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OPTION REPLICATION IN
DISCRETE TIME WITH THE COST OF ILLIQUIDITY∗

YEGOR SOROKIN† AND HYEJIN KU‡

Abstract. We introduce a model of liquidity risk through a stochastic supply curve for price
taking traders. The supply curve gives the actual execution cost investors face in trading assets. We
use the solutions to the modified Black–Scholes type PDE and obtain the delta-hedging strategies.
We then show the replicating portfolio including liquidity costs converges to the payoff of the option.
We demonstrate the replication error of discrete-time trading strategy decreases with inhomogeneous
rebalancing times, and investigate an optimal positioning of them.

Key words. Option replication, inhomogeneous rebalancing, liquidity risk, illiquidity.

AMS subject classifications. 91B24, 91G20, 91G80.

1. Introduction
The pricing and hedging of contingent claims is a subject of paramount importance

to the financial industry. Since the pioneering option pricing work of Black and Scholes,
much research has been based on the simplified assumption of complete market. In a
complete market it is possible to reproduce the payoff of any option using the replicating
portfolio consisting of the underlying asset and cash. In reality, asset prices depend
on a multitude of factors and there are restrictions on composition of portfolios the
traders are allowed to hold. When market microstructure effects such as liquidity risk,
microstructure noises, and information asymmetry are considered for more realistic
models, it is not possible in general to replicate a contingent claim perfectly.

Liquidity risk is considered as the most important risk in finance industry these
days. Traders’ ability to buy or sell securities is limited or restricted, and they are not
able to trade as much as they would prefer and cannot initiate or unwind positions
instantly, especially in low-volume markets.

In the literature, the effect of illiquidity on the underlying asset is viewed in two
ways. One is temporary price impact and the other is permanent price impact. The
first approach focuses on the effect of liquidity cost on short time scale as the result
of trading. The cost incurs while traders change their positions as a price-taker, and a
trader cannot move the market by transactions. The second approach focuses on the
effect of a large trader on the underlying asset (called feedback effect). By the large
trader it means there is some lasting impact on the price evolution by its trading action.
For example [4, 8, 9, 11, 15] studied this effect.

This paper belongs to the first approach described above. Models for the effect
of liquidity costs without considering permanent price impact have some similarities
to those for non-linear transaction costs, in the sense that illiquidity adds some extra
costs to trade. The effect of illiquidity makes trading more difficult or costly. Many
researchers built on the model for market liquidity risk outlined in Cetin et al. [5].
Essentially the spot price of the underlying in the model depends on the size of the
block being traded through the stochastic supply curve. For example if one wants to
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purchase a huge amount of shares of stock, there may not be enough supply at the
market price, so one will end up paying above the market price for such a big block of
shares. In Cetin et al. [6], authors use strategies with minimal super-replication cost
inclusive of liquidity premium to price contingent claims in continuous time setting.
Ku et al. [12] derived a partial differential equation which provides discrete time delta
hedging strategies whose expected hedging errors approach zero almost surely as the
length of the revision interval goes to zero. The equation gives the value of the call from
the seller’s point of view. Rogers and Singh [16] also studied hedging of a European
option with the effect of illiquidity costs. All these papers do not take into account the
impact on the evolution of underlying asset from the actions of a trader.

For the literature on optimal liquidation in which the aim is to unwind an initial
position by some fixed time horizon, we refer to [1, 2], and [7]. These papers try to
liquidate a given initial position “optimally” by some fixed time, and our problem is
different from them since the aim is to replicate the random payoff at fixed time rather
than liquidation. [14] considered the optimal portfolio choices in an illiquid market
where the trading strategies were assumed to be of bounded variation. The paper of [3]
discussed stock pinning on option expiration date and the price impact of delta-hedging.

This paper concerns minimizing the hedging error of a trading strategy under liq-
uidity costs while replicating a European option. We use the solution of the partial
differential equation of Black–Scholes type and define a class of discrete-time hedging
strategies. We then extend the class of these trading strategies to include strategies
with rehedgings located at varying distances from one another as in Grannan and Swin-
dle [10]. We prove that the payoff of such a strategy converges in L2 to the payoff of the
option being replicated as the revision interval between rehedging times goes to zero.
However, continuous hedging is not possible in practice and the number of available
rebalancing times is limited. Thus selection of an optimal strategy that minimizes the
replication error under liquidity costs is an important question.

The main contribution of this paper is to compute moreover the exact first or-
der term of the mean squared hedging error (MSHE) with varying rebalancing times,
according to the interval size Δt of equally-spaced times

MSHE=A(d(·);d′(·))Δt+O(Δt2),

where d is a suitable function that maps the equidistant times (iΔt)i to the varying
rehedging times (ti)i :d(ti)= iΔt. Then the term A(d(·);d′(·)) is minimized (over all
deterministic functions d(·)) using the calculus of variations, thus giving an optimal
positioning of the rebalancing times.

