
COMMUN. MATH. SCI. c© 2016 International Press

Vol. 14, No. 7, pp. 1925–1946

THE SYMMETRIC STRUCTURE OF
GREEN–NAGHDI TYPE EQUATIONS∗

DENA KAZERANI†

Abstract. The notion of symmetry classically defined for hyperbolic systems of conservation laws
is extended to the case of evolution equations of conservative form for which the flux function can be
an operator. We explain how such a symmetrization can work from a general point of view using an
extension of the classical Godunov structure. We then apply it to the Green–Naghdi type equations
which are a dispersive extension of the hyperbolic shallow-water equations. In fact, in the case of these
equations, the general Godunov structure of the system is obtained from its Hamiltonian structure.
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1. Introduction
Incompressible Euler equations and water waves problem model free surface incom-

pressible fluids under the influence of the gravity. The complexity of these systems leads
to consider averaged geophysical models to describe coastal oceanic flows. We focus on
a particular type of these reduced models called the Green–Naghdi type model [13],
which writes {

∂th+∂x(hu)=0,

∂t(hu)+∂x(hu
2)+∂x(gh

2/2+αh2ḧ)=0.
(1.1)

The unknown h represents the fluid height and is assumed to be positive, while u is
the averaged horizontal velocity. Moreover, the material derivative (̇) is defined by

(̇)=∂t()+u∂x(), α is a positive real number and g is the gravity constant.
If α=0, system (1.1) is hyperbolic and equivalent to the Saint-Venant equations

(and to the barotropic Euler equations). System (1.1) with α �=0 is different from the
Saint-Venant system by the dispersive term ∂x(αh

2ḧ). It has been rigorously derived for
α= 1

3 from the water wave problem for irrotational flows by Li [19] and by Alvarez and
Lannes [1]. In [15], Ionescu derived the same system by a variational method considering
the Lagrangian formulation of the irrotational incompressible Euler equations. In [4],
the authors obtain system (1.1) for α= 1

4 by a different but a formal method without
any hypothesis on the irrotationality of the fluid.

It is worth remarking that system (1.1) admits the following conservation law (see
for instance [9, 10]),

∂tE+∂x (u(E+p))=0, (1.2)

where the energy E is defined by

E=gh2/2+hu2/2+αh3(∂xu)
2/2, (1.3)
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and p by

p=gh2/2+αh2ḧ. (1.4)

Contrary to the case of hyperbolic systems, the energy E and the pressure p are not
functions of the unknown but smooth operators acting on the space of functions the
unknown belongs to.

The aim of this paper is to extend the notion of symmetry classically defined for
hyperbolic systems, to more general type of equations, including the Green–Naghdi
model (1.1). We first recall the definition of symmetrizability for hyperbolic systems
and its relation with the existence of a convex entropy.

1.1. Symmetric structure of hyperbolic systems of conservation laws.
Let us provide a brief review on the symmetrization of hyperbolic systems of conserva-
tion laws. We consider the system

∂tU+∂xF (U)=0 (1.5)

where the flux F :RN →R
N , N ≥1, is a smooth function. We only consider in the sequel

smooth solutions U :R+×R→R
N .

The hyperbolic system (1.5) is called symmetrizable if there exists a change of
variable U �→Q such that Equation (1.5) is equivalent to

A0(Q)∂tQ+A1(Q)∂xQ=0, (1.6)

where A0(Q) is a symmetric positive definite matrix and A1(Q) is a symmetric one.
Moreover, a pair of smooth functions (E,P ) from R

N to R such that ∇2
UE(U)

positive definite is an entropy pair for system (1.5) if any solution U to Equation (1.5)
satisfies

∂tE(U)+∂xP (U)=0, (1.7)

or equivalently if

(∇UF (U))
T ∇UE(U)=∇UP (U). (1.8)

Using Poincaré’s theorem [5], the latter condition, which is nothing but an integrability
condition, is equivalent to the symmetry condition

∇2E(U)∇F (U)=
(∇2E(U)∇F (U)

)T
.

The following classical proposition illustrates how the notions of entropy and sym-
metry are related. We also provide the associated proof in order to compare it to the
generalized case of the next section.

Proposition 1.1 ([3, 6, 12, 20, 21]). Let us assume that the hyperbolic system (1.5)
admits an entropy pair (E,P ). Then, it is symmetrizable under any change of variable
U �→V under the form

A0(V )∂tV +A1(V )∂xV =0,

where

A0(V )=(∇V U)T∇2
UE(U) ∇V U, and A1(V )=(∇V U)T∇2

UE(U) ∇UF (U)∇V U. (1.9)
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Proof. Considering a change of variable U �→V , system (1.5) becomes

∇V U∂tV +∇UF (U)∇V U∂xV =0. (1.10)

We now apply (∇V U)T∇2
UE(U) to the left-hand side and obtain

(∇V U)T∇2
UE(U) ∇V U ∂tV +(∇V U)T∇2

UE(U) ∇UF (U) ∇V U ∂xV =0. (1.11)

The symmetric matrix A0(V )=(∇V U)T∇2
UE(U) ∇V U is positive definite due to the

strict convexity of the entropy. Therefore, we just need to prove the symmetry of
∇2

UE(U) ∇UF (U). To do so, we consider the change of variable U �→Q where Q is the
entropy variable, i.e.

Q=∇UE(U). (1.12)

This change of variable is valid since E is strictly convex. As a consequence, the Legendre
transform E� of E defined by

E�(Q)=Q ·(∇UE)−1(Q)−E((∇UE)−1(Q)), (1.13)

satisfies

U =∇QE
�(Q). (1.14)

Let us now define the scalar function P̂ by

P̂ (Q)=Q ·F (U(Q))−P (U(Q)). (1.15)

Then, we use relation (1.8) to get

∇QP̂ (Q)=F (U). (1.16)

Hence,

∇2
UE(U) ∇UF (U)=∇2

UE(U) ∇2
QP̂ (Q) ∇UQ=∇2

UE(U) ∇2
QP̂ (Q) ∇2

UE(U)

is symmetric.

Gathering Equations (1.14) and (1.16), we remark that system (1.5) is equivalent
to

∂t (∇QE
�(Q))+∂x

(
∇QP̂ (Q)

)
=0.

