
COMMUN. MATH. SCI. c© 2016 International Press

Vol. 14, No. 7, pp. 1799–1820

ROUTING STRATEGIES IN PRODUCTION NETWORKS WITH
RANDOM BREAKDOWNS∗

SIMONE GÖTTLICH† AND SEBASTIAN KÜHN‡

Abstract. Routing strategies in unreliable production networks are an essential tool to meet
given demands and to avoid high inventory levels. Therefore, we are interested in studying state-
independent and state-dependent control policies to maximize the total throughput of the production
network. Different from M/M/1 queuing theory, the underlying model is based on partial and ordinary
differential equations with random breakdowns capturing the time-varying behavior of the system.
The key idea is to numerically compare suitable routing strategies with results computed by nonlinear
optimization techniques. We comment on the efficiency of the proposed methods and their qualitative
behavior as well.

Key words. Production networks, differential equations, random breakdowns, routing strategies,
optimal control.

AMS subject classifications. 90B15, 65Mxx, 90C30.

1. Introduction
Continuous models for the modeling, simulation and optimization of production

networks has become an important research field during the last decades. In contrast to
widely used models based on discrete optimization approaches [30, 33], discrete event
simulations [3, 26] or queuing theory [4, 8], continuous models allow for a detailed
time-dependent description of the production process using quantities such as the part
density or the flow of goods [5, 10, 11, 12, 13].

Time-continuous network models of serial networks have been introduced in [2] for
the first time. Therein, the authors rigorously derived a differential equation, namely a
conservation law, for the part density from a discrete event simulation. In [19, 20], this
model has been reformulated by installing buffer of infinite size in front of each individ-
ual processors. So far, these models have been considered mostly from the deterministic
point of view, but it is possible to include stochastic effects in a straightforward way. For
instance, under certain assumptions for the availability of processors, averaged densities
can be computed either analytically [16] or numerically [22] using Monte-Carlo simula-
tions. In both approaches, random breakdowns of processors are modeled as capacity
drops at exponentially distributed points in time. We briefly describe the coupling of
the stochastic process to the dynamics of the production system in Section 2.

For optimization purposes, the computation of the maximal throughput or the min-
imal buffer loads are of main interest. There exists a broad variety of literature related
to this topic with a focus on the optimal routing of goods or cars [20, 24, 28], inflow
optimization [14], or demand tracking [25]. However, the combination of continuous
randomly perturbed production models and mathematical optimization issues has been

∗Received: October 28, 2014; accepted (in revised form): June 10, 2015. Communicated by Pierre
Degond.
This work was financially supported by the DAAD project “Transport network modeling and analysis”
(Project-ID 57049018) and by the BMBF project KinOpt. Special thanks go to Stephan Martin and
Thorsten Sickenberger for fruitful discussions and Markus Erbrich for his help in generating sample
scenarios.

†University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany (goettlich@
math.uni-mannheim.de).

‡University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany (kuehn@math.
uni-mannheim.de).

1799

1800 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

less investigated heretofore. In other words, the challenge we face here is the optimal
control of a nonlinear stochastic model relying on differential equations. That means
we need to think about suitable optimization strategies and algorithms as well. We em-
phasize different solution approaches for the optimal routing problem, where the overall
goal is to efficiently distribute goods through the system to achieve high throughputs.
Major applications for the optimal routing problem are, for example, packet flow on
data networks [7] or traffic flow on road networks [6, 9, 15, 23, 28].

In this work, our contribution will follow two central ideas. Due to the complexity
of our modeling approach, a detailed analytical study of the routing problem is hardly
possible. Therefore, we stick to a numerical study in our investigations and propose
routing strategies (or policies) in a heuristic manner on the one hand and optimal so-
lutions obtained by nonlinear optimization on the other hand. The control strategies
may either depend on the current state of the system or not. In this way, we are able
to include the time-varying behavior of the system more precisely. We still see in Sec-
tion 4 how this additional information will influence the system optimum. Similar ideas
can be found, for example, in queuing theory, where a variety of literature related to
routing decisions exists; see [1, 27, 31, 32] for an overview. However, these techniques
do not directly apply to our approach due to the fluctuations resulting from the random
breakdowns of processors. Motivated by queuing theory, we develop problem-adapted
routing strategies and approximate expectations of the system using a large number of
Monte-Carlo runs. To assess the impact of the results achieved, we present an algo-
rithm to solve the stochastic control problem directly. The latter can be interpreted
as an optimization model restricted by differential equations. It is numerically solved
using a rolling time horizon approach to really include all occurring random failures
(cf. Section 3). This method is nonstandard and computationally very costly, and it
often gets stuck at local approximations. To remedy this drawback, heuristic routing
strategies offer an alternative and less expensive way to approximate or even reach a
system optimum; see computational experiments in Section 4. From a numerical point
of view, we try to find the most suitable strategy to reach high outputs and low buffer
loads while also taking into account the network topology and different arrival rates.

2. Modeling of production networks and routing strategies
In this section, we briefly discuss a mathematical model to describe the flow of

goods in production networks with random breakdowns of processors originally intro-
duced in [22]. Here, breakdowns are modeled by a two-state process with exponentially
distributed switching times between on and off states. We also present several routing
strategies or policies to distribute the product flow through the system. We mainly
distinguish between two types of strategies: state-independent and state-dependent
policies.

2.1. Stochastic network model with random breakdowns. The modeling
and numerical simulation of a stochastic time-dependent production model including
random breakdowns is presented in [22]. In this work, this model is used to describe the
fundamental dynamic behavior and is coupled to routing strategies or control policies,
respectively.

To introduce the model, we first set a couple of notations. With (V ,A), we denote
a directed graph consisting of a set of arcs A and a set of vertices V and define N = |V|,
M = |A|. For any fixed vertex v∈V, the set of ingoing arcs is denoted by δ−v and the set
of outgoing arcs by δ+v ; see Figure 2.3. Each processor is represented by an arc e∈A
with an associated queue or buffer in front of it. We assume that each processor has
a non-physical length, the so-called degree of completion described by the variable x.

S. GÖTTLICH AND S. KÜHN 1801

The degree of completion is normed to the unit interval [0,1], where x=0 indicates the
entering and x=1 the exiting of parts. A vertex v∈V without any predecessor represents
an inflow point to the production network. We denote the set of all these vertices by
Vin={v∈V | |δ−v |=0}. The time-varying influx is externally given and denoted by Gv

in(t)
for all v∈Vin. Accordingly, we define Vout={v∈V | |δ+v |=0} as the set of all vertices
where goods leave the production network. Furthermore, let s :A→V map an arc onto
its vertex of origin.

The considered time span is [0,T]. We assume that processors may break down
eventually and get restarted again within the time horizon T . Following [22], we define
a two-state stochastic process

re :R≥0×Ω−→{0,1}
t×ω �−→ re(t,ω)

(2.1)

for each processor e∈A indicating whether the processor is on, i.e. re(t,ω)=1, or off,
i.e. re(t,ω)=0. Intermediate states are not possible; see Figure 2.1. Furthermore, we
initialize the states of the processors by

re(0,ω)= re0, (2.2)

where we usually choose all processors being on, i.e. re0=1.

t

re(t,ω)

t∗ t∗+Δτe

0

1

Fig. 2.1. Realization of a two-state-process (2.1).