The article is organized as follows. Section 2 explains the model and presents the
main results of the paper. Section 3 studies a selection of optimal strategy which min-
imizes the mean squared replication error including liquidity costs. Section 4 presents
some conclusions. The proofs of theorems are provided in Appendix A.

2. Main results
Consider a filtered probability space (Ω,F ,(Ft)0≤t≤T ,P) satisfying the usual condi-

tions, where T is a fixed time, and P represents the statistical or empirical probability
measure. We assume a market with a stock and a money market account. We assume
the stock pays no dividends, and the rate of interest is zero.

We consider a stochastic supply curve S(t,x,ω) which represents the stock price
per share at time t∈ [0,T ] that a trader pays/receives for an order of size x∈R as a
price taker. A positive order (x>0) represents a buy, a negative order (x<0) signifies a
sale, and x=0 corresponds to the marginal trade. S(t,x,ω) is assumed measurable with
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respect to the filtration (Ft), nonnegative, and non-decreasing in x almost surely. For
the detailed structure of the supply curve, we refer to Cetin et al. [5] where the authors
define the self-financing condition in a general setting and connect to the arbitrage
pricing theory.

Let S(t,0,ω)=St be the marginal price of the supply curve. We assume the price
process St follows a geometric Brownian motion

dSt=μStdt+σStdWt, 0≤ t≤T,

where the drift μ is a constant, the volatility σ is a positive real number, W is a standard
Brownian motion, and T is the terminal time of a European contingent claim with the
payoff p(ST ). We also assume a multiplicative supply curve

S(t,x,ω)=f(x)St,

where f is a smooth and increasing function with f(0)=1. Then the slope at 0 of
supply curve, f ′(0) (denoted by α) is interpreted as the parameter for liquidity risk.
The parameter α is estimated using simple regression methodology from the history of
stock prices.1 A trading strategy is a pair (Xt,Yt : t∈ [0,T ]) where Xt represents the
number of units of stock held at time t and Yt represents the trader’s cash holding at
time t. Xt and Yt are predictable and optional processes respectively, to the filtration
(Ft)0≤t≤T .

Let us consider equally spaced times 0= t0≤ t1≤ t2≤···≤ tn=T . Set Δt= ti− ti−1

for i=1, . . . ,n. The following definition describes a self-financing condition for discrete
strategies with liquidity risk.

Definition 2.1. A discrete self-financing trading strategy is a trading strategy (Xt,Yt :
t∈{ti}ni=0) which satisfies

Yt=Y0+X0S(0,X0)+
∑
ti<t

Xti(Sti+1 −Sti)−
∑
ti<t

ΔXti [S(ti,ΔXti)−S(ti,0)],

where ΔXti =Xti −Xti−1
(i≥1) and ΔXt0 =X0.

Considering the usual self-financing condition without liquidity costs, we define the
accumulated liquidity costs of a discrete trading strategy (Xt,Yt : t∈{ti}ni=0) by

Lt=
∑
ti<t

ΔXti [S(ti,ΔXti)−S(ti,0)]

and the total liquidity costs up to time T is

LT =

n−1∑
i=0

ΔXti [S(ti,ΔXti)−S(ti,0)]

where ΔXti =Xti −Xti−1 for i≥1 and ΔXt0 =X0.
In practice, continuous hedging is not possible, thus one cannot replicate the option

perfectly and must accept an error. Letting C0 denote the value at time 0 of contingent
claim being replicated, the hedging error inclusive of liquidity costs is

HE=C0+

n−1∑
i=0

Xti(Sti+1 −Sti)−LT −p(ST ).

1The value of α turns out to be small in most cases, usually with 0<α<0.001.
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Hedging errors are random, so we consider distributions of hedging errors. We
compare efficiency of the different replicating trading strategies by looking at the cor-
responding distributions of the hedging errors and their parameters. We use the mean
squared hedging error (=the variance of hedging error) for a criterion to estimate the
hedging error.

Definition 2.2. The mean squared hedging error (MSHE) of a replicating trading
strategy is

E

[
C0+

n−1∑
i=0

Xti(Sti+1
−Sti)−LT −p(ST )

]2

.

Not only did Black and Scholes show how to compute the fair price of the European
option, but also they laid out the method for eliminating the risk of writing an option
through continuous delta hedging. Implementation of continuous delta-hedging amounts
to maintaining and rebalancing two positions with a money market account (in cash)
and a stock. The goal of delta-hedging is to eliminate the risk of writing an option
completely (continuous hedging in theory) or at least significantly reduce the level of
risk (discrete hedging in practice).

