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ON THE RATE OF CONVERGENCE FOR THE MEAN FIELD
APPROXIMATION OF BOSONIC MANY-BODY

QUANTUM DYNAMICS∗

ZIED AMMARI† , MARCO FALCONI‡ , AND BORIS PAWILOWSKI§

Abstract. We consider the time evolution of quantum states by many-body Schrödinger dynamics
and study the rate of convergence of their reduced density matrices in the bosonic mean field limit. If
the prepared state at initial time is of coherent or factorized type and the number of particles n is large
enough then it is known that 1/n is the correct rate of convergence at any time. We show in the simple
case of bounded pair potentials that the previous rate of convergence holds in more general situations
with possibly correlated prepared states. In particular, it turns out that the coherent structure at
initial time is unessential and the important fact is rather the speed of convergence of all reduced
density matrices of the prepared states. We illustrate our result with several numerical simulations and
examples of multi-partite entangled quantum states borrowed from quantum information.
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1. Introduction

The mean field theory provides in principle a fair approximation of time evolved
quantum states by many-body Schrödinger dynamics in the mean field scaling; namely
when the number of particles is large and the pair interaction potential is proportionally
weak. During the last decade, a strong activity around the mean-field problem has oc-
curred within the community of mathematical physics (see for instance [9,26,28,36,52]
for bosons and [8, 12, 20, 27] for fermions). This in particular have led to a rigorous
justification of the bosonic mean field approximation for singular potentials including
Coulomb interaction as well as the derivation of the Gross–Pitaevskii equation from
many-body quantum dynamics (e.g. [2,6,10,16,21–24,29,35,39,45] and also [32,33] for
older results). More recently, emphasis has been placed on the speed of convergence of
the mean-field approximation. This seems to be motivated by providing useful quantita-
tive bounds and understanding higher order corrections (see [7,14,15,25,34,40,48,50]).

The aim of our article is to give at the level of a simple model more insight on
the aforementioned problem for bosonic systems. Actually, the rate of convergence is
essentially understood in the case of coherent or factorized type states with a particular
structure. So, we can ask the following natural questions:

• What should we expect if we start from another prepared state which is more
correlated?
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• Is the specific coherent structure of the known examples important?

• Can we determine the optimal rate of convergence in some examples?

• Does the rate of convergence improves under the effect of the quantum dynam-
ics?

We will show that the rate of convergence at a given time depends essentially on the
rate of convergence of all reduced density matrices of the prepared state at time t=0.
In fact, we are able to give a general condition on the prepared state that guarantees a
given speed of convergence at any time. The assumption we require at time zero, which
is rather easy to check in initial states, is true at any time if it holds at t=0. This
allows in particular to consider the question of improvement of the convergence over
time while the question of optimality will be addressed through numerical analysis.

Consider for instance the many-body Schrödinger Hamiltonian of an n-boson system

Hn=

n∑
i=1

−Δxi
+

1

n

∑
1≤i<j≤n

V (xi−xj), (1.1)

where (x1, . . . ,xn)∈Rdn and V is a real bounded potential satisfying V (x)=V (−x).
The self-adjoint operator Hn acts on the space L2

s(R
dn) of symmetric square integrable

functions. A function Ψn∈L2(Rdn) is symmetric if Ψn(x1, . . . ,xn)=Ψn(xσ1 , . . . ,xσn)
for any permutation σ of the symmetric group S(n). Suppose that the system is in
a prepared quantum state �n at initial time t=0 (i.e. �n is a non-negative trace class
operator with Tr[�n]=1). So, under the action of the Schrödinger dynamics the system
at time t evolves into the state

�n(t)=eitHn�ne
−itHn .

The mean field approximation at the dynamical level is usually understood as the
following picture: if the system is in an uncorrelated state �n= |ϕ⊗n〉〈ϕ⊗n|, with
||ϕ||L2(Rd)=1, at initial time t=0 then it will evolve into a state close in some sense

to an uncorrelated one �n(t)�|ϕ⊗n
t 〉〈ϕ⊗n

t | when n is large and ϕt is the solution of the
nonlinear Hartree equation {

i∂tϕt=−Δϕt+(V ∗|ϕt|2)ϕt,
ϕt=0=ϕ.

(1.2)

The above convergence is neither a strong nor a weak one but rather in the sense of
reduced density matrices. More precisely, the convergence is understood as

lim
n→∞Tr[�n(t)A⊗1⊗(n−p)]= 〈ϕ⊗p

t ,Aϕ⊗p
t 〉L2(Rdp),

for any bounded (or compact) operator A on L2(Rdp) and any p∈N∗ (p is kept fixed
while n→∞).
In some sense, the mean field approximation says essentially that the measurements

Tr[�n(t)A⊗1⊗(n−p)], n≥p, (1.3)

for any observable A on L2(Rdp) converge, when n goes to infinity while p is kept fixed,
to some classical or one particle quantities to be determined. Hence, the main quantities
to be analyzed are the reduced density matrices of the time evolved states �n(t). Recall
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that for each p∈N∗, the p-reduced density matrix of �n(t) is the unique non-negative

trace class operator �
(p)
n (t) on L2

s(R
dp) satisfying

Tr
[
�n(t)A⊗1⊗(n−p)

]
=Tr

[
�(p)n (t)A

]
, (1.4)

for any bounded operator A on L2(Rdp). Therefore, the point is to determine for each
p∈N∗ the limit and the rate of convergence of these quantities (1.4) when the number
of particles n goes to infinity. It turns out that the limit at t=0 may not exist and
actually there is a difference between requiring convergence in (1.4) for all bounded
operators A on L2(Rdp), or convergence for compact operators only, since the weak
and weak-∗ topologies differ on the space of trace-class operators. However, one can

characterize all the limit points of (�
(p)
n )n≥p with respect to the weak-∗ topology in the

space of trace-class operators (which is the dual space of compact operators) and also
describe their structure. Indeed, at time t=0, we can show that there exists always a
subsequence (�nk

)k∈N such that for each p∈N, 1≤p≤nk, the reduced density matrices

(�
(p)
nk )k∈N∗ converge to non-negative trace-class operators �

(p)
∞ in the weak-∗ topology.

Moreover, there exists a Borel probability measure μ on L2(Rd) such that

�(p)∞ =

∫
L2(Rd)

|z⊗p〉〈z⊗p|dμ(z).

In this way we have characterized all the possible limit points via subsequences of the

reduced density matrices (�
(p)
n )n≥p and identified their structure. More details are given

in Subsection 3.1 while here we summarize the main result in the proposition below.
We will use often the notation L k(h), 1≤k≤∞, to refer to the Schatten classes with
|| · ||k denoting their norms; and denote by L (h) the space of bounded operators.

Proposition 1.1. Let (�n)n∈N∗ be a sequence of density matrices with �n∈
L 1(L2

s(R
dn)) for each n∈N∗. Suppose that for any p∈N∗ and each compact operator

A∈L ∞(L2
s(R

dp)) the sequence (Tr[�
(p)
n A])n≥p converges. Then there exists a unique

Borel probability measure μ0 on L2(Rd) invariant with respect to the unitary group U(1)
and such that for any p∈N∗ and any A∈L ∞(L2

s(R
dp)),

lim
n→∞Tr[�(p)n A]=Tr[�(p)∞ A], with �(p)∞ =

∫
L2(Rd)

|z⊗p〉〈z⊗p|dμ0(z).

Moreover, the measure μ0 is concentrated on the unit ball B(0,1) of L2(Rd) centered at
the origin and of radius one (i.e., μ0(B(0,1))=1).

Actually, the measure μ0 is the unique Wigner measure of the sequence (�n)n∈N∗

(see Subsection 3.1 for definition and details). Once this is understood we can consider
the problem of rate of convergence for more general correlated states.

Theorem 1.2. Let (α(n))n∈N∗ be a sequence of positive numbers with limα(n)=∞
and such that (α(n)n )n∈N∗ is bounded. Let (�n)n∈N∗ and (�

(p)
∞ )p∈N∗ be two sequences

of density matrices with �n∈L 1(L2
s(R

dn)) and �
(p)
∞ ∈L 1(L2

s(R
dp)) for each n,p∈N∗.

Assume that there exist C0>0, C>2 and γ≥1 such that for all n,p∈N∗ with n≥γp∥∥∥�(p)n −�(p)∞
∥∥∥
1
≤C0

Cp

α(n)
. (1.5)
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Then for any T >0 there exists CT >0 such that for all t∈ [−T,T ] and all n,p∈N∗ with
n≥γp, ∥∥∥�(p)n (t)−�(p)∞ (t)

∥∥∥
1
≤CT

Cp

α(n)
, (1.6)

where

�(p)∞ (t)=

∫
L2(Rd)

|z⊗p〉〈z⊗p|dμt(z),

with μt=(Φt)�μ0 the push-forward of the initial measure μ0 (given in Proposition 1.1)
by the well defined and continuous Hartree flow Φt on L2(Rd) of the equation (1.2)
(given in Subsection 2.2).

