σdx

≤C‖u‖H3‖σ‖2H2 ≤Cη‖u‖2H3 +Cη‖σ‖2H2 . (2.18)

Applying ∇ to Equation (1.6), testing by ∇2divu and using Equation (2.1), calcu-
lating as that in [13], we have that

(λ+2μ)‖∇2divu‖2L2− 1

ε1

∫
∇2divu∇2σdx

≤Cδ‖∇2divu‖2L2 +C‖∇∂tu‖2L2 +Cη‖u‖2H2

+C‖∇rotω‖2L2 +ε2‖∇j1‖L2‖∇2divu‖L2 . (2.19)

for any 0<δ<1.
Summing up Equations (2.18) and (2.19) and taking δ small enough, we obtain

1

2

d

dt

∫
|∇2σ|2dx+(λ+μ)

∫
|∇2divu|2dx

≤Cη‖u‖2H3 +Cη‖σ‖2H2 +C‖∇∂tu‖2H2 +C‖∇rotω‖2L2 +ε2‖∇j1‖L2‖∇2divu‖L2 . (2.20)

Applying ∂t to Equation (1.5), testing by ∂tσ and using Equation (2.1), we have
that

1

2

d

dt

∫
(∂tσ)

2dx+
1

ε1

∫
∂tσdiv∂tudx=

∫
(∂tσu+σ∂tu)∇∂tσdx

≤(‖∂tσ‖L3‖u‖L6 +‖σ‖L6‖∂tu‖L3)‖∇∂tσ‖L2

≤Cη‖∂tσ‖2H1 +Cη‖∂tu‖2H1 . (2.21)

Applying ∂t to Equation (1.6), testing by ∂tu, using Equation (2.1), and calculating
as that in [13], we reach

1

2

d

dt

∫
ρ|∂tu|2dx+

∫
(μ|∇∂tu|2+(λ+μ)(div∂tu)

2)dx− 1

ε1

∫
∂tσdiv∂tudx

≤Cη‖∂tσ‖2H1 +Cη‖∂tu‖2H1 +Cη‖u‖2H2 +ε2‖∂tj1‖L2‖∂tu‖L2 . (2.22)

Summing up Equations (2.21) and (2.22), we conclude that

1

2

d

dt

∫
((∂tσ)

2+ρ|∂tu|2)dx+
∫
(μ|∇∂tu|2+(λ+μ)(div∂tu)

2)dx

≤Cη‖∂tσ‖2H1 +Cη‖∂tu‖2H1 +Cη‖u‖2H2 +ε2‖∂tj1‖L2‖∂tu‖L2 . (2.23)

It follows from Equations (1.6) and (2.1) that

1

ε1
‖∇σ‖L2 ≤C‖∂tu‖L2 +C‖u‖H2 +Cε2‖j1‖L2 , (2.24)
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1

ε1
‖∇2σ‖L2 ≤C‖u‖H3 +C‖∂tu‖H1 +Cε2‖∇j1‖L2 . (2.25)

The inequalities (2.3), (2.24), and (2.25) imply that

1

ε1
‖σ‖H2 ≤C‖u‖H3 +C‖∂tu‖H1 +Cε2‖j1‖H1 . (2.26)

In addition, we use the following fact to control ‖u‖H3 ,

‖u‖H3 ≤C(‖divu‖H2 +‖rotu‖H2 +‖u‖H1). (2.27)

Testing Equations (1.7) and (1.8) with j0 and j1, respectively, and summing up the
result, we get

ε2
2

d

dt

∫
(j20 + |j1|2)dx+

∫
(j20 + |j1|2)dx=

∫
bj0dx

≤‖b‖L2‖j0‖L2 ≤Cε1‖σ‖L2‖j0‖L2 . (2.28)

Applying ∇ to Equations (1.7) and (1.8), testing by ∇j0 and ∇j1, respectively,
summing up the result, we have that

ε2
2

d

dt

∫
(|∇j0|2+ |∇j1|2)dx+

∫
(|∇j0|2+ |∇j1|2)dx

=

∫
∇b∇j0dx≤‖∇b‖L2‖∇j0‖L2 ≤Cε1‖∇σ‖L2‖∇j0‖L2 . (2.29)

Applying ∂t to Equations (1.7) and (1.8), testing by ∂tj0 and ∂tj1, respectively, and
summing up the result, we arrive at