In other words, system (1.5) admits a so-called Godunov structure [12]. Note that such
a structure can be used to deduce the existence of an entropy pair since it implies the
symmetry of ∇2

UE(U) ∇UF (U), and thus the integrability of (∇UF (U))
T ∇UE(U).

Remark 1.1. Let us consider a system of the form (1.5) which admits an entropy
pair (E,P ). Assume that there exists a decomposition of the unknown U =(U1,U2) such
that the application φ �→∇U2E(U1,φ) is invertible. Then, the change of variable

U �→V =(U1,∇U2
E(U1,U2))
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is particularly interesting since A0(V ) is block diagonal (this is a direct consequence of
the expression (1.9) of A0(V )). Indeed, this can be useful to deduce equivalent normal
forms of system (1.5) when studying for instance parabolic regularizations [17].

In the case of the Saint-Venant equations, with U =(h,hu) and E=gh2/2+hu2/2,
let us compare two symmetric forms. If we consider the entropy variable Q=∇UE(U)=
(gh−u2/2,u), one has

A0(Q)∂tQ+A1(Q)∂xQ=0,

where

A0(Q)=
1

g

(
1 u
u gh+u2

)
and A1(Q)=

1

g

(
u gh+u2

gh+u2 3ghu+u3

)
.

On the other hand, using the change of variable U �→V =(h,∇huE(U))=(h,u), the
Saint-Venant equations become

A0(V )∂tV +A1(V )∂xV =0,

with

A0(V )=

(
g 0
0 h

)
, and A1(V )=

(
gu gh
gh hu

)
.

The notion of symmetrizability is crucial to be useful to prove the local well-
posedness of hyperbolic systems (see [3] for instance) as well as the stability of constant
solutions of hyperbolic systems with dissipative terms [14, 17, 23, 24]. Let us now recall
some properties of the Green–Naghdi equations.

1.2. Hamiltonian structure of the Green–Naghdi equations. Following
Li [19], let us consider the unknown U =(h,m) defined by

m=Lh(u)=hu−α
(
h3ux

)
x
. (1.17)

The change of variable (h,u) �→ (h,m) is valid since the Sturm–Liouville operator Lh is
an isomorphism from H

s(R) to H
s−2(R), for s≥2, due to the fact that h is positively

bounded by below1. Let us also mention that the variable m has been used in [10] to
define the generalized velocity k= m

h .
We illustrate in the following proposition the Hamiltonian structure of the Green–

Naghdi equations inherited from the structure of incompressible Euler equations with a
free surface. To state this result, we adopt classical notations of variational derivatives
and second variations (see for instance [11,22]).

Proposition 1.2 ([19]). Let h̄>0 be a real constant. System (1.1) is equivalent to

∂tU =J (U)δHh̄(U), (1.18)

where

U =(h,m)=(h,Lh(u)),

1Operator Lh is a diffeomorphism from H
s+2(R) to H

s(R) if h is close enough to a constant state
h̄ for the norm H

n with n≥2. This assumption is considered in Section 3.1 while symmetrizing the
Green–Naghdi equations.
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Hh̄(h,u)=

∫
R

gh(h− h̄)/2+hu2/2+αh3(ux)
2/2, (1.19)

and

J (U)=−
(

0 ∂x(h())
h∂x ∂x(m())+m∂x

)
. (1.20)

More precisely, we have for all test functions (φ,ψ)

J (U)

(
φ
ψ

)
=−

(
∂x(hψ)

h∂xφ+∂x(mψ)+m∂xψ

)
. (1.21)

By classical calculations, we have

δHh̄(U)=(σ,u),

with

σ=gh−gh̄/2−u2/2− 3

2
αh2(ux)

2. (1.22)

The variable σ has been used in [9] for the canonical representation of the Green–Naghdi
equations.

The function Hh̄ is the integral of the relative energy

Eh̄=gh(h− h̄)/2+hu2/2+αh3(ux)
2/2, (1.23)

which, following the same calculations as those which lead to Equation (1.2), satisfies
the conservation law

∂tEh̄+∂x(u(Eh̄+p))=0, (1.24)

where p is given by Equation (1.4). The first consequence is the conservation of the
HamiltonianHh̄ over time by integration in space2. This important property can also be
obtained using the Hamiltonian structure (1.18) of the system and the fact that J (U) is
a skew-symmetric operator acting on the space of vector-valued functions whose second
component converges to 0 at infinity. Hence,

d

dt
H(U(t))=

∫
R

δH(U) ·∂tU =

∫
R

δH(U) ·J (U)δH(U)=0.

1.3. General idea. The generalization of the notion of symmetrizability to
dispersive perturbations of hyperbolic systems has been studied by several authors. For
instance, Gavrilyuk and Gouin in [8] (see also [2]) investigate the symmetric structure
of Euler–Korteweg models and some p-systems. Similar ideas can be partially adapted
to some generalized p-systems like bubbly fluid equations and to modified Lagrangian
Green–Naghdi [7].

These generalizations are investigated with the hope of extending the results on
hyperbolic systems to their dispersive perturbations. In the very recent work [18], we use
the generalized symmetric structure presented in this work (more precisely in Section 3)

2It has been shown in [16,19] that the Green–Naghdi equations endowed with the unknown (h− h̄,u)
are well-posed in C

(
[0,T );Hs(R)×H

s+1(R)
)
for some T >0 and s≥2. Hence, u is a continuous function

vanishing at infinity using the Sobolev embedding theorem.
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to prove the asymptotic stability of constant solutions of the Green–Naghdi equations
with viscosity. Let us note that the symmetric structure presented here for Green–
Naghdi equations holds only in a small enough neighborhood of constant solutions,
this is to say that we consider the symmetrizability as a local notion. As we can see
in [18], this is not an obstacle to prove the stability of equilibriums since the solution of
the viscous Green–Naghdi equations remains close to equilibriums for initial data close
enough to these solutions.

In this paper, we consider general systems written under the following conservative
form

∂tU+∂xF (U)=0. (1.25)

The unknown U is supposed to belong to C([0,T );A) for some T >0 where A is a
Banach subspace of continuous functions of L2(R,RN ) converging to 0 at infinity. We
also assume that the derivative of all elements of A belongs to A. Let us note that F is
not anymore a function of RN but a smooth application defined from A to A. This is
actually the case for the Green–Naghdi equations. As we will see in Subsection 3.1, the
Green–Naghdi equations under the Hamiltonian variable (h,m) fits the abstract form
(1.25) with no loss of derivatives through F .