Remarks 1.3.
1) Our result holds true in a more general framework. We can replace L2(Rd)

by any separable Hilbert space Z , −Δ by any self-adjoint operator h0, and
V by any two-particle bounded interaction (see Subsection 2.2). So from now
on we will consider this setting, which has the advantage of covering several
situations: e.g. either finite or infinite dimensional systems, as well as semi or
non relativistic ones.

2) The assumption (1.5) implies that we can apply Proposition 1.1 and hence
obtain the existence of the initial measure μ0 at t=0.

3) The condition C>2 in the main assumption of Theorem 1.2 can be replaced
by C>0 at the cost of slightly changing the conclusion, by replacing C in (1.6)
by C+2.

4) We can apply Theorem 1.2 backward in time. So, if the estimates (1.6) hold
true at a given time t, then (1.5) should also hold at time t=0. This answers
the question of improvement of the rate of convergence under the action of the
quantum evolution. Indeed, if we suppose that inequalities (1.6) hold with a

faster rate of convergence β(n), lim α(n)
β(n) =0, then the “initial” estimate (1.5)

should also hold with β(n) instead of α(n) by backward evolution.

5) The proof of Theorem 1.2 allows to start with a rate of convergence α(n) faster
than 1/n at time t=0. However, we can’t recover a better convergence at time
t �=0. This is why we have restricted α(n) to be of order n or less. However,
this feature do not seem to be an artifact of the proof: numerical simulations
on product states indicate a 1/n order of convergence even when at time t=0
the reduced density matrices coincide with their limit.

The mathematical analysis of the mean field limit is quite rich and indeed there are
several approaches and techniques applicable to this problem. For example coherent
states analysis [32, 33, 36], BBGKY hierarchy method [52], Egorov type theorem [26,
28, 29], Wigner measures approach [3, 6, 44] or deviation estimates [40, 48]. Hence the
combination of these different techniques may lead to interesting results. The proof
of our main Theorem 1.2 relies on two ingredients: an Egorov type theorem proved
in [26,28] and a Wigner measures characterization of the limit points of reduced density
matrices studied in [3–5]. So the first step is to use second quantization formalism and
Wick observables, then the result in [26, 28] provides the asymptotics of time-evolved
Wick observables as

eitHn bWicke−itHn |L2
s(R

dn)= b(t)Wick
|L2

s(R
dn)+R(n), (1.7)
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where limn→∞R(n)=0 in some specific sense and where b(t)Wick is an infinite sum of
Wick operators with time-dependent kernels or symbols (see subsections 2.1 and 2.3).
The mean field expansion (1.7) gives actually the convergence of the correlation functions
(1.4). So that, if we use the idea of Wigner measures extended to this framework in [3],
we can obtain the rate of convergence for the quantities (1.4). Once this is proved, one
can get the announced trace norm estimates for the difference between reduced density
matrices.

The article is organized as follows. The second quantization formalism and Wick
symbolic calculus is recalled in Subsection 2.1. The mean field expansion is explained in
Subsection 2.3 while the quantum and classical dynamics are introduced in Subsection
2.2. In Section 3, we analyse the relationship between reduced density matrices (RDM)
andWigner measures and provide the proof of Proposition 1.1. Our main result is proved
in Section 4 with some preliminary lemmas. Examples and numerical simulations are
discussed in the last Section 5.

2. Mean field expansion
The mean field theory is concerned with quantum dynamical systems which pre-

serve the number of particles and can be worked out in the setting of multi-particles
Schrödinger operators (1.1). Nevertheless, it is advantageous to use the more general
setting of second quantization. Actually, the Hamiltonian (1.1) can be reformulated as

Hn=ε−1Hε|L2
s(Rdn)

, (2.1)

with ε= 1
n and Hε a Hamiltonian on the symmetric Fock space over L2(Rd) given by

Hε=ε

∫
Rd

∇a∗(x)∇a(x) dx+
ε2

2

∫
R2d

V (x−y)a∗(x)a∗(y)a(x)a(y) dxdy, (2.2)

where a,a∗ are the usual creation-annihilation operator-valued distributions, i.e.,

[a(x),a∗(y)]= δ(x−y), [a∗(x),a∗(y)]=0= [a(x),a(y)]. (2.3)

Our investigation of the mean field approximation for the quantum dynamics (1.1) is
made through the analysis of the Hamiltonian (2.2). The strategy relies on a specific
Schwinger–Dyson expansion of the time dependent correlation functions (1.3) elabo-
rated in [26, 28] combined to some tools (Wigner measures) from semiclassical analysis
extended to infinite dimensional setting in [3]. The Schwinger–Dyson expansion, called
here mean field expansion, is explained in Subsection 2.3 and leads naturally to the con-
sideration of several multiple commutators which we need to normal order using Wick’s
theorem. So, for reader convenience we recall some basic results on normal ordering
and Wick operators written in more systematic and in some sense more efficient way: it
makes possible the use of a symbolic calculus, for an algebra of Wick operators, similar
to the pseudo-differential calculus in finite dimension (for other presentations of second
quantization see [11, 19]).

2.1. Wick calculus. From now on we will wok in a general setting. Let Z be
a separable Hilbert space. The symmetric Fock space over Z is the Hilbert space

H =
∞⊕

n=0
∨nZ ,

where ∨nZ denotes the n-fold symmetric tensor product. The dense subspace of finite
particle vectors is denoted by

H0=
alg⊕
n≥0

∨nZ .
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For any n∈N, we define the symmetrizer Sn to be the orthogonal projection of Z ⊗n

onto the closed subspace ∨nZ . So, the creation and annihilation operators a∗(f) and
a(f), parameterized by ε>0, are then defined by the following:

a(f)ϕ⊗n=
√
εn 〈f,ϕ〉ϕ⊗(n−1) (2.4)

a∗(f)ϕ⊗n=
√

ε(n+1) Sn+1(f⊗ϕ⊗n), ∀ϕ∈Z . (2.5)

To avoid cumbersome notations, we choose not to emphasize the dependence of the
creation-annihilation operators on the small parameter ε. Thus, we warn the reader
that each creation or annihilation operator scales henceforth as

√
ε according to (2.4)–

(2.5).
It is well known that a(f) and a∗(f) are closable operators, adjoint of each other and
satisfy the canonical commutation relations (CCR):

[a(f),a∗(g)]=ε〈f,g〉1, [a∗(f),a∗(g)]= [a(f),a(g)]=0, ∀f,g∈Z .

The ε-dependent Weyl operators are

W (f)= e
i√
2
[a∗(f)+a(f)]

, f ∈Z ,

and they satisfy the Weyl commutation relations

W (f)W (g)=e−
iε
2 Im(f,g)W (f+g), ∀f,g∈Z .

For any (possibly unbounded) operator A :D(A)⊂Z →Z , we define dΓ(A) as

dΓ(A)|∨n,algD(A)=ε

n∑
k=1

1⊗(k−1)⊗A⊗1⊗(n−k), (2.6)

where ∨n,algD(A) denotes the n-fold algebraic symmetric tensor product of D(A). The
ε-dependent dΓ(A) operator scales as ε since it is essentially a sum of products of one
creation with one annihilation operator.

Any Wick operator preserving the number of particles could be written in the case
of Z =L2(Rd) as a quadratic form using the integral formula

bWick=εk
∫
R2kd

k∏
i=1

a∗(xi)B(x1, . . . ,xk;y1, . . . ,yk)

k∏
j=1

a(yj)dx1 · · ·dxkdy1 · · ·dyk,

with B(x1, . . . ,xk;y1, . . . ,yk) denotes the distribution kernel of the operator B on L2(Rkd)
and a∗(x),a(y) are ε-independent operator-valued distributions satisfying (2.3). For
general Hilbert spaces, this formula can be generalized as follows.

Definition 2.1 (Class of symbols). For any p,q∈N, define Pp,q to be the space of
homogeneous complex-valued polynomials on Z such that b∈Pp,q if and only if there

exists a (unique) bounded operator b̃∈L (∨pZ ,∨qZ ) such that for all z∈Z :

b(z)= 〈z⊗q, b̃z⊗p〉. (2.7)

We will often use the identification between homogeneous polynomials b∈Pp,q and

their associated operators b̃∈L (∨pZ ,∨qZ ) according to (2.7). The algebraic sum

P =
alg⊕

p,q≥0
Pp,q
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is clearly an algebra of polynomials. These spaces P and Pp,q play a similar role, in
some sense, to classes of symbols in pseudo-differential calculus. For this reason we
sometimes call the polynomials b∈P symbols (see for instance [13]). The subspace of
Pp,q made of polynomials b such that b̃ is a compact operator is denoted by P∞

p,q and

P∞=
alg⊕

p,q≥0
P∞

p,q.

