COMMUN. MATH. SCI. (© 2016 International Press
Vol. 14, No. 5, pp. 1467-1476

FAST COMMUNICATION

DIFFERENTIAL QUADRATURE-BASED NUMERICAL SOLUTIONS
OF A FLUID DYNAMIC MODEL FOR SUPPLY CHAINS*

MASSIMO DE FALCO', MATTEO GAETA!, VINCENZO LOIAS, LUIGI RARITAY, AND
STEFANIA TOMASIELLO

Abstract. In this paper, we discuss a numerical approach for the simulation of a model for supply
chains based on both ordinary and partial differential equations. Such a methodology foresees dif-
ferential quadrature rules and a Picard-like recursion. In its former version, it was proposed for the
solution of ordinary differential equations and is here extended to the case of partial differential equa-
tions. The outcome is a final non-recursive scheme, which uses matrices and vectors, with consequent
advantages for the determination of the local error. A test case shows that traditional methods give
worse approximations with respect to the proposed formulation.
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1. Introduction

Industrial applications, with a particular emphasis on supply systems, represent an
important matter nowadays, with the aim of controlling unwanted phenomena, such as
bottlenecks, dead times, and so on.

Suppliers, manufacturers, warehouses, and stores are components of supply chains
and networks, where parts are produced, assembled, and distributed among various
production facilities. Mathematical models are useful to capture distribution dynamics
of parts and to estimate business processes. Depending on the scale, such models can be
discrete, based on Discrete Event Simulation (DES), [11, 28], or continuous ([1, 2, 3, 29]),
by using Ordinary and/or Partial Differential Equations (ODEs, PDEs), see [12] and [13]
for exhaustive discussions. The most meaningful difference between the two classes is
the description of parts as individuals or as a flow, respectively. In particular, continuous
models are suitable to manage production activities where the involved quantities are
large.

In this paper, we focus on the continuous approach by considering the model pro-
posed in [15, 16] and discussed in [20] for the existence of solutions: there are suppliers
on which the processing rate is constant (in order to avoid the problem of delta waves)
and queues in front of each supplier. The dynamics of parts inside a processor is de-
scribed by a conservation law ([5, 21]), while the evolution of the queue buffer occupancy
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is the difference of fluxes from the preceding and following suppliers. Hence, a coupled
ODE-PDE model is obtained.

Different numerical approaches are possible for models with conservation laws, see
[6, 7, 8, 10, 14, 23], with emphasis on various optimization problems (]9, 17, 24, 25]).
In our case, the approach considers a numerical scheme in compact form to solve the
system of differential equations of our supply system model. The definition of such
a further numerical method is a direct consequence of many real applications, where
optimization topics naturally arise, see for instance [16, 18, 19, 22].

The proposed scheme is in main part based on an extension to PDEs of the approach
suggested in [31, 32] to solve Volterra integro-differential equations and some eigenvalues
problems [33]. The methodology foresees a combination of Differential Quadrature (DQ)
rules [4], which provide high-order finite-difference approximations, and a Picard-like
recursion, whose features are suitable for serial networks. The DQ rules have been
successfully used in a certain class of problems [26, 27] and even in element based
approaches [34, 35].

Although the method of successive approximations is usually used as a semiana-
lytical approach, classical quadrature, and DQ rules are introduced to handle integrals
and derivatives, with the aim of improving the computational efficiency ([30]). In spite
of its recursive nature, the proposed approach leads to a final non-recursive approxi-
mate solution by means of operational matrices and vectors of known quantities. So,
the order of the local error is easily determined. Combining the technique of successive
approximations to DQ allows to avoid slow computations (as for example when there
are rational functions), without increasing the number of grid points, as instead finite
difference based methods need.

In order to test the numerical approach, we consider the one supplier case that, in
spite of its simplicity, has practical applications, as shown in [36] and [37]. Different
initial conditions show that L., norms for densities are considerably lower than the ones
obtained with classical methods (described in [10]), especially when Gauss—Chebyshev—
Lobatto (GCL) points are considered.

The outline of the paper is the following. In Section 2, we present the ODE-PDE
model. Section 3 describes the DQ-based Picard-like numerical method. Section 4
reports a short numerical test. Conclusions ends the paper in Section 5.

2. A fluid-dynamic model for supply chains

In this section, we present an ODE-PDE model for supply chains, based on the
work [1] and presented in [15, 16]. Besides the conservation laws formulation proposed
in [1], such model considers time dependent queues for the description of the transition
of parts among suppliers.

A supply chain is a directed graph consisting of arcs J=1{1,...,P} and vertices
V={1,...,P—1}. Each arc j€J, parameterized by an interval [a;,b;], models a sup-
plier. Here we consider the special case where each vertex is connected to one incoming
arc and one outgoing arc and arcs are consecutively labeled, i.e. arc j is connected to arc
j+1and bj=a;4;1. For the first and the last arc, we either set a; = —o00 and bp =400,
respectively, or provide boundary data for the inflow and outflow.

