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GLOBAL EXISTENCE AND BOUNDEDNESS IN A 2D
KELLER–SEGEL–STOKES SYSTEM WITH NONLINEAR DIFFUSION

AND ROTATIONAL FLUX∗

XIE LI† , YULAN WANG‡ , AND ZHAOYIN XIANG§

Abstract. In this paper, we investigate the degenerate Keller–Segel–Stokes system (KSS) in a
bounded convex domain Ω⊂R

2 with smooth boundary. A particular feature is that the chemotactic
sensitivity S is a given parameter matrix on Ω× [0,∞)2 whose Frobenius norm satisfies |S(x,n,c)|≤CS

with some CS >0. It is shown that for any porous medium diffusion m>1, the system (KSS) with
nonnegative and smooth initial data possesses at least a global-in-time weak solution, which is uniformly
bounded.
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1. Introduction
In this paper, we investigate the global existence and boundedness of weak solutions

to the 2D Keller–Segel–Stokes system with porous medium diffusion and rotational flux:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nt+u ·∇n=Δnm−∇·(nS(x,n,c)∇c
)
, x∈Ω, t>0,

ct+u ·∇c=Δc−c+n, x∈Ω, t>0,

ut+∇P =Δu+n∇φ(x), x∈Ω, t>0,

∇·u=0, x∈Ω, t>0,

(1.1)

where n, c, u, and P denote, respectively, the density of cells, chemical concentration,
velocity field and pressure of the fluid. The prescribed functions S and φ stand for the
chemotactic sensitivity and the potential of the gravitational field within which the cells
are driven through buoyant forces, respectively. In this system, chemotaxis and fluid
are coupled through both the transport of the cells and the chemical defined by the
terms u ·∇n and u ·∇c, and the external force n∇φ exerted on the fluid by the cells.

To motivate our study, we recall some related progresses on system (1.1). We will
start by the classical Keller–Segel model.

Keller–Segel model. In their pioneering work [19], Keller and Segel heuristically
derived the celebrated model{

nt=Δn−∇·(n∇c), x∈Ω, t>0,

ct=Δc−c+n, x∈Ω, t>0,
(1.2)

∗Received: July 21, 2015; accepted (in revised form): October 24, 2015. Communicated by Peter
Markowich.
X. Li was partially supported by the Natural Science Project of Sichuan Province Department of Educa-
tion (No. 15ZB0145). Y. Wang was partially supported by the NNSF of China (No. 11501457). Z. Xiang
was partially supported by the NNSF of China (Nos. 11571063 and 11501086) and the Fundamental
Research Funds for the Central Universities (No. ZYGX2015J101).

†School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, P.R. China; College of Mathematic and Information, China West Normal Univer-
sity, Nanchong 637002, P.R. China (xieli-520@163.com).

‡School of Science, Xihua University, Chengdu 610039, China (wangyulan-math@163.com).
§School of Mathematical Sciences, University of Electronic Science and Technology of China,

Chengdu 611731, P.R. China (zxiang@uestc.edu.cn).

1889



1890 GLOBAL EXISTENCE AND BOUNDEDNESS IN A 2D KSS SYSTEM

which has been widely investigated (see [1, 13–15] for a survey). One of the most
important features studied over the last few years is related to the blow-up of solutions
to system (1.2) whose connection to real process behavior still needs to be explained,
as blow-up phenomena are not observed in reality. To avoid the blow-up, one can use a
nonlinear porous-medium-like diffusion instead of a linear one. Precisely, for any m>1,
the 2D Keller–Segel model{

nt=Δnm−∇·(n∇c), x∈Ω, t>0,

ct=Δc−c+n, x∈Ω, t>0
(1.3)

with the homogeneous Neumann boundary condition possesses global bounded solutions
for arbitrary large initial data, while form≤1, system (1.3) admits the blow-up solutions
under some technical assumptions (see [7, 18, 20,22,27,28] and references therein).

Chemotaxis-(Navier–)Stokes model. In some cases of chemotactic movement
in flowing environments the mutual influence between the cells and the fluids may be
significant. Considering that the motion of the fluids is determined by the incompressible
(Navier–)Stokes equations, Tuval et al. [31] proposed the following chemotaxis-
(Navier–)Stokes system to describe such coupled biological phenomena in the context
of signal consumption by cells:⎧⎪⎪⎨

⎪⎪⎩
nt+u ·∇n=Δn−∇·(χn∇c),
ct+u ·∇c=Δc−nf(c),
ut+κ(u ·∇)u+∇P =Δu+n∇φ,
∇·u=0.

(1.4)

Here the coefficient κ is related to the strength of nonlinear fluid convection and the
oxygen consumption rate f(c) are supposed to be given functions. This inevitably
couples the known obstacles from the theory of fluid equations to the typical difficulties
arising in the study of chemotaxis systems. Despite this challenge, there are numerous
analytical approaches, which addressed issues of well-posedness for corresponding initial-
value problems in either bounded or unbounded domains, with various assumptions on
the scalar functions χ, f , and φ (see e.g. [3–6, 9, 25, 26, 32, 37, 38, 42, 45] and references
therein) in the past several years. We refer to [8,10,24,29,30,46] and references therein
for the nonlinear diffusion models of a porous medium type Δnm, instead of Δn.

Chemotaxis-(Navier–)Stokes model with rotational flux. Recent modeling
approaches suggested that an adequate description of bacterial motion near surfaces
of their surrounding fluid should involve rotational components in the cross-diffusive
flux (see [43, 44]). Natural generalizations of chemotaxis and chemotaxis-fluid systems
thereby obtained should thus model the evolution of the cell density by equations of the
form ⎧⎪⎪⎨

⎪⎪⎩
nt+u ·∇n=Δnm−∇·(nS(x,n,c)∇c

)
,

ct+u ·∇c=Δc−nf(c),
ut+κ(u ·∇)u+∇P =Δu+n∇φ,
∇·u=0,

(1.5)

where S is a function with values in R
N×N . Models with rotational chemotaxis which

additionally account for interaction with the surrounding fluid have only been studied
very rudimentarily so far. For any m>1, Ishida [17] showed the global existence and
boundedness of weak solutions to system (1.5). In his recent works [40, 41], Winkler
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further gave a complete analysis for the chemotaxis-Stokes system (1.5) with m=1 in
the 2D and the 3D case. Very recently, Wang and Cao [33] obtained the existence of
global solutions to system (1.5) with m=1 and some decay sensitivity S in the three
dimension. We also refer to [2, 21] for the more related works on the fluid-free versions
(i.e., u≡0) of system (1.5).

Keller–Segel–Stokes model. It is worth noticing that the results obtained
so far indicate that in contrast to the standard Keller–Segel model (1.2), phenomena
of finite-time blow-up, which represents maybe the most extreme facet of bacterial
aggregation, do not occur for system (1.4) or system (1.5) involving chemical signal
consumption even though the Stokes-fluid is included. Very recently, the second and
third [35] authors established the global existence and boundedness of solutions to the
following Keller–Segel–Stokes system in two or three dimensional bounded domains⎧⎪⎪⎪⎨

⎪⎪⎪⎩

nt+u ·∇n=Δn−∇·(nS(x,n,c)∇c
)
, x∈Ω, t>0,

ct+u ·∇c=Δc−c+n, x∈Ω, t>0,

ut+∇P =Δu+n∇φ, x∈Ω, t>0,

∇·u=0, x∈Ω, t>0,

(1.6)

where the chemotactic sensitivity S(x,n,c) is tensor-valued and satisfies

|S(x,n,c)|≤CS(1+n)−α (1.7)

with some constants α>0 and CS >0. In two dimensional case, the existence of global
bounded solutions to the corresponding Keller–Segel-Navier–Stokes system has been
established in [36].