Definition 2.2 (Wick operators). A Wick operator with symbol b∈Pp,q is a linear
operator bWick with domain H0 defined as

bWick |∨nZ =1[p,+∞)(n)

√
n!(n+q−p)!

(n−p)!
ε

p+q
2 Sn−p+q

(
b̃⊗1⊗(n−p)

)
, (2.8)

where b̃ denotes the operator associated to the symbol b according to (2.7).

Remark again that for simplicity we use the notation bWick without stressing the
dependence on the scaling parameter ε. Our definition of ε-dependent Wick operators
is suitable for the study of the mean-field limit and provides naturally an efficient
symbolic calculus similar to the one in finite dimension. So, it makes computations
more systematic and one can easily keep track of the meaningful ε-dependence when
computing commutators.

The above Wick quantization maps the algebra of symbols or polynomials P into
an algebra of operators in the Fock space. In particular, the composition of two given
Wick operators bWick

1 and bWick
2 is again a Wick operator cWick with c belonging to P

and given by an explicit formula involving multiple Poisson brackets like in pseudo-
differential calculus of finite dimension.

Let us introduce the precise meaning of the multiple Poisson brackets. Remark
that all polynomials in Pp,q admit Fréchet differentials and therefore they all have
directional derivatives. Remark also that we don’t need a particular conjugation on the
Hilbert space Z in order to define the derivatives ∂z̄ and ∂z. In fact, for b∈Pp,q we
define

∂zb(z)[u]= ∂̄rb(z+ru)|r=0,∂zb(z)[u]=∂rb(z+ru)|r=0,

where ∂̄r,∂r are the usual derivatives over C. Moreover, ∂k
z b(z) naturally belongs to

(∨kZ )∗ (i.e., k-linear symmetric functionals) while ∂j
zb(z) is identified via the scalar

product with an element of ∨jZ , for any fixed z∈Z . For bi∈Ppi,qi , i=1,2 and k∈N,
set

∂k
z b1 ·∂k

z̄ b2(z)= 〈∂k
z b1(z),∂

k
z̄ b2(z)〉(∨kZ )∗,∨kZ =∂k

z b1(z)[∂
k
z̄ b2(z)] ∈Pp1+p2−k,q1+q2−k .

The multiple Poisson brackets are defined by

{b1,b2}(k)=∂k
z b1 ·∂k

z̄ b2− ∂k
z b2 ·∂k

z̄ b1 and {b1,b2}={b1,b2}(1). (2.9)

Proposition 2.3. Let b1∈Pp1,q1 et b2∈Pp2,q2 . For all k∈{0, . . . ,min(p1,q2)}, the
polynomial ∂k

z b1 · ∂k
z̄ b2 belongs to Pp1+p2−k,q1+q2−k with the following formulas holding

true on H0:

bWick
1 ◦bWick

2 =
[min(p1,q2)∑

k=0

εk

k!
∂k
z b1 ·∂k

z̄ b2

]Wick

.
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[bWick
1 ,bWick

2 ]=

max(min(p1,q2),min(p2,q1))∑
k=1

εk

k!

[
{b1,b2}(k)

]Wick

.

2.2. Classical and Quantum dynamics. Instead of analyzing the Schrödinger
Hamiltonian (1.1), we prefer to deal with an abstract general many-body operator using
the ε-dependent Wick quantization of the previous subsection. Consider a polynomial
Q∈P2,2 such that Q̃∈L (∨2Z ) is bounded and symmetric. In all the sequel we con-
sider the many-body quantum Hamiltonian of bosons to be the operator defined by

Hε=dΓ(h̃0)+QWick, (2.10)

where h̃0 is a given self-adjoint operator on Z with domain D(h̃0). Both operators
dΓ(h̃0) and QWick are ε-dependent according to (2.6) and (2.8), respectively. The
mean field nature of this abstract Hamiltonian Hε is enlightened by the relation (2.1)
when Z =L2(Rd). By standard perturbation theory, and thanks to the conservation
of the number of particles, it is easy to prove that Hε is essentially self-adjoint on
D(dΓ(h̃0))∩H0. We denote respectively the time evolution of the perturbed and the
free quantum system by

U(t)=e−i t
εHε and U0(t)= e−i t

εdΓ(h̃0).

It is known that in the mean field limit we obtain the Hartree equation (1.2), when
the many-body Schrödinger Hamiltonian (1.1) is considered. In our abstract setting the
limit equation has the energy functional

h(z)= 〈z,h̃0z〉+Q(z), z∈D(h̃0),

which is actually the Wick symbol of the quantum Hamiltonian (2.10). So, the associ-
ated nonlinear field equation reads

i∂tzt=X(zt) (2.11)

with X :D(h̃0)→Z is the vector field given by X(z)= h̃0z+∂z̄Q(z). In order to solve
this equation we write it in the integral form

zt= e−ith̃0z0− i

∫ t

0

e−i(t−s)h̃0 ∂z̄Q(zs)ds, for z0∈Z . (2.12)

Since Q̃ is a bounded operator then a standard fixed point argument implies that (2.12)
admits a unique continuous local solution for each initial condition z0∈Z . Thanks
to the conservation of the Hilbert norm on Z we see that any local solution extends
to a global continuous one. Therefore, we have a well defined global continuous flow
on Z which we denote by Φ :R×Z →Z . In other terms Φ is a C0-map satisfying
Φt+s(z)=Φt ◦Φs(z) and zt :=Φt(z0) solves (2.12) for any z0∈Z . Moreover, if R� t �→zt
is the solution of (2.12) and Qt is the polynomial in P2,2 given as Qt(z)=Q(e−ith̃0z),

then the curve wt= eith̃0zt solves the differential equation

d

dt
wt=−i∂z̄Qt(wt).

Hence, a simple computation yields for any b∈Pp,q the identity

d

dt
b(wt)= i∂zQt(wt)[∂z̄b(wt)]+∂zb(wt)[−i∂z̄Qt(wt)]= i{Qt,b}(wt),
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where the brackets are defined according to (2.9). So, we obtain the following Duhamel
formula for all t∈R:

b(zt)= bt(w0)+ i

∫ t

0

{Qt1 ,bt}(wt1) dt1, (2.13)

with t∈R �→zt a (mild) solution of the nonlinear field equation (2.11) and wt= eith̃0zt.

2.3. Mean field expansion. The main point is to study the time evolution of
Wick operators with respect to the small mean field parameter ε which is essentially the
inverse of the number of particles. This was done in [26,28] and in fact we can prove in
some sense that

ei
t
εHε AWicke−i t

εHε =A(t)Wick+R(ε), (2.14)

with R(ε)→0 when ε→0 (see [26, 28] and also [3, Thm. 5.5]) and where A(t)Wick is
an infinite sum of Wick operators with time-dependent symbols related to the Hartree
dynamics. In order to prove (2.14), we use an iterated integral formula (the so-called
Dyson–Schwinger expansion) with a specific use of Wick calculus (Proposition 2.3) in
order to expand commutators of Wick operators with respect to the ε parameter. We
will work in the interaction representation. Hence, the following notation is useful

bt= b◦e−ith̃0 : Z � z �→ bt(z)= b(e−ith̃0z) ,

for b∈P and t∈R (remark that bt belongs to P). We also know that multiple commu-
tators in the Schwinger–Dyson expansion lead to Wick operators with multiple Poisson
brackets symbols. For this reason we make the following definition.

Definition 2.4. For m∈N and (t1, . . . ,tm,t)∈Rm+1, we associate to any b∈Pp,p

the polynomial:

C
(0)
0 (t)= bt and C

(m)
0 (tm, . . . ,t1,t)=

{
Qtm , · · · ,

{
Qt1 ,bt

}
· · ·

}
∈Pp+m,p+m. (2.15)

For simplicity the dependence of C
(m)
0 (tm, . . . ,t1,t) on the symbol b is not made explicit

and sometimes we will write C
(m)
0 for shortness.

The above polynomials C
(m)
0 satisfy the following iteration formula.

Lemma 2.5. For m∈N and (t1, . . . ,tm,t)∈Rm+1,

1

ε

[
QWick

tm ,C
(m−1)
0 (tm−1, . . . ,t1,t)

Wick
]
=C

(m)
0 (tm, . . . ,t1,t)

Wick

+
ε

2

({
Qtm ,C

(m−1)
0 (tm−1, . . . ,t1,t)

}(2)
)Wick

.