The state process re depends on both the time t and the random sample ω∈Ω.
Thus, for a fixed time t≥0, re(t, ·) is a binary random variable, whereas, for a fixed
random sample ω∈Ω, re(·,ω) is a realization of the state process. We call a change
in the state re(t∗,ω) of a processor e∈A at time t∗ a switching. To model these, we
assume that the switchings are independent of the queue load, the load of the processor,
and the state of other processors. This allows us to introduce the mean time between
failures (MTBF) τeon and the mean repair time (MRT) τeoff for each processor e. The
former describes the mean time for a switching from re=1 to re=0, while the latter
defines the mean time for a processor being broken, i.e. re=0, before switching back to
operating, i.e. re=1. Then, for each processor, the time Δτe between two switchings
at t∗ and t∗+Δτe is chosen randomly from the exponential distribution with density
function Exp(t;λ) and the rate parameter

λ=λ(re (t∗,ω))=

{
1/τeon if re (t∗,ω)=1,

1/τeoff if re (t∗,ω)=0.
(2.3)

1802 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

Having the modeling of breakdowns at hand, we can introduce the stochastic pro-
duction network model as follows. We assume that each processor e∈A works with a
constant velocity ve and has a maximal processing rate μe measured in parts per unit
time. The density of products ρe(x,t,ω) is governed by the continuity equation for all
x∈ [0,1], t≥0, ω∈Ω:

∂tρ
e(x,t,ω)+∂xf

e (ρe(x,t,ω))=0, ρ(x,0,ω)=ρe0(x), (2.4a)

where the flux function fe is given by

fe (ρe)=min
{
ve ·ρe(x,t,ω),μe ·re(t,ω)

}
. (2.4b)

In particular, this means that, if the processor e is not broken, i.e. re=1, then the
density of goods ρe(x,t,ω) is transported with velocity ve and the flux is less than or
equal to the maximal processing rate μe. On the other hand, if the processor e is broken,
i.e. re=0, then no goods are processed at all and the flux is zero.

Each processor e has the possibility of storing goods that cannot be processed
immediately in a queue qe(t,ω) (see Figure 2.2).

v
∂tρ

e+∂xf
e(ρe)=0

qe

gein geout

Fig. 2.2. A processing unit is composed of an ordinary differential equation describing the load
of a queue qe coupled to the dynamics of the processor governed by a conservation law.

The inflow to this queue is denoted by the function gein(t,ω) and the outflow of the
queue by the function geout(t,ω). The dynamics of the queue are determined by the
difference between its inflow gein(t,ω) and its outflow geout(t,ω). Thus, the load of the
queue qe(t,ω) is given by the rate equation

∂tq
e(t,ω)=gein(t,ω)−geout(t,ω), qe(0,ω)= qe0. (2.5)

For the inflow to the queue gein(t,ω), we remark that, if the origin s(e) of proces-
sor e is an inflow point to the network, i.e. s(e)∈Vin, the inflow is given by the inflow
function Gv

in(t). On the other hand, if the origin of processor e is an inner vertex, i.e.
s(e) /∈Vin, the inflow is given by the sum of all incoming flows multiplied by the distri-
bution or routing parameter As(e),e(t), which describes the percentage of flow sent to
processor e (cf. Figure 2.3). Routing parameters are a degree of freedom in simulation
models and will be the controls for optimization purposes in Section 3.

For a vertex v and any outgoing processor e∈ δ+v , the routing parameters Av,e are
defined as follows.

Definition 2.1 (Distribution rates). For any vertex v∈V with |δ+v | �=∅ and any pro-
cessor e∈ δ+v , the distribution rate Av,e(t) should fulfill two conditions for all t≥0:

(i) 0≤Av,e(t)≤1.

S. GÖTTLICH AND S. KÜHN 1803

δ−(v)

v

1

3

2

δ+(v)

A v,5
5

A
v,4

4

Fig. 2.3. Illustrations of δ±v as well as of the distribution rates Av,4(t) and Av,5(t)=1−Av,4,
respectively.

(ii)
∑

e∈δ+v
Av,e(t)=1.

Now, we are able to replace the inflow gein(t,ω) in Equation (2.5) with

gein(t,ω)=

⎧⎪⎨
⎪⎩
As(e),e(t)

∑
ē∈δ−

s(e)

f ē (ρē (1,t,ω)) if s(e) /∈Vin,

G
s(e)
in (t) if s(e)∈Vin.

(2.6)

The outflow geout(t,ω) appearing in Equation (2.5) can also be specified: If the
queue qe(t,ω) is empty, the outflow equals the minimum of the ingoing flow gein(t,ω)
and the maximal capacity μe ·re(t,ω) of the processor. If the queue is filled, the queue
is reduced with maximal capacity of the processor. This yields

geout(t,ω)=

{
min{gein(t,ω),μe ·re(t,ω)} if qe(t)=0,

μe ·re(t,ω) if qe(t)>0.
(2.7)

Summarizing, the stochastic simulation network model is given by the equations:{
(2.2), (2.4), (2.5), (2.6), (2.7). (2.8)

Note that the stochastic network model (2.8) also captures a deterministic produc-
tion network. Therefore, we initialize all processors e∈A with states re0=1 and set
τeon=∞. Consequently, the processors do not switch and keep operating for the whole
time. This fact will be used in the numerical experiments in Section 4.

2.2. Routing strategies. A crucial point in production network models is the
distribution of incoming goods among the outgoing processors (cf. Equation (2.5) and
Equation (2.6)). In the following, we introduce two different types of control strate-
gies for the simulation model (2.8) that are compared to solutions obtained by solving
an optimization model in Section 4. In our approach, we distinguish between state-
independent (shortly s-i) and state-dependent (shortly s-d) routing strategies that take
the current states of the processors into account. Certainly, all strategies or distribution
rates need to fulfill the properties stated in Definition 2.1. In the following, we will write
αs(e),e instead of As(e),e(t) whenever the distribution rates are time-independent.

2.2.1. State-independent strategies. Göttlich et al. [22] consider a very
intuitive way to control the incoming flow among outgoing processors, i.e. where the
flow is equally distributed according to the number of outgoing processors. We call this
strategy the s-i uniform control strategy.

1804 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

Definition 2.2 (s-i uniform control). Let v∈V be an inner vertex and e∈ δ+v , i.e.
v=s(e), the ongoing processors. Then, we define the s-i uniform control by

α
s(e),e
uniform=

1

|δ+s(e)|
. (2.9)

Note that the s-i uniform control (2.9) is time-independent since δ+v only depends
on the topology of the network.

Sticking to topology-dependent and time-independent constant controls, we define
the s-i capacity control strategy. Here, the distribution rates are proportional to the
maximal capacities μe of outgoing processors.