For sake of simplicity, we mainly consider the one-dimensional problem (1.25). We
provide some generalizations of the previous notions used in the hyperbolic case, sym-
metrizability, Godunov structure, and relate it, in the case of Green–Naghdi equations,
to the existence of a Hamiltonian structure. The extension of the results of the next
section to the multi-dimensional case will be addressed at the end of the next section.
Section 3 is devoted to the particular case of the Green–Naghdi equations.

2. Weak symmetric structure
The aim of this part is to provide a sufficient condition for the symmetrizability of

system (1.25) under any variable. First, we provide an adapted notion of symmetriz-
ability and define the Legendre transform of a variational function. Then, we will see
how a convenient strictly convex function can lead to the symmetrizability.

The notion of symmetry we consider here is based on the L2 scalar product, and not
on the scalar product of RN . More precisely, an operator F :A⊂L

2(R,RN )→L
2(R,RN )

is said to be symmetric if∫
R

φ ·F(ψ)=

∫
R

F(φ) ·ψ ∀φ,ψ∈A,

and positive definite if, for all φ∈A\{0}, ∫
R
φ ·Fφ>0.

Definition 2.1 (Weak symmetrizability). System (1.25) is called weakly sym-
metrizable if there exists a change of variable U �→V such that Equation (1.25) is equiv-
alent to

A0(V )∂tV +A1(V )∂x(V )=0, (2.1)

where A0(V ) is a symmetric positive definite operator and A1(V ) is a symmetric one.

Definition 2.2 (Legendre transform). Let Ω be an open convex subset of a Banach
space A⊂L

2(R,RN ) and consider a smooth application E :Ω→L
1(R) together with the

variational function H :Ω→R defined by

H(U)=

∫
R

E(U).
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Assume that there exists an open set Ω� of a Banach space B⊂L
2(R,RN ) such that the

application

δUH :

{
Ω→Ω�

U �→ δUH(U)

is a diffeomorphism. The Legendre transform H� of H is defined on Ω� by

H�(Q)=

∫
R

Q ·(δUH)
−1

(Q)−E
(
(δUH)

−1
(Q)

)
. (2.2)

Let us note that the Legendre transform H� of a function H satisfying the assump-
tions of Definition 2.1, also satisfies the assumptions of the definition. Moreover, basic
computations show that the Legendre transform of H� is nothing but H. In other words,

H��=H.

We now state one of the fundamental properties of the Legendre transform of a strictly
convex variational function (i.e. a function with a definite positive second variation). Let
us remark here that contrary to the finite dimensional case, the variational derivative
of a smooth strictly convex function is not necessarily a diffeomorphism. Therefore, we
still need to assume in the sequel that its variational derivative defines a diffeomorphism
as in Definition 2.2.

Proposition 2.1. The Legendre transform H� of a strictly convex function H which
satisfies the assumptions of Definition 2.2 is strictly convex.

Proof. Considering the expression (2.2) of the Legendre transform, we remark
that

δQH�(Q)=(δUH)
−1

(Q).

In other words,

Q= δUH(U) ⇐⇒ U = δQH�(Q).

Hence, the definite positivity of the second variation of H implies the definite positivity
of the second variation of H�. More precisely, we have

δ2UH(U)=DUQ(U),

and

δ2QH�(Q)=DQU(Q).

Therefore,

δ2UH(U)=
(
δ2QH�(Q)

)−1
.

The following theorem provides the connection between the convexity of H and the
existence of a general Godunov structure (this notion has been introduced in [9] and is
recalled in the following statement).
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Theorem 2.1. We use the same notations and assumptions as in Definition 2.2.
Assume that H is strictly convex on Ω. If

δ2UH(U)DUF (U) is symmetric, (2.3)

then system (1.25) admits a general Godunov structure: there exists a change of vari-
able U �→Q defined on Ω and a function R, together with R(Q)=

∫
R
R(Q), such that

system (1.25) is equivalent to

∂t (δQH�(Q))+∂x (δQR(Q))=0, (2.4)

as long as the solution U remains in Ω.

Proof. Let us first consider the change of variable U �→Q defined by

Q= δUH(U). (2.5)

or equivalently by

U = δQH�(Q). (2.6)

Considering the fact that δ2UH(U)DUF (U) is symmetric on the open convex set Ω, there
exists, by Poincaré’s theorem [5], a differentiable application N :Ω→R such that

DUN (U)φ=

∫
R

δUH(U) ·DUF (U)φ ∀φ∈A. (2.7)

We now define the function R by

R(Q)=

∫
R

Q ·F (U(Q))−N (U(Q)). (2.8)

We differentiate Equation (2.8) and take the action on a test function ψ. This leads to

DQR(Q)ψ=

∫
R

F (U(Q)) ·ψ+Q ·DUF (U)DQU(ψ)−DUN (U)DQU(ψ).

Then, we have by Equation (2.5),

DQR(Q)ψ=

∫
R

F (U(Q)) ·ψ+δUH(U) ·DUF (U)DQU(ψ)−DUN (U)DQU(ψ).

Finally, using Equation (2.7), we find

DQR(Q)ψ=

∫
R

F (U(Q)) ·ψ,

or equivalently

δQR(Q)=F (U(Q)). (2.9)

Considering system (1.25) together with Equations (2.6) and (2.9), we obtain Equa-
tion (2.4).
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The general Godunov structure (2.4) directly implies the weak symmetrizability of
system (1.25) with respect to the unknown Q, since it lets us write the system under

δ2QH�(Q)∂tQ+δ2QR(Q)∂xQ=0.

Let us now state in the following theorem, other consequences of a general Godunov
structure for system (1.25).

Theorem 2.2. We use the same notations and assumptions as in Definition 2.2.
Assume that H� is strictly convex on Ω�. Then, the general Godunov system (2.4) is
weakly symmetrizable for any change of variable Q �→V . More precisely, it is written
under the form

A0(V )∂tV +A1(V )∂xV =0,

where the symmetric operators are given by

A0(V )=(DV U)T δ2UH(U)DV U, (2.10)

A1(V )=(DV U)T δ2UH(U)DUF (U)DV U, (2.11)

with U = δQH�(Q), F (U)= δQR(Q), and H the Legendre transform of H�.