Main results. Due to the possible blow-up in the classical Keller–Segel model,
the assumption α>0 in Equation (1.7) is crucial to ensure the global existence of solu-
tions to system (1.6). The early literature have contained some evidence confirming the
intuitive idea that the tendency toward blow-up can be weakened if the diffusion is en-
hanced. Thus an understanding of the competitive interaction among the Keller–Segel
chemotaxis mechanism, the Stokes-fluid, the rotational sensitivity, and the nonlinear
diffusion is an interesting topic. Motivated by the above works, we will establish the
global existence and boundedness of weak solutions to the 2D Keller–Segel–Stokes sys-
tem (1.1) in this paper. In order to specify the framework of our analysis, we specify the
precise problem context by considering system (1.1) along with boundary conditions

(∇nm−nS(x,n,c)∇c) ·ν=∇c ·ν=0, u=0, x∈∂Ω, t>0 (1.8)

and the initial conditions

n(x,0)=n0(x), c(x,0)= c0(x), u(x,0)=u0(x), x∈∂Ω. (1.9)

We shall assume throughout that the initial data satisfy⎧⎪⎪⎨
⎪⎪⎩
n0∈C0(Ω̄), n0≥0 and n0 �≡0 in Ω̄,

c0∈W 1,∞(Ω), c0≥0 and c0 �≡0 in Ω̄,

u0∈D(Aβ
r ) for some β∈ (1

2
,1) and for all r∈ (1,∞),

(1.10)

where Ar denotes the Stokes operator with domainD(Ar) :=W 2,r(Ω)∩W 1,r
0 (Ω)∩Lr

σ(Ω)
and Lr

σ(Ω) :={v∈Lr(Ω)|∇·v=0} for all r∈ (1,∞). As for the gravitational potential



1892 GLOBAL EXISTENCE AND BOUNDEDNESS IN A 2D KSS SYSTEM

φ in (1.1), we require that

φ∈W 1,∞(Ω). (1.11)

Moreover, we assume that the chemotactic sensitivity S=(Sij)i,j∈{1,2} satisfies

Sij(x,n,c)∈C2(Ω̄× [0,∞)× [0,∞)), (1.12)

and that the Frobenius norm of S satisfies

|S(x,n,c)|≤CS (1.13)

for some positive constant CS .
Under these assumptions, our main result on global existence and boundedness of

weak solutions to system (1.1) is as follows.

Theorem 1.1. Let m>1 and Ω⊂R
2 be a bounded convex domain with smooth

boundary ∂Ω, and assume that Equations (1.8)–(1.13) hold. Then system (1.1) has a
global-in-time weak solution (n,c,u,P ) which is uniformly bounded in the sense that

‖n(·,t)‖L∞(Ω)+‖c(·,t)‖W 1,∞(Ω)+‖u(·,t)‖W 1,∞(Ω)≤C for all t∈ (0,∞)

with some positive constant C.

Main difficulties. System (1.1) incorporates degenerate diffusion, fluid and
rotational flux, which involves more complex cross-diffusion mechanisms and brings
about many considerable mathematical difficulties. Firstly, due to m>1, Equation
(1.1)1 may be degenerate at n=0 and, in general, system (1.1) does not allow for
classical solvability as the well-known porous medium equations. Thus we need to
introduce the following definition of weak solutions to system (1.1).

Definition 1.1. Assume that (n0,c0,u0) satisfy conditions (1.10). Then a triple
of functions (n,c,u) defined in Ω×(0,∞) is called a global weak solution of the initial-
boundary value problem (1.1), if

n∈L∞((0,∞);L∞(Ω)), ∇nm∈L2
loc((0,∞);L2(Ω)),

c∈L∞((0,∞);W 1,∞(Ω)), and

u∈L∞((0,∞);W 1,∞(Ω)) such that ∇·u=0 in the distributional sense in Ω×(0,∞),

and for all ϕ∈C∞
0

(
Ω̄× [0,∞)

)
and ζ ∈C∞

0

(
Ω̄× [0,∞),R2

)
with ∇·ζ=0, the following

integral equalities hold:∫ ∞

0

∫
Ω

nϕtdxdt+

∫
Ω

n0ϕ(·,0)dx

=

∫ ∞

0

∫
Ω

∇nm ·∇ϕdxdt−
∫ ∞

0

∫
Ω

n(S(x,n,c)∇c) ·∇ϕdxdt−
∫ ∞

0

∫
Ω

nu ·∇ϕdxdt,

∫ ∞

0

∫
Ω

cϕtdxdt+

∫
Ω

c0ϕ(·,0)dx

=

∫ ∞

0

∫
Ω

∇c ·∇ϕdxdt+

∫ ∞

0

∫
Ω

cϕdxdt−
∫ ∞

0

∫
Ω

nϕdxdt−
∫ ∞

0

∫
Ω

cu ·∇ϕdxdt,
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and ∫ ∞

0

∫
Ω

u ·ζtdxdt+
∫
Ω

u0 ·ζ(·,0)dx=
∫ ∞

0

∫
Ω

∇u ·∇ζdxdt−
∫ ∞

0

∫
Ω

n∇φ ·ζdxdt.

Secondly, the tensor-valued sensitivity functions result in new mathematical diffi-
culties, mainly linked to the fact that a chemotaxis system with such rotational fluxes
thereby loses an energy-like structure. Thirdly, unlike the signal consumption system
(1.4) and system (1.5), we cannot gain the L∞ estimates of c via the maximum principle
directly. To overcome these difficulties, we will establish the existence of global bounded
weak solutions by presenting several new a priori estimates. Our method is motivated
by [34,41].

The rest of this paper is organized as follows. In Section 2, we first establish the
global existence and boundedness for the regularized system of (1.1). Then we will deal
with the general case by an approximation procedure in Section 3.

Notation: Sometimes, we will use C,Ci to denote some uniform constants which
may be different on different lines.

2. Non-degenerate problems
As mentioned in the introduction, system (1.1) is degenerate at n=0, which results

in the failure of the classical parabolic regularity theory. On the other hand, the nonlin-
ear boundary condition on n also brings about a great challenge to the study of system
(1.1). To overcome these difficulties, we shall first consider the regularized version of
system (1.1) in this section.

Let
{
ρε
}
ε∈(0,1)

⊂C∞
0 (Ω) be a family of standard cut-off functions satisfying 0≤ρε≤

1 in Ω for all ε∈ (0,1) and ρε→1 in Ω pointwisely as ε→0. Then we can construct the
following approximate sequence for S:

Sε(x,n,c)=ρεS(x,n,c), (x,n,c)∈ Ω̄× [0,∞)× [0,∞).

For each ε∈ (0,1), we introduce the following regularized problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nεt+uε ·∇nε=Δ(nε+ε)m−∇·(nεSε(x,nε,cε)∇cε
)
, x∈Ω, t>0,

cεt+uε ·∇cε=Δcε−cε+nε, x∈Ω, t>0,

uεt+∇Pε=Δuε+nε∇φ, x∈Ω, t>0,

∇·uε=0, x∈Ω, t>0,

∂nε

∂ν
=

∂cε
∂ν

=0, uε=0, x∈∂Ω, t>0,

nε(x,0)=n0(x), cε(x,0)= c0(x), uε(x,0)=u0(x), x∈Ω.

(2.1)

2.1. Local existence and mass conservation. In this subsection, we give the
local existence of solutions to the regularized problem (2.1) and the mass conservation
of cells.