Definition 2.3 (s-i capacity control). Let v∈V be an inner vertex and e∈ δ+v the
ongoing processors with capacity μe. Then, we define the s-i capacity control by

α
s(e),e
capacity=

μe∑
ē∈δ+

s(e)

μē
. (2.10)

These rates are again time-independent, because the maximal capacities μe are
constant parameters and will not change in time.

In the presence of random breakdowns of processors, the mean availability of each
processor is another important characteristic that should be included in the routing
strategy. For a single processor e∈E, the mean availability can be computed by

τemean=
τeon

τeon+τeoff
,

where τeon>0 is the mean time between failures and τeoff>0 is the mean repair time (cf.
Figure 2.1). For a processor e which is not considered to break down, we set τemean=1.
Including the mean availability, we end up with a more elaborate routing strategy taking
both the capacity and the availability into account.

Definition 2.4 (s-i availability control). Let v∈V be an inner vertex and e∈ δ+v the
ongoing processors with the capacity μe and mean availability τemean. Then, we define
the s-i availability control by

α
s(e),e
availability=

μe ·τemean∑
ē∈δ+

s(e)

μē ·τ ēmean

. (2.11)

Note that strategy (2.11) is also time-indepedent because the mean availabilities do
not change in time.

Another state-independent, but now time-dependent, strategy might additionally
depend on the queue load. Let the inverse relative queue load of a processor e∈E be
defined by

qerel(t)=

{
μe/qe(t) if qe(t)>μe,

1 else ,

S. GÖTTLICH AND S. KÜHN 1805

where qe(t) is the current queue load and μe the maximum capacity. This leads to
the property 0<qerel(t)≤1 since all processors have positive maximal capacities μe>0.
So, the relative queue load qerel(t) can be seen as the percentage of queue load which is
cleared from the queue in one time step. Clearly, the lower the value of qerel(t) gets, the
worse is the routing of goods.

This gives rise to another routing strategy extending the former state-independent
strategies by relative queue loads.

Definition 2.5 (s-i queuing control). Let v∈V be an inner vertex and e∈ δ+v the ongo-
ing processors with the capacity μe, mean availability τemean and relative queue load qerel(t)
for t≥0. Then, we define the s-i queuing control by

As(e),e
queue(t)=

μe ·τemean ·qerel(t)∑
ē∈δ+

s(e)

μē ·τ ēmean ·qērel(t)
. (2.12)

Note that the distribution strategy (2.12) is time-dependent but still independent
from the state of processors.

2.2.2. State-dependent strategies. State-dependent strategies compared to
state-independent strategies are mainly concerned with random breakdown scenarios.
For instance, if a processor is broken at time t, e.g. re(t)=0, goods should no longer be
fed into this processor since otherwise they pile up and the corresponding queue starts
to increase. For this reason, we are now interested in state-dependent (or s-d) strategies
that do not distribute goods into broken processors unless all ongoing processors are
broken. This is done by converting state-independent (cf. Section 2.2.1) into state-
dependent strategies. We start with the uniform control.

Definition 2.6 (s-d uniform control). Let v∈V be an inner vertex and e∈ δ+v the
ongoing processors with state re(t) for t≥0. Then, we define the s-d uniform control by

A
s(e),e
uniform(t)=

⎧⎪⎪⎨
⎪⎪⎩
1/

∑
ē∈δ+

s(e)

rē(t) if
∑

ē∈δ+
s(e)

rē(t)>0,

1/ |δ+s(e)| if
∑

ē∈δ+
s(e)

rē(t)=0.
(2.13)

Here, in the first case the sum indicates the number of processors e∈ δ+s(e) which are
operating at time t≥0.

In the same way, we design state-dependent counterparts of Equation(2.10), Equa-
tion (2.11), and Equation (2.12). According to the s-d uniform control (2.13), we intro-
duce a second case that resembles the state-independent control if all ongoing processors
are down.

Definition 2.7 (s-d capacity control). Let v∈V be an inner vertex and e∈ δ+v the
ongoing processors with the capacity μe and state re(t) for t≥0. Then, we define the
s-d capacity control by

A
s(e),e
capacity(t)=

⎧⎪⎪⎨
⎪⎪⎩

(
μe ·re(t)

)
/

∑
ē∈δ+

s(e)

(
μē ·rē(t)

)
if

∑
ē∈δ+

s(e)

rē(t)>0,

μe/
∑

ē∈δ+
s(e)

μē if
∑

ē∈δ+
s(e)

rē(t)=0.
(2.14)

1806 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

Definition 2.8 (s-d availability control). Let v∈V be an inner vertex and e∈ δ+v the
ongoing processors with the capacity μe, mean availability τemean, and state re(t) for
t≥0. Then, we define the s-d availability control by

A
s(e),e
availability(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
μe ·τemean ·re(t)

)
/

∑
ē∈δ+

s(e)

(
μē ·τ ēmean ·rē(t)

)
if

∑
ē∈δ+

s(e)

rē(t)>0,

(
μe ·τemean

)
/

∑
ē∈δ+

s(e)

(
μē ·τ ēmean

)
if

∑
ē∈δ+

s(e)

rē(t)=0.

(2.15)

Definition 2.9 (s-d queuing control). Let v∈V be an inner vertex and e∈ δ+v the ongo-
ing processors with the capacity μe and mean availability τemean. Furthermore, let qerel(t)
be the relative queue load and re(t) the state for each processor e∈ δ+v and t≥0. Then,
we define the s-d queuing control by

A
s(e),e

queuing(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
μe ·τe

mean ·qerel(t) ·re(t)
)
/

∑
ē∈δ+

s(e)

(
μē ·τ ē

mean ·qērel(t) ·rē(t)
)

if
∑

ē∈δ+
s(e)

rē(t)>0,

(
μe ·τe

mean ·qerel(t)
)
/

∑
ē∈δ+

s(e)

(
μē ·τ ē

mean ·qērel(t)
)

if
∑

ē∈δ+
s(e)

rē(t)=0.

(2.16)

Finally, additional to the state-dependent strategies (2.13)–(2.16), we consider the
following non-trivial adaption. The idea is to allocate goods also to an in-operating
processor as long as the relative queue load is smaller than a constant c. If this processor
is on again, it can start directly at its maximum capacity, which might be higher than
its average workload. We expect that this strategy helps to regain the lost time when
the processor was off. Therefore, we intend to distribute the flow among processors e
that are in progress, i.e. re(t)=1, and have a relative queue load of at least c, i.e. qerel>c
(cf. cases 2 and 3 in Equation (2.17)). In the case where all processors are down or the
relative queue load is smaller than c (case 1 in Equation (2.17)), we distribute the flow
according to Definition 2.5.

Definition 2.10 (advanced s-d control). Let v∈V be an inner vertex and e∈ δ+v
the ongoing processors with the capacity μe and mean availability τemean. Furthermore,
let qerel(t) be the relative queue load and re(t) the state for each processor e∈ δ+v and
t≥0. Then, we define the advanced s-d control with the user-defined constant 0≤ c≤1
by

A
s(e),e
adv (t)=

⎧⎪⎪⎨
⎪⎪⎩
A

s(e),e
queue(t) if ∀e∈ δ+s(e) : r

e(t)=0 or qerel(t)<c,
μe·τe

mean·qerel(t)∑
ē∈δ

+
s(e)

,qē
rel

(t)>c,rē(t)=1
(μē·τ ē

mean·qērel(t))
if re(t)=1 and qerel(t)>c,

0 else.