Proof. This is a straightforward consequence of the definition of C
(m)
0 and the

composition formula in Proposition 2.3.

We consider a sequence (�n)n∈N∗ of density matrices such that �n∈L 1(∨nZ ). For
shortness, we denote

�n(t)=U(t)�nU(t)∗ and �̃n(t)=U0(t)
∗ �n(t)U0(t) with ε=

1

n
,
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and for simplicity write AWick for the Wick operator with symbol 〈z⊗p,Az⊗p〉 with
A∈L (∨pZ ).

Proposition 2.6. Let (�n)n∈N∗ be a sequence of density matrices such that �n∈
L 1(∨nZ ) for each n∈N∗. Then for any n,p∈N∗ such that p≤n, A∈L (∨pZ ), M ∈
N∗, and t∈R

Tr[�n(t)A
Wick]=

M−1∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtkTr
[
�nC

(k)
0 (tk, . . . ,t1,t)

Wick
]

+
ε

2

M∑
k=1

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtkTr

⎡⎣�̃n(tk)
({

Qtk ,C
(k−1)
0 (tk−1, . . . ,t1,t)

}(2)
)Wick

⎤⎦
+iM

∫ t

0

dt1 · · ·
∫ tM−1

0

dtM Tr
[
�̃n(tM )C

(M)
0 (tM , . . . ,t1,t)

Wick
]
, (2.16)

with C
(k)
0 given by (2.15), replacing bt by At=U∗

0 (t)AU0(t), and the multiple Poisson
bracket defined in (2.9).

Proof. The expansion is obtained by iteration. Let b∈Pp,p then

d

dt
U(t)∗U0(t)b

WickU0(t)
∗U(t)|∨nZ =

i

ε
U(t)∗U0(t)[Q

Wick
t ,bWick]U0(t)

∗U(t)|∨nZ .

A simple integration yields

U(t)∗U0(t)b
WickU0(t)

∗U(t)|∨nZ = bWick |∨nZ +
i

ε

∫ t

0

dt1U(t1)
∗U0(t1)

[QWick
t1 ,bWick]U0(t1)

∗U(t1)|∨nZ . (2.17)

Taking bWick=U0(t)
∗AWickU0(t)=AWick

t in the above formula, gives

U(t)∗AWickU(t)|∨nZ =U0(t)
∗AWickU0(t)|∨nZ

+
i

ε

∫ t

0

dt1U(t1)
∗U0(t1)

[
Qt1 ,A

Wick
t

]
U0(t1)

∗U(t1)|∨nZ .

Hence using Lemma 2.5, we get

U(t)∗AWickU(t)|∨nZ =U0(t)
∗AWickU0(t)|∨nZ

+i

∫ t

0

dt1 U(t1)
∗U0(t1)C

1
0 (t1,t)

WickU0(t1)
∗U(t1)︸ ︷︷ ︸

(T)

|∨nZ

+i
ε

2

∫ t

0

dt1U(t1)
∗U0(t1)

({
Qt1 ,At

}(2)
)Wick

U0(t1)
∗U(t1)|∨nZ .

Remark that the first two terms in the right-hand side are of orderO(1) while the last one
is of order O(ε). By using again (2.17) to expand the term (T) above with b=C1

0 (t1,t)
we obtain, after taking the trace with �n, the formula (2.16) for M =2. So, iterating
this process M−1 times and following the same scheme of splitting commutators into
two parts one of order O(1) and the second of order O(ε), we get

U(t)∗AWickU(t)|∨nZ
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=

M−1∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtk C
(k)
0 (tk, . . . ,t1,t)

Wick

+ iM
∫ t

0

dt1 · · ·
∫ tM−1

0

dtM U(tM )∗U0(tM )
[
C

(M)
0 (tM , . . . ,t1,t)

]Wick

U0(tM )∗U(tM )

+
ε

2

M−1∑
k=1

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtk U(tk)
∗U0(tk)

({
Qtk ;C

(k−1)
0 (tk−1, . . . ,t1,t)

}(2)
)Wick

U0(tk)
∗U(tk).

Hence, by taking the trace with �n we prove the proposition.

The next step is to let M→∞ in the formula (2.16). But to do this we need to
prove some estimates which guarantee the absolute convergence of these series.

Lemma 2.7. For any b∈Pp,p the symbols {Qs,bt}(2)∈Pp,p and C
(m)
0 ∈Pp+m,p+m

with the following inequalities holding true:
(i) ∥∥∥∥ ˜{Qs,bt}(2)

∥∥∥∥
L (∨pZ )

≤ 4p(p−1)‖Q̃‖‖b̃‖L (∨pZ ).

(ii) For any m∈N,∥∥∥∥˜C(m)
0 (tm, . . . ,t1,t)

∥∥∥∥
L (∨p+mZ )

≤4m
(p+m−1)!

(p−1)!
‖Q̃‖m ‖b̃‖L (∨pZ ).

Here ˜{Qs,bt}(2) and
˜
C

(m)
0 are respectively the operators associated to the polynomials

{Qs,bt}(2) and C
(m)
0 according to Definition 2.1.

Proof. See [3, Lemma 5.8, 5.9].

Proposition 2.8. Let (�n)n∈N∗ be a sequence of density matrices such that �n∈
L 1(∨nZ ) for each n∈N∗. Then for any n,p∈N∗ such that p≤n, A∈L (∨pZ ) and
|t|< 1

8||Q̃|| and ε= 1
n

Tr[�n(t)A
Wick]=

∞∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtkTr
[
�nC

(k)
0 (tk, . . . ,t1,t)

Wick
]

+
ε

2

∞∑
k=1

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtkTr

⎡⎣�̃n(tk)
({

Qtk ,C
(k−1)
0 (tk−1, . . . ,t1,t)

}(2)
)Wick

⎤⎦ ,
with C

(k)
0 are given in (2.15), the multiple Poisson bracket defined in (2.9).

Proof. Proposition 2.6 says that

Tr[�n(t)A
Wick]=

M−1∑
k=0

Ck+
ε

2

M∑
k=1

Bk+RM ,

where Ak, Bk, and RM are short notations for the terms appearing in (2.16). Applying
Lemma 2.7 and using the fact that we integrate k-times, we get for n≥p+k∣∣Ck

∣∣≤4k
(p+k−1)!

(p−1)!k!
(|t| ||Q̃||)k ||A||,
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∣∣Bk

∣∣≤4k(p+k−1)(p+k−2)
(p+k−1)!

(p−1)!k!
(|t| ||Q̃||)k ||A||, (2.18)

∣∣RM

∣∣≤4M
(p+M−1)!

(p−1)!M !
(|t| ||Q̃||)M ||A||.

Therefore, using the bound Ck
p+k−1≤2p+k−1, we see that for times |t|< 1

8||Q̃|| the two

series

M−1∑
k=0

Ck and

M∑
k=1

Bk are absolutely convergent and RM →0 when M→∞.

Proposition 2.9. Let (�n)n∈N∗ be a sequence of density matrices such that �n∈
L 1(∨nZ ) for each n∈N∗. Then for any C>2 there exists C0>0 such that for any
n,p∈N∗, p≤n, A∈L (∨pZ ), |t|< 1

16||Q̃|| and ε= 1
n :∣∣∣∣∣Tr[�n(t)AWick]−

∞∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtkTr
[
�nC

(k)
0 (tk, . . . ,t1,t)

Wick
]∣∣∣∣∣

≤C0
Cp

n
||A||. (2.19)

Proof. This follows by Proposition 2.8 and estimate (2.18). In fact, we see that
the left-hand side of (2.19) is bounded by

2p−1

2n

∞∑
k=1

(k+p)2
(
8|t| ||Q̃||)k ||A||≤ 2p

2n

∞∑
k=1

(k2+p2)
(
8|t| ||Q̃||)k ||A||≤ 2p

n
(3+p2) ||A||.

Taking C0=max
p≥1

2p(3+p2)

Cp
for C>2, we obtain the inequality (2.19).

3. Reduced density matrices
In this section, we explain the notion of Wigner measures and its relationship with

reduced density matrices. Most of the results we need are proved in [3,5], but for reader
convenience we briefly recall them since they play an essential role in the proof of our
main result. The main observation is that reduced density matrices of a given sequence
of normal states have limit points with respect to the weak-∗ topology when n→∞
and these limit points have a very particular structure. Actually, a noncommutative
de Finetti theorem [53] due to Størmer (motivated by classification of C∗-algebras and
type factors) provides in some sense the structure of these limiting states. This is more
apparent in the work of Hudson and Moody [37,38] where the authors focus on normal
states which are also used in our setting. Actually, it turns out that with Wigner
measures we can characterize the structure of the limit points more easily, without
appealing to C∗-algebras formalism, and using probability measures in more natural
sets. Moreover, some compactness defect phenomena can be easily understood with the
latter tool (see [3, 5]). More recently, the authors Lewin, Nam, and Rougerie in [43]
gave an alternative proof of the noncommutative de Finetti theorem (see also [17, 42]
for application of this type of result).