For each supplier j € 7, indicate by: L; >0 the length; T} >0 the processing time;
vj:=L;/T}; the processing velocity; p; >0 the maximum processing capacity; p; (t,2) €
[O, p;“ax] the density of parts at point x and time ¢. The evolution of parts is described
by the following conservation law:

Oep; (t,2)+ 05 f; (pj (t,x))=0, VY x€laj,b;], t>0, (2.1)
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fj znc( )

Uj

pi (0,)=pjo(x) 20, p;(t.a;)=
where f;(p; (t,2)) is the flux function, defined as

fit[0,4+00[ = (0,51, fi(pj (t,2)) :=min{pu;,v;p;(t, )},

while the initial data, p; ¢ and the inflow, f; inc(t), have to be assigned. Equation (2.1)
is interpreted as follows: parts are processed with velocity v; and with a maximal flux
-

Each supplier j € 7\ {1} has a queue at z=a;, namely in front of itself. Such queue
increases or decreases if the capacity of the supplier j — 1 and the demand of the supplier
j are not equal. In particular, it is a time dependent function ¢t — ¢; (¢), whose evolution
is described by:

d

79 O =Ffi-1(pj-1(8,65-1)) = fiinc(t), JE€T\{L}, (2.2)

q;(0) =gqj,0 >0,

where f;_1(p;j—1(t,b;—1)) is given by the density of parts on supplier j—1.
Notice that the flux on the outgoing arc j is defined as:

e(t), j=1,
Jiine (t):= ¢ min{f;j_1(pj—1(t,b;-1)), 15},  ¢;(t)=0, j€T\{1}, (2.3)
Hjs (t)>07j€j\{1}7

with the following interpretation: if j =1, namely we consider the first arc of the supply
chain, it represents an assigned input profile ¢ (¢) on the left boundary {(¢,a1):t€R}.
If je J\{1}, Equation (2.3) is strictly dependent on the capacity of the queue: If the
queue buffer is empty, the inflow to supplier 7 and the outflow from supplier j—1 are
equal; otherwise, the inflow is maximal. Hence, when g¢; (¢) >0, the processing occurs
at ptj, the maximal possible rate, so as to empty the queue as fast as possible.

Finally, the complete system of equations is:

Opj (t,x)+ 0, min{p;,vjp;(t,x)} =0, V x€la;,b;], t>0, jeJ, (2.4)
0 0.0) =0 ()20, Vaelob), pilha) =20 s0 (25
a0 =F11 (o by 1)~ Frane(0), €T\ (1}, (26)
q;(0)=g;,0 =0, (2.7)
p(t), j=1,
Jiine(t):=9q min{f;_1(pj-1(t,0;-1)),05}, ¢;(t)=0, j€ T\ {1}, (2.8)
1 q; (t)>0, je T\{1}.

The definition of a solution to the supply chain model (2.4)—(2.8) is provided in an
exhaustive way in [12] and [15], following the wave- or front-tracking method ([5, 21]).
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Precisely: first the existence results for the Cauchy problem on a single arc without
coupling condition is discussed; then, the definition of the solution at a single node is
defined; finally, the obtained results are combined to prove the existence for the whole
system.

Existence and uniqueness of the solution on the whole network is also discussed in [20],
where the authors prove the Lipschitz continuous dependence on the initial data and
construct approximate solutions using the front tracking method.

REMARK 2.1. Considering the supply-demand framework suggested by J. P. Lebacque,
the discussed model has analogies with the road traffic theory. (For details, see [13],
Section 5.2.3, page 106.)

3. The proposed numerical scheme

We introduce a numerical scheme aimed at computing the solution to the model
described in the previous section. Numerical results for dynamics of parts are obtained
by finding suitable approximations of p; (t,z), j €7, and ¢; (t), j€ J\{1}.

The numerical scheme is defined by combining DQ rules [4] and a Picard-like recur-
sion. Indeed, such a fusion leads to a final non-recursive approximate solution through
expressions having matrices, with consequent advantages in terms either of computation
of the local error or simulation of supply system with a high number of arcs.

In what follows, we omit the subscript j from p; (¢,2) and ¢, (t), and discuss the
situation for which f=wvp and ¢>0, as the other cases are straightforward. First, we
consider numerics for density of parts; then, in order to consider coupling conditions at
nodes, a suitable analysis of queues is made to obtain the final approximation scheme.