(2.17)

We remark that the the parameter 0≤ c≤1 switches between state-dependent and
-independent controls. For instance, c=0 reproduces the s-d queuing control (2.16)
and c=1 the s-i queuing control (2.12). Preliminary tests have shown that, for the
choice c=1/2, the results of stratgey (2.17) lie inbetween the results of the bounding
strategies (2.12) and (2.16), with a tendency to the better-performing one. For that
reason, the computations in Section 4 are performed using c=1/2.

S. GÖTTLICH AND S. KÜHN 1807

2.3. Numerical solution method. We remark that the stochastic network
model (2.8) is piecewise deterministic, i.e. there occurs no further stochasticity between
the switching points. This property is in particular used to solve model (2.8) numerically
while following the idea of Gillespie [17, 18], who first studied piecewise deterministic
processes (PDPs). The proposed Stochastic Simulation Algorithm (SSA) has been suc-
cessfully adapted to production networks with random breakdowns [22] and unreliable
flow lines [21]. For our simulation purposes, we use the version from [22] and modify
Algorithm 4.2 therein to fit to our routing strategies defined above (cf. Algorithm 1).

Algorithm 1 Pseudocode: adapted stochastic sampling algorithm

Input: [0,T] real interval. Initial data for t=0. Strategy for distribution rates.
Output: Simulation of the production network for one realization ω of model (2.8) on

[0,T].
1: while t∗i <T do
2: Sample next switching point t∗i+1.
3: Compute solution in the interval

[
t∗i ,t

∗
i+1

)
using Euler steps for the updates of

the queues and an upwind scheme for the update on the arcs. The distribution
rates at the vertices are given by the predefined strategy.

4: Set i= i+1.
5: end while

3. An approximate optimization algorithm
We intend to compare the distribution strategies discussed in Section 2.2 to approx-

imate solutions to the following optimization problem:

max
Av,e

/min
Av,e

J(ρ)

s.t. (2.8),
(3.1)

where we consider two different objective functions. On the one hand, the approximate
maximization of throughput corresponds to the approximate maximization of flow at
the end of the processors e∈Eout leading to a sink, i.e.

max
Av,e

J(ρ)=

∫ t∗i +τhor

t∗i

∑
e∈Eout

fe (ρe(1,t,ω)) dt. (3.2)

This choice of objective function only aims at high outputs at exiting arcs but disregards
the queue loads inside the network. To tackle this problem, we consider a second
objective, namely the approximate minimization of queues

min
Av,e

J(ρ)=
∑
e∈E

1

2

∫ t∗i +τhor

t∗i

(
qe(t)

)2

dt. (3.3)

This type of objective not only minimizes the total amount of stored goods but also
maximizes the throughput at the same time. We choose a quadratic formulation in
Equation (3.3) as in [20] to achieve better convergence.

Apparently, problem (3.1) is constrained by differential equations, i.e. the stochas-
tic production model (2.8), and the controls to be determined are the distribution
rates Av,e.

1808 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

As we have seen in Section 2, model (2.8) is accompanied by stochastic processes,
i.e. the random failures of processors, and therefore the optimization model (3.1) is also
stochastic. To exploit the underlying piecewise deterministic structure of the model
equation (2.8), we solve the control problem on a rolling time horizon. That means,
at each switching point t∗i , we fix the states re of the processors e for the time in-
terval [t∗i ,t

∗
i +τhor], where τhor>0 is a prediction parameter defining the length of the

considered time horizon. For this time interval, we optimize the objective function lead-
ing to constant distribution rates in the interval [t∗i ,t

∗
i +τhor]. The utilized numerical

algorithm to solve the optimization problem (3.1) is the MATLAB routine fmincon [29].
We repeat this procedure for each switching point t∗i to obtain a solution on [0,T] (cf.
algorithms 2, 3). Consequently, this leads to an approximate optimization algorithm,
as the computational solution depends on the prediction parameter τhor.

Algorithm 2 Pseudocode: rolling time horizon

Input: [0,T] real interval. Initial data for t=0.
Output: Distribution rates for one realization ω of model (2.8) on [0,T].
1: while t∗i <T do
2: Sample next switching point t∗i+1.
3: Compute solution in the interval [t∗i ,t

∗
i +τhor) using Algorithm 3.

4: Set i= i+1.
5: end while

Algorithm 3 Pseudocode: approximate solution for one time interval

Input: t∗i sampled switching times, τhor time horizon, re(t∗i) states of the processors
e∈E, and ρe(t) and qe(t) for 0≤ t≤ t∗i and for all processors e∈E.

Output: Av,e(t), ρe(t), and qe(t) for 0≤ t≤ t∗i +τhor and for all e∈E.
1: Fix states r̄e(t)= re(t∗i) for t≥ t∗i .
2: Set αv,e

0 =Av,e(t∗i) as initial distribution rates.
3: Apply fmincon to solve Equation (3.1) for αv,e

opt within [t∗i ,t
∗
i +τhor] with re= r̄e using

αv,e
0 as initial rates.

4: Set Av,e(t)=αv,e
opt for t̄

∗
i ≤ t≤ t∗i +τhor.

Note that the time horizon τhor should be chosen large enough to provide reliable
results. If τhor is chosen too small, i.e. smaller than the longest path from a source to
a sink, no flow is distributed along this path. Furthermore, τhor must be larger than
the mean time between the switchings to ensure the definition of Av,e(t) for all t (cf.
Algorithm 3, Step 4).

4. Numerical results
In this section, we present the numerical results comparing the different routing

heuristics and the approximate optimization procedures proposed in Section 2.2 and 3,
respectively. We start with a qualitative study of different network topologies since the
routing highly depends on the underlying geometry and parameter configuration. To
cover reasonable settings, we distinguish between three different types of networks: the
diamond network, the cascade network, and a non-symmetric network. They are typi-
cally characterized by their size and capacity allocation. Another crucial ingredient in
our experiments is the choice of the arrival rates (or inflow functions). For each network
sample, we consider the following two scenarios: The first inflow function is constant

S. GÖTTLICH AND S. KÜHN 1809

for all times and fixed to 80% of the network’s deterministic bottleneck capacity μeb ,
whereas the second inflow function repeats a cycle of delivering 100% for 30 time steps
and stopping the inflow for 10 time steps for five times. Consequently, we refer to the
two functions as constant inflow and stop-go inflow, respectively. The constant inflow is
used to analyze how the proposed routing strategies behave for non-time varying filling
of the system. In contrast, the stop-go inflow is highly fluctuating to see how the routing
strategies react and respond on variations in time (cf. figures 4.1 and 4.2). Note that

the total constant inflow
∫ T

0
Gv1

in (t) dt=0.8μeb ·T is 5% larger than the total stop-go

inflow
∫ T

0
Gv1

in (t) dt=0.75μeb ·T .

t

Gv1
in(t)

80 · · ·
0

0.8 ·μeb

Fig. 4.1. Constant inflow profile.

t

Gv1
in(t)

30 40 60 80 · · ·
0

μeb

Fig. 4.2. Stop-go inflow profile.