Proof. Setting U = δQH�(Q) and F (U)= δQR(Q(U)), system (2.4) writes

∂tU+∂xF (U)=0. (2.12)

We now consider the change of variable U �→V and write Equation (2.12) under

DV U∂tV +DUF (U)DV U∂xV =0. (2.13)

Then, we denote by H the Legendre transform of H� and take the left action of
(DV U)T δ2UH(U) on Equation (2.13). This leads to

(DV U)T δ2UH(U)DV U∂tV +(DV U)T δ2UH(U)DUF (U)DV U∂xV =0. (2.14)

Hence, the theorem is proved if we show that δ2UH(U)DUF (U) is symmetric. To do so,
let us differentiate the following application

N (U) :=

∫
R

Q(U) ·F (U)−R(Q(U)),

and find

DUN (U)φ=

∫
R

(F (U)−δQR(Q)) ·DUQφ+Q ·DUF (U)φ ∀φ∈A.

On the other hand, δQR(Q)=F (U) and Q= δUH(U). Therefore,

DUN (U)φ=

∫
R

δUH(U) ·DUF (U)φ ∀φ∈A.

The symmetry of the operator δ2UH(U)DUF (U) is just a consequence of the integrability
of φ �→∫

R
δUH(U) ·DUF (U)φ.

Let us gather the two previous results in the following corollary.
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Corollary 2.1. We use the same notations and assumptions as in Definition 2.2.
Assume that H is strictly convex on Ω. The three following statements are equivalent:

(1) System (1.25) owns a general Godunov structure using the Legendre transform
H� of H.

(2) The operator δ2UH(U)DUF (U) is symmetric.

(3) System (1.25) is weakly symmetrizable under any change of variable U �→V with
the expressions (2.10) and (2.11) for symmetric operators.

One can see that these relations are very similar to the case of hyperbolic systems.
It remains to check whether or not one can add to these statements the existence of a
conservation law.

Proposition 2.2. Assume any of the three statements of Corollary 2.1. Assume also
that there exists a pair of functions (E,R) which defines H(U)=

∫
R
E(U) and R(Q)=∫

R
R(Q) describing the general Godunov form (2.4) of system (1.25). Then, the solution

U to system (1.25) satisfies ∫
R

(
∂tE(U)+∂xN(U)

)
=0, (2.15)

where

N(U)=Q(U) ·F (U)−R(Q(U)).

Proof. We take the left side action of DUE(U) on Equation (1.25) and find

DUE(U)∂tU+DUE(U)DUF (U)∂xU =0. (2.16)

We then take the integral on R and use the definition of the variational derivative to
get ∫

R

DUE(U)∂tU+δUH(U) ·DUF (U)∂xU =0. (2.17)

On the other hand, as done in the proof of Theorem 2.2, we have∫
R

DUN(U)φ=

∫
R

δUH(U) ·DUF (U)φ ∀φ∈A. (2.18)

Therefore, ∫
R

DUN(U)∂xU =

∫
R

δUH(U) ·DUF (U)∂xU. (2.19)

Hence, we can write Equation (2.17) as∫
R

DUE(U)∂tU+DUN(U)∂xU =0, (2.20)

which provides Equation (2.15).

Let us remark that contrary to the case of hyperbolic systems, the reciprocal of
Proposition 2.2 is false since Equations (2.18) and (2.19) are no longer equivalent. In-
deed, δUH(U) as well as the components of DUN(U) depend not only on U but also on
its derivatives.
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Let us also remark that the notion of symmetry introduced for Equation (1.25)
corresponds to the symmetry for the L

2 scalar product and is a weak notion while the
symmetry of hyperbolic system is a strong one. This is due to the fact that the assertion∫

R

φ.Fψ=

∫
R

Fψ ·φ ∀φ,ψ test functions, (2.21)

does not imply

φ.Fψ=Fψ ·φ ∀φ,ψ test functions. (2.22)

Therefore, the weak symmetry of the system does not lead to a conservation law but
to an equality of the form (2.15). However, as we can see in [18], this definition is
strong enough to allow us to generalize the hyperbolic techniques to the Green–Naghdi
equations. In fact, if we considered a stronger definition like the one deduced in Equation
(2.22) for the symmetric operator and a stronger condition such as the symmetry of
D2

UE(U)DUF (U) for Theorem 2.1, we would obtain a conservation law in addition
to similar theorems. However, less equations would be covered (i.e. the result would
be less general). Moreover, the strong symmetry of D2

UE(U)DUF (U) is more tedious
to be checked than the weak symmetry of δ2UH(U)DUF (U). We end this section by
two remarks. The first one is about an interesting change of variable (similarly to
Remark 1.1) while the second deals with the multi-dimensional case.

Remark 2.1. Let us consider system (1.25) with a variational function H such that
δ2UH(U)DUF (U) is a symmetric operator. Assume that there exists a decomposition of
the unknown U =(U1,U2) such that the application φ �→ δU2

H(U1,φ) is invertible. Then,
the change of variable

U �→ (V1,V2)=(U1,δU2
H(U1,U2)) (2.23)

is very interesting since it leads to a block diagonal structure of the matrix operator
A0(V ) defined by Equation (2.10). Using this expression, we have

A0(V )=

(
A11

0 A12
0

A21
0 A22

0

)
,

where

A11
0 = δ2U1

H(U)+δ2U2U1
H(U) DV1

U2+(DV1
U2)

T δ2U1U2
H(U)+(DV1

U2)
T δ2U2

H(U) DV1
U2

A12
0 = δ2U2U1

H(U) DV2
U2+(DV1

U2)
T δ2U2

H(U)DV2
U2,

A21
0 =(A12

0 )T =(DV2U2)
T δ2U1U2

H(U)+(DV2U2)
T δ2U2

H(U)DV1U2,

A22
0 =(DV2

U2)
T δ2U2

H(U) DV2
U2.

Therefore, A0(V ) is block diagonal since

A21
0 =(A12

0 )T =(DV2
U2)

T δ2U1U2
H(U)+(DV2

U2)
T δ2U2

H(U) DV1
U2=0.

This is due to the fact that Equation (2.23) implies that

(DV2U2)
T δ2U1U2

H(U)+(DV2U2)
T δ2U2

H(U) DV1U2

=(DV2
U2)

T DU1
V2+(DV2

U2)
T DU2

V2 DV1
U2
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=(DV2U2)
T DU1V2 DV1U1+(DV2U2)

T DU2V2 DV1U2

=(DV2
U2)

T (DU1
V2 DV1

U1+DU2
V2 DV1

U2)

=(DV2
U2)

T DV1
V2=0.