3.1. Wigner measures. In finite dimension, Wigner (or semi-classical) mea-
sures are well-known tools in the analysis of PDEs with particular scaling (see for
instance [30, 31, 46, 47, 49, 54]). This idea was extended to the infinite dimensional case
in [3] and adapted to the framework of the mean field problem. Actually, the Borel
probability measures μ0 appearing in Proposition 1.1 is what we call Wigner measures
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of the sequence of density matrices (�n)n∈N∗ . This concept is more general and one
can deal with arbitrary families of normal states (or even trace class operators) on the
Fock space. The main advantage is that we can identify these measures μ0 by means
of simpler quantities involving the Weyl operators (see Theorem 3.1) according to the
following formula:

lim
n→∞Tr[�nW (ξ)]=

∫
Z

ei
√
2Re〈ξ,z〉dμ0(z), ∀ξ∈Z ,

where W (ξ) refers to the Weyl operator on the Fock space H with ε= 1
n . Therefore

the mean field problem becomes a propagation problem of Wigner measures along the
nonlinear flow of the (Hartree) equation (2.11). To enlighten the discussion let us
consider a concrete example. Let Ψn=ϕ⊗n with ϕ∈Z and ||ϕ||Z =1. It is easy to see

that the p-reduced density matrices of �n= |Ψn〉〈Ψn| are �
(p)
n = |ϕ⊗p〉〈ϕ⊗p| and one can

compute explicitly the Wigner measure of the sequence (�n)n∈N according to Proposition
1.1:

lim
n→∞Tr[�(p)n B]= 〈ϕ⊗p,Bϕ⊗p〉=

∫
Z

〈z⊗p,Bz⊗p〉dμ0(z), with μ0=
1

2π

∫ 2π

0

δeiθϕdθ,

where δeiθϕ denotes the Dirac measure on Z at the point eiθϕ. So Theorem 1.2 gives in
particular the convergence of the evolved reduced density matrices and in our example
it yields

lim
n→∞Tr[�(p)n (t)B]=

∫
Z

〈z⊗p,Bz⊗p〉dμt(z), with μt=(Φt)�μ0=
1

2π

∫ 2π

0

δeiθϕt
dθ,

where ϕt is the solution of the nonlinear field (Hartree) equation (2.11) with initial
condition ϕ. So, working with Wigner measures allows to understand the superposition
of states that may interact in the mean field limit (see [3]); and hence it provides a
general and flexible point of view. We recall below the result that gives the construction
of Wigner measures. It is a slight adaptation of [3, Theorem 6.2] including [5, Lemma
2.14].

Theorem 3.1. Let (�n)n∈N∗ be a sequence of density matrices such that �n∈
L 1(∨nZ ) for each n∈N∗. Then there exists a subsequence (nk)k∈N∗ and a Borel prob-
ability measure μ on Z , called a Wigner measure, such that for any ξ∈Z,

lim
k→∞

Tr[�nk
W (ξ)]=

∫
Z

ei
√
2Re〈ξ,z〉dμ(z), (3.1)

with W (ξ) referring to the Weyl operator on the Fock space H with the scaling ε= 1
n .

Moreover, the probability measure μ is U(1) invariant and it is concentrated on the unit
ball B(0,1) of the Hilbert space Z (i.e., μ0(B(0,1))=1).

The U(1)-invariance of the measure μ is a straightforward consequence of the fact
that �n∈L 1(∨nZ ) for each n∈N∗. So, the above theorem says that the set of Wigner
measures of a sequence (�n)n∈N∗ is never empty and we denote it by

M (�n,n∈N∗).

In practice and without loss of generality, one can assume in the analysis of the mean
field problem that the set M (�n,n∈N∗) only contains a single measure.
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3.2. De Finetti Theorem. In this subsection we give the proof of Proposition
1.1 which can be considered as a noncommutative de Finetti theorem. Moreover, the
convergence (3.1) extends to Wick quantized symbols with compact kernels belonging
to P∞ and hence this proves the weak-∗ convergence of reduced density matrices. This
result is proved in [3, Corollary 6.14] and a slight adaptation of it is recalled below.

Proposition 3.2. Let (�n)n∈N∗ be a sequence of density matrices such that �n∈
L 1(∨nZ ) for each n∈N∗ and assume that M (�n,n∈N∗)={μ0}. Then the convergence

lim
n→∞Tr[�(p)n A]=Tr[�(p)∞ A], with �(p)∞ =

∫
Z

|z⊗p〉〈z⊗p|dμ0(z), (3.2)

holds for any p∈N∗ and any A∈L ∞(∨pZ ).

Proof. (Proof of Proposition 1.1.) Suppose that for each p∈N∗ and each compact

operator A∈L ∞(∨pZ ) the sequence (Tr[�
(p)
n A])n∈N∗ converges. Then there exist trace-

class operators 0≤�
(p)
∞ ≤1, p∈N∗, such that

lim
n→∞Tr[�(p)n A]=Tr[�(p)∞ A], ∀A∈L ∞(Z ).

Let μ be any Wigner measure in M (�n,n∈N∗) �=∅. Then by Proposition 3.2, up to
extraction of subsequences, we see that

�(p)∞ =

∫
Z

|z⊗p〉〈z⊗p|dμ(z).

So, this provides the existence of a Borel probability measure μ on Z with the appro-
priate properties. The uniqueness follows by [3, Proposition 6.15].

3.3. Defect of compactness. The convergence in Proposition 3.2 is with re-
spect to the weak-∗ topology on L 1(∨pZ ) which is the topological dual of L ∞(∨pZ )
and the statement (3.2) does not hold in general for all A∈L (∨pZ ), p∈N∗. Coun-
terexamples exhibiting this phenomenon of dimensional defect of compactness are given
in [3] (we call it in this way because of the similarity with finite dimension, although the
source of defect here is the fact the phase-space is of infinite dimension and so bounded
sets are not relatively compact in the norm topology). Actually, the extension of (3.2)
to all bounded operators A∈L (∨pZ ) and p∈N∗ depends on the sequence (�n)n∈N∗

and it turns out to be an important point in the mean field problem: we need this in-
formation when we take the limit n→∞ in the mean field expansion. Let (�n)n∈N∗ be
a sequence of density matrices such that �n∈L 1(∨nZ ) for each n∈N∗. The reduced

density matrices (�
(p)
n )n∈N∗ weakly converges to �

(p)
∞ ∈L 1(∨pZ ) if

lim
n→∞Tr[�(p)n A]=Tr[�(p)∞ A], ∀A∈L (∨pZ ). (3.3)

The following proposition provides a strong relationship between the Wigner measures
of a sequence of density matrices and the convergence of their reduced density matrices
in the L 1-norm topology.

Proposition 3.3. Let (�n)n∈N∗ be a sequence of density matrices with �n∈L 1(∨nZ )

for each n∈N∗. Suppose that the reduced density matrices (�
(p)
n )n∈N∗ weakly converge
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to �
(p)
∞ ∈L 1(∨pZ ) for each p∈N∗ according to (3.3). Then there exists a unique U(1)-

invariant Borel probability measure μ0 on Z such that for any p∈N∗,

lim
n→∞ ||�(p)n −�(p)∞ ||1=0, with �(p)∞ =

∫
Z

|z⊗p〉〈z⊗p|dμ0(z).

Moreover, μ0 is the unique Wigner measure of (�n)n∈N∗ and it is concentrated on the
unit sphere S(0,1) of Z centred at the origin and of radius one (i.e., μ0(S(0,1))=1).

Proof. The assumption on (�n)n∈N∗ implies that �
(p)
∞ are non-negative trace

class operators with Tr[�
(p)
∞ ]=1 and �

(p)
n converges to �

(p)
∞ with respect to the weak

topology in L 1(∨pZ ). But since �
(p)
n and �

(p)
∞ are non-negative trace-class operators

with Tr[�
(p)
n ]=1=Tr

[
�
(p)
∞

]
, the L 1-norm convergence follows according to [1, 18, 51].