Lemma 2.1 (Local existence for the regularized system). Let m>1 and suppose
that Equations (1.10)–(1.13) hold. Then there exist a maximal existence time T ∗ and a
unique classical solution (nε,cε,uε,Pε) to system (2.1) in Ω̄×(0,T ∗) such that

nε∈C0
(
Ω̄× [0,T ∗)

)∩C2,1
(
Ω̄×(0,T ∗)

)
,

cε∈C0
(
Ω̄× [0,T ∗)

)∩C2,1
(
Ω̄×(0,T ∗)

)
,

uε∈C0
(
Ω̄× [0,T ∗)

)∩C2,1
(
Ω̄×(0,T ∗)

)
,

Pε∈C1,0
(
Ω̄×(0,T ∗)

)
.
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Moreover, we have nε>0 and cε>0 in Ω̄×(0,T ∗), and if T ∗<∞, then

lim
t→T∗

‖nε(·,t)‖L∞(Ω)+‖cε(·,t)‖W 1,∞(Ω)+‖uε(·,t)‖W 1,∞(Ω)=∞. (2.2)

Proof. The proof of the local-in-time existence of the classical solution is based
on the Schauder fixed point theorem (see e.g. [41]). Also, the proof of uniqueness is
standard. We omit these details here.

We next state the mass conservation property of nε. In the following, we use T ∗ to
denote the maximal existence time of solution (nε,cε,uε).

Lemma 2.2. Let (nε,cε,uε) be a classical solution to system (2.1) in Ω̄×(0,T ∗). Then
we have

‖nε(·,t)‖L1(Ω)=‖n0(·,t)‖L1(Ω) for any t∈ (0,T ∗). (2.3)

Proof. Indeed, Equation (2.3) can be obtained by taking an integration of Equation
(2.1)1 over Ω and using the nonnegativity of nε.

2.2. Regularity of uε. In this subsection, we shall establish the W 1,r regularity
of uε. Before starting our analysis, we first briefly collect some known facts concerning
the Stokes operator from [11] and [12].

For each r∈ (1,∞), the Helmholtz projection Pr acts as an orthogonal projector
from Lr(Ω) onto its subspace Lr

σ(Ω) :=
{
v∈Lr(Ω) |∇·v=0

}
of all solenoidal vector

fields. The realization Ar of the Stokes operator A in Lr
σ(Ω) with domain D(Ar) :=

W 2,r(Ω)∩W 1,r
0 (Ω)∩Lr

σ(Ω) is sectorial in Lr
σ(Ω) and possesses closed fractional powers

Aβ
r with dense domain for any β∈R. Moreover, (e−tAr )t≥0 is an analytic semigroup in

Lr
σ(Ω) generated by Ar. Notice that Pr, A

β
r , and (e−tAr )t≥0 are actually independent

of r∈ (1,∞) whenever they are applied to smooth functions. Thus we will omit the
subscript r in Pr, A

β
r and (e−tAr )t≥0 whenever there is no danger of confusion.

The following basic conclusion plays an important role in our estimates due to
the appearance of Stokes-fluids, which can be obtained by a direct modification of its
three-dimensional version in Winkler [41, Lemma 3.3].

Lemma 2.3. Suppose that 1≤p<p0<∞, and that δ∈ (0,1) satisfying δ> 1
p− 1

p0
.

Then there exists a positive constant C such that

‖A−δPψ‖Lp0 (Ω)≤C‖ψ‖Lp(Ω) for all ψ∈C∞
0 (Ω). (2.4)

Consequently, the operator A−δP possesses a unique extension to all of Lp0(Ω) with
norm controlled according to estimate (2.4).

As the first application of the estimate (2.4), we have the following Lp estimate for
uε (see [39, Lemma 3.1(i)] or [34, Lemma 2.4]).

Lemma 2.4. Let (nε,cε,uε) be a classical solution to system (2.1) in Ω̄×(0,T ∗) such
that assumptions (1.11)–(1.13) hold. Then, for any p∈ (1,+∞), there exists a positive
constant C=C(p,u0,n0,φ) such that

‖uε(·,t)‖Lp(Ω)≤C for all t∈ (0,T ∗).

Another application of estimate (2.4) is the following W 1,r estimate of uε, whose
proof is similar to that of its three-dimensional version (see [41, Corollary 3.4] or [34,
Lemma 2.5]).
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Lemma 2.5. Suppose that (nε,cε,uε) is a classical solution to system (2.1) in Ω̄×
(0,T ∗) and that assumptions (1.11)–(1.13) hold. Let p∈ [1,∞) and r∈ [1,∞] be such
that ⎧⎨

⎩r<
2p

2−p
, p≤2,

r≤∞, p>2.

Then for all K>0 there exists C=C(p,r,K,u0,φ) such that if for T >0 we have

‖nε(·,t)‖Lp(Ω)≤K for all t∈ (0,T ),
then

‖Duε(·,t)‖Lr(Ω)≤C for all t∈ (0,T ).

2.3. Estimates for cε. In this subsection, we will give some estimates for cε.
The first one is an Lp-estimate, which can be proved by using the regularity information
on nε and uε obtained so far (see Lemma 2.6 in [34]).

Lemma 2.6. Let (nε,cε,uε) be a classical solution to system (2.1) in Ω̄×(0,T ∗) and
the assumptions (1.11)–(1.13) hold. Then, for any p∈ [1,∞), there exists a positive
constant C depending only on p,n0, c0,u0 such that

‖cε(·,t)‖Lp(Ω)≤C for all t∈ (0,T ∗).

The following conclusion is an interpolation inequality for C2 functions on Ω̄, which
has been proved by [34] (see Lemma 2.7 there).

Lemma 2.7. Suppose that Ω⊂R
2 is a bounded domain with smooth boundary. Let

q>1, γ >1 and ρ≥ 2γ
2γ−1 (q+1). Then there exists a constant C=C(q,γ,ρ)>0 such that

the inequality

‖∇c‖ρLρ(Ω)≤C
∥∥|∇c|q−1|D2c|∥∥ (2γ−1)ρ−2γ

q(2γ−1)

L2(Ω)

(
1+‖c‖

ρ
q+1

L
2γ

γ−1 (Ω)

)
+C‖c‖

ρ
q+1

L
2γ

γ−1 (Ω)

holds for any c∈C2(Ω̄) satisfying c ∂c
∂ν =0 on ∂Ω, where D2c denotes the Hessian of c.

As a direct application of Lemma 2.6 and Lemma 2.7, we have the following corol-
lary, which will be used in the sequel to obtain the estimates of ∇cε.

Corollary 2.1. Suppose that (nε,cε,uε) is a classical solution to system (2.1) in
Ω̄×(0,T ∗) and that assumptions (1.11)–(1.13) hold. Let q>1, γ >1, and ρ≥ 2γ

2γ−1 (q+

1). Then there exists a positive constant C=C(q,γ,ρ) such that

‖∇cε‖ρLρ(Ω)≤C

(∫
Ω

|∇cε|q−1|D2cε|dx
) (2γ−1)ρ−2γ

q(2γ−1)

+C for all t∈ (0,T ∗). (2.5)
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2.4. A coupled estimate for ‖nε(·,t)‖Lk(Ω) and ‖∇cε(·,t)‖L2q(Ω). The goal of
this subsection is to establish a coupled estimate for ‖nε(·,t)‖Lk(Ω) and ‖∇cε(·,t)‖L2q(Ω).
To this end, we first need to choose some parameters appropriately.