Remark 2.2. Let us consider the multi-dimensional version of system (1.25)

∂tU+

n∑
i=1

∂xiFi(U)=0. (2.24)

One can easily extend the previous results. Consider a variational function H(U)=∫
R
E(U) which admits a Legendre transform, as in Definition 2.2. Then the following

three statements are equivalent:

(1) The operators δ2UH(U)DUFi(U) are symmetric for all i∈{1, . . . ,n}.
(2) System (2.24) admits a general Godunov structure, i.e. there exist functions Ri

and the associated Ri(Q)=
∫
R
Ri(Q) such that system (2.24) is equivalent to

∂t(δQH�(Q))+

n∑
i=1

∂xi
(δQRi(Q))=0.

(3) System (2.24) is symmetrizable under any change of variable U �→V i.e. it is
equivalent to

A0(V )∂tV +

n∑
i=1

Ai(V )∂xi
V =0,

where the symmetric positive definite operator A0(V ) is given by

A0(V )=(DV U)T δ2UH(U)DV U, (2.25)

and the symmetric operators Ai(V ) by

Ai(V )=(DV U)T δ2UH(U)DUFi(U)DV U. (2.26)

Moreover, if one of these statements is satisfied, the solution to system (1.25) satisfies

∫
R

∂tE(U)+
n∑

i=1

∂xi
(Q ·Fi(U)−Ri(Q))=0.

3. Application to Green–Naghdi type equations

3.1. Symmetrization of the Green–Naghdi system. In this part, we are
going to apply the result of the previous section to the Green–Naghdi type system (1.1)
around constant solutions (h̄,h̄ū), with h̄>0 and ū∈R. First, we show that system
(1.1) is of the form (1.25) under convenient variables.

Proposition 3.1. Let s≥2 be an integer and set A=H
s(R)×H

s−1(R). Then, using
the variable

U =(η,w)
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with η=h− h̄ and w=Lh(u)− h̄ū, system (1.1) is of the form (1.25) where F :A→A
is differentiable.

Proof. We denote Lh(u) by m and h̄ū by m̄. Let us first prove that system (1.1)
can be written as ⎧⎨

⎩
∂η
∂t +

∂
∂x

(
hu

)
=0,

∂w
∂t +

∂
∂x (mu)+ ∂

∂x

(−2αh3(∂xu)
2+ g

2h
2
)
=0

(3.1)

This is a consequence of the Hamiltonian structure (1.18) of the system. Indeed, de-
veloping Equation (1.18)1, we easily find Equation (3.1)1. Then, we develop Equation
(1.18)2 to get

∂tm+h∂xσ+∂x(mu)+m∂xu=0,

where σ is given by Equation (1.22). Now, using the expression (1.22) of σ together
with the fact that m=Lh(u), we find Equation (3.1)2. One can deduce

F (U)=

(
(η+ h̄)L−1

h (w+m̄)− h̄ū
(w+m̄)L−1

h (w+m̄)−2α(η+ h̄)3(∂xL−1
h (w+m̄))2+ g

2 (η+ h̄)2− g
2 h̄

2−m̄ū

)
.

Let us now check the properties of F . Assuming that h∈H
s(R)+ h̄ is positively bounded

by below, Lh is a diffeomorphism from H
s+1(R)+ ū to Hs−1(R)+ h̄ū. This together with

the fact that H
s−1(R) is an algebra for s≥2 ensures that F is an application from A

to A. For instance, let us consider the first component of F (U). Since w∈H
s−1(R), we

obtain that L−1
h (w+m̄) belongs to H

s+1(R)+ ū and thus, to H
s(R)+ ū. On the other

hand, η+ h̄∈H
s(R)+ h̄. Hence, the product is in H

s(R)+ h̄ū. A similar logic can be
applied to get a similar result on the second component of F .
The differentiability of F is due to the fact that it is a composition of differentiable
applications.

We are now going to see that system (1.1) satisfies the assumptions of theorems 2.1
and 2.2 and Corollary 2.1 presented in Section 2.

Proposition 3.2. Let us consider a constant solution V̄ =(h̄,ū) with h̄>0. Then,
there exists a neighborhood in H

s(R)×H
s+1(R) of V̄ , such that as long as the solution

V =(h,u) remains in this neighborhood, System (1.1) is symmetrizable under any change
of variable defined on this neighborhood. In other words, system (1.1) is locally weakly
symmetrizable around constant solutions.

Proof. Let us prove that system (1.1) admits a general Godunov structure of the
form (2.4) using the function

Hh̄,ū(U)=

∫
R

gh(h− h̄)

2
+

h(u− ū)2

2
+

αh3(ux)
2

2
.

Let us first remark that Hh̄,ū(U) is strictly convex in a small neighborhood3 of Ū =
U(V̄ ). The explicit representation formula of the second variation of Hh̄,ū is provided
in Appendix A. For all test functions φ1 and φ2, one has4

3for the classical norm of Hs(R)×H
s−1(R).

4L− 1
2

h is the symmetric operator such that L− 1
2

h ◦L− 1
2

h =L−1
h . The existence of this operator is

guaranteed by the symmetry definite positivity of L−1
h .
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∫
R

(
φ1

φ2

)
·δ2Hh̄,ū(U)

(
φ1

φ2

)

=

∫
R

(g−3αh(ux)
2)(φ1)

2+
(
L− 1

2

h (−uφ1+3α∂x(h
2uxφ1))+L− 1

2

h (φ2)
)2

.

Now, considering the fact that g−3αh(ux)
2 is bounded positively by below for (h,u)

close enough to V̄ 5 (therefore, for U close enough to Ū), the strict convexity of Hh̄,ū

on the small neighborhood of Ū is concluded. We can formulate this conclusion as
following:

There exists a neighborhood in H
s(R)×H

s−1(R) of Ū =(0,0) such that as long as
the solution U =(η,w) is in this neighborhood, δ2UHh̄,ū is positive definite. In particular,
we have on Ū ,

δ2Hh̄,ū(Ū)=

(
g 0
0 L−1

h

)
. (3.2)

Let us also remark that δ2Hh̄,ū(U) is an isomorphism from H
s(R)×H

s−1(R) to H
s(R)×

H
s+1(R) if U is close enough to Ū . Hence, the variational derivative δHh̄,ū defines

a diffeomorphism on a small enough neighborhood of the equilibrium Ū . This is a
consequence of the inverse function theorem considering the injectivity of δHh̄,ū(U) for
U close to Ū .