In a more general framework, it is said that L 1(∨pZ ) has the Kadec–Klee property
(KK*) in the weak-∗ topology (see [41] and references therein). The (KK*) property
on a dual Banach space means that the weak-∗ and norm convergence coincide on the
unit sphere.
Thanks to the proof of Proposition 1.1, we know that μ0 is the unique Wigner measure
of the sequence (�n)n∈N∗ . So, the measure μ0 is U(1)-invariant and it is concentrated

on the unit ball of Z according to Theorem 3.1. Now, using the fact that Tr[�
(p)
∞ ]=1,

we get ∫
Z

||z||2pdμ0(z)=1, ∀p∈N∗.

This easily yields that the measure is actually concentrated on the unit sphere.

Corollary 3.4. Let (�n)n∈N∗ be a sequence of density matrices with �n∈L 1(∨nZ )
for each n∈N∗ and such that M (�n,n∈N∗)={μ0}. The two following conditions are
equivalent:

(μ0(S(1,0))=1)⇔
(
∀p∈N∗, L 1− lim

n→∞�(p)n =

∫
Z

|z⊗p〉〈z⊗p|dμ0(z)

)
.

Proof. Suppose that the Wigner measure μ0 is concentrated on the unit sphere,

then by Proposition 3.2 we see that (�
(p)
n )n∈N∗ weak-∗ converges to �

(p)
∞ which is a non-

negative trace-class operator with Tr[�
(p)
∞ ]=1. So, again by the Kadec–Klee property

(KK*) of L 1(∨pZ ) we obtain the L 1-norm convergence for each p∈N∗.

4. Rate of convergence
In this section we give the proof of our main result (Theorem 1.2). We start by

proving an elementary estimate in Subsection 4.1 and then prove the result in Subsection
4.2.

4.1. Preliminary estimate. Instead of estimating the quantities ||�(p)n −�
(p)
∞ ||1

in the trace norm, we will work essentially with∣∣∣∣Tr[�nAWick]−
∫

Z

〈z⊗p,Az⊗p〉dμ0

∣∣∣∣ .
In that way, we can use the mean field expansion based on Wick calculus. The two
quantities are comparable and this is given by the lemma below.
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Lemma 4.1. Let (�n)n∈N∗ be a sequence of density matrices such that �n∈L 1(∨pZ )
for each n∈N∗ and satisfying the assumptions of Theorem 1.2. Then for any n,p∈
N∗,n≥p: ∣∣∣∣∣||�(p)n −�(p)∞ ||1− sup

A �=0

|Tr[�nAWick]−∫
Z 〈z⊗p,Az⊗p〉dμ0|
||A||

∣∣∣∣∣≤ (p−1)2

n
,

with μ0 being the Wigner measure of (�n)n∈N∗ and

�(p)∞ =

∫
Z

|z⊗p〉〈z⊗p|dμ0(z).

Proof. For any A∈L (∨pZ ) and ε= 1
n :

Tr[�nA
Wick]=

n · · ·(n−p+1)

np
Tr[�(p)n A] and Tr[�(p)∞ A]=

∫
Z

〈z⊗p,Az⊗p〉dμ0(z).

Hence, we get∣∣∣Tr[�nAWick]−
∫

Z

〈z⊗p,Az⊗p〉dμ0

∣∣∣≤ ∣∣∣1− n · · ·(n−p+1)

np

∣∣∣ ||A||+ |Tr[�(p)n A]−Tr[�(p)∞ A]|

≤
[∣∣∣1− n · · ·(n−p+1)

np

∣∣∣+ ||�(p)n −�(p)∞ ||1
]
||A||,

and also

|Tr[(�(p)n −�(p)∞ )A]|≤
∣∣∣1− n · · ·(n−p+1)

np

∣∣∣ ||A||+ ∣∣∣Tr[�nAWick]−
∫

Z

〈z⊗p,Az⊗p〉dμ0

∣∣∣.
The inequality

1− n · · ·(n−p+1)

np
=1−

p−1∏
j=1

(
1− j

n

)≤1−
(
1− p−1

n

)p−1

≤ (p−1)2

n
,

gives the sought estimate.

4.2. Proof of the main theorem. Recall that μt=(Φt)�μ0 in Theorem 1.2,
where μ0 is the unique Wigner measure of the sequence (�n)n∈N∗ as provided by Propo-
sition 1.1.

Lemma 4.2. For any t∈R such that |t|< 1
8||Q̃|| :

μt

(〈z⊗p,Az⊗p〉)= ∞∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtk μ0

(
C

(k)
0 (tk, . . . ,t1,t)

)
. (4.1)

Proof. We know already that the measure μ0 is concentrated in the ball of radius
1 centred at the origin according to Proposition 1.1. Hence, we deduce the inequality∣∣∣μ0

(
C

(k)
0 (tk, . . . ,t1,t)

)∣∣∣≤∥∥∥∥C̃(k)
0 (tk, . . . ,t1,t)

∥∥∥∥
L (∨p+kZ )

.
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The right-hand side of (4.1) is absolutely convergent whenever |t|< 1
8||Q̃|| thanks to the

estimate (ii) of Lemma 2.7

∞∑
k=0

∫ t

0

dt1 · · ·
∫ tk−1

0

dtk

∣∣∣μ0

(
C

(k)
0 (tk, . . . ,t1,t)

)∣∣∣≤2p−1||A||
∞∑
k=0

(
8 |t| ||Q̃||

)k

.

Recall that according to (2.13) the classical solution t �→zt verifies for any b∈Pp,p,

b(zt)= bt(w0)+ i

∫ t

0

{Qt1 ,bt}(wt1) dt1, with wt= eith̃0zt.

Iterating this formula, with b(z)= 〈z⊗p,Az⊗p〉, and using the absolute convergence
checked above gives for all ||z||≤1,

〈z⊗p
t ,Az⊗p

t 〉=
∞∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtk C
(k)
0 (tk, . . . ,t1,t;z).

Integrating with respect to μ0 and using the fact that μt=(Φt)�μ0 yields (4.1).

Proof. (Proof of Theorem 1.2.) We recall the assumptions of Theorem 1.2. Let
(α(n))n∈N∗ be a sequence of positive numbers with limn→∞α(n)=∞ and such that

(α(n)n )n∈N∗ is bounded. Consider (�n)n∈N∗ and (�
(p)
∞ )p∈N∗ to be two sequences of density

matrices with �n∈L 1(L2
s(R

dn)) and �
(p)
∞ ∈L 1(L2

s(R
dp)) for each n,p∈N∗. Assume that

there exist C0>0, C>2, γ≥1 such that for all n,p∈N∗ with n≥γp,∥∥∥�(p)n −�(p)∞
∥∥∥
1
≤C0

Cp

α(n)
. (4.2)

We first prove the estimate for short times and than extend it to arbitrary times. So, sup-
pose that |t|< 1

8C||Q̃|| with C>2 the constant provided by the main assumption. Thanks

to Lemma 4.1 it is enough to estimate the quantity |Tr[�n(t)AWick]−μt

(〈z⊗p,Az⊗p〉)|
for any bounded operator A∈L (∨pZ ). So, the estimate in Proposition 2.9 yields∣∣Tr[�n(t)AWick]−μt

(〈z⊗p,Az⊗p〉)∣∣≤C0
Cp

n
||A||+R(t), (4.3)

for some C0>0 and

R(t)=

∣∣∣∣∣
∞∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtkTr
[
�nC

(k)
0 (tk, . . . ,t1,t)

Wick
]
−μt

(〈z⊗p,Az⊗p〉)∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

ik
∫ t

0

dt1 · · ·
∫ tk−1

0

dtkTr
[
�nC

(k)
0 (tk, . . . ,t1,t)

Wick
]
−μ0

(
C

(k)
0 (tk, . . . ,t1,t)

)∣∣∣∣∣ .
The last equality is a consequence of Lemma 4.2. Using now the main assumption

and the fact that C
(k)
0 (tk, . . . ,t1,t) are polynomials in Pp+k,p+k, we get the following

inequality (we can assume that t>0 without loss of generality)

R(t)≤
�n

γ �−p∑
k=0

∫ t

0

dt1 · · ·
∫ tk−1

0

dtk

∣∣∣Tr[�nC(k)
0 (tk, . . . ,t1,t)

Wick
]
−μ0

(
C

(k)
0 (tk, . . . ,t1,t)

)∣∣∣
(4.4)
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+

n−p∑
k=�n

γ �−p+1

∫ t

0

dt1 · · ·
∫ tk−1

0

dtk

∣∣∣Tr[�nC(k)
0 (tk, . . . ,t1,t)

Wick
]
−μ0

(
C

(k)
0 (tk, . . . ,t1,t)

)∣∣∣
(4.5)

+
∞∑

k=n−p+1

∫ t

0

dt1 · · ·
∫ tk−1

0

dtk

∣∣∣μ0

(
C

(k)
0 (tk, . . . ,t1,t)

)∣∣∣ . (4.6)

Thanks to the estimate (ii) of Lemma 2.7, the right-hand side of (4.4)–(4.6) is bounded
by

(4.4)≤ Cp

α(n)

�n
γ �−p∑
k=0

(8tC||Q̃||)k ||A||≤ Cp

α(n)

1

1−8tC||Q̃|| ||A||

(4.5)≤2

n−p∑
k=�n

γ �−p+1

(8t||Q̃||)k ||A||≤2
(8t||Q̃||)�n

γ �−p+1

1−8t||Q̃|| ||A||

(4.6)≤
∞∑

k=n−p+1

(8t||Q̃||)k ||A||= (8t||Q̃||)n−p+1

1−8t||Q̃|| ||A||.