Lemma 2.8. Let m>1. Then, for any k and q satisfying max
{
m, k+2

m

}
<q<k, there

exist some γ >1, ζ >1, and μ>1 such that

k−m+ 1
θ

m+k−1
+

(2γ−1)θ−γ

(2γ−1)qθ
<1, (2.6)

where θ := γ
2γ−1 (q+1),

(q−1)μ>
ζ(q+1)

2ζ−1
(2.7)

and

1+ 1
μ

m+k−1
+

(2ζ−1)(q−1)μ−ζ

(2ζ−1)qμ
<1. (2.8)

Proof. We first fix ζ >1 and then take μ large enough such that Equation (2.7)
holds. For Equations (2.6) and (2.8), we notice that they are equivalent to

k+2− 1

γ
< (2m−1)q+m and

1

m+k−1
+

1

(m+k−1)μ
<

ζ

(2ζ−1)qμ
+

1

q
, (2.9)

respectively. Due to q> k+2
m , it is clear that the first inequality of (2.9) is true for any

γ >1. On the other hand, to show the second inequality of (2.9), it is enough to further
take μ large enough by q<k. This completes the proof of Lemma 2.8.

Lemma 2.9. Let Ω⊂R
2 be a bounded convex domain with smooth boundary and m>1.

Suppose that (nε,cε,uε) is a classical solution to system (2.1) in Ω̄×(0,T ∗) and that
assumptions (1.11)–(1.13) hold. Then, for any k and q satisfying max

{
m, k+2

m

}
<q<k,

there exists a positive constant C independent of ε such that

‖nε(·,t)‖Lk(Ω)≤C for all t∈ (0,T ∗) (2.10)

and

‖∇cε(·,t)‖L2q(Ω)≤C for all t∈ (0,T ∗). (2.11)

Proof. Due to the boundedness of Ω and Hölder’s inequality, we only need to
pay attention to the case that k and q are large enough. We will divide the proof into
several steps.

Step 1. Estimates for nε. Multiplying Equation (2.1)1 by k(nε+ε)k−1 and
integrating over Ω, we have

d

dt

∫
Ω

(nε+ε)kdx+

∫
Ω

uε ·∇(nε+ε)kdx−k

∫
(nε+ε)k−1Δ(nε+ε)mdx

=−k

∫
Ω

(nε+ε)k−1∇·(nεSε(x,nε,cε)∇cε
)
dx.



X. LI, Y. WANG, AND Z. XIANG 1897

It then follows from the integration by parts and the equation enforcing that uε is
divergence free that

d

dt

∫
Ω

(nε+ε)kdx+mk(k−1)

∫
Ω

(nε+ε)m+k−3|∇nε|2dx

=k(k−1)

∫
Ω

(nε+ε)k−2nε∇nε ·
(
Sε(x,nε,cε)∇cε

)
dx

(2.12)

for all t∈ (0,T ∗). Notice that Equation (1.13) and Young’s inequality yield∫
Ω

(nε+ε)k−2nε∇nε ·
(
Sε(x,nε,cε)∇cε

)
dx

≤CS

∫
Ω

(nε+ε)k−1|∇nε| |∇cε|dx

≤m

2

∫
Ω

(nε+ε)k+m−3|∇nε|2dx+ C2
S

2m

∫
Ω

(nε+ε)k+1−m|∇cε|2dx,

which together with Equation (2.12) gives

d

dt

∫
Ω

(nε+ε)kdx+
mk(k−1)

2

∫
Ω

(nε+ε)m+k−3|∇nε|2dx

≤k(k−1)C2
S

2m

∫
Ω

(nε+ε)k+1−m|∇cε|2dx
(2.13)

for all t∈ (0,T ∗).
Step 2. Estimates for ∇cε. Applying ∇ to Equation (2.1)2 and then multiplying

the resulting equation by 2q|∇cε|2q−2∇cε, we have

d

dt

∫
Ω

|∇cε|2qdx−2q

∫
Ω

|∇cε|2(q−1)∇cε ·Δ∇cεdx+2q

∫
Ω

|∇cε|2qdx

=2q

∫
Ω

|∇cε|2(q−1)∇cε ·∇nεdx−2q

∫
Ω

|∇cε|2(q−1)∇cε ·∇
(
uε ·∇cε

)
dx

for all t∈ (0,T ∗). Noticing the point-wise identity 2∇c ·∇Δc=Δ|∇c|2−2|D2c|2 and
using the integration by parts, we deduce

d

dt

∫
Ω

|∇cε|2qdx+q(q−1)

∫
Ω

|∇cε|2(q−2)
∣∣∇|∇cε|2

∣∣2dx
+2q

∫
Ω

|∇cε|2(q−1)|D2cε|2dx+2q

∫
Ω

|∇cε|2qdx

=2q

∫
Ω

|∇cε|2(q−1)∇nε ·∇cεdx+2q(q−1)

∫
Ω

(uε ·∇cε)|∇cε|2(q−2)∇cε ·∇|∇cε|2dx

+2q

∫
Ω

(uε ·∇cε)|∇cε|2(q−1)Δcεdx+q

∫
∂Ω

|∇cε|2(q−1) ∂|∇cε|2
∂ν

dx. (2.14)

For the first term on the right-hand side of Equation (2.14), due to |Δcε|2≤2|D2cε|2,
we can use the integration by parts and Young’s inequality to obtain
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2q

∫
Ω

|∇cε|2(q−1)∇nε ·∇cεdx

=−2q

∫
Ω

|∇cε|2(q−1)nεΔcεdx−2q(q−1)

∫
Ω

|∇cε|2(q−2)nε∇cε ·∇|∇cε|2dx

≤2
√
2q

∫
Ω

|∇cε|2(q−1)nε|D2cε|dx+2q(q−1)

∫
Ω

|∇cε|2q−3nε

∣∣∇|∇cε|2
∣∣dx

≤q
∫
Ω

|∇cε|2(q−1)|D2cε|2dx+ q(q−1)

2

∫
Ω

|∇cε|2(q−2)
∣∣∇|∇cε|2

∣∣2dx
+2q2

∫
Ω

|∇cε|2(q−1)n2
εdx. (2.15)

Similarly, we have

2q(q−1)

∫
Ω

(uε ·∇cε) · |∇cε|2(q−2)∇cε ·∇|∇cε|2dx

≤q(q−1)

4

∫
Ω

|∇cε|2(q−2)
∣∣∇|∇cε|2

∣∣2dx+4q(q−1)

∫
Ω

|uε ·∇cε|2|∇cε|2(q−1)

≤q(q−1)

4

∫
Ω

|∇cε|2(q−2)
∣∣∇|∇cε|2

∣∣2dx+4q(q−1)

∫
Ω

|uε|2|∇cε|2qdx (2.16)

and

2q

∫
Ω

(uε ·∇cε)|∇cε|2(q−1)Δcεdx

≤q

2

∫
Ω

|∇cε|2(q−1)|D2cε|2dx+4q

∫
Ω

|uε|2|∇cε|2qdx.
(2.17)

Since Ω is convex and ∂cε
∂ν =0 on ∂Ω, it follows from [28, Lemma 3.2] that ∂|∇cε|2

∂ν ≤0
on ∂Ω, which implies that

q

∫
∂Ω

|∇cε|2(q−1) ∂|∇cε|2
∂ν

dx≤0. (2.18)