ε2
2

d

dt

∫
((∂tj0)

2+ |∂tj1|2)dx+
∫
((∂tj0)

2+ |∂tj1|2)dx

=

∫
∂tb∂tj0dx≤‖∂tb‖L2‖∂tj0‖L2

≤Cε1‖∂tσ‖L2‖∂tj0‖L2 . (2.30)

Denote

Φ(t) :=
1

2

∫
(σ2+ρ|u|2+ |∇σ|2+ρ(divu)2+μ|rotω|2+ρ|rotω|2

+k1(λ+2μ)|∇divu|2−k1ρ∂tu∇divu+2k2|∇2σ|2

+(∂tσ)
2+ρ|∂tu|2+ε2(j

2
0 +j21 + |∇j0|2+ |∇j1|2+ |∂tj0|2+ |∂tj1|2))dx,

Ψ(t) :=

∫
(μ|rotu|2+(λ+2μ)(divu)2+(λ+2μ)|∇divu|2+μ|Δω|2

+ρ|∂tω|2+k1|∇∂tσ|2+k2(λ+μ)|∇2divu|2+μ|rot∂tu|2

+(λ+2μ)(div∂tu)
2+j20 +j21 + |∇j0|2+ |∇j1|2+(∂tj0)

2+ |∂tj1|2)dx.

Applying (2.7)+(2.10)+(2.13)+k1(2.17)+k2(2.20)+(2.23)+(2.28)+(2.29)+(2.30)
with suitable small k1 and k2, using Equations eqref20.26 and (2.27), taking ε and η
small enough, we conclude that

d

dt
Φ+C0Ψ≤0.
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Integrating the above inequality, we obtain Equation (1.12). Here we used the
well-known Poincaré inequality

‖u‖L2 =

∥∥∥∥u−
∫
ρudx∫
ρdx

∥∥∥∥
L2

≤C‖∇u‖L2 .

Thus we complete the proof of Theorem 1.1.

3. Proof of theorems 1.2 and 1.3
This section is devoted to the proof of theorems 1.2 and 1.3. In this section we

shall prove theorems 1.2 and 1.3 by combining the ideas developed in [1,4,8,15]. First,
by taking the similar arguments to those in [1, 8, 15], we know that in order to prove
Equation (1.28), we only need to show Equation (1.30).

Below we shall drop the superscript “ε” of ρε,σε,uε,θε, etc. for the sake of simplicity;
moreover, we write M ε(t) and M ε(0) as M and M0, respectively. Since the physical
constants κ,CV , and R do not bring any essential difficulties in our arguments, we shall
take κ=CV =R=1.

First, by the same calculations as that in [4], we get

(|||ρ|||2,2+‖ρ−1‖L∞)(t)≤C0(M0)exp(
√
tC(M)), (3.1)

‖(σ,u,θ)(t)‖2L2 +‖(u,θ)‖2L2(0,t;H1)≤C0(M0)exp(
√
tC(M)), (3.2)

‖(∇σ,divu,∇θ)(t)‖2L2 +‖(∇divu,Δθ)‖2L2(0,t;L2)≤C0(M0)exp(
√
tC(M)). (3.3)

Lemma 3.1. For any 0≤ t≤min(T ε,1), we have that

‖rotu(t)‖2L2 +‖rot2u‖2L2(0,t;L2)≤C0(M0)exp(
√
tC(M)).

Proof. Let ω := rotu. From Equation (1.22) we easily derive

ρ(∂tω+u ·∇ω)−μΔω=K+ε2rotI1, (3.4)

where K :=−(∂jρ∂tui−∂iρ∂tuj)− [∂j(ρuk)∂kui−∂i(ρuk)∂kuj ].
Testing Equation (3.4) with ω and using Equation (1.14), we see that

1

2
‖√ρω(t)‖2L2 +μ‖rotω‖2L2(0,t;L2)

=C0(M0)+

∫ t

0

∫
Kωdxds+ε2

∫ t

0

∫
rotI1ωdxds

≤C0(M0)exp(
√
tC(M))+ε2

∫ t

0

‖I1‖H1‖ω‖L2ds

≤C0(M0)exp(
√
tC(M)),

which leads to the lemma, where we used the estimate in [4]:∫ t

0

∫
Kωdxds≤C0(M0)exp(

√
tC(M)).