Since |t|< 1
8C||Q̃|| , we easily get the bounds

(4.5)≤ Cp

C�n
γ �

2||A||
1−8t||Q̃|| ≤λ

Cp

α(n)

2||A||
1−8t||Q̃|| ,

(4.6)≤ Cp

Cn

||A||
1−8t||Q̃|| ≤λ

Cp

α(n)

||A||
1−8t||Q̃|| ,

with λ=supn∈N∗
α(n)

C
�n
γ

� which depends only on C and the sequence (α(n))n∈N∗ . Collect-

ing theses estimates, we conclude that

R(t)≤ (1+3λ)

1−8tC||Q̃||
Cp

α(n)
||A||.

So, by Lemma 4.1 there exists C1>0 such that∥∥∥�(p)n (t)−�(p)∞ (t)
∥∥∥
1
≤C1

Cp

α(n)
,

uniformly in time whenever |t|∈ [0, 1
16C||Q̃|| ]. Now, iterate the same reasoning as much

as needed to cover a time interval [−T,T ] with T >0 arbitrary. Then one gets the
existence of CT >0 such that for all t∈ [−T,T ],∥∥∥�(p)n (t)−�(p)∞ (t)

∥∥∥
1
≤CT

Cp

α(n)
.

5. Examples and numerical simulations
In order to illustrate the main result of this article, it is useful to consider some

examples and numerical simulations of states with an increasing degree of correlation.
The notion of correlation is quite important in quantum information theory and it
is related to the so-called quantum entanglement. So, there are several interesting
examples of states in the latter field which are also useful for our purpose (Bell state,
cat state, W state, GHZ state, etc.).
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Numerical simulations:
In subsections 5.1 and 5.4 we will use some numerical simulations to corroborate the

results of the previous sections. Here we outline briefly the dynamical system utilized in
these simulations. A detailed presentation of the related numerical methods and results
will be given by the third author in a separate article.

The phase space for numerical simulations is Z = �2(Z/KZ). It is isomorphic to
the finite-dimensional space CK. That means each particle lies on one of the K sites
represented by the set Z/KZ. The Hilbert space for n boson particles will then be
isomorphic to ∨nCK. The dynamics is described by the n-particle Hamiltonian

Hn=−
n∑

ν=1

Δ
(ν)
disc+

1

2n

n∑
ν,μ=1

V (xν−xμ), (5.1)

where −Δ
(ν)
disc is the discrete Laplacian operator of �2(Z/KZ) acting on the νth variable

and V is a function on Z/KZ∼{0,1, . . . ,K−1} defined by V (x)= 1
x for any {0,1, . . . ,K−

1}�x �=0 and V (0)=0.
To estimate numerically the rate of convergence, we discretize the time interval

[0,1], then we compute the quantity maxt∈{t1,...,tm}⊂[0,1]

∥∥∥�(p)n (t)−�
(p)
∞ (t)

∥∥∥
1
. For a better

evaluation of the dependence in n of this object, we draw its Logarithm as a function
of Logn: an order of convergence O(n−a) will be given by a straight line with slope −a
in the graph.

5.1. Product states. This is the most known example in mean field theory. It
appears in the literature under the name of chaos, factorized, product or also Hermite
states. It emphasizes the fact that, in the mean field limit, states ϕ⊗n that are prepared
uncorrelated will evolve into states which are close to be uncorrelated, namely ϕ⊗n

t

where ϕt is a solution of the Hartree equation (1.2) with initial condition ϕ. It is easy
to see that the factorized states

�n= |ϕ⊗n〉〈ϕ⊗n|, with ||ϕ||=1,

satisfy the assumption of Theorem 1.2. In fact, the p-reduced density matrices of �n
coincide with the limit

�(p)n = |ϕ⊗p〉〈ϕ⊗p|=�(p)∞ . (5.2)

This means that in this example the rate of convergence at initial time t=0 is arbitrarily
fast. Remember that according to Theorem 1.2 the p-particle reduced density matrix

�
(p)
∞ (t) is

�(p)∞ (t)=

∫
Z

|z⊗p〉〈z⊗p|dμt(z)= |ϕ⊗p
t 〉〈ϕ⊗p

t | with μt=
1

2π

∫ 2π

0

δeiθϕt
dθ,

where ϕt is a solution of the nonlinear field equation (2.11). Using the numerical simu-
lation described in Subsection 5, we see that for the first marginal

max
t∈{t1,...,tm}⊂[0,1]

Log
∥∥∥�(1)n (t)−�(1)∞ (t)

∥∥∥
1
=−(1+ε)Log(n)+O(1);

with a deviation ε�−0.06 well within the expected computational inaccuracy (see Fig-
ure 5.1). This is in very good agreement with our mathematical prevision, and indicates
that the estimate in Theorem 1.2 is not far from being optimal, in some sense.
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Fig. 5.1. Log-Log plot for factorized states.

5.2. W states. The W state is a multi-partite n-qubit entangled quantum state

|W 〉= 1√
n
(|100...0〉+ |010...0〉+ . . .+ |00...01〉),

where |1〉 denotes a one particle excited state and |0〉 denotes the one particle ground
state of two mode system. More generally, if Z is a Hilbert space and ϕ,ψ are two
normalized orthogonal vectors in Z then

|W 〉= 1√
n
(|ψ⊗ϕ⊗n−1〉+ |ϕ⊗ψ⊗ϕ⊗n−2〉+ · · ·+ |ϕ⊗n−1⊗ψ〉). (5.3)

Lemma 5.1. Let (�n)n∈N∗ denotes a sequence of W states as in (5.3). Then for all
n,p∈N∗ such that n≥p:

||�(p)n −�(p)∞ ||1≤2
p

n
with �(p)∞ = |ϕ⊗p〉〈ϕ⊗p|.

Proof. A simple computation yields for any A∈L (∨pZ ):

〈W,A⊗1⊗(n−p)W 〉= n−p

n
〈ϕ⊗p,Aϕ⊗p〉+ p

n
〈Wp,AWp〉,

where |Wp〉= 1√
p

(
ψ⊗ϕ⊗(p−1)+ · · ·+ϕ⊗(p−1)⊗ψ

)
. So that the p-reduced density matri-

ces of �n is

�(p)n =
n−p

n
|ϕ⊗p〉〈ϕ⊗p|+ p

n
|Wp〉〈Wp|

=
n−p

n
�(p)∞ +

p

n
|Wp〉〈Wp|,

Hence the estimate follows since Wp is a normalized vector.
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5.3. GHZ states. The GHZ (Greenberger–Horne–Zeilinger) state is a multi-
partite entangled quantum state. In a two-mode system it is given by the formula

|GHZ〉= |0〉⊗n+ |1〉⊗n

√
2

,

So, it can be generalized as follows

|GHZ〉= |ϕ〉⊗n+ |ψ〉⊗n

√
2

, (5.4)

where ϕ and ψ are two normalized (orthogonal) vectors in a given Hilbert space Z . So,
the n-partite GHZ states are superposition of uncorrelated states and it is again easy to
check that their p-reduced density matrices coincide with their limit as in (5.2). Hence,
Theorem 1.2 provides a rate of convergence for this example too with α(n)=n rate.

5.4. Twin states. Let ϕ1,ϕ2∈Z be two normalized orthogonal vectors. The
twin states are rank one projectors �n= |Ψn〉〈Ψn| given by

Ψn=

√
n!

n1!n2!
Snϕ

⊗n1
1 ⊗ϕ⊗n2

2 , (5.5)

with n=n1+n2 and n1=n2∈N∗. This sequence of states have a unique Wigner
measure μ computed in [5]. So, after identification of the Hilbert space Z as
Cϕ1×Cϕ2×Z ⊥

1 , with Z ⊥
1 the orthogonal subspace to Cϕ1⊕Cϕ2, the measure μ reads

μ= δS
1

ϕ1√
2

⊗δS
1

ϕ2√
2

⊗δ⊥0 with δS
1

ϕj√
2

=
1

2π

∫ 2π

0

δ
eiθ

ϕj√
2

dθ, j=1,2. (5.6)

Remark that in this example the measure μt=(Φt)�μ is quite correlated because of the
nonlinear effect of the flow and the situation differs significantly from the simple picture
of uncorrelated states (here Φt is the flow of the nonlinear field equation (2.11)).