We now consider the Legendre transform H�
h̄,ū

which is defined by

H�
h̄,ū(Q)=

∫
R

Q ·U−Eh̄,ū, (3.3)

where

Eh̄,ū=
gh(h− h̄)

2
+

h(u− ū)2

2
+αh3(ux)

2.

and

Q= δUHh̄,ū(U). (3.4)

One can check that Q=(σ,u− ū), with σ=gh−gh̄/2−u2/2+ ū2/2− 3
2αh

2(ux)
2. This

leads to the following expression for H�
h̄,ū

H�
h̄,ū(Q)=

∫
R

g(h− h̄)2

2
+

h̄(u− ū)2

2
−αh3(ux)

2+
3

2
αh2h̄(ux)

2.

We just now need to remark that there exists a function R of Q such that

F (U)= δQR(Q).

We can get to this equality setting

R(Q)=

∫
R

gu

(
h2− h̄2

2

)
−αh3u(ux)

2− h̄ūσ− h̄ū2(u− ū)+gh̄2ū/2. (3.5)

5for the classical norm of Hs(R)×H
s+1(R).
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Hence, the system is equivalent on a small enough neighborhood of V̄ to

∂t

(
δQH�

h̄,ū(Q)
)
+∂x (δQR(Q))=0. (3.6)

Now, using Theorem 2.2, we can conclude the weak symmetrizability of the system
under any change of variable around constant solutions.

Let us remark that the quantity Eh̄,ū introduced in the proof of Proposition 3.2,
is actually an energy for the system. Indeed, we can check that the solution of system
(1.1) satisfies

∂tEh̄,ū+∂x
(
uEh̄,ū+(u− ū)p

)
=0. (3.7)

where p is defined by Equation (1.4).
Proposition 3.2 together with Theorem 2.2 implies the symmetrizability of the sys-

tem under any variable around constant solutions. We now provide in the two following
propositions some explicit symmetric forms of system (1.1).

Proposition 3.3. The Green–Naghdi type system (1.1) can be written under the
symmetric form

A0(Q)∂tQ+A1(Q)∂x(Q)=0, (3.8)

where Q=(σ,u− ū) is defined by Equation (3.4) and

A0(Q)= (3.9)
⎛
⎝

1
g−3αh(ux)2

u+3αh2ux∂x
g−3αh(ux)2

u
g−3αh(ux)2

−3α∂x
(

h2ux
g−3αh(ux)2

()
)

Lh+
u(u+3αh2(ux)∂x)

g−3αh(ux)2
−3α∂x

(
h2ux

u()+3αh2ux∂x()

g−3αh(ux)2

)
⎞
⎠

and

A1(Q)= (3.10)
⎛
⎜⎜⎜⎝

u
g−3αh(ux)2

h+ u2+3αh2uux∂x
g−3αh(ux)2

h+ u2

g−3αh(ux)2
−3α∂x(

h2u(ux)

g−3αh(ux)2
()) 3hu+ u3+3αh2u2ux∂x

g−3αh(ux)2
−α∂x

(
h3ux()

)−αu∂x
(
h3∂x()

)

−3α∂x
(

h2u2ux+3αh4u(ux)2∂x()

g−3αh(ux)2

)

⎞
⎟⎟⎟⎠ .

Proof. This is a consequence of the general Godunov structure (3.6) of the system.
We just need to set A0(Q)= δ2QH�

h̄,ū
(Q) and A1(Q)= δ2QR(Q) to get the result.

Let us remark that the operators A0(Q) and A1(Q) defined by Equations (3.9) and
(3.10) are second order differential operators.

Proposition 3.4. The Green–Naghdi type system (1.1) is symmetric under the un-
known V =(h,u) of the form

A0(V )∂tV +A1(V )∂x(V )=0, (3.11)

with

A0(V )=

(
g−3αh(ux)

2 0
0 Lh

)
, (3.12)

and

A1(V )=

(
gu−3αhu(ux)

2 gh−3αh2(ux)
2

gh−3αh2(ux)
2 hu+2α∂x(h

3ux)−αh3ux∂x−αu∂x(h
3∂x())

)
. (3.13)
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Proof. This proposition is just a consequence of Theorem 2.2 and Proposition 3.2.
In fact, we check that the change of variable U �→ Ṽ such that{

U =(η,w),

Ṽ =(η,δwHh̄,ū(U)),

leads to Ṽ =(h− h̄,u− ū) which is nothing but V within a constant. This fact is true
since δwHh̄,ū(U)=L−1

h (m)− ū. This change of variable is valid by the properties of the
Sturm–Liouville operator Lh while h is positively bounded by below. Hence, the system
is symmetric with

A0(V )=(DV U)T δ2UHh̄,ū(U)DV U,

and

A1(V )=(DV U)T δ2UHh̄,ū(U)∇UF (U)DV U.

Basic computations (similar to those presented in Appendix A) show that their analytic
expressions are given by Equations (3.12) and (3.13).

Let us remark that similarly to Proposition 3.3, the operators A0(V ) and A1(V ) are
second order differential operators. However, the analytic expressions of these operators
are much simpler than the expressions of A0(Q) and A1(Q) in Proposition 3.3. In fact,
as explained in Remark 2.1, the symmetric positive definite operator of Proposition 3.4
is diagonal.

Remark 3.1. A similar structure to Equation (3.11) (but non symmetric) is used
in [16] to study the linearized Green–Naghdi system in order to prove the local well-
posedness.

Let us now apply Proposition 2.2 to the Green–Naghdi type equations to get a
conserved quantity. According to this proposition, as long as the solution U remains
close Ū , it satisfies ∫

R

∂tEh̄,ū(U)+∂xN(U)=0, (3.14)

where

N(U)=Q ·F (U)−R(U),

with

R(U)=gu

(
h2− h̄2

2

)
−αh3u(ux)

2− h̄ūσ− h̄ū2(u− ū)+gh̄2ū/2

given by Equation(3.5). Now, we use the expressions of Q, F (U), and R(U) and we find

N(U)=
ghu(h− h̄)

2
+

(
gh2+hu2

2
+3αh3(ux)

2

)
(u− ū)+

α

2
h3u(ux)

2.