Lemma 3.2. For any 0≤ t≤min(T ε,1), we have that

‖∂t(σ,u,θ)(t)‖2L2 +‖(rot∂tu,div∂tu,∇∂tθ)‖2L2(0,t;L2)≤C0(M0)exp(
√
tC(M)).



J.-S. FAN, F.-C. LI, AND G. NAKAMURA 2033

Proof. Applying the operator ∂t to Equations (1.21)–(1.23), we find that

∂2
t σ+

1

ε1
div∂tu=−div∂t(σu), (3.5)

ρ(∂2
t u+u ·∇∂tu)+

R

ε1
(∇∂tσ+∇∂tθ)−μΔ∂tu−(λ+μ)∇div∂tu

=−∂tρ∂tu−∂t(ρu) ·∇u−R∇∂t(σθ)+ε2∂tI1, (3.6)

CV ρ(∂
2
t θ+u ·∇∂tθ)+

R

ε1
div∂tu−κΔ∂tθ

=ε1∂t

(μ
2
|∇u+∇ut|2+λ(divu)2

)
−CV ∂tρ∂tθ

−CV ∂t(ρu) ·∇θ−R∂t((ρθ+σ)divu)+∂t(I0−(1+ε1θ)
4). (3.7)

Testing Equations (3.5), (3.6), and (3.7) with R∂tσ, ∂tu, and ∂tθ, respectively, then
doing as that in [4], we reach the lemma.

By the very similar calculations as in [4], we get

‖(∇divu,Δθ)(t)‖2L2 +‖∂t∇(σ,θ)‖2L2(0,t;L2)≤C0(M0)exp(
√
tC(M)). (3.8)

Lemma 3.3. For any 0≤ t≤min(T ε,1), we have that

‖rot2u(t)‖2L2 +‖Δrotu‖2L2(0,t;L2)≤C0(M0)exp(
√
tC(M)).

Proof. Testing Equation (3.4) with −Δω, we obtain

1

2
‖√ρrotω‖2L2(t)+μ‖Δω‖2L2(0,t;L2)

≤C0(M0)−
∫ t

0

∫
KΔωdxds+

∫ t

0

∫
ρu ·(∇|rotω|2+Δω∇ω)dxds

−ε2

∫ t

0

∫
rotI1Δωdxds=:K1+K2+K3+K4. (3.9)

It has been proved in [4] that

K1+K2+K3≤C0(M0)exp(
√
tC(M)).

We bound K4 as follows.

K4≤ ε2

∫ t

0

‖rotI1‖L2‖Δω‖L2ds≤ ε2
√
tC(M).

Substituting the above estimates into Equation (3.9) gives the lemma.

Lemma 3.4. For any 0≤ t≤min(T ε,1), we have that∫ t

0

‖rot∂tω‖H1ds≤C0(M0)exp(
√
tC(M)).

Proof. Applying the operator ∂t to Equation (3.4), we deduce that

ρ(∂2
t ω+u ·∇∂tω)−μΔ∂tω=Q+ε2∂trotI1, (3.10)
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where

Q :=∂tK−∂t(ρu) ·∇ω−∂tρ∂tω.

Then by the very similar calculations as that in [4], we reach the lemma.

Lemma 3.5. For any 0≤ t≤min(T ε,1), we have that

‖∂tω(t)‖2L2 +‖∂t∇ω‖2L2(0,t;L2)≤C0(M0)exp(
√
tC(M)).

Proof. Testing Equation (3.10) with ∂tω and using Equation (1.14), we observe
that

1

2
‖√ρ∂tω‖2L2(t)+μ‖∇∂tω‖2L2(0,t;L2)

=C0(M0)+

∫ t

0

∫
Q∂tωdxds+ε2

∫ t

0

∫
∂trotI1∂tωdxds. (3.11)

It has been proved in [4] that∫ t

0

∫
Q∂tωdxds≤C0(M0)exp(

√
tC(M)).

We bound the third term of right-hand side of Equation (3.11) as

ε2

∫ t

0

∫
∂trotI1∂tωdxds

≤ε2
∫ t

0

‖∂trotI1‖L2‖∂tω‖L2ds

≤ε2C(M)

∫ t

0

‖∂trotI1‖L2ds

≤
√
tC(M).

