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DECOHERENCE FOR A HEAVY PARTICLE INTERACTING WITH A
LIGHT PARTICLE: NEW ANALYSIS AND NUMERICS∗

RICCARDO ADAMI† , MAXIME HAURAY‡ , AND CLAUDIA NEGULESCU§

Abstract. We study the dynamics of a quantum heavy particle undergoing a repulsive interaction
with a light particle. The main motivation is the detailed description of the loss of coherence induced
on a quantum system (in our model, the heavy particle) by the interaction with the environment (the
light particle).

The content of the paper is analytical and numerical.
Concerning the analytical contribution, we show that an approximate description of the dynamics

of the heavy particle can be carried out in two steps: first comes the interaction, then the free evolution.
In particular, all effects of the interaction can be embodied in the action of a collision operator that
acts on the initial state of the heavy particle. With respect to previous analytical results on the same
topics, we turn our focus from the Møller wave operator to the full scattering operator, whose analysis
proves to be simpler.

Concerning the numerical contribution, we exploit the previous analysis to construct an efficient
numerical scheme that turns the original, multi-scale, two-body problem into two one-body problems
which can be solved separately. This leads to a considerable gain in simulation time. We present and
interpret some simulations carried out on specific one-dimensional systems by using the new scheme.

According to simulations, decoherence is produced by an interference-free bump which arises from
the initial state of the heavy particle immediately after the collision. We support such a picture by
numerical evidence as well as by an approximation theorem.

Key words. Quantum mechanics, Schrödinger equation, heavy-light particle scattering, interfer-
ence, decoherence, asymptotic analysis, numerical discretization.
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1. Introduction
In the present paper we describe, both through a theoretical analysis and numerical

simulations, the following idealized experiment: a quantum particle lies in a state given
by the superposition of two localized wave functions (“bumps”), initially separated
and moving towards each other. At a certain time, the particle interacts with another
particle that is considerably lighter. As a consequence, the quantum interference arising
when the two bumps corresponding to the heavy particle eventually meet is damped.
The damping of the interference is called decoherence, and provides a description of the
transition from the quantum to the classical world (see [8,9,11,16–20,26]). Despite the
conceptual relevance of decoherence to the foundations of quantum mechanics as well as
in applications (e.g. in quantum computation) and, more generally, in the understanding
of the classical picture of the macroscopic world, a rigorous and exhaustive description
of this phenomenon is still at its beginnings; nevertheless, in the last decade many
important steps have been accomplished (see e.g. [1–3,10,12–14]).
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According to the principles of quantum mechanics, the time evolution of the
wave function ψε(t,X,x) representing the two-body quantum system is given by the
Schrödinger equation⎧⎨⎩ i∂tψε = − 1

2M
ΔXψε−

1

2εM
Δxψε+

1+ε

ε
V (x−X)ψε,

ψε(0,X,x)=ψ
0
ε(X,x),

(1.1)

where we used units in which �=1, M is the mass, and X is the spatial coordinate of
the heavy particle, while εM is the mass and x is the spatial coordinate of the light
one. So ε is the ratio between the mass of the light particle and the mass of the heavy
one, and we study the regime ε�1, which we call the small mass ratio regime.

The interaction is described by the potential 1+ε
ε V ; the uncommon coupling con-

stant is chosen to be of order ε−1 so that even a single collision leaves an observable
mark on the heavy particle; furthermore, the factor 1+ε hardly affects the dynamics
and simplifies some expressions. We shall always choose a factorized initial state, i.e.
ψ0
ε will be the product of functions depending only on the variable X and the variable

x, respectively (see (2.1)). Physically, this means that initially the two particles are
uncorrelated. We shall always assume that ψ0

ε , and consequently ψε(t), is normalized
in L2(R2d).