Leland [13] investigated the hedging error over each revision interval with the pres-
ence of transaction costs, and modified the parameter of Black–Scholes price for delta-
hedging strategies. Ku et al. [12] argue that a dynamic delta hedging according to their
partial differential equation for a European contingent claim produces hedging errors
over the period [0,T ] whose expectation approaches 0 as the length of the revision inter-
val goes to 0. They also show that the payoff of the discrete replicating trading strategy
converges almost surely to the terminal payoff of the option p(ST ). In these papers the
trading times are equally spaced over the life of the option.

Considering alternatives to equally spaced trading times over the life of an option,
the hedging error can be improved. We proceed to work with trading strategies in
homogenous rehedging times. We parametrize varying rebalancing times with a smooth,
positive, strictly increasing function d(t) via ti=d−1(iΔt). We also require that d(0)=
0,d(T )=T and d′(t) �=0. In other words one may recover the positioning of rehedging
times through inverse of d(t). Taking d(t)= t corresponds to the constant interval case,
equally spaced trading dates. Different functions d(t) yield different locations of the
rehedging times ti. Figure 2.1 shows an example of d(t), where the left half of the graph
is concave down (which translates into more frequent rehedging at the beginning) and
the right half of the graph is convex (which corresponds to more frequent rehedging
toward the end of a period).

Theorem 2.1. Consider the discrete time delta-hedging strategy Xti =CS(ti,Sti)
where C is the solution of the PDE2

Ct(t,S)+1/2σ2S2CSS(t,S)[1+2αSCSS(t,S)]=0

2The existence and uniqueness of solutions for convex payoffs can be shown in the viscosity sense,
by comparing to Equation (1.1) in Cetin et al. [6] with l= 1

4αS
. However, the existence of a classical

solution is an open issue. The main problem is that the term derived from the effect of illiquidity,
ασ2S3(CSS(t,S))

2, in this fully nonlinear PDE is hard to deal analytically; it is very difficult to
solve the well-posedness issue in the classical sense. The numerical solutions to this PDE under the
smoothness hypotheses are computed in Section 3, and the numerical results we obtained are consistent
with the theory, suggesting that this assumption does not cause any harm.
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Fig. 2.1. Setting up the varying rehedging times. Steeper slope of d(t) corresponds to more
frequent rebalancing.

with the final condition C(T,S)=p(ST ), we have

C(0,S0)+
∑
ti<T

CS(ti,Sti)(Sti+1
−Sti)−

∑
ti<T

ΔXti [S(ti,ΔXti)−S(ti,0)]→p(ST )

in L2-sense as Δt→0. In other words, the MSHE of this discrete delta-hedging strategy
approaches zero.

Proof. See Appendix A.

Lemma 2.1. Let C(t,S) be a solution to

Ct(t,S)+1/2σ2S2CSS(t,S)[1+2αSCSS(t,S)]=0

with the final condition C(T,S)=p(ST ), then
3

∑
ti<T

CS(ti,Sti)(Sti+1
−Sti)→

∫ T

0

CS(t,St)dSt

LT →
∫ T

0

σ2f ′(0)S3
tC

2
SS(t,St)dt

in L2-sense as Δt→0.

Proof. See Appendix A.

The next theorem gives the coefficient of Δt as a leading order term of the mean
squared hedging error assuming varying rehedging times.

Theorem 2.2. Consider the discrete time delta-hedging strategy Xti =CS(ti,Sti)
where C is the solution of the PDE in Lemma 2.1,

E

[
C(0,S0)+

∑
ti<T

CS(ti,Sti)(Sti+1
−Sti)−

∑
ti<T

ΔXti (S(ti,ΔXti)−S(ti,0))−p(ST )

]2

3We assume smoothness conditions on C(t,x), i.e., ||C||m,n,p=sup[xm ∂p+nC(t,x)
∂tp∂xn ] is finite for all

nonnegative m, n, and p.
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=ΔtE

[∫ T

0

σ4 1

d′(t)
C2

SS(t,St)S
4
t

(
1

2
+2αCSS(t,St)St+2α2C2

SS(t,St)S
2
t

)
dt

]
+O(Δt2)

Proof. See Appendix A.

Remark 2.1. In comparison with the settings in Cetin et al. [6], the class of delta-
hedging strategies suggested in our paper satisfies the condition for admissible trading
strategies in Cetin et al. [6], since the number of shares held at each time t in the
portfolio is CS(S,t) and it can be written in the form of Equation (2.2) in Cetin et
al. [6].