We remark that this is the only place where the convexity is needed.
Substituting Equations (2.15)–(2.18) into Equation (2.14), we obtain

d

dt

∫
Ω

|∇cε|2qdx+ q−1

q

∫
Ω

|∇|∇cε|q|2dx+ q

2

∫
Ω

|∇cε|2(q−1)|D2cε|2dx+2q

∫
Ω

|∇cε|2qdx

≤2q2
∫
Ω

|∇cε|2(q−1)n2
εdx+4q2

∫
Ω

|∇cε|2q|uε|2dx (2.19)

for all t∈ (0,T ∗). Here we used the identity 1
4 |∇cε|2q−4

∣∣∇|∇cε|2
∣∣2= 1

q2 |∇|∇cε|q|2.
Step 3. Coupled estimates for nε and ∇cε. Combining Equations (2.13) and

(2.19), we have

d

dt

(∫
Ω

(nε+ε)kdx+

∫
Ω

|∇cε|2qdx
)
+

2mk(k−1)

(m+k−1)2

∫
Ω

|∇(nε+ε)
m+k−1

2 |2dx

+
q−1

q

∫
Ω

|∇|∇cε|q|2dx+ q

2

∫
Ω

|∇cε|2(q−1)|D2cε|2dx+2q

∫
Ω

|∇cε|2qdx
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≤k(k−1)C2
S

2m

∫
Ω

(nε+ε)k+1−m|∇cε|2dx+2q2
∫
Ω

|∇cε|2(q−1)n2
εdx+4q2

∫
Ω

|∇cε|2q|uε|2dx
:=I1+I2+I3. (2.20)

We shall show that I1, I2, and I3 can be bounded by the LHS of (2.20) one by one. For
this purpose, we first let γ >1, ζ >1, and μ>1 be determined by Lemma 2.8.

For I1, it follows from Hölder’s inequality that

I1≤ k(k−1)C2
S

2m

∥∥(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)
m+k−1

L
2(k+1−m)θ′

m+k−1 (Ω)

‖∇cε‖2L2θ(Ω), (2.21)

where θ= γ
2γ−1 (q+1) and 1

θ′ +
1
θ =1. By k>m, we see

2(k+1−m)θ′

m+k−1
>

2

m+k−1
,

which together with the Gagliardo–Nirenberg inequality yields

∥∥(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)
m+k−1

L
2(k+1−m)θ′

m+k−1 (Ω)

≤C1

∥∥∇(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)κ1
m+k−1

L2(Ω)

∥∥(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)(1−κ1)
m+k−1

L
2

m+k−1 (Ω)

+C1

∥∥(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)
m+k−1

L
2

m+k−1 (Ω)

=C1

∥∥∇(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)κ1
m+k−1

L2(Ω) ‖(nε+ε)‖(k+1−m)(1−κ1)
L1(Ω) +C1‖(nε+ε)‖k+1−m

L1(Ω) ,

where κ1=1− 1
(k+1−m)θ′ and C1 is a positive constant independent of ε. Thus by the

mass conservation property (2.3) and the fact that ε<1, we obtain

∥∥(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)
m+k−1

L
2(k+1−m)θ′

m+k−1 (Ω)

≤C2

∥∥∇(nε+ε)
m+k−1

2

∥∥ 2(k+1−m)κ1
m+k−1

L2(Ω) +C2, (2.22)

where C2 is a positive constant independent of ε. To estimate the factor related to ∇cε
in Equation (2.21), we use Equation (2.5) with ρ=2θ to obtain

‖∇cε‖2L2θ(Ω)≤C3

∥∥|∇cε|q−1D2nε

∥∥ 2θ(2γ−1)−2γ
qθ(2γ−1)

L2(Ω) +C3 (2.23)

for some positive constant C3 independent of ε. Set

a1 :=
2(k+1−m)κ1

m+k−1
=

2(k−m+ 1
θ )

m+k−1
and b1 :=

2θ(2γ−1)−2γ

qθ(2γ−1)
.

It then follows from Equation (2.6) that a1+b1<2. Thus, by Equations (2.21)–(2.23)
and Young’s inequality, we can deduce that

I1≤k(k−1)C2
S

2m
C2C3

(∥∥∇(nε+ε)
m+k−1

2

∥∥a1

L2(Ω)
+1

)(∥∥|∇cε|q−1D2c
∥∥b1

L2(Ω)
+1

)
≤ mk(k−1)

2(m+k−1)2

∫
Ω

|∇(nε+ε)
m+k−1

2 |2dx+ q

8

∫
Ω

|∇cε|2(q−1)|D2cε|2dx+C4 (2.24)
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for all t∈ (0,T ∗), where C4 is a positive constant independent of ε.
The term I2 can be similarly dealt with. We give a sketch for completeness. Let

1
μ′ +

1
μ =1. Then, by Hölder’s inequality, we have

I2≤2q2
∥∥(nε+ε)

m+k−1
2

∥∥ 4
m+k−1

L
4μ′

m+k−1 (Ω)

‖∇cε‖2(q−1)

L2(q−1)μ(Ω)
. (2.25)

Similarly to Equation (2.22), we can deduce that

∥∥(nε+ε)
m+k−1

2

∥∥ 4
m+k−1

L
4μ′

m+k−1 (Ω)

≤C5

∥∥∇(nε+ε)
m+k−1

2

∥∥ 4κ2
m+k−1

L2(Ω) +C5 (2.26)

for some positive constant C5 independent of ε, where κ2=1− 1
2μ′ .

Due to Equation (2.7), we can use Equation (2.5) with ρ=2(q−1)μ and γ= ζ to
find a positive constant C6 independent of ε such that

‖∇cε‖2(q−1)

L2(q−1)μ(Ω)
≤C6

∥∥|∇cε|q−1D2nε

∥∥ 2μ(2ζ−1)(q−1)−2ζ
qμ(2ζ−1)

L2(Ω) +C6. (2.27)

Denote

a2 :=
4κ2

m+k−1
=

4− 2
μ′

m+k−1
, and b2 :=

2μ(2ζ−1)(q−1)−2ζ

qμ(2ζ−1)
.

Then Equation (2.8) implies that a2+b2<2, which enables us to use Equations (2.25)–
(2.27) and Young’s inequality to obtain

I2≤2q2
(
C5

∥∥∇(nε+ε)
m+k−1

2

∥∥a2

L2(Ω)
+C5

)(
C6

∥∥|∇cε|q−1D2c
∥∥b2

L2(Ω)
+C6

)
≤ mk(k−1)

2(m+k−1)2

∫
Ω

|∇(nε+ε)
m+k−1

2 |2dx+ q

8

∫
Ω

|∇cε|2(q−1)|D2cε|2dx+C7 (2.28)

for all t∈ (0,T ∗), where C7 is a positive constant independent of ε.
We now turn to the estimate of I3. We first fix an α∈ (1,∞). By using Hölder’s

inequality and Lemma 2.4, we have∫
Ω

|∇cε|2q|uε|2dx≤
∥∥|∇cε|2q

∥∥
Lα(Ω)

∥∥|uε|2
∥∥
L

α
α−1 (Ω)

≤C8

∥∥|∇cε|
∥∥2q

L2qα(Ω)

∥∥|uε|
∥∥2

L
2α

α−1 (Ω)

≤C9

∥∥|∇cε|
∥∥2q

L2qα(Ω)
, (2.29)

where C8 and C9 are two positive constants independent of ε. If we choose ξ such that
ξ≥ qα

2qα−q−1 , then we have 2qα≥ 2ξ
2ξ−1 (q+1). Thus, we can use Equation (2.5) with

ρ=2qα and γ= ξ to find two positive constants C10 and C11 independent of ε such that

C9

∥∥|∇cε|
∥∥2q

L2qα(Ω)
≤C10

(∫
Ω

|∇cε|q−1|D2cε|dx
) 2(2ξ−1)qα−2ξ

(2ξ−1)qα

+C10

≤C11

(∫
Ω

|∇cε|2(q−1)|D2cε|2dx
) (2ξ−1)qα−ξ

(2ξ−1)qα

+C10,
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which together with Equation (2.29) and Young’s inequality gives

I3≤ q

4

∫
Ω

|∇cε|2(q−1)|D2cε|2dx+C12 (2.30)

for all t∈ (0,T ∗), where C12 is a positive constant independent of ε.
Substituting Equations (2.24), (2.28), and (2.30) into (2.20), we can deduce

d

dt

(∫
Ω

(nε+ε)kdx+

∫
Ω

|∇cε|2qdx
)
+

mk(k−1)

(m+k−1)2

∫
Ω

|∇(nε+ε)
m+k−1

2 |2dx

+
q−1

q

∫
Ω

|∇|∇cε|q|2dx+2q

∫
Ω

|∇cε|2qdx
≤C13 (2.31)

for all t∈ (0,T ∗), where C13 is a positive constant independent of ε.