We close the section with a comparison of computation times, where we particularly
analyze the influence of the network size and its parameters. To fairly compare the
running times, all simulations and optimizations have been performed on a PC equipped
with 32GB RAM, Intel(R) Xeon(R) CPU E3-1280 @ 3.60GHz.

For our investigations, we use a spatial discretization of Δx=1/9 to solve the
model (2.8) and (3.1) as well. Setting the velocities to ve=1 for all processors, we
end up with the step size Δt=1/9 due to the CFL condition Δt≤Δx. For all test
cases, we consider a total time horizon of T =200.

4.1. Diamond network. The first network to be considered is the so-called
diamond network consisting of 8 arcs (cf. Figure 4.3. Here, the capacities of each proces-
sor e are illustrated together with its index. We also color-coded the availability of the
processors. The green arcs represent deterministic processors with availability τemean=1.
We marked the processors (arcs) slightly failing (with an availability of τemean=95%)
in yellow and the ones most prone to failure (availability τemean=75%) in red (cf. Ta-
ble 4.1). The diamond network consists of two vertices, namely v3 and v4, where the
flux has to be controlled according to a routing policy or approximate optimization.

First, we present the results for the constant influx, i.e. we consider for all times t

Gv1
in (t)=32 (4.1)

at processor e=1. This equals 80% of the network’s deterministic bottleneck capacity
(cf. Figure 4.1).

In Figure 4.4, the total outflow of the network for one sample ω∈Ω

∫ T

0

∑
e∈Eout

fe (ρe(1,t,ω)) dt (4.2)

at T =200 is shown for all nine heuristic routing strategies (blue squares, strate-
gies (2.9)–(2.17)) and the two approximate optimization approaches (white squares,

1810 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

processors parameters

type indices availability τemean mean up τeon mean down τeoff

green 1,8 1 ∞ 0
yellow 2,4,6,7 0.95 47.5 2.5
red 3,5 0.75 30 10

Table 4.1. Parameters for the diamond network.

v1 v2 v3

v4

v5

v6 v7
1,40 2,40

3,30

4,20

5,20

6,10

7,30

8,40

e,μe=index, capacity

Fig. 4.3. The diamond network. The values at the arcs describe the capacities of the pro-
cessors. Processors with the same configuration share the same color.

optimization

routing strategies

deterministic

1 2 3 4 5 6 7 8 9 10 11
5600

5700

5800

5900

6000

6100

6200

6300

Fig. 4.4. Total outflow of the diamond net-
work at T =200 for all control strategies and con-
stant inflow.

optimization

routing strategies

deterministic

1 2 3 4 5 6 7 8 9 10 11

0

1 x105

2 x105

3 x105

4 x105

5 x105

6 x105

7 x105

Fig. 4.5. Sum of all queues within the dia-
mond network for all control strategies and con-
stant inflow.

strategies (3.2) and (3.3)). To improve readability, we use this notation throughout
this section. Furthermore, we provide results for the deterministic model (red dots) as
a benchmark solution for the aforementioned computations. In this way, we directly
observe the influence of the stochasticity on the single strategies.

The sum of all queues within the network over the whole time horizon and for
sample ω∈Ω

M∑
e=1

∫ T

0

qe(t,ω) dt (4.3)

S. GÖTTLICH AND S. KÜHN 1811

is presented in Figure 4.5 using the same order as above. The maximal queue length

max
e∈E

max
0≤t≤T

qe(t,ω) (4.4)

arising at one processor within the network is presented in Table 4.2.
The second inflow function we consider for 0≤ t≤T is plotted in Figure 4.2 and

given by

Gv1

in (t)=

{
40 if 0≤mod(t,40)<30,

0 if 30≤mod(t,40)<40.
(4.5)

In figures 4.6 and 4.7 and Table 4.3, again the total outflow of the network at
T =200, the sum of all queues and the maximal occurring queue lengths are presented.

objective strategy

1 2 3 4 5 6 7 8 9 10 11

maximum queue 162 287 205 98 292 181 233 92 98 188 68

Table 4.2. Maximum queues of the diamond network for a constant inflow.

optimization

routing strategies

deterministic

1 2 3 4 5 6 7 8 9 10 11
5500

5600

5700

5800

5900

6000

Fig. 4.6. Total outflow of the diamond net-
work at T =200 for all control strategies and
stop-go inflow.

optimization

routing strategies

deterministic

1 2 3 4 5 6 7 8 9 10 11

0

1 x105

2 x105

3 x105

4 x105

5 x105

6 x105

7 x105

Fig. 4.7. Sum of all queues within the dia-
mond network for all control strategies and stop-
go inflow.

objective strategy

1 2 3 4 5 6 7 8 9 10 11

maximum queue 168 276 206 103 274 190 232 117 99 202 96

Table 4.3. Maximum queues of the diamond network for a stop go inflow.

From figures 4.4 and 4.5, we see that, in the deterministic case, all strategies work
equally well for the constant inflow (4.1). Additionally, queues remain empty. This
means the available capacity of the network is sufficient to process all incoming parts.
This changes for the stop-go inflow (4.5), where queues start to build up for various cases.
For both scenarios, the strategies in the stochastic case lead to completely different
results. Obviously, the s-i capacity control (2.10) is worst in all three performance

1812 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

measures and for both inflow functions. This is due to processors e=3,5 both having
higher capacity but lower availability than processors e=4,6. Consequently, the flow is
mainly distributed in those processors and gets stuck more often. The best performing
strategies for both inflows and for all three performance measures are s-i queuing (2.12),
s-d queuing (2.16) as well as the advanced s-d strategy (2.17). Note that the latter is a
mixture of the earlier ones.

We also remark that the state-dependent strategies (2.16) and (2.17) work slightly
better than the state-independent strategy (2.12), but the difference is rather small.
Nevertheless, the state-dependent strategies yield better results compared to state-
independent strategies. This is also true for the capacity controls (cf. for instance
s-d capacity control (2.14)) with s-i capacity control (2.10). For all other control
pairs (state-independent vs. state-dependent), the state-independents control (strate-
gies (2.9) and (2.11)) perform much better than their respective state-dependent ana-
logues (strategies (2.13) and (2.15)). The maximum queue values in Table 4.3 are
important for the design of inventories. However, they are observed at single points in
time and do not reflect the total utilization in the considered time horizon.

Concerning the approximate optimization approaches, we detect that the quadratic
objective function (3.3) yields the best overall performance. We note that the opti-
mization problem (3.1) with the objective function (3.2) performs even worse than the
best heuristics. This is due to the state-dependency of the approximate optimization
algorithm and the fact that the extrapolation from the current point in time may lead
to a bad prediction in the worst case.