3. Selection of optimal strategies
In this section we show that the hedging errors are reduced by using varying instead

of equally spaced rehedging times. We wish to replicate the payoff p(ST ) of a European
option with a fixed initial capital prescribed by the partial differential equation and a
fixed number of available rebalancing times. Since continuous hedging is not possible,
there must be a tracking error. We are minimizing the mean squared replication error,
that is the first order term in Δt from Theorem 2.2. Thus we investigate the optimal
positioning of the rehedging times over all deterministic functions d(t):

min
d(t)

E

[∫ T

0

σ4 1

d′(t)
C2

SS(t,St)S
4
t

(
1

2
+2αCSS(t,St)St+2α2C2

SS(t,St)S
2
t

)
dt

]
.

We employ the calculus of variations to solve the minimization problem. Essentially
we find a solution d(t) giving the location of the rehedging times that will minimize the
hedging error. We start by transforming the coefficient in front of Δt in the mean
squared hedging error using Fubini’s theorem

E

[∫ T

0

σ4 1

d′(t)
C2

SS(t,St)S
4
t

(
1

2
+2αCSS(t,St)St+2α2C2

SS(t,St)S
2
t

)
dt

]

=σ4

∫ T

0

1

d′(t)

(
1

2
E
[
C2

SS(t,St)S
4
t

]
+2αE

[
C3

SS(t,St)S
5
t

]
dt+2α2

E
[
C4

SS(t,St)S
6
t

])
dt.

Denote by A(t) the expression in parentheses, that is,

A(t)=
1

2
E
[
C2

SSS
4
t

]
+2αE

[
C3

SSS
5
t

]
+2α2

E
[
C4

SSS
6
t

]
.

Recall that in the calculus of variations the problem of finding a function d(t) which
minimizes the following integral

I(d)=

∫ t2

t1

F (t,d(t),d′(t))dt

where d(t1)=d1, d(t2)=d2, and d′(t) �=0. We want to solve∫ T

0

1

d′(t)
A(t)dt

with d(0)=0,d(T )=T,d′(t) �=0, which means that the integrand

F (t,d(t),d′(t))=
1

d′(t)
A(t)
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in our case. The functional F depends only on t and d′, and the Euler’s equation is
d
dtFd′(t,d

′)=0. Next we integrate the Euler’s equation with respect to t from both sides
to get rid of the derivative in t. Then Fd′(t,d

′)=C1 for some constant C1.
Differentiating F with respect to d′,

Fd′(t,d
′)=− 1

(d′(t))2
A(t)=C1.

Then we have 0≤ (d′(t))2=−A(t)
C1

. Next we take the square root on both sides for d′(t):

d′(t)=±
√

|A(t)|
|−C1| =±

√|A(t)|√|−C1|
.

In order to find a value of
√|−C1| from the boundary condition, we integrate with

respect to t from both sides. Then

d(t)=±
∫ t

0

√
|A(x)|
|−C1| dx+C2.

Recall that we require d(t) to be positive, so one is interested only in d(t)=

+
∫ t

0

√
|A(x)|
|−C1| dx+C2. Now we use the boundary conditions to determine the values

for C1 and C2. First we make use of d(0)=0.

d(0)=0=

∫ 0

0

√
|A(x)|
|−C1| dx+C2=0+C2

so C2=0 and d(t)=+
∫ t

0

√
|A(x)|
|−C1| dx. Now using d(T )=T ,

d(T )=T =

∫ T

0

√
|A(x)|
|−C1| dx=

1√|−C1|

∫ T

0

√
|A(x)|dx

thus

1√|−C1|
=

T∫ T

0

√|A(x)|dx
.

The final form of d(t) is

d(t)=

∫ t

0

√
|A(x)|
|−C1| dx

=
T∫ T

0

√|A(x)|dx

∫ t

0

√
|A(x)|dx.

Now we discuss the numerical solution to the problem and present some simula-
tions. We consider the hedging problem of a standard European call and compute d(t)
numerically for the call option. Not all the smoothness hypotheses that we imposed to
prove our results is fulfilled for the call since the derivatives have singularities at point
(T,K), but this does not imply that our results do not cover this case. The formula
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for the first order term to reduce MSHE, derived in Theorem 2.2, is used to approxi-
mate hedging error of call options. The numerical results we obtain in this section are
consistent with the theory.

Table 3.1 shows the improvement in hedging errors from using varying rehedging
times instead of equally spaced ones. The computations are made for the European call
option with 250 rehedging times (that is, daily rebalancing), maturity T =1 (a year),
σ=0.1, and the spot price of the underlying S0=100. We note that the hedging errors
in the Black–Scholes setting (the case when α=0) is also reduced by using varying
rehedging times as well.