3.1. Density of parts. Consider the operator L; =0; and its inverse
t
L) = [ (i
0

By applying L; ' on both sides of (2.1), we get

p(t,x)=po(t,z) — Ly ' (L (f (p(t,2))))

where L, =0,.
Following the idea of the successive approximations, the solution p(¢,x) is written
as a series of unknown functions p;(¢,2), which are found recursively, namely

“+o00
plt.x)=> pr(t,z), (3.1)
k=0

p(0,2) = po(),
Pr+1(t,x) = 7th_1 (L (p (t,2))), KEN,

where the term v appears from the assumption f (pg (t,2)) =vpg (¢, ).

Let [;(t) and lj(x) be the Lagrange polynomials for time and space variables, N
and M the number of grid points at abscissae t; <to <---<ty_1 <ty and z1 <z <
- <xpr—1 <xpr, respectively.
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Using numerical integration and DQ rules, i.e. by writing integrals and derivatives
as weighted sums, we obtain for a single time interval in the following compact form:

pry1(t,x) Z—UZC ZA(l x)pr(ti,xy),

where

pr+1(t,x) = —vC(t)A(x)pr, (3.2)
where pj, is the vector

T
Pk = (Pk11s s Pl NTs e s PR IM s> PR, N M),

t
with pgi; = pi(ti,z;); C is the row vector of the weights C;(t) = /li(z)dz, namely:
0
C(t)=(Ci(t),...,Cn(1));
A(x) is a matrix obtained by row sub-vectors A;(x) with non-null value just on the
diagonal, i.e.

Ai(z)= (A (@),.... AT (2)),
dl;(x)

X

with i=1,...,N, while functions A;l)(a:): are the weights of the quadrature

rules. As
pr =0Bpi_1=(vB)" py,
where B is a square matrix of size M N obtained as:
AYcy .o Al iy
B= : : :
AV oy ... AD,Cny

with Afclj) :AS)(CEJ‘), Cri=Cy(t;); v=—v and

T
Po = (Po 115- 7PO,N17---7;00,1M7---7PO,N]V[)’

equation (3.2) is written as:
pr1=TC(t)A(x)(@B)" po

Via division of the time domain into sub-domains with length At, a recurrence
relation is obtained, considering that

P (t,x) = pPr (0, 2),

where the apex r indicates the rth interval and p is the number of terms to truncate
the sum in Equation (3.1). The solution is given by the first p series terms (besides po)
in the time interval r,

P p—1

PP (t,2) =3 pit,x) = po(x) + TC(t)A(2) > (0B po.

=0 i=0



1472 NUMERICAL SOLUTIONS OF A FLUID DYNAMIC MODEL

As for p(t,x), we have the following.

THEOREM 3.1.  Let \(B) be the spectral radius of the matriz B. If N(vB) <1, then
the solution p(t,x) in equation (3.1) is

p(t,z)=po(z)+0 C(t)A(z)( I-7B) ' po. (3.3)

Proof.  Since the proposed approximation has the same form deduced in [31] for
ODEs, Equation (3.3) is simply obtained following Theorem 1 in [31]. 0

Now, consider the error e(t,z):=p(t,z) —p(t,z). From Theorem 3.1, we get:

LEMMA 3.2.  If At is the length of the time interval, then the error e(At,z), evaluated
at the end of the single time interval and at T, assumes the finite value:

e(At,T)=—v C(AH)A(T)( I-TB) ! pg+O(At).

Proof.  Consider the Taylor expansion of p(t,x) at the abscissa T around t=0,
truncated at the linear term. We obtain:

p(t,T) = po(z) +O(t),
and the conclusion easily follows. ]

3.2. Queues and final scheme. Now, we obtain the final compact scheme by
finding an approximation for q. Under the assumption f=wvp, the flux on the previous
arc is vp(zas), where x); represents the last space point of the previous arc. Instead,
assuming ¢ > 0, the flux on the current arc is simply . Hence, Equation (2.2) reads as:

@ g(t)=vp(er) . (3.4)

By applying the inverse operator Lt_1 to equation (3.4), we obtain:

q(t) =qo+vC(t) (p(xar) — 1), (3.5)

where pu is a vector of which N entries are all equal to p, while the vector p(z)) is given
by

p(aar) = po(xar) +7D( I-TB) " po,

and the N x NM matrix D=CA(z)), being C the matrix with elements C;; =C(t;).
Writing equation (3.5) for each time ¢;, i=1,...,N, we get the vector

a=do+Hpo,
where H=0CD( I-9B)~!, g, =¢(0)Iy + C(po(zar) — ) and I is the identity matrix
of order N.
From equation (3.3), for the time interval r we obtain
Pl =Pplr=1,
with

P=1+7B(I-7B) "
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As
g(0)" =g(zar) Y,
the final computational scheme in compact form becomes
wltl = Qw1 (3.6)
with wlFIT = (q,p)7, wlkT = (@,p)T and Q defined as

InH

Q=9 p

)

where 0 indicates an NM x N null matrix.