Since (h− h̄,u− ū)∈H
s(R)×H

s+1(R) and s large, we remark that

lim
x→±∞N(U)=0,
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which gives

d

dt

∫
R

Eh̄,ū(U)=0.

Hence, we conclude the conservation of the energy integral Hh̄,ū(U) from the general
Godunov structure of the system. Let us note that we could get the conservation of the
energy integral simply by integrating the energy conservation law (3.7).

3.2. Two-dimensional extension. Let us fix V̄ =(h̄,ū, v̄)∈R
3 with h̄>0 and

consider the 2D Green–Naghdi model

∂th+∂xhu+∂yhv=0, (3.15a)

∂thu+∂xhu
2+∂yhuv+∂x(gh

2/2+αh2ḧ)=0, (3.15b)

∂thv+∂xhuv+∂yhv
2+∂y(gh

2/2+αh2ḧ)=0, (3.15c)

where ḣ=∂th+u∂xh+v∂yh.
This system is equivalent to

∂tU+∂xF1(U)+∂yF2(U)=0, (3.16)

where U =(h− h̄,m− h̄ū,n− h̄v̄), with (m,n)=Lh(u,v) and Lh(u,v)=h(u,v)−
α∇(

h3div(u,v)
)
. The transformation (m,n) �→ (u,v) is well-defined if h is strictly pos-

itively bounded by below. Indeed in this case, Lh is an isomorphism acting on the
space

H
s+1(div)={(u,v)∈ (Hs(R2)+ ū)×(Hs(R2)+ v̄) such that div(u,v)∈H

s(R2)}.
The fluxes are defined by

F1(U)=

⎛
⎝ hu
gh2/2+hu2−2αh3(div(u,v))2−αu∂x

(
h3div(u,v)

)
+αh3div(u,v)vy

huv−α∂y
(
h3udiv(u,v)

)
⎞
⎠ ,

and

F2(U)=

⎛
⎝ hv

huv−α∂x
(
h3vdiv(u,v)

)
gh2/2+hv2−2αh3(div(u,v))2−αv∂y

(
h3div(u,v)

)
+αh3div(u,v)ux

⎞
⎠ .

Proposition 3.5. The solution of system (3.15) satisfies the following conservation
law

∂tEV̄ +∂x (uEV̄ +(u− ū)p)+∂y (vEV̄ +(v− v̄)p)=0. (3.18)

where

EV̄ =gh(h− h̄)/2+h(u− ū)2/2+h(v− v̄)2/2+αh3(ux+vy)
2/2, (3.19)

with p given by Equation (1.4).

Let us consider the space integral HV̄ of the energy EV̄ ,

HV̄ (U)=

∫
R2

EV̄ (U). (3.20)
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Similarly to the one dimensional case, this function is strictly convex as an application
of U while V =(h,u,v) is close enough to the equilibrium V̄ =(h̄,ū, v̄), i.e. δ2UHV̄ (U) is
positive definite for U close to Ū =U(V̄ )=(0,0,0). Let us now consider the change of
variable

U �→Q= δUHV̄ (U),

defined around Ū . Similarly to the 2-dimensional case, this is a diffeomorphism since
δUHV̄ is injective on a small enough neighborhood of Ū . Moreover, δ2UHV̄ (U) is an
isomorphism for all U close to Ū . The invertibility of δUHV̄ is then just a consequence
of the inverse function theorem. One can check that

Q=

⎛
⎝gh−gh̄/2−(u2− ū2)/2−(v2− v̄2)/2−3αh2(div(u,v))2/2

u− ū
v− v̄

⎞
⎠ . (3.21)

We are going to see in the following proposition that the 2-dimensional Green–Naghdi
Equation (3.15) admits a general Godunov structure using the variable Q.

Proposition 3.6. Let s>4. There exists a neighborhood for the norm H
s×H

s+1(div)
of V̄ such that as long as the solution V of (3.15) remains in this neighborhood, the
system is equivalent to

∂t(δQH�
V̄ (Q))+∂x(δQR1(Q))+∂y(δQR2(Q))=0, (3.22)

where Q is defined by (3.21) and R1 and R2 are two functions defined on a neighborhood
of Q̄=Q(V̄ )=(gh̄/2,0,0) (see system (3.24) for some explicit representation formulas).

Proof. Let us first remark that the Legendre transform H�
V̄

of the energy integral
HV̄ is defined by

H�
V̄ (Q)=

∫
R2

Q ·U−EV̄ (U)

=

∫
R2

g(h− h̄)2/2+ h̄(u− ū)2/2+ h̄(v− v̄)2/2−αh3(div(u,v))2+
3

2
αh2h̄(div(u,v))2.

We know by Definition 2.2 of the Legendre transform that we have

U = δQH�
V̄ (Q). (3.23)

Let us now consider the variational functions R1 and R2 defined by

R1(Q)=

∫
R2

g

(
uh2− ūh̄2

2

)
+ h̄ū(u2− ū2)−αh3u(div(u,v))2, (3.24a)

and

R2(Q)=

∫
R2

g

(
vh2− v̄h̄2

2

)
+ h̄v̄(v2− v̄2)−αh3v(div(u,v))2. (3.24b)

We can easily check that

F1(U)= δQR1(Q), (3.25)
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F2(U)= δQR2(Q). (3.26)

Considering Equation (3.23) together with Equations (3.25) and (3.26) we get the result.

Now, according to Remark 2.2, the 2-dimensional Green–Naghdi system (3.15) is
symmetrizable under any change of variable around any constant solution V̄ . Especially,
the general Godunov structure of the system leads directly to the following symmetric
structure under the unknown Q:

A0(Q)∂tQ+A1(Q)∂xQ+A2(Q)∂yQ=0, (3.27)

where

A0(Q)= δ2QH�
V̄ (Q), (3.28a)

A1(Q)= δ2QR1(Q), (3.28b)

and

A2(Q)= δ2QR2(Q). (3.28c)

Considering the fact that we can recover the physical variable V =(h,u,v) using the
partial variational derivative of the energy integral, we have the following corollary.