α strike call price
mean

HEe HEv MSHEe MSHEv

0.0001 95 6.88143273 0.000227 0.000132 0.005185 0.004467
100 3.97951947 0.000162 0.000096 0.009780 0.008972
105 2.05702452 0.000214 0.000198 0.001727 0.001041

0.0005 95 6.78019826 0.000247 0.000342 0.009105 0.007433
100 3.95192241 0.000519 0.000381 0.009368 0.006045
105 2.04212433 0.000229 0.000201 0.003033 0.001660

0.001 95 6.86598135 0.000114 0.000197 0.005159 0.004590
100 3.96012972 0.000336 0.000224 0.008562 0.005249
105 2.03966783 0.000032 0.000439 0.003024 0.002197

Table 3.1. Comparison of the hedging errors for equally spaced and varying rehedging times
(subscripts e and v correspondingly).

Figures 3.1 and 3.2 present the optimal d(t). The parameter values used in this
computation are initial spot price S0=100, T =0.5 (expiration in half a year), σ=0.4,
and α=0.0001. We observe the graph is convex. We plot d(t) in Figure 3.1 for strikes
100, 90, and 80, while Figure 3.2 displays d(t) for strikes 100, 110, and 120. As the
option gets deeper in the money or out of the money, the recommendation is to rebalance
more frequently toward the expiration (that is, the function’s shape becomes steeper).

Fig. 3.1. Optimal d(t) for a Euro call for
decreasing strikes.

Fig. 3.2. Optimal d(t) for a Euro call for
increasing strikes.
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4. Conclusions
We investigated the discrete time hedging problem of a contingent claim under liq-

uidity risk. We modeled liquidity costs via a stochastic supply curve with an underlying
asset price depending on order flow, that is purchases are executed at higher prices while
sales are executed at lower prices. We used a partial differential equation to define a
delta-hedging strategy and showed that the payoff of this discrete replicating strategy
converges to the payoff of the option as the length of revision interval goes to zero. Since
continuous hedging is not possible in practice, we introduced the class of discrete delta-
hedging trading strategies with varying rebalancing times and showed the mean squared
hedging error is improved with varying instead of equally spaced rehedging times. It
is advised to rebalance more frequently toward the expiration date as the option gets
deeper in the money or out of the money.

Appendix A. Proofs of the theorems.
Lemma A.1.

∑
ti<T

CS(ti,Sti)(Sti+1
−Sti)−→

∫ T

0

CS(t,St)dSt

in L2-sense as Δt→0.

The result of Lemma A.1 is well-known and can be proved in more general setting,
but we present the proof in here since we need the explicit expression of the leading
order term of errors for the proof of Theorem 2.2.

Proof. Consider

E

[∑
ti<T

CS(ti,Sti)(Sti+1
−Sti)−

∫ T

0

CS(t,St)dSt

]2

=E

[∑
ti<T

∫ ti+1

ti

CS(ti,Sti)dSt−
∑
ti<T

∫ ti+1

ti

CS(t,St)dSt

]2

=E

[∑
ti<T

∫ ti+1

ti

(CS(ti,Sti)−CS(t,St)) dSt

]2

=E

⎡
⎣∑

i=j

(∫ ti+1

ti

(CS(ti,Sti)−CS(t,St)) dSt

)2
⎤
⎦

+E

⎡
⎣∑

i �=j

∫ ti+1

ti

(CS(ti,Sti)−CS(t,St)) dSt

∫ tj+1

tj

(
CS(tj ,Stj )−CS(t,St)

)
dSt

⎤
⎦ .

The cross terms (the second term of the last equation) become zero. We work with the
diagonal terms first.

E

[∑
i

(∫ ti+1

ti

(CS(ti,Sti)−CS(t,St)) dSt

)2
]

=E

[∑
i

(∫ ti+1

ti

[CS(ti,Sti)−CS(t,St)] [μStdt+σStdWt]

)2
]
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=E

[∑
i

(∫ ti+1

ti

[CS(ti,Sti)−CS(t,St)]μStdt+

∫ ti+1

ti

[CS(ti,Sti)−CS(t,St)]σStdWt

)2
]

(A.1)

Now we demonstrate that the order of each sum is greater than or equal to O(Δt)
to conclude that the whole expression converges to zero. We start by showing that the
sum of squares of the second term has expectation O(Δt), that is

E

[∑
i

(∫ ti+1

ti

[CS(ti,Sti)−CS(t,St)]σStdWt

)2
]
=O(Δt)→0 (as Δt→0).