The aim of the present paper is threefold: first, we rigorously derive a collisional
dynamics for the heavy particle as an approximation of the underlying quantum evo-
lution (1.1) in the limit ε→0 (sections 3 and 4); second, we employ such a collisional
dynamics in order to build up an efficient numerical scheme (sections 5.1 and 5.2);
third, we observe the appearance of decoherence through numerical simulation (Section
5.3). Eventually, simulations show an unpredicted mechanism for the occurrence of
decoherence, which we are able to derive rigorously (sections 5.4 and 6.3).

The emergence of a collisional dynamics, well-known since [19] and rigorously de-
duced already in [1–3, 10, 12–14], can be explained by the fact that the characteristic
evolution time is of order one for the heavy particle and of order ε for the light one,
so the light particle diffuses almost instantaneously, while, during the interaction, the
heavy particle hardly moves. Thus, the main effect of the interaction on the heavy par-
ticle is the reduction of the quantum interference among the two bumps. This, roughly
speaking, is the content of the celebrated Joos–Zeh’s heuristic formula (see e.g. [19, for-
mula (3.43)]), which establishes that the state of the heavy particle has hardly changed,
while the state of the light particle is transformed by the action of a suitable scattering
operator.

In order to give a mathematical description to this scenery, in Section 3 we introduce
a collision operator Iχ, whose action consists in multiplying the kernel ρM (X,X ′) of
the density operator ρM of the heavy particle by the collision function

Iχ(X,X
′) := 〈SX′

χ|SXχ〉,

where, following the physicist’s habit, the Hermitian product 〈·|·〉 is anti-linear in the
first factor and linear in the second. Furthermore, SX stays for the one-particle scat-
tering operator constructed assuming that the interaction potential is V (·−X). Notice
that 0≤|Iχ|≤1; we will show in Section 4 that decoherence arises precisely when Iχ is
not identically equal to one.

Several novelties are present with respect to previous achievements on analogous
problems (see [2,3,10,13]). First, we use a different initial state for the light particle in
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order to replace the Møller wave operator with the scattering operator (Theorem 3.2);
this choice makes it possible to provide explicit formulas for the function Iχ (Section
3). Second, in the present work the convergence of the two-body dynamics to the two
separated one-body dynamics is given in Theorem 3.2, but the convergence rate in ε is
not explicitly specified (see formula (3.3)). However, given an interaction potential V ,
one can compute the related scattering operator S and then use formula (3.4) in order
to find the convergence rate. Third, we generalize Theorem 3.2 to the case of density
operators in Theorem 3.4. Fourth, we give explicit formulas for the momentum and
energy transfers between the two particles. To this regard, we remark that, even though
the incoming particle has a negligible mass, the transfer of energy and momentum is
not trivial, since in the limit ε→0 the colliding light particle has finite momentum and
infinite energy.

Concerning the numerical part of the paper, we recall that in [4] the authors ex-
hibited some numerical simulations aimed at checking the Joos–Zeh’s approximation
formula from a quantitative point of view: indeed, the error in such formulas, as com-
puted in [2,3,13], contains a multiplicative constant whose optimal size is unknown (see
e.g. [3, estimate (2.2)]). The numerical simulations in [4] show that, in spite of this
indeterminacy, the approximation in [2, 3] can be successfully employed at least under
some hypotheses on the interaction potential (for details see [4, Section 3.2]). Those
numerical results were achieved by using standard discretization arguments and a split-
ting (Peaceman–Rachford) procedure. The main drawback of such a method was that,
for fixed grids, the precision was sensitive to the value of ε, so that, in order to follow
the fast evolution of the light particle, one had to employ tiny meshes both in time and
space, and the computations became expensive in time and memory.

Conversely, in the present approach the role of the light particle is limited to the
computation of the collision function Iχ. The focus of the analysis is the dynamics of the
heavy particle that, in our approximation, becomes free after the collision. In this way,
the computational problem drastically simplifies and the numerical cost is considerably
diminished, both in memory and in time; moreover, it becomes possible to simulate an
experiment with many colliding light particles, which is crucial for the sake of studying
the continuous damping of the interference.