4.2. A cascade network. The second network to be considered is a large
symmetric cascade network with 27 arcs shown in Figure 4.8. The main ingredient
of this network are the first and second layer of processors (e=6, . . . ,23) consisting of
nine processors each. In the first layer, three processors lead from each of the three
vertices v3, v4, and v5 to each of the three vertices v6, v7, and v8 of the second layer.
Hereby, the processors heading “straight” down are more prone to failure than all the
other processors of this layer. In the second layer, the processors leaving vertices v6
and v8 are those most likely to fail. As depicted in Table 4.4, the first five and last four
processors are deterministic and do not fail.

As before, we first present results for the constant inflow (cf. Figure 4.1), which is
now

Gv1
in (t)=72 (4.6)

in figures 4.9 and 4.10 and Table 4.5. The performance measures are again the total
outflow of the network (4.2), the sum of queues within the network (4.3) and the maximal
queue lengths (4.4).

Second, we consider the stop-go-inflow for 0≤ t≤200 (cf. Figure 4.2)

Gv1
in (t)=

{
90 if 0≤mod(t,40)<30,

0 if 30≤mod(t,40)<40
(4.7)

applied to the cascade network and show the results in figures 4.11 and 4.12 and Ta-
ble 4.6.

Due to the full symmetry of the network, the uniform and capacity control strat-
egy yield the same results for the state-independent and -dependent cases, respectively.
From figures 4.9 and 4.11, we see that, despite the availability control (strategy (2.15)),
the state-dependent controls perform better than their state-independent analogues

S. GÖTTLICH AND S. KÜHN 1813

when considering the total outflow of the network. While the performance of the dif-
ferent strategies in terms of the total outflow (4.2) is not significant for the constant
inflow (4.6), we observe a change for the stop-go inflow (4.7). The controls also differ
concerning the sum of all queues (4.3) for both inflow functions (cf. figures 4.10 and
4.12). The tendency is once more that the state-dependent controls perform better
than the corresponding state-independent ones. However, the state-independent strate-
gies lead to acceptable limits of the maximal queue length (4.4) (cf. tables 4.5 and 4.6).
This is due to the choice of the availability of the processors in the first and second
layer. Since the state-dependent controls try to avoid uncertain processors, more flow is
led to vertices v6 and v8. Consequently, in the next processors, which are all uncertain,
the queues start to increase. This drawback is avoided by the state-independent con-
trols. Additionally, we observe that the maximal queue length of the state-independent
controls arises at processors of the first layer (those leaving v3, v4, and v5) while the
state-dependent controls have maximal queues at processors of the second layer (those
leaving v6, v7 and v8). For the stop-go inflow (4.7), the sum of queues as well as the
maximal queue lengths are smaller than for the constant inflow (4.6). The stop-go in-
flow also favors the queuing controls and the advanced control over the uniform controls.
Those controls are able to exploit the stopping in the inflow to clear the queues.

processor parameters

type indices τemean τeon τeoff

green 1–5, 24–27 1 1 0
yellow 6,8,9,11,12,14,18–20 0.95 47.5 2.5
red 7,10,13,15–17,21–23 0.75 30 10

Table 4.4. Parameters for the cascade network.

objective strategy

1 2 3 4 5 6 7 8 9 10 11

maximum queue 258 258 333 332 296 296 363 325 333 145 150

Table 4.5. Maximum queues of the cascade network for a constant inflow.

objective strategy

1 2 3 4 5 6 7 8 9 10 11

maximum queue 229 229 282 220 252 252 305 228 218 156 128

Table 4.6. Maximum queues of the cascade network for a stop go inflow.

Different from the diamond network example, the approximate optimization (3.2)
yields an improvement of ≥6% in the total outflow, of ≥80% for the sum of all queues
and of ≥70% for the maximum queue length in the case of constant inflow (4.6). This
shows that in contrast to the heuristics strategies, which consider only local criteria for
the distribution of flow, the approximate optimization process includes global informa-
tion of the network. Thus, the approximation algorithm is able to detect and avoid
uncertain processors in the second layer that the heuristics do not to see. For the stop-
go inflow (4.7), the approximate optimization still performs better than the heuristics,
but the benefit is less (≥2%, ≥25%, and ≥40%, respectively).

1814 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

v0 v1

v2

v3 v4 v5

v6 v7 v8

v9 v10 v11

v12

v13

1,90

2,90

3,30
4,30

5,30

6,10

7,10

8,10 9,10

10,10

11,10 12,10

13,10

14,10

15,10

7,10

16,10

17,10

18,10

19,10

20,10

21,10

22,10

23,10

24,30
25,30

26,30

27,90

e,μe=index, capacity

Fig. 4.8. The cascade network.

1 2 3 4 5 6 7 8 9 10 11

1.2 x104

1.3 x104

1.4 x104

Fig. 4.9. Total outflow of the cascade net-
work at T =200 for all control strategies and con-
stant inflow.

1 2 3 4 5 6 7 8 9 10 11

0

0.5 x106

1 x106

1.5 x106

2 x106

Fig. 4.10. Sum of all queues within the cas-
cade network for all control strategies and con-
stant inflow.

S. GÖTTLICH AND S. KÜHN 1815

1 2 3 4 5 6 7 8 9 10 11

1.2 x104

1.3 x104

Fig. 4.11. Total outflow of the cascade net-
work at T =200 for all control strategies and
stop-go inflow.

1 2 3 4 5 6 7 8 9 10 11

0

0.5 x106

1 x106

1.5 x106

Fig. 4.12. Sum of all queues within the cas-
cade network for all control strategies and stop-
go inflow.

Note that, due to the time limit of 1 month (744 hours), only computational results
for 14 optimization runs can be presented for the objective function (3.3). Therefore,
we do not observe an improvement compared to Equation (3.2).

4.3. Non-symmetric network. Finally, we consider a non-symmetric network
shown in Figure 4.13 with parameters given in Table 4.7. In this network, there is only
one (deterministic) feeding processor e=1, and the processors leading to the sinks v10
and v11, i.e. processors e=17 and e=16, are also reliable. Furthermore, the processors
e=3,4,7 and e=13 are unreliable with an availability of τemean=0.75, while all other
processors have an availability of τemean=0.95. The network is non-symmetric with
respect to the number of linked processors at each vertex as well as their capacities (cf.
figures 4.8 and 4.13). Nevertheless, the non-symmetric network is arranged in such a
way that, in the deterministic case, all flow entering the network could be completely
processed given appropriate distributions at vertices.

processor parameters

type indices τemean τeon τeoff

green 1,16,17 1 1 0
yellow 2,5,6,8–12,14,15 0.95 47.5 2.5
red 3,4,7,13 0.75 30 10

Table 4.7. Parameters for the non-symmetric network.

As a constant inflow to the non-symmetric network, we consider (cf. Figure 4.1)

Gv1
in (t)=80. (4.8)

The numerical results for the total outflow (4.2), the sum of queues (4.3), and the
maximum queue length for Equation (4.8) are presented in figures 4.14 and 4.15 and
Table 4.8, respectively.