REMARK 3.1. The computational cost of the proposed approach is due to the inversion
of matrix B, i.e. it is O(N3M3). A useful comparison in made considering standard
numerical schemes, such as upwind for densities and explicit Euler for queues (see [10]).
In this last case, the update of densities for each arc depends on space grid size while,
for boundary data, there is a dependence on either time grid size or the whole number
of arcs for the system. Notice that the proposed numerical scheme considers, inside
the matrix inversion, the computation either of densities or queues. Such cost can be
decreased by suitable algorithms (see [30]).

REMARK 3.2.  Stability of (3.6) is achieved if A\(Q) <1, where \(Q) is the spectral
radius of Q.

4. A numerical test

In this section, we consider the simulation of a supply chain with one supplier having
Ly =Ty =1 (hence vy =1) and p; =50. In what follows, we indicate simply by p(¢,)
the density of the unique arc of the supply chain and, according to the model described
in Section 2, we have no queues. All the results were obtained under the Theorem 1
(see [31]) and by satisfying the stability condition A\(Q) <1.

Consider the initial and boundary conditions

p(0,2)=e~(e=10)" | p(1,0)=e(-urt=1i)" (4.1)

Table 2 shows the L, norm for the p function, by using several values of M and A,
with V=6 either for uniform grid points or GCL ones. Notice that GCL points allow
more accurate results.

M| A LY L

9 | 1/20 | 7.94x107% | 7.24x1077
13 | 1/20 | 8.71x1071 | 4.43x107°
13 | 1/50 | 6.87x10710 | 7.72x 101!
13 | 1/100 | 2.43x 10719 | 2.00x 10711

TABLE 2: Lo, norm for p(t,z) for uniform grid points (Lg)); GCL points (Lg)).

The approximation p(t,z) for M =13, N=6, and A=1/100 is in Figure 4.1, left.
Now, we assume the following initial and boundary conditions, respectively,

p(0,z) =sin(mz)*, p(t,0)=sin(—v1t)?, (4.2)
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in two different cases, a =10 and a=100. Table 3 shows the L., norm for the p function
and different values of M and A, with N =6, a=10, by using GCL points. Results
obtained by using uniform grid points are considerably worst and are not listed in
the table for the sake of brevity. For instance, for a=10, M =19, A=1/500, uniform
grid points provide a result such as Lo, =1.3 x 1072, while by means of GCL we get
Lo, =4.7x107", as shown in Table 3. Similar numerical results for =100 are in Table

4.

M| A Lo
13 | 1/200 | 5.143x 1073
19 | 1/200 | 1.97x107*
16 | 1/500 | 2.5x10*
19 | 1/500 | 4.7x107°

TABLE 3: Lo, norm for p(¢,z) in case of GCL points for pg=sin(rz)".
M A L
13 | 1/200 | L.17x 102
19 | 1/200 | 1.3x1072
16 | 1/500 | 9.89x 1073
19 | 1/500 | 8.21x10~7
100

TABLE 4: Lo, norm for p(¢,z) in case of GCL points for pg=sin(rz)
For a =100 a noticeable improvement in numerical results is achieved using a smaller
time interval A, with few grid points.
The approximation of p(¢,x) for a=10, N =6, M =19, A=1/500 is in Figure 4.1,
right.

Fic. 4.1. Approzimation of p(t,x) for conditions 4.1 (left) and 4.2 (right).

A further comparison is made analyzing the simulation of the same supply chain us-
ing classical methods (upwind scheme for Equation (2.1) and the explicit Euler scheme
for Equation (2.2), see [10]) for cases in which py =sin(rz)'? and pg =sin(7z)'°°. Con-

sider the results in Table 5, obtained using the space grid mesh Az = Ml and the time
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grid mesh At=A so as to satisfy the CFL condition Az >wv; At.

M| A LY Ly

13 | 1/200 | 4.34x1072 | 2.06 x 107!
19 | 1/200 | 1.57x 1073 | 1.03x 1072
16 | 1/500 | 1.6x1073 | 5.78 x 102
19 | 1/500 | 3.6x10~* | 6.41x107°

TABLE 5: Lo, norm for p(t,x) using classical methods for cases in which pg=sin(rz)°

(Lgo)) and pg=sin ()10 (Lg})).
The results obtained via upwind and Euler schemes are worst, in terms of L., norm,
than the ones obtained using the DQ rules.

5. Conclusions

In this paper, we proposed a numerical scheme to find approximate solutions to a
continuous model for supply systems.

A scheme in compact and matricial form, combining DQ rules and a Picard-like
recursion, has been analyzed.

A simple test case has been useful to test the obtained numerical scheme. It has
been showed that upwind and Euler methods provide worst approximations, in terms
of Lo norm, than the proposed approach.

Future research activities aim to study deeply some properties of the DQ-based
Picard-like scheme, considering road traffic and telecommunication networks, as well as
simulation results of supply systems with more arcs.
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