Corollary 3.1. The two-dimensional Green–Naghdi Equation (3.15) is symmetric
under the physical variable V =(h,u,v) of the form

A0(V )∂tV +A1(V )∂xV +A2(V )∂yV =0. (3.29)

where

A0(V )=

⎛
⎝g−3αh(div(u,v))2 0 0

0 h−α∂x(h
3∂x) −α∂x(h

3∂y)
0 −α∂y(h

3∂x) h−α∂y(h
3∂y)

⎞
⎠

is block diagonal.

Proof. We first consider the change of variable U �→ Ṽ where

U =(h,m,n),

and

Ṽ =(h,δ(m,n)HV̄ (U))=(h,u− ū,v− v̄)

is nothing but V within a constant. This change of variable is valid by the invertibility
of Lh on H

s+1(div) since h is positively bounded by below and the physical speed (u,v)
belongs to H

s+1(div). We then use Remark 2.2 to find the following expression for the
operators

A0(V )=(DV U)
T

δ2UHV̄ (U) DV U,

A1(V )=(DV U)
T

δ2UHV̄ (U) DUF1(U) DV U,

and

A2(V )=(DV U)
T

δ2UHV̄ (U) DUF2(U) DV U.

Using Remark 2.1, we could predict the block diagonal structure of A0(V ).

Let us mention that similarly to the first dimensional case, the conservation over
time of the energy integral HV̄ can be concluded.
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4. Conclusion

A generalization of the notion of symmetry classically defined for hyperbolic sys-
tems has been presented. This generalization is mainly based on the generalization of
Godunov systems introduced in [9]. We prove that all general Godunov systems are
symmetrizable under any change of variable. We also see that this structure leads to a
conserved quantity. Then, we check that the one and two dimensional Green–Naghdi
equations are general Godunov systems as long as the solution remains close enough to
equilibriums. Therefore, there are symmetrizable under any change of variable defined
on a small neighborhood of constant solutions. Moreover, the conserved quantity de-
duced by the general Godunov structure of the system is nothing but the energy integral
which represents the total physical energy of the system.

Let us also mention that we write the Green–Naghdi equation on a quite simple
structure under the physical variable. This is due to the fact that the physical variable
can be obtained from the Hamiltonian variable by a partial change of variables. In
fact, this leads to a bloc diagonal operator for the symmetric structure. The symmetric
structure of the Green–Naghi equations under the variable (h,u) is also used in [18] to
prove the non linear stability of constant solutions of the system with viscosity.

Acknowledgments. I would like to acknowledge, with gratitude, Nicolas Seguin
who suggested the subject of this study and improved it by useful comments and sug-
gestions. I am also thankful to Jacques Sainte-Marie for productive discussions.

Appendix A. Computation of the second variation. In this part, we compute
the second variation with respect to U =(h,m) of

Hh̄,ū(U)=

∫
R

gh(h− h̄)

2
+

h(u− ū)2

2
+

αh3(ux)
2

2
.

Let us first compute the variational derivative with respect to h of Hh̄,ū(U). In fact,
fixing the function m, we have for all test functions φ,

Hh̄,ū(h+φ,m)=

∫
R

Eh̄,ū(h+φ,u)

=

∫
R

Eh̄,ū(h,u)+DhEh̄,ū(h,u)(φ)+o(‖φ‖),

=Hh̄,ū(h,u)+

∫
R

DhEh̄,ū(h,u)(φ)+o(‖φ‖)

where limφ→0
o(‖φ‖)
‖φ‖ =0. Using the definition of Eh̄,ū, we have

Hh̄,ū(h+φ,m)=Hh̄,ū(h,u)+

∫
R

ghφ− gh̄

2
φ+

(u− ū)2

2
φ

+

∫
R

h(u− ū)Dhu(φ)+
3

2
αh2(ux)

2φ+αh3ux∂xDhu(φ)+o(‖φ‖).
(A.1)

In order to compute Dhu(φ), we consider Equation (1.17) where m is defined. We
differentiate this relation with respect to h and take the action on φ. We find

0=uφ+hDhu(φ)−α∂x(3h
2φux)−α∂x(h

3∂x(Dhu(φ))).
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This leads to

Dhu(φ)=L−1
h

(
3α∂x(h

2uxφ)−uφ
)
.

Injecting this into Equation (A.1), we get

Hh̄,ū(h+φ,m)=Hh̄,ū(h,u)+

∫
R

ghφ− gh̄

2
φ+

(u− ū)2

2
φ

+

∫
R

3

2
αh2(ux)

2φ+
(
h(u− ū)+αh3ux∂x

)L−1
h

(
3α∂x(h

2uxφ)−uφ
)
+o(‖φ‖).

Hence, we have after an integration by part

Hh̄,ū(h+φ,m)=Hh̄,ū(h,u)+

∫
R

ghφ− gh̄

2
φ+

(u− ū)2

2
φ+

3

2
αh2(ux)

2φ

+

∫
R

(
h(u− ū)−∂x(αh

3ux)
)L−1

h

(
3α∂x(h

2uxφ)−uφ
)
+o(‖φ‖),

or equivalently

Hh̄,ū(h+φ,m)=Hh̄,ū(h,u)+

∫
R

ghφ− gh̄

2
φ+

(u− ū)2

2
φ+

3

2
αh2(ux)

2φ∫
R

+Lh(u− ū) ·L−1
h

(
3α∂x(h

2uxφ)−uφ
)
+o(‖φ‖).

Now considering the fact that Lh is symmetric and using another integration by part,
we get

Hh̄,ū(h+φ,m)=Hh̄,ū(h,u)+

∫
R

(
gh−gh̄/2− u2

2
+

ū2

2
− 3

2
αh2(ux)

2

)
φ+o(‖φ‖).

Then, we have

δhHh̄,ū(U)=gh−gh̄/2− u2

2
+

ū2

2
− 3

2
αh2(ux)

2,

which is nothing but the quantity called σ in Section 1.2.
Using exactly the same type of computations, we find

δmHh̄,ū(U)=u− ū.

On the other hand, we know by the definition of the second variation that

δ2UHh̄,ū(U)=DUδUHh̄,ū(U)=

(
Dhσ(U) Dmσ(U)
Dhu(U) Dmu(U)

)
.

Then, similar computations lead to

δ2Hh̄,ū(U)=(
g−3αh(ux)

2−(
u+3αh2ux∂x

)L−1
h

(−u()+3α∂x(h
2ux())

) −(
u+3αh2ux∂x

)L−1
h

L−1
h

(−u()+3α∂x(h
2ux())

) L−1
h

)
.
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