To prove this we consider

E

[∑
i

(∫ ti+1

ti

[CS(ti,Sti)−CS(t,St)]σStdWt

)2
]

=E

[∑
i

EFti

[∫ ti+1

ti

[CS(ti,Sti)−CS(t,St)]σStdWt

]2]

=E

[∑
i

EFti

[∫ ti+1

ti

(CS(ti,Sti)−CS(t,St))
2
σ2S2

t dt

]]

by the Itô isometry (see for instance [17]). Using a Taylor series expansion,

E

[∑
i

EFti

[∫ ti+1

ti

(
C2

SS(ti,Sti)(St−Sti)
2+O(Δt3/2)

)
σ2S2

t dt

]]

=E

[∑
i

(
EFti

[∫ ti+1

ti

C2
SS(ti,Sti)(St−Sti)

2σ2S2
t dt

]
+O(Δt5/2)

)]

=E

[∑
i

(
σ2C2

SS(ti,Sti)

∫ ti+1

ti

EFti

[
(St−Sti)

2S2
t

]
dt+O(Δt5/2)

)]
. (A.2)

We note that the fact

EFti

[
(St−Sti)

2S2
t

]
=σ2S4

ti(t− ti)+O(t− ti)
2

which can be directly calculated from the distribution of St. Then Equation (A.2) equals

E

[∑
i

(
σ2C2

SS(ti,Sti)

∫ ti+1

ti

EFti

[
(St−Sti)

2S2
t

]
dt+O(Δt5/2)

)]

=E

[∑
i

(
σ2C2

SS(ti,Sti)

[
σ2S4

ti

∫ ti+1

ti

(t− ti)dt+O(Δt3)

]
+O(Δt5/2)

)]

=E

[∑
i

(
σ4

2
C2

SS(ti,Sti)S
4
ti(ti+1− ti)

2+O(Δt5/2)

)]

=E

[∑
i

(
O(Δt2)+O(Δt5/2)

)]
=O(Δt)→0 (as Δt→0).
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This is the only term with order exactly O(Δt). To characterize the convergence
we find that

E

[∑
i

σ4

2
C2

SS(ti,Sti)S
4
ti(ti+1− ti)

2

]

=E

[∑
i

σ4

2
C2

SS(ti,Sti)S
4
ti(ti+1− ti)(ti+1− ti)

]

=E

[∑
i

σ4

2
C2

SS(ti,Sti)S
4
ti

[
Δt

d′(ti)
+O(Δt2)

]
(ti+1− ti)

]

=E

[∑
i

σ4

2
C2

SS(ti,Sti)S
4
ti

Δt

d′(ti)
(ti+1− ti)

]
+
∑
i

O(Δt3)

=ΔtE

[∑
i

σ4

2
C2

SS(ti,Sti)S
4
ti

1

d′(ti)
(ti+1− ti)

]
+O(Δt2).

We also note that

E

[∑
i

σ4

2
C2

SS(ti,Sti)S
4
ti

1

d′(ti)
(ti+1− ti)

]
→E

[∫ T

0

σ4

2
C2

SS(t,St)S
4
t

1

d′(t)
dt

]

in L1. We claim that the remaining terms from Equation (A.1) will be higher order
than O(Δt) and thus converge to zero as Δt tends to zero. We give the proof for the
cross term, and the reasoning for the other terms is similar. Consider the expected
value conditioned on Fti of the cross term

EFti

[∫ ti+1

ti

(CS(ti,Sti)−CS(t,St))μStdt

∫ ti+1

ti

(CS(ti,Sti)−CS(t,St))σStdWt

]

≤
(
EFti

[∫ ti+1

ti

(CS(ti,Sti)−CS(t,St))μStdt

]2)1/2

×
(
EFti

[∫ ti+1

ti

(CS(ti,Sti)−CS(t,St))σStdWt

]2)1/2

using Hölder’s inequality. Then by the Itô isometry(
EFti

[∫ ti+1

ti

(CS(ti,Sti)−CS(t,St))μStdt

]2)1/2

(
EFti

[∫ ti+1

ti

(CS(ti,Sti)−CS(t,St))
2
σ2S2

t dt

])1/2

=

(
EFti

[∫ ti+1

ti

CSS(ti,Sti)(St−Sti)μStdt+O(Δt2)

]2)1/2

×
(
EFti

[∫ ti+1

ti

C2
SS(ti,Sti)(St−Sti)

2σ2S2
t dt+O(Δt3)

])1/2

=O(Δt3/2)O(Δt)=O(Δt5/2).
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Then summing up the terms over all subintervals gives an estimate of

E

[∑
i

O(Δt5/2)

]
=O(Δt3/2)>O(Δt).

Lemma A.2. LT →∫ T

0
σ2f ′(0)S3

tC
2
SS(t,St)dt in L2-sense as Δt→0.

Proof. Define the following sequence of random variables

Δi≡(Sti −Sti−1)
2−σ2S2

ti−1
(ti− ti−1).

After rearranging one gets

(Sti −Sti−1
)2=Δi+σ2S2

ti−1
(ti− ti−1).