As already stressed, our simulations lead to a description of decoherence that, at
least to our knowledge, was never put in evidence before. Indeed, simulations show
that, if the light particle initially has a non-vanishing mean momentum, then after the
collision a fraction of the wave function of the heavy particle organizes itself into a bump
that moves independently of the rest (see the first image in Figure 5.5). Moreover, the
newborn bump is uncorrelated with the other components of the state of the heavy
particle, so it does not take part in the interference. Thus, the damping of the inter-
ference pattern can be explained by the fact that a fraction of the initial wave function
decouples from the rest. We give a rigorous result which portrays this phenomenon, if
some hypotheses on the involved spatial scales are satisfied (Theorem 5.1).

For simplicity, our numerical treatment is limited to the one-dimensional case, even
though the general idea and the theoretical results apply to systems in arbitrarily high
dimension.

This paper is more concerned with a precise estimate on the dynamics of the heavy
particle, than on interpretation of decoherence in terms of the foundations of quantum
mechanics; nevertheless, some words on the conceptual background are in order.

In [4] we introduced and discussed an interpretation of decoherence based on the
analysis of the configuration space of the system. According to such an interpretation,
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the two bumps representing the state of the heavy particle can be plotted as two bumps
that, in the absence of the light particle, move one towards the other: the simulation
shows that when the centres of the two bumps coincide, the overlap between the two
bumps is complete and then interference is maximal (see the last image of [4, Figure
9]).

On the other hand, if the light particle is present, then its position appears as an
additional dimension in the configuration space of the two-particle system. Now, since
both bumps of the heavy particle undergo a collision with the light one, they will be
perturbed in two different ways, so that the eventual overlap will not be complete and
thus the interference is only partial (to this regard, see the second image in the first row
of [4, Figure 9]). For the details of this explanation of decoherence we refer to [4, Section
4] and to Remark 5.2: what we would like to stress here is the presence of a portion
of the two-body wave function that, in the (full) configuration space, is prevented from
overlapping and hence from producing interference.

Such a description has the advantage of being clear and simple, both from the
physical point of view and for the mathematics involved: the only mathematical object
that is needed is the wave function. On the other hand, in the present paper we aim at
getting rid of the coordinates of the light particle, reducing then the number of variables
to consider, which is often important for numerical computations. The price we have
to pay is that we lose the enlightening picture in the coordinate space and we have to
deal with more complicated mathematical objects, like density operators.
The description of the decoherence phenomenon that emerges from our analysis can be
summarized as follows, according to formula (5.11): each bump of the heavy particle
interacts with the light particle only through the portion of its wave function corre-
sponding to the reflection coefficient of the interaction. Then, the density operator of
the heavy particle after the interaction turns out to be a convex combination of three
density operators: the one corresponding to the suitably damped initial state, that did
not interact when the light particle was transmitted, the one corresponding to the left
bump when the light particle was reflected from the left, and the one corresponding to
the right bump when the light particle was reflected from the right. Only the first one
has preserved the capability to produce interference, while the two others did not. The
overall interference is then damped due to the fact that the portion of the heavy parti-
cle that underwent interaction cannot interfere any more. The correspondence with the
non-overlapping components of the two-body wave function, as displayed in the analy-
sis in the configuration space, is explained briefly in Remark 5.2. Actually, we plan to
investigate that correspondence in more details in a future work.

The outline of the present paper is the following. In Section 2 we introduce the
mathematical framework and fix some notation. Section 3 provides the general ap-
proximation theorems, enabling one to replace the two-body Schrödinger picture by a
suitable collisional dynamics. Section 4 is devoted to the study of the collision func-
tion Iχ: we give general formula, study some properties and provide approximations
for some particular choices of the interaction potential V . In Section 5, we describe
the numerical method and present results obtained with that scheme. In particular, we
carefully analyze the decoherence effect carried on the heavy particle by the interaction
with the light one, showing the appearance, after the collision, of an uncorrelated bump
and explaining it theoretically. Finally, the last sections are devoted to the rigorous
mathematical proofs of the main theorems of sections 3 and 5.4.