Lemma 5.2. Let (�n)n∈N∗ be a sequence of twin states with μ its Wigner measure
given in (5.6). Then for any n,p∈N∗ such that n≥2p:∥∥∥�(p)n −�(p)∞

∥∥∥
1
≤2p

p2

n−p
with �(p)∞ =

∫
Z

|z⊗p〉〈z⊗p|dμ.

Proof. Let Ψn be the vector given by (5.5). A simple computation yields

〈Ψn,A⊗1⊗(n−p)Ψn〉= n!

n1!n2!

1

(n!)2

∑
σ,π∈S(n)

〈Tσϕ
⊗n1
1 ⊗ϕ⊗n2

2 ,A⊗1⊗(n−p)Tπϕ
⊗n1
1 ⊗ϕ⊗n2

2 〉,

where Tσ denotes the operator on ⊗nZ defined for any σ∈S(n) by

Tσf1⊗···⊗fn=fσ1
⊗···⊗fσn

.

For m,n∈N, k≤m, we denote

I(k)
m =

{
i :{1, . . . ,m}→{1,2},�i−1({1})=k

}
.

So, there is a correspondence between permutations σ∈Σn and maps i∈I(n1)
n according

to

Tσϕ
⊗n1
1 ⊗ϕ⊗n2

2 =ϕi(1)⊗···⊗ϕi(n)=:ϕ(i). (5.7)
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Since the cardinality of the set of σ∈Σ(n) such that (5.7) holds for the same i∈I(n1)
n

is equal to n1!n2! , we see that

〈Ψn,A⊗1⊗(n−p)Ψn〉= n!

n1!n2!

(
n1!n2!

n!

)2 ∑
i,j∈I(n1)

n

〈ϕ(i),A⊗1⊗(n−p)ϕ(j)〉.

In the above sum if i �= j on the set {p+1, . . . ,n} then the scalar product is null because
of the orthogonality condition on the vectors ϕ1,ϕ2. So this simplifies the sum and
actually we can decompose it according to the number of occurrence of ϕ1 in the first
p vectors constituting ϕ(i), i.e.,

I(n1)
n =∪p

k=0

{
i∈I(n1)

n ,�i−1({1})∩{1, . . . ,p}=k
}
=:∪p

k=0I(n1)
n,k .

Hence,

〈Ψn,A⊗1⊗(n−p)Ψn〉= n1!n2!

n!

p∑
k=0

∑
i∈I(n1)

n,k

∑
j∈I(n1)

n ,j=i|p+1,...,n

〈ϕ(i),A⊗1⊗(n−p)ϕ(j)〉.

If we fix the first p values of i and j and vary the (n−p) others then the scalar product
〈ϕ(i),A⊗1⊗(n−p)ϕ(j)〉 will not change as long as j= i|{p+1,...,n}. Actually, there are

Cn1−k
n−p configurations for each choice of i(1), . . . ,i(p),j(1), . . . ,j(p) such that �i−1({1})∩

{1, . . . ,p}= �j−1({1})∩{1, . . . ,p}=k . Hence, we get

〈Ψn,A⊗1⊗(n−p)Ψn〉= n1!n2!

n!

p∑
k=0

Cn1−k
n−p

∑
i∈I(k)

p

∑
j∈I(k)

p

〈ϕ(i),Aϕ(j)〉.

Observe that for all 0≤k≤p and 2p≤n:

lim
n→∞

Cn1−k
n−p

Cn1
n

=
1

2p
.

So, we see that the limit of the p-reduced density matrices is

�(p)∞ =
1

2p

p∑
k=0

|ψk 〉 〈ψk

∣∣=∫
Z

|z⊗p〉〈z⊗p|dμ, with ψk=
∑

i∈I(k)
p

ϕ(i),

where μ is the Wigner measure of the sequence (�n)n∈N∗ given in (5.6). In particular,
the orthogonality of the family (ψk)1,...,p gives

1= ||�(p)∞ ||1= 1

2p

p∑
k=0

∥∥ψk

∥∥2
Therefore a simple estimate yields∥∥∥�(p)n −�(p)∞

∥∥∥
1
≤ max

k=1,...,p

∣∣∣∣∣1−2p
Cn1−k

n−p

Cn1
n

∣∣∣∣∣
p∑

k=0

1

2p
||ψk||2

≤ max
k=1,...,p

∣∣∣∣∣1−2p
Cn1−k

n−p

Cn1
n

∣∣∣∣∣ .
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So, the result follows once we prove

max
k=1,...,p

∣∣∣∣∣1−2p
Cn1−k

n−p

Cn1
n

∣∣∣∣∣≤2p
p2

n−p
.

In fact, for any (ai)1,...,r such that 0≤ai≤1 the following simple estimates hold true

0≤1−
r∏

i=1

(1−ai)≤ r max
1,...,r

ai (5.8)

0≤
r∏

i=1

(1+ai)−1≤2r−1r max
1,...,r

ai. (5.9)

By writing

2p
Cn1−k

n−p

Cn1
n

=

k−1∏
i=1

(
1− i

n− i

)×p−k−1∏
j=k+1

(
1− j−k

n−k−j

)
︸ ︷︷ ︸

T1

×

T2︷ ︸︸ ︷
min(p−k−1,k−1)∏

s=0

(
1+

k−s

n−k−s

)

we can see that the product T1=
∏p

i=1(1−βi) while the last one is T2=
∏p

j=1(1+γj)
with 0≤βi,γj ≤1 (some of the βi,γj are null). Hence, applying (5.8)–(5.9), we obtain

|1−T1T2|≤ |T1|(T2−1)+(1−T1)

≤2p−1pmax
1,...,p

γj+pmax
1,...,p

βi

≤2p−1p
p

n−p
+p

p

n−p
.

Again, the numerical simulation for the first marginal indicates a 1/n order of
convergence (Figure 5.2).

Finally, we bring to reader’s attention the fact that any rate of convergence is
actually possible. In fact take the following example

�n=
(
1− 1

α(n)

)
|e⊗n

1 〉〈e⊗n
1 |+ 1

α(n)
|e⊗n

2 〉〈e⊗n
2 |,

with (α(n))n∈N∗ such that α(n)≥1, α(n)→∞, and e1,e2 are two normalized orthogonal
vectors. So, it is easy to see that

�(p)n =
(
1− 1

α(n)

)
|e⊗p

1 〉〈e⊗p
1 |+ 1

α(n)
|e⊗p

2 〉〈e⊗p
2 | and �(p)∞ = |e⊗p

1 〉〈e⊗p
1 |.

Therefore, for each p∈N∗, the following equality is satisfied:∥∥∥�(p)n −�(p)∞
∥∥∥
1
=

2

α(n)
.
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Fig. 5.2. Log-Log plot for twin states.
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Ann. Henri Poincaré, 9, 1503–1574, 2008.

[4] Z. Ammari and F. Nier, Mean field limit for bosons and propagation of Wigner measures,
J. Math. Phys., 50, 2009.

[5] Z. Ammari and F. Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for
general bosonic states, J. Math. Pures Appl., 95, 585–626, 2011.

[6] Z. Ammari and F. Nier, Mean field propagation of infinite dimensional Wigner measures with a
singular two-body interaction potential, Ann. Sc. Norm. Super. Pisa Cl. Sci. Serie V, Vol. XIV,
Fasc., 1, 2015.

[7] I. Anapolitanos, Rate of Convergence Towards the Hartree von Neumann Limit in the Mean-Field
Regime, Lett. Math. Phys., 98, 1–31, 2011.

[8] C. Bardos, F. Golse, A. Gottlieb, and N. Mauser, Mean field dynamics of fermions and the time-
dependent Hartree–Fock equation, J. Math. Pures Appl., (9)82-6, 665–683, 2003.

[9] C. Bardos, F. Golse, and N. Mauser, Weak coupling limit of the n-particle Schrödinger equation,
Meth. Appl. Anal., 7, 275–293, 2000.
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[17] T. Chen, C. Hainzl, N. Pavlović, and R. Seiringer, On the well-posedness and scattering for the

Gross–Pitaevskii hierarchy via quantum de Finetti, Lett. Math. Phys., 104, 871–891, 2014.



Z. AMMARI, M. FALCONI, AND B. PAWILOWSKI 1441

[18] G.F. Dell’Antonio, On the limits of sequences of normal states, Comm. Pure Appl. Math., 20,
413–429, 1967.
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