Let us consider

n∑
i=1

C2
SS(ti−1,Sti−1)(Sti −Sti−1)

2Sti−1f
′(0)

=

n∑
i=1

C2
SS(ti−1,Sti−1)(Δi+σ2S2

ti−1
(ti− ti−1))Sti−1f

′(0)

=

n∑
i=1

C2
SS(ti−1,Sti−1

)ΔiSti−1
f ′(0)+

n∑
i=1

C2
SS(ti−1,Sti−1

)σ2(ti− ti−1)S
3
ti−1

f ′(0).

It is easy to see that the second sum converges to
∫ T

0
σ2f ′(0)S3

tC
2
SS(t,St)dt. We

will show that for the first sum

n∑
i=1

C2
SS(ti−1,Sti−1)ΔiSti−1f

′(0)→0.

We begin by observing that E
[∑n

i=1C
2
SS(ti−1,Sti−1)ΔiSti−1f

′(0)
]2

consists of diagonal
and cross terms. Consider the diagonal terms first:

E

[
n∑

i=1

C4
SS(ti−1,Sti−1)Δ

2
iS

2
ti−1

(f ′(0))2
]

=E

[
n∑

i=1

C4
SS(ti−1,Sti−1

)S2
ti−1

(f ′(0))2EFti−1

[
Δ2

i

]]
. (A.3)

Recall that Sti =Sti−1
eZti

−Zti−1 , where Zt=μt+σWt is a Wiener process with
drift μ(=μ− 1

2σ
2). Since Zti −Zti−1

∼N (
μ(ti− ti−1),σ

2(ti− ti−1)
)
, then the moment

generating function of Zti −Zti−1
is MN (s)=eμs+σ2s2/2. Then

EFti−1

[
Δ2

i

]
=EFti−1

[
(Sti −Sti−1)

2−σ2S2
ti−1

(ti− ti−1)
]2

=EFti−1

[
(Sti −Sti−1)

4−2(Sti −Sti−1)
2σ2S2

ti−1
(ti− ti−1)+σ4S4

ti−1
(ti− ti−1)

2
]
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=S4
ti−1

[3σ4(ti− ti−1)
2−2(1+2μ(ti− ti−1)+2σ2(ti− ti−1)−2[1+μ(ti− ti−1)

+1/2σ2(ti− ti−1)]+1)(ti− ti−1)σ
2+(ti− ti−1)

2σ4+O(Δt3)]

=2S4
ti−1

σ4(ti− ti−1)
2+O(Δt3).

Use this result to rewrite Equation (A.3) as

E

[
n∑

i=1

C4
SS(ti−1,Sti−1

)S2
ti−1

(f ′(0))2EFti−1

[
Δ2

i

]]

=E

[
n∑

i=1

C4
SS(ti−1,Sti−1

)S2
ti−1

(f ′(0))2
(
2S4

ti−1
σ4(ti− ti−1)(ti− ti−1)+O(Δt3)

)]

=2E

[
n∑

i=1

C4
SS(ti−1,Sti−1)S

6
ti−1

(f ′(0))2σ4

(
Δt

d′(ti)
+O(Δt2)

)
(ti− ti−1)

]
+O(Δt2)

=2ΔtE

[
n∑

i=1

C4
SS(ti−1,Sti−1

)S6
ti−1

(f ′(0))2σ4 1

d′(ti)
(ti− ti−1)+

n∑
i=1

O(Δt2)

]
+O(Δt2)

=2ΔtE

[
n∑

i=1

∫ ti

ti−1

C4
SS(ti−1,Sti−1)S

6
ti−1

(f ′(0))2σ4 1

d′(ti)
dt

]
+O(Δt2)→0 (as Δt→0).

This is the only term with the order exactly O(Δt). To characterize the convergence
we note that

E

[
n∑

i=1

∫ ti

ti−1

C4
SS(ti−1,Sti−1)S

6
ti−1

(f ′(0))2σ4 1

d′(ti)
dt

]
→E

[∫ T

0

C4
SS(t,St)S

6
t (f

′(0))2σ4 1

d′(t)
dt

]

in L1. Therefore, we conclude that

n∑
i=1

C2
SS(ti−1,Sti−1

)(Sti −Sti−1
)2Sti−1

f ′(0)

=

n∑
i=1

C2
SS(ti−1,Sti−1

)ΔiSti−1
f ′(0)+

n∑
i=1

C2
SS(ti−1,Sti−1

)σ2(ti− ti−1)S
3
ti−1

f ′(0)

→
∫ T

0

C2
SS(t,St)S

3
t σ

2f ′(0)dt.

Next, we need to show

LT −
n∑

i=1

C2
SS(ti−1,Sti−1

)Sti−1
f ′(0)(Sti −Sti−1

)2→0.