Lastly, we consider the non-symmetric network with the stop-go inflow (cf. Fig-
ure 4.2)

Gv1

in (t)=

{
100 if 0≤mod(t,40)<30,

0 if 30≤mod(t,40)<40
(4.9)

1816 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

for 0≤ t≤200 and show the results in figures 4.11 and 4.12 and Table 4.6.

v1

v2

v3 v4 v5 v6

v7 v8

v9

v10 v11

1,100

2,40

3,10 4,30

5,20

6,20

7,20

8,20

9,10
10,15

11,15

12,20
13,20

14,45 15,10

16,30

17,70

e,μe=index, capacity

Fig. 4.13. The non-symmetric network.

1 2 3 4 5 6 7 8 9 10 11
1.1 x104

1.2 x104

1.3 x104

1.4 x104

1.5 x104

1.6 x104

Fig. 4.14. Total outflow of the non-
symmetric network at T =200 for all control
strategies and constant inflow.

1 2 3 4 5 6 7 8 9 10 11

0

0.5 x106

1 x106

1.5 x106

2 x106

Fig. 4.15. Sum of all queues within the non-
symmetric network for all control strategies and
constant inflow.

From figures 4.14 – 4.17, we see that, while the deviation between the other strate-
gies is small (≤10%), both the s-i uniform control (2.9) and the s-d uniform con-
trol (2.13) yield poor results for both inflow functions. We even recognize that, already
in the deterministic case, those strategies perform worse than all other strategies in the
stochastic regime. This is due to the non-symmetric structure of the network, where
the uniform strategy naively distributes flow into capacity-restricted processors. For ex-
ample, processor e=3 is filled with the same amount of flow as processor e=2 despite

S. GÖTTLICH AND S. KÜHN 1817

e=3 having a quarter of the capacity of e=2 and a lower availability as well. The other
strategies are able to avoid such situations and yield similar results with the queuing
controls (2.12), (2.16), and, more preferable, the advanced control (2.17) strategy. For
both inflow functions the availability controls (2.11) and (2.15) perform slightly worse
than the average. But, for the stop-go inflow (4.9), we see that those controls perform
best relative to their deterministic solution, since this result is already below average.

objective strategy

1 2 3 4 5 6 7 8 9 10 11

maximum queue 2500 619 518 631 1849 584 861 635 634 277 231

Table 4.8. Maximum queues of the non-symmetric network for a constant inflow.

1 2 3 4 5 6 7 8 9 10 11
1.1 x104

1.2 x104

1.3 x104

1.4 x104

1.5 x104

Fig. 4.16. Total outflow of the non-
symmetric network at T =200 for all control
strategies and stop-go inflow.

1 2 3 4 5 6 7 8 9 10 11

0

1 x106

2 x106

3 x106

4 x106

Fig. 4.17. Sum of all queues within the non-
symmetric network for all control strategies and
stop-go inflow.

objective strategy

1 2 3 4 5 6 7 8 9 10 11

maximum queue 2327 535 426 452 1772 480 665 466 451 382 260

Table 4.9. Maximum queues of the non-symmetric network for a stop-go inflow.

Both approximate optimization approaches are able to outperform the heuristics
for the constant inflow function (4.8). The approximate minimization of the queues in
Equation (3.3) even performs slightly better than the approximate maximization of the
outflow in Equation (3.2). As seen for the other networks before, the advantage of the
approximate optimization algorithms becomes less for the stop-go inflow (4.9).

While the approximate maximization of the outflow (3.2) yields worse results con-
cerning the total outflow and the queue loads compared to, for example, strategy (2.17),
the approximate minimization of the queues in Equation (3.3) results in better objec-
tive values than all other strategies. Concerning the maximum queue lengths, both
approximate algorithms are able to outperform the heuristics significantly (≥10%).

4.4. Runtime analysis. To conclude our work, we compare the computing
times for different network geometries and inflow patterns. We present runtimes for all
strategies summed up over all Monte Carlo runs in Table 4.10. Note that the runtimes
are given in hours.

1818 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

topology strategy

network MC-runs influx 1 2 3 4 5 6 7 8 9 10 11

diamond 100
constant 0.33 0.32 0.32 0.34 0.34 0.35 0.36 0.36 0.37 16.6 16.6
stop-go 0.33 0.33 0.32 0.35 0.35 0.35 0.36 0.37 0.37 16.6 16.6

cascade 30/14
constant 0.63 0.63 0.63 0.66 0.66 0.67 0.69 0.70 0.70 180 744
stop-go 0.63 0.63 0.63 0.66 0.66 0.67 0.69 0.70 0.70 240 744

non-symmetric 30
constant 0.94 0.94 0.94 0.98 0.99 1.01 1.03 1.05 1.06 144 360
stop-go 0.94 0.94 0.94 0.99 0.99 1.01 1.03 1.05 1.07 200 360

Table 4.10. Total computation times in hours for according number of Monte Carlo runs.

From Table 4.10, we see that the heuristic strategies are two to three orders of
magnitude faster than the approximate optimization algorithms. While both approxi-
mations are equally slow when considering the diamond network, the approximate out-
flow maximization (3.2) provides significantly faster results than the approximate queue
minimization (3.3) in the case of larger networks. The time limit for all computations
was 1 month, i.e. 744 hours. Therefore, the approximate optimization algorithm (3.3)
has been stopped after 14 runs only. Qualitatively, we observe that sometimes the flow
maximizing approximation (3.2) performs worse than the best heuristic. In contrast to
that, the queue minimizing approximation (3.3) performs better for almost all cases.
While there is no difference in the runtime depending on the choice of the inflow func-
tion for the diamond network, the runtime increases drastically for the approximation
algorithms using the stop-go inflow.

Comparing the computing times of the heuristic routing strategies (2.9)–(2.17),
we see that they differ according to their time-dependence. More precisely, the state-
independent controls (2.9), (2.10), and (2.11) (uniform, capacity, and availability, re-
spectively) are only dependent on the network structure and can thus be computed in
advance. This is time-efficient, and therefore those strategies are the fastest ones. The
s-i queuing control (2.12) is independent of the state of processors but dependent on the
relative queue load qerel(t) at time t. Due to this time-dependence, it cannot be computed
in advance. But obviously the computation is still faster than the state-dependent con-
trols (2.13), (2.14), and (2.15) (uniform, capacity, and availability, respectively), which
are the fastest state-dependent strategies. The most costly state-dependent controls are
the s-d queuing (2.16) and advanced s-d control (2.17), which depend not only on the
state but also on the relative queue length. The maximal deviation between the slowest
and fastest computation is at most 14%. We point out that, in symmetric networks such
as the diamond (cf. Figure 4.3, Section 4.1) or the cascade (cf. Figure 4.8, Section 4.2),
the s-i uniform control (2.9) is the strategy with the fastest runtime on the one hand
and the best performance concerning all three objectives on the other hand. Switching
to a non-symmetric network (cf. Figure 4.13, Section 4.3), the uniform control strategy
fails, and the slight increase in runtime of more advanced strategies is compensated by
a large increase in the overall performance (at least 30%).