Substituting the above estimates into Equation (3.11) yields the lemma.

Now, by the very similar calculations as that in [4], we conclude that

‖∂t(∇σ,divu,∇θ)(t)‖2L2 +‖∂t(∇divu,Δθ)‖2L2(0,t;L2)≤C0(M0)exp
(
t
1
4C(M)

)
, (3.12)

‖∇2σ(t)‖2L2 +‖∇2divu‖2L2(0,t;L2)≤C0(M0)exp(
√
tC(M)), (3.13)

‖Δθ‖L2(0,t;H1)≤C0(M0)exp
(
t
1
4C(M)

)
, (3.14)

‖∂2
t (σ,u,θ)(t)‖2L2 +‖∂2

t (u,θ)‖2L2(0,t;H1)≤C0(M0)exp
(
t
1
4C(M)

)
. (3.15)

Finally, we estimate I0 and I1 in order to close the energy estimate.

Lemma 3.6. For any 0≤ t≤min(T ε,1), we have that

√
ε2‖(I0,I1)(t)‖2H2 +‖(I0,I1)(t)‖2H1 +‖∂t(I0,I1)(t)‖2L2 +

∫ t

0

|||(I0,I1)|||22,2ds

≤C0(M0)exp(
√
tC(M)).
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Proof. Testing Equations (1.24) and (1.25) with I0 and I1, respectively, summing
up the resulting inequality, we infer that

ε2
2

∫
(I20 + |I1|2)(t)dx+

∫ t

0

∫
(I20 + |I1|2)dxds

≤C0(M0)+

∫ t

0

∫
(1+ε1θ)

4I0dxds

≤C0(M0)exp(
√
tC(M)). (3.16)

Applying Δ to Equations (1.24) and (1.25), testing by ΔI0 and ΔI1, respectively,
summing up the resulting equalities, we have that

ε2
2

∫
((ΔI0)

2+ |ΔI1|2)(t)dx+
∫ t

0

∫
((ΔI0)

2+ |ΔI1|2)dxds

≤C0(M0)+

∫ t

0

∫
Δ(1+ε1θ)

4 ·ΔI0dxds

≤C0(M0)+

∫ t

0

‖Δ(1+ε1θ)
4‖L2‖ΔI0‖L2ds

≤C0(M0)exp(
√
tC(M)). (3.17)

Applying ∂t∇ to Equations (1.24) and (1.25), testing by ∇∂tI0 and ∇∂tI1, respec-
tively, summing up the resulting equalities, we have that

ε2
2

∫
(|∇∂tI0|2+ |∇∂tI1|2)(t)dx+

∫ t

0

∫
(|∇∂tI0|2+ |∇∂tI1|2)dxds

≤C0(M0)+

∫ t

0

∫
∂t∇(1+ε1θ)

4∂t∇I0dxds

≤C0(M0)exp(
√
tC(M)). (3.18)

Applying ∂2
t to Equations (1.24) and (1.25), testing by ∂2

t I0 and ∂2
t I1, respectively,

summing up the resulting equalities, we have that

ε2
2

∫
((∂2

t I0)
2+ |∂2

t I1|2)(t)dx+
∫ t

0

∫
((∂2

t I0)
2+ |∂2

t I1|2)dxds

≤C0(M0)+

∫ t

0

∫
∂2
t (1+ε1θ)

4∂2
t I0dxds

≤C0(M0)exp(
√
tC(M)). (3.19)

It follows from Equations (3.16) and (3.18) that

‖(I0,I1)(t)‖2H1 ≤C0(M0)+2

∫ t

0

∫
∇I0 ·∂t∇I0dxds+2

∫ t

0

∫
I0∂tI0dxds

+2

∫ t

0

∫
∇I1 ·∂t∇I1dxds+2

∫ t

0

∫
I1∂tI1dxds

≤C0(M0)exp(
√
tC(M)). (3.20)

‖∂t(I0,I1)(t)‖2L2 ≤C0(M0)+2

∫ t

0

∫
∂tI0∂

2
t I0dxds+2

∫ t

0

∫
∂tI1∂

2
t I1dxds
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≤C0(M0)exp(
√
tC(M)). (3.21)

Combining Equations (3.16)–(3.21), we prove the lemma.

By collecting all the above results together, we completes the proof of Equation
(1.30).
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