We omit higher-order term on the way. First we work with

LT ≡
∑
ti<T

ΔXti [S(ti,ΔXti)−S(ti,0)]

=
∑
ti<T

ΔXti [f(ΔXti)−1]Sti

=
∑
ti<T

ΔX2
tif

′(0)Sti +
∑
ti<T

O(ΔXti)
3
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=

n∑
i=1

f ′(0)StiC
2
SS(ti−1,Sti−1

)(Sti −Sti−1
)2+

∑
ti<T

O(ΔXti)
3.

Now we turn our attention to

E

[
LT −

n∑
i=1

f ′(0)Sti−1
C2

SS(ti−1,Sti−1
)(Sti −Sti−1

)2

]2

=E

[
n∑

i=1

f ′(0)C2
SS(ti−1,Sti−1

)(Sti −Sti−1
)3+

∑
ti<T

O(ΔXti)
3

]2

=O(Δt2)→0.

Therefore,

LT =LT −
n∑

i=1

f ′(0)Sti−1
C2

SS(ti−1,Sti−1
)(Sti −Sti−1

)2

+

n∑
i=1

f ′(0)Sti−1
C2

SS(ti−1,Sti−1
)(Sti −Sti−1

)2

→
∫ T

0

σ2f ′(0)S3
tC

2
SS(t,St)dt.

The proof of the lemma is finished.

By combining the lemmas, we now prove Theorem 2.1.

Proof. Rearranging the terms of the PDE one gets

σ2f ′(0)S3C2
SS =−Ct−1/2σ2S2CSS

−
∫ T

0

σ2f ′(0)S3C2
SS dt=

∫ T

0

[−Ct−1/2σ2S2CSS

]
dt.

Then, lemmas A.1 and A.2 imply

C(0,S0)+
∑
ti<T

CS(ti,Sti)(Sti+1
−Sti)−

∑
ti<T

ΔXti [S(ti,ΔXti)−S(ti,0)]

−→C(0,S0)+

∫ T

0

CS(t,St)dSt−
∫ T

0

σ2f ′(0)S3
tC

2
SS(t,St)dt

=C(0,S0)+

∫ T

0

CS(t,St)dSt+

∫ T

0

[
Ct+1/2σ2S2CSS

]
dt

=C(T,ST )=p(ST )

by Itô’s formula, which completes the proof of Theorem 2.1.

Finally, we are ready to prove Theorem 2.2.

Proof. Note that we omit the higher order terms. Denote∑
1

≡
∑
ti<T

CS(ti,Sti)(Sti+1 −Sti)

∑
2

≡LT =
∑
ti<T

ΔXti(S(ti,ΔXti)−S(ti,0))
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∫
1

≡
∫ T

0

CS(t,St)dSt∫
2

≡
∫ T

0

σ2f ′(0)S3
tC

2
SS(t,St)dt.

With this notation, the mean squared hedging error is written as

E

[
C(0,S0)+

∑
ti<T

CS(ti,Sti)(Sti+1 −Sti)−
∑
ti<T

ΔXti (S(ti,ΔXti)−S(ti,0))−p(ST )

]2

=E

⎡
⎣
(∑

1

−
∑
2

−
(∫

1

−
∫
2

))2
⎤
⎦

=E

[
(
∑
1

−
∫
1

)2−2(
∑
1

−
∫
1

)(
∑
2

−
∫
2

)+(
∑
2

−
∫
2

)2

]
.

The estimates for the first and third terms in the expectation are obtained from
lemmas A.1 and A.2. Only the term in the middle of the expression needs to be inves-
tigated. By omitting the higher order terms and the almost identical computations to
the proofs of the lemmas, the cross term of the errors is essentially

E

[∑
i

∫ ti

ti−1

(
CS(t,St)−CS(ti−1,Sti−1

)
)
dStC

2
SS(ti−1,Sti−1

)ΔiSti−1
f ′(0)

]

=E

[∑
i

C3
SS(ti−1,Sti−1

)Sti−1
f ′(0)EFti−1

[
Δi

∫ ti

ti−1

(St−Sti−1
)dSt

]]

=E

[∑
i

C3
SS(ti−1,Sti−1)S

5
ti−1

f ′(0)σ4(ti− ti−1)
2

]

=E

[∑
i

C3
SS(ti−1,Sti−1

)S5
ti−1

f ′(0)σ4

(
Δt

d′(ti−1)
+O(Δt2)

)
(ti− ti−1)

]

−→ΔtE

[∫ T

0

C3
SS(t,St)S

5
t f

′(0)σ4 1

d′(t)
dt

]
.

The result follows by collecting the estimates obtained.
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