Step 4. Conclusion of the estimates for nε and ∇cε. It is clear that we can
obtain a bound for nε and∇cε by taking a time integral on both sides of Equation (2.31).
However, such a bound will increase with the time t. Indeed, we can employ the ODE
comparison argument to improve this bound. Firstly, it follows from the interpolation
inequality and the mass conservation that∫

Ω

(nε+ε)kdx=
∥∥(nε+ε)

m+k−1
2

∥∥ 2k
m+k−1

L
2k

m+k−1 (Ω)

≤C14

∥∥∇(nε+ε)
m+k−1

2

∥∥ 2kλ1
m+k−1

L2(Ω)

∥∥(nε+ε)
m+k−1

2

∥∥ 2k(1−λ1)
m+k−1

L
2

m+k−1 (Ω)

+C14

∥∥(nε+ε)
m+k−1

2

∥∥ 2k
m+k−1

L
2

m+k−1 (Ω)

≤C15

∥∥∇(nε+ε)
m+k−1

2

∥∥ 2kλ1
m+k−1

L2(Ω) +C15

for all t∈ (0,T ∗), where λ1=1− 1
k ∈ (0,1), and where C14 and C15 are two positive

constants independent of ε. Then we can use Young’s inequality to obtain∫
Ω

(nε+ε)kdx≤ mk(k−1)

(m+k−1)2

∫
Ω

|∇(nε+ε)
m+k−1

2 |2dx+C16 (2.32)

for all t∈ (0,T ∗), where C16 is a positive constant independent of ε. Next, we substitute
Equation (2.32) into Equation (2.31) to conclude that

d

dt

(∫
Ω

(nε+ε)kdx+

∫
Ω

|∇cε|2qdx
)
+

(∫
Ω

(nε+ε)kdx+

∫
Ω

|∇cε|2qdx
)
≤C17

for all t∈ (0,T ∗), where C17 is a positive constant independent of ε. Thus a standard
ODE comparison argument shows that∫

Ω

(nε+ε)kdx+

∫
Ω

|∇cε|2qdx≤max
{∫

Ω

(n0+1)kdx+

∫
Ω

|∇c0|2qdx,C17

}

for all t∈ (0,T ∗). This gives the desired estimates (2.10) and (2.11) and thus we have
completed the proof of Lemma 2.9.
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2.5. Global existence and boundedness for the regularized problem. In
this subsection, we shall establish the global existence and boundedness of solutions to
the regularized problem (2.1). For this purpose, we first increase the integrability in
lemmas 2.4, 2.5, 2.6 and 2.9, which can be done by means of a Moser-type iteration in
conjunction with standard parabolic regularity arguments.

Lemma 2.10. Let m>1, ε∈ (0,1), and Ω⊂R
2 be a bounded convex domain with

smooth boundary. Suppose that (nε,cε,uε) is a classical solution to system (2.1) in
Ω̄×(0,T ∗) and that the assumptions (1.11)–(1.13) hold. Then there exists a positive
constant C such that for all ε∈ (0,1), it holds that

‖nε(·,t)‖L∞(Ω)≤C for all t∈ (0,T ∗) (2.33)

and

‖cε(·,t)‖W 1,∞(Ω)≤C for all t∈ (0,T ∗), (2.34)

as well as

‖uε(·,t)‖W 1,∞(Ω)≤C for all t∈ (0,T ∗). (2.35)

Proof. Firstly, by taking k>2 in Equation (2.10), we can allow for an application
of Lemma 2.5 with r :=∞ to assert that Duε is bounded in L∞(

Ω×(0,T ∗)
)
, which

together with Lemma 2.4 and the interpolation inequality also yields the boundedness
of uε. This gives Equation (2.35).

Secondly, we rewrite Equation (2.1)1 as

nεt=Δ(nε+ε)m−∇·(nεuε+nεSε(x,nε,cε)∇cε
)

by using the solenoidality of uε. Then the boundedness of nε can be obtained by [28,
Lemma A.1]. Indeed, Hölder’s inequality implies that the assumptions of [28, Lemma
A.1] are valid provided that we take the parameters k and q in Lemma 2.9 appropriately
large. This establishes Equation (2.33).

Finally, the boundedness of cε and ∇cε can be derived from Equations (2.33) and
(2.35) by applying the standard parabolic regularity theory to Equation (2.1)2 (see [16,
Lemma 4.1] for instance). This yields Equation (2.34).

Theorem 2.1. Let m>1 and Ω⊂R
2 be a bounded convex domain with smooth

boundary. Then, for any ε∈ (0,1), system (2.1) admits a unique global in time classical
solution (nε,cε,uε) which is uniformly bounded in Ω×(0,∞) with respect to ε.

Proof. According to Lemma 2.10 and the extension criterion (2.2), we can deduce
that T ∗=∞. By Lemma 2.10, we also see that (nε,cε,uε) is uniformly bounded in
Ω×(0,∞) with respect to ε. This completes the proof of Theorem 2.1.

3. Degenerate problems

In this section, we shall construct a global weak solution to system (1.1), (1.8), (1.9)
with general tensor-valued sensitivity S, which satisfies Equations (1.12) and (1.13).
We shall invoke the global-in-time classical solutions to system (2.1) to approximate the
weak solution of system (1.1), (1.8), (1.9).
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3.1. Further regularity properties of approximate solutions. In order to
investigate the convergence of solutions to system (2.1) as ε→0, we need some further
regularity properties for them.

Lemma 3.1. Suppose that (nε,cε,uε) is a classical solution to system (2.1) in Ω̄×
(0,+∞). Then there exists a positive constant C independent of ε such that

‖nε‖L∞(Ω×(0,∞))≤C, ‖cε‖L∞(0,∞;W 1,∞(Ω))≤C, (3.1)

and

‖uε(·,t)‖L∞(0,∞;W 1,∞(Ω))≤C. (3.2)

Moreover, for any T >0 and γ >m−1, we have

∫ T

0

∫
Ω

|∇(nε+ε)γ |2dxdt≤C(m,γ,T ). (3.3)

Proof. The uniform estimates (3.1) and (3.2) are the direct results of Lemma 2.10
and Theorem 2.1.