Conclusion. Summarizing, we observe that the advanced distribution strategies
are a good tool to control production networks with random breakdowns. The qual-
itative behavior and the runtimes are very promising compared to the approximate
optimization algorithms. In total, the best choice is the distribution strategy (2.17),
(cf. Table 4.11). Additionally, we can also note that the state-independent strategies
perform slightly worse than their state-dependent counterparts.

Future work might include a study for other objective functions and different net-
work dynamics. Another open question is the application of the proposed routing strate-

S. GÖTTLICH AND S. KÜHN 1819

networks
diamond cascade non-symmetric

inflows

constant (2.12), (2.16), (2.17) (2.13), (2.14) (2.12), (2.14), (2.17)
stop-go (2.12), (2.16), (2.17) (2.12), (2.17) (2.12), (2.17)

Table 4.11. Classification of strategies, showing the best strategies for combinations of networks
and inflows.

gies to other randomly disturbed networks problems, e.g. the bounded buffer problem
in [21].

REFERENCES

[1] N.T. Argon, L. Ding, K.D. Glazebrook, and S. Ziya, Dynamic routing of customers with general
delay costs in a multiserver queuing sysem, Probability in the Engineering and Informational
Sciences, 23(2), 175–203, 2009.

[2] D. Armbruster, P. Degond, and C. Ringhofer, A Model for the Dynamics of large Queuing Net-
works and Supply Chains, SIAM J. Appl. Math., 66(3), 896–920, 2006.

[3] J. Banks and J.S. Carson, Discrete-event System Simulation, Englewood Cliffs, New Jersey:
Prentice-Hall, 1984.

[4] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi, Queueing networks and Markov chains:
modeling and performance evaluation with computer science applications, John Wiley &
Sons, Hoboken, NJ, Second Edition, 2006.

[5] G. Bretti, C. D’Apice, R. Manzo, and B. Piccoli, A continuum-discrete model for supply chains
dynamics, Networks and Heterogeneous Media, 2(4), 661, 2007.

[6] A. Cascone, C. D’Apice, B. Piccoli, and L. Rarità, Circulation of car traffic in congested urban
areas, Commun. Math. Sci., 6(3), 765–784, 2008.

[7] A. Cascone, A. Marigo, B. Piccoli, and L. Rarità, Decentralized optimal routing for packets flow
on data networks, Discrete and Continuous Dynamical Systems B, 13(1), 59–78, 2010.

[8] H. Chen and David D. Yao, Fundamentals of Queueing Networks: Performance, Asymptotics,
and Optimization(Stochastic Modelling and Applied Probability), Appl. Math. (New York),
Springer-Verlag, New York, 46, 2001.

[9] A. Cutolo, C. D’Apice, and R. Manzo, Traffic optimization at junctions to improve vehicular
flows, ISRN Applied Mathematics, Art. ID 679056, 19, 2011.

[10] C. D’Apice, S. Göttlich, M. Herty, and B. Piccoli, Modeling, Simulation and Optimization of
Supply Chains: A Continuous Approach, SIAM book series on Mathematical Modeling and
Computation, 2010.

[11] C. D’Apice and R. Manzo, A fluid dynamic model for supply chains, Networks and Heterogeneous
Media, 1(3), 379–398, 2006.

[12] C. D’Apice, R. Manzo, and B. Piccoli, Modelling supply networks with partial differential equa-
tions, Quarterly of Applied Mathematics, 67(3), 419–440, 2009.

[13] C. D’Apice, R. Manzo, and B. Piccoli, Existence of solutions to cauchy problems for a mixed
continuum-discrete model for supply chains and networks, J. Math. Anal. Appl., 362(2),
374–386, 2010.

[14] C. D’Apice, R. Manzo, and B. Piccoli, Numerical schemes for the optimal input flow of a supply
chain, SIAM J. Numer. Anal., 51(5), 2634–2650, 2013.

[15] C. D’Apice and B. Piccoli, Vertex flow models for vehicular traffic on networks, Math. Models
Meth. Appl. Sci., 18(suppl.), 1299–1315, 2008.

[16] P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns,
SIAM J. Appl. Math., 68(1), 59–79, 2007.

[17] D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions, J. Comput. Phys., 22(4), 403–434, 1976.

[18] D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, The
Journal of Chemical Physics, 115, 1716, 2001.

[19] S. Göttlich, M. Herty, and A. Klar, Network models for supply chains, Commun. Math. Sci., 3(4),
545–559, 2005.

[20] S. Göttlich, M. Herty, and A. Klar, Modelling and optimization of supply chains on complex
networks, Commun. Math. Sci., 4(2), 315–330, 2006.

1820 PRODUCTION NETWORKS WITH RANDOM BREAKDOWNS

[21] S. Göttlich, S. Kühn, J.A. Schwarz, and R. Stolletz, Approximations of time-dependent unreliable
flow lines with finite buffers, Mathematical Methods of Operations Research (MMOR), DOI:
10.1007/s00186-015-0529-6, 2016.

[22] S. Göttlich, S. Martin, and T. Sickenberger, Time-continuous production networks with random
breakdowns, Networks and Heterogeneous Media, 6(4), 695–714, 2011.

[23] M. Gugat, M. Herty, A. Klar, and G. Leugering, Optimal control for traffic flow networks, Journal
of Optimization Theory and Applications, 126(3), 589–616, 2005.

[24] K. Han, T.L. Friesz, and T. Yao, A variational approach for continuous supply chain networks,
SIAM Journal on Control and Optimization, 52(1), 663–686, 2014.

[25] M. La Marca, D. Armbruster, M. Herty, and C. Ringhofer, Control of continuum models of
production systems, IEEE Transactions on Automatic Control, 55(11), 2511–2526, 2010.

[26] A.M. Law, Simulation Modeling and Analysis, McGraw-Hill, Boston, 2009.
[27] N. Lee and V.G. Kulkarni, Optimal arrival rate and service rate control of multi-server queues,

Queueing Systems. Theory and Applications, 76(1), 37–50, 2014.
[28] R. Manzo, B. Piccoli, and L. Rarità, Optimal distribution of traffic flows in emergency cases,

European Journal of Applied Mathematics, 23(4), 515–535, 2012.
[29] Mathworks, MATLAB version 8.2.0.701 (R2013b), 2014.
[30] Y. Pochet and L.A. Wolsey, Production Planning by Mixed Integer Programming, Springer Series

in Operations Research and Financial Engineering, Springer, New York, 2006.
[31] A.L. Stolyar, Optimal routing in output-queued flexible server systems, Probability in the Engi-

neering and Informational Sciences, 19(2), 141–189, 2005.
[32] Y.-C. Teh and A.R. Ward, Critical thresholds for dynamic routing in queueing networks, Queueing

Systems. Theory and Applications, 42(3), 297–316, 2002.
[33] S. Voß and D.L. Woodruff, Introduction to Computational Optimization Models for Production

Planning in a Supply Chain, Springer-Verlag, Berlin, Second Edition, 2006.