It remains to show Equation (3.3). For this purpose, we integrate Equation (2.13)
over (0,T ) to obtain

∫
Ω

(nε+ε)k(·,T )dx+mk(k−1)

2

∫ T

0

∫
Ω

(nε+ε)m+k−3|∇nε|2dxdt

≤k(k−1)C2
S

2m

∫ T

0

∫
Ω

(nε+ε)k+1−m|∇cε|2dxdt+
∫
Ω

(n0+ε)kdx

for any k>1. In particular, by taking k=2γ+1−m, we deduce that

∫ T

0

∫
Ω

∣∣∇(nε+ε)
m+k−1

2

∣∣2dxdt
≤C(γ,m)

∫ T

0

∫
Ω

(nε+ε)2(γ+1−m)|∇cε|2dxdt+C(γ,m)

≤C(γ,m)
(‖nε‖L∞(Ω×(0,∞))+ε

)2(γ+1−m)‖∇cε‖2L∞(Ω×(0,∞))|Ω|T +C(γ,m)

≤C(γ,m,T ).

Here we used the uniform estimate (3.1) in the last inequality. This gives (3.3).

With the help of Lemma 3.1, we can obtain the uniform Hölder continuity of cε,
∇cε, and uε by the standard parabolic regularity theory.

Lemma 3.2. Suppose that (nε,cε,uε) is a classical solution to system (2.1) in Ω̄×
(0,+∞). Then there exist σ∈ (0,1) and C>0 independent of ε such that

‖cε‖
Cσ, σ

2

(
Ω̄×[t,t+1]

)≤C for all t>0

and

‖uε‖
Cσ, σ

2

(
Ω×[t,t+1]

)≤C for all t>0.
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Moreover, for each t0>0, we can also find C(t0)>0 such that

‖∇cε‖
Cσ, σ

2

(
Ω̄×[t,t+1]

)≤C(t0) for all t> t0.

Proof. This can be done by taking a similar procedure as the proof of Lemma 3.18
and Lemma 3.19 in Winkler [41]. Indeed, the regularity of cε and ∇cε can be derived
by applying the parabolic regularity theory to the equation

cεt−Δcε=−uε ·∇cε−cε+nε

due to Lemma 2.10. On the other hand, the regularity of uε can be obtained by applying
the semigroup estimation techniques to the variation-of-constants representation

uε(t)=e−tAu0+

∫ t

0

e−(t−s)AP(nε(s)∇φ)ds.

This completes the proof of Lemma 3.2.

We now deduce some regularity properties of time derivatives. The first one is
related to the time derivatives of certain powers of nε.

Lemma 3.3. Let m>1 and γ >max{1,m−1}. Assume that S(x,n,c) satisfies Equa-
tions (1.12) and (1.13). Suppose that (nε,cε,uε) is a classical solution to system (2.1)
in Ω̄×(0,+∞). Then, for all T >0, there exists a positive constant C(T ) such that∫ T

0

∥∥ ∂

∂t
(nε+ε)γ

∥∥
(W 2,2

0 (Ω))∗dt≤C(T ) for all ε∈ (0,1). (3.4)

Proof. We take a similar procedure as the proof of Lemma 3.22 in Winkler [41].
For any ψ∈W 2,2

0 (Ω), we take γ(nε+ε)γ−1ψ as a test function on Equation (2.1)1 to
obtain ∫

Ω

∂

∂t
(nε+ε)γψdx

=γ

∫
Ω

(
Δ(nε+ε)m−∇·(nεSε(x,nε,cε)∇cε

)−uε ·∇nε

)
(nε+ε)γ−1ψdx.

It then follows from the integration by parts that∫
Ω

∂

∂t
(nε+ε)γψdx

=−mγ(γ−1)

∫
Ω

(nε+ε)m+γ−3|∇nε|2ψdx−mγ

∫
Ω

(nε+ε)m+γ−2∇nε ·∇ψdx

+γ(γ−1)

∫
Ω

nε(nε+ε)γ−2∇nε ·
(
Sε(x,nε,cε)∇cε

)
ψdx

+γ

∫
Ω

nε(nε+ε)γ−1
(
Sε(x,nε,cε)∇cε) ·∇ψdx+

∫
Ω

(nε+ε)γuε ·∇ψdx

=:J1+J2+J3+J4+J5. (3.5)

We now estimate the terms J1,J2, . . . ,J5 one by one. To this end, we first invoke Lemma
3.1 to pick a positive constant C18 such that

nε≤C18, |∇cε|≤C18, and |uε|≤C18 in Ω×(0,∞) (3.6)
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for all ε∈ (0,1). Then, for J1, we have

|J1|= 4mγ(γ−1)

(m+γ−1)2

∫
Ω

∣∣∇(nε+ε)
γ+m−1

2

∣∣2ψdx
≤ 4mγ(γ−1)

(m+γ−1)2
‖ψ‖L∞(Ω)

∫
Ω

∣∣∇(nε+ε)
γ+m−1

2

∣∣2dx. (3.7)

For J2, it follows from Hölder’s inequality that

|J2|= mγ

m+γ−1

∣∣∫
Ω

∇(nε+ε)m+γ−1 ·∇ψdx
∣∣

≤ mγ

m+γ−1
‖∇(nε+ε)m+γ−1‖L2(Ω)‖∇ψ‖L2(Ω)

≤ mγ

2(m+γ−1)

(∫
Ω

∣∣∇(nε+ε)γ+m−1
∣∣2dx+1

)
‖∇ψ‖L2(Ω). (3.8)

Similarly, for J3, we have

|J3|≤γ(γ−1)

∫
Ω

(nε+ε)γ−1|∇nε|dxCSC18‖ψ‖L∞(Ω)

≤(γ−1)CSC18

∫
Ω

|∇(nε+ε)γ |dx‖ψ‖L∞(Ω)

≤(γ−1)CSC18

∫
Ω

(|∇(nε+ε)γ |2+1
)
dx‖ψ‖L∞(Ω). (3.9)

For J4 and J5, we also have

|J4|≤γ
∫
Ω

(nε+ε)γ
∣∣Sε(x,nε,cε)

∣∣|∇cε||∇ψ|dx

≤γ(C18+1)γCSC18|Ω| 12 ‖∇ψ‖L2(Ω) (3.10)

and

|J5|≤
∫
Ω

(nε+ε)γ |uε||∇ψ|dx≤ (C18+1)γC18|Ω| 12 ‖∇ψ‖L2(Ω). (3.11)

Due to W 2,2
0 (Ω) ↪→L∞(Ω), substituting Equations (3.7)–(3.11) into Equation (3.5), we

conclude that there exists a positive constant C19 independent of ε such that∣∣∫
Ω

∂

∂t
(nε+ε)γψdx

∣∣
≤C19

(∫
Ω

∣∣∇(nε+ε)
γ+m−1

2

∣∣2dx+∫
Ω

∣∣∇(nε+ε)γ+m−1
∣∣2dx

+

∫
Ω

∣∣∇(nε+ε)γ
∣∣2dx+1

)
‖ψ‖W 2,2

0 (Ω).

Integrating with respect to time, we have∫ T

0

∥∥ ∂

∂t
(nε+ε)γ

∥∥
(W 2,2

0 (Ω))∗dt

≤C19

(∫ T

0

∫
Ω

∣∣∇(nε+ε)
γ+m−1

2

∣∣2dx+∫ T

0

∫
Ω

∣∣∇(nε+ε)γ+m−1
∣∣2dx

+

∫ T

0

∫
Ω

∣∣∇(nε+ε)γ
∣∣2dx+T

)
.

By γ >m−1, we may use Equation (3.3) to derive the desired bound (3.4).
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3.2. Convergence of a subsequence. With the help of a priori estimates, in
this subsection, we shall extract a suitable subsequence from (nε,cε,uε) such that it is
convergent.

Lemma 3.4. Let m>1. Suppose that (nε,cε,uε) is a classical solution to system (2.1)
in Ω̄×(0,+∞). Then there exist a triple of functions (n,c,u) satisfying

n∈L∞((0,∞);L∞(Ω)), ∇nm∈L2
loc((0,∞);L2(Ω)),

c∈L∞((0,∞);W 1,∞(Ω)), and

u∈L∞((0,∞);W 1,∞(Ω)) such that ∇·u=0 in the distributional sense in Ω×(0,∞),

and a subsequence {εj}∞j=1 converging to zero as j→∞ such that

nεj ⇀n weakly∗ in L∞(
(0,∞);L∞(Ω)

)
, (3.12)

∇nm
εj ⇀∇nm in L2

loc

(
(0,∞);W 1,2(Ω)

)
, (3.13)

cεj ⇀c and ∇cεj ⇀∇c weakly∗ in L∞(
(0,∞);L∞(Ω)

)
, (3.14)

nεjSεj (x,nεj ,cεj )→nS(x,n,c) strongly in L2
loc

(
[0,∞);L2(Ω)

)
, (3.15)

uεj ⇀u and ∇uεj ⇀∇u weakly∗ in L∞(
(0,∞);L∞(Ω)

)
(3.16)

and

cεj → c, ∇cεj →∇c and uεj →u in C0
loc

(
Ω× [0,∞)

)
(3.17)

as j→∞.

Proof. Due to Lemma 3.1, we can find a subsequence {εj}∞j=1 converging to zero
as j→∞ and a triple (n,c,u) such that conditions (3.12), (3.14), and (3.16) hold.

By using the uniform estimate (3.3) with γ=m, we can also have a subsequence
(still denoted by {εj}∞j=1) such that

∇nm
εj ⇀∇nm in L2

(
(0,T );W 1,2(Ω)

)
for any T >0, which yields condition (3.13).

Due to Lemma 3.2, we can use the Arzelà-Ascoli theorem and a standard extraction
procedure to find a sequence (still denoted by {εj}∞j=1) such that condition (3.17) holds.
Due to ∇·uε=0, we also have ∇·u=0 in the distributional sense in Ω×(0,∞).

On the other hand, we fix a γ >m−1. Then Lemma 3.1 and Lemma 3.3 assert that
for any T >0,

(nγ
ε )ε∈(0,1) is bounded inL2

(
(0,T );W 1,2(Ω)

)
and

(
∂

∂t
(nε+ε)γ)ε∈(0,1) is bounded inL1

(
(0,T );(W 2,2

0 (Ω))∗
)
.

Since

W 1,2(Ω) ↪→compactL
2(Ω) ↪→continuous

(
W 2,2

0 (Ω)
)∗
,
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an application of Aubin-Lions lemma (see Chapter IV, [23]) yields the strong precom-
pactness of (nεj +εj)

γ in L2([0,T ];L2(Ω)). By using the Egorov’s theorem, we can find
a subsequence (still denoted by {εj}∞j=1) fulfilling

(nεj +εj)
γ→nγ strongly in L2

(
[0,T ];L2(Ω)

)
and

(nεj +εj)
γ→nγ a.e. inΩ×(0,∞)

as j→∞, which implies that

(nεj +εj)→n a.e. inΩ×(0,∞) (3.18)

as j→∞. By conditions (3.17) and (3.18) and the definition of Sε, we may further infer
that

Sεj (x,nεj ,cεj )→S(x,n,c) a.e. inΩ×(0,∞)

and thus

nεjSεj (x,nεj ,cεj )→nS(x,n,c) a.e. inΩ×(0,∞)

as j→∞. Then we may use the Lebesgue’s dominated theorem, along with a subse-
quence (still denoted by {εj}∞j=1), to infer that

nεjSεj (x,nεj ,cεj )→nS(x,n,c) strongly inL2
loc

(
[0,∞);L2(Ω)

)
as j→∞. This completes the proof of condition (3.15).

3.3. Solution properties of (n,c,u). In this subsection, we shall show that the
triple (n,c,u) obtained in Lemma 3.4 is a global weak solution to system (1.1)–(1.9).

Proof. (Proof of Theorem 1.1.) In Equations (2.1)1, (2.1)2, and (2.1)3, we take
ϕ∈C∞

0

(
Ω̄× [0,∞)

)
and ζ ∈C∞

0

(
Ω̄× [0,∞),R2

)
with ∇·ζ=0 as test functions and then

obtain ∫ ∞

0

∫
Ω

nεjϕtdxdt+

∫
Ω

n0ϕ(·,0)dx

=

∫ ∞

0

∫
Ω

∇(nεj +εj)
m ·∇ϕdxdt−

∫ ∞

0

∫
Ω

(
nεjSεj (x,nεj ,cεj )∇cεj

) ·∇ϕdxdt

−
∫ ∞

0

∫
Ω

nεjuεj ·∇ϕdxdt

and∫ ∞

0

∫
Ω

cεjϕtdxdt+

∫
Ω

c0ϕ(·,0)dx

=

∫ ∞

0

∫
Ω

∇cεj ·∇ϕdxdt+

∫ ∞

0

∫
Ω

cεjϕdxdt−
∫ ∞

0

∫
Ω

nεjϕdxdt−
∫ ∞

0

∫
Ω

cεjuεj ·∇ϕdxdt

as well as∫ ∞

0

∫
Ω

uεj ·ζtdxdt+
∫
Ω

u0 ·ζ(·,0)dx=
∫ ∞

0

∫
Ω

∇uεj ·∇ζdxdt−
∫ ∞

0

∫
Ω

nεj∇φ ·ζdxdt.
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By Lemma 3.4, we can deduce that∫ ∞

0

∫
Ω

nεjϕtdxdt→
∫ ∞

0

∫
Ω

nϕtdxdt,

∫ ∞

0

∫
Ω

(
nεjSεj (x,nεj ,cεj )∇cεj

) ·∇ϕdxdt→
∫ ∞

0

∫
Ω

(
nS(x,n,c)∇c

) ·∇ϕdxdt,

∫ ∞

0

∫
Ω

∇(nεj +εj)
m ·∇ϕdxdt→

∫ ∞

0

∫
Ω

∇nm ·∇ϕdxdt,

and ∫ ∞

0

∫
Ω

nεjuεj ·∇ϕdxdt→
∫ ∞

0

∫
Ω

nu ·∇ϕdxdt

as j→∞. Then we obtain∫ ∞

0

∫
Ω

nϕtdxdt+

∫
Ω

n0ϕ(0)dx

=

∫ ∞

0

∫
Ω

∇nm ·∇ϕdxdt−
∫ ∞

0

∫
Ω

n(S(x,n,c)∇c) ·∇ϕdxdt−
∫ ∞

0

∫
Ω

nu ·∇ϕdxdt.

Similarly, we have∫ ∞

0

∫
Ω

cϕtdxdt+

∫
Ω

c0ϕ(·,0)dx

=

∫ ∞

0

∫
Ω

∇c ·∇ϕdxdt+

∫ ∞

0

∫
Ω

cϕdxdt−
∫ ∞

0

∫
Ω

nϕdxdt−
∫ ∞

0

∫
Ω

cu ·∇ϕdxdt

and ∫ ∞

0

∫
Ω

u ·ζtdxdt+
∫
Ω

u0 ·ζ(·,0)dx=
∫ ∞

0

∫
Ω

∇u ·∇ζdxdt−
∫ ∞

0

∫
Ω

n∇φ ·ζdxdt.

This means that (n,c,u) is a global-in-time weak solution of system (1.1)–(1.9).
Finally, the boundedness of (n,c,u) may result from the boundedness of (nε,cε,uε)

and the Banach-Alaoglu theorem. This completes the proof of Theorem 1.1.
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