2. Preliminaries
Let us recall some elementary notions of quantum mechanics and fix some nota-
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tion. The state of a pair of quantum particles in space dimension d can be represented
by a function ψ in L2(R2d) called the “wave function”, whose norm equals one, to be
interpreted according to the well-known Born’s rule: given Ω1,Ω2⊆Rd, the quantity∫
Ω1

∫
Ω2
|ψ(X,x)|2dxdX is the joint probability of finding the heavy particle in the do-

main Ω1 and the light one in Ω2 after a measurement of their positions. In order to detect
and measure the decoherence, one has to study the probability density

∫
Rd |ψ(X,x)|2dx

of finding the heavy particle at a point X, averaged on the position of the light one.

As already stated, we assume that the ratio of the masses of the two particles is
small, and fix the mass of the heavy particle to M =1 for the analytical investigations,
while the mass of the light particle will be denoted by m=ε�1. In the numerical
section (Section 5) however we will choose different values for M for scaling reasons.

We assume that the interaction between the two particles can be modelled by a
regular, rapidly decaying and non-negative potential V, that depends on the distance
between the two particles only. Due to the regime of small mass ratio, in order to
obtain a non-trivial evolution for the heavy particle, we suppose that the strength of
the interaction is of the order of the inverse of the mass ratio (ε−1). More precisely, as
this choice simplifies the analysis and does not affect the results, we define the coupling
constant as ε−1(ε+1), which is the inverse of the reduced mass of the two-body system.

Under such assumptions, the time evolution of the two-body wave function
ψε(t,X,x) is given by (1.1), associated with the initial condition

ψε(0,X,x) =: ψ0
ε(X,x) = ϕ(X)[U0(−ε−γ)χ](x), (2.1)

where ϕ and χ are regular functions (see next section for the exact regularity required)
and γ∈ (0,1). The presence of the free propagator U0(−ε−γ) in the definition of the
initial state of the light particle is useful to describe a situation in which the light particle
comes from infinity and reaches x=0 in a time of order ε1−γ . Furthermore, it makes
it possible to treat χ as an incoming state in the sense of the scattering theory (see
e.g. [23]).

2.1. Notation.

• For p∈ [1,∞], the norm in Lp(Rd) or in Lp(R2d) is denoted by ‖·‖p: the context will
always clarify the domain we refer to. For the norm in Hs(Rd) for s∈R, we use the
symbol ‖·‖Hs .

• We denote the free Hamiltonian operator in L2(Rd) by

H0 :=−
1

2
Δ, H0 :H

2(Rd)⊂L2(Rd)→L2(Rd),

which is self-adjoint in L2(Rd) and generates the free Schrödinger propagator, denoted
in the following by U0(t). The family of such operators is a strongly continuous unitary
group (for more details, see e.g. [22], Ch. 8). At fixed t, U0(t) acts as the convolution
with the integral kernel

U0(t,x) =
1

(2πit)d/2
ei

|x|2
2t , x∈Rd.

• Whenever a tensor product appears, the first factor refers to the heavy particle or
to its state, while the second refers to the light particle or to its state. The convention
applies to operators and wave functions. Given a wave function χX for the light particle,



1378 A HEAVY PARTICLE INTERACTING WITH A LIGHT PARTICLE

where the coordinate X of the heavy particle enters as a parameter, ϕ⊗χX will denote
the wave function defined by

[ϕ⊗χ
X
](X,x) :=ϕ(X)χ

X
(x).

Of course, this is an abuse of notation since χ
X
depends on X, but it will be useful and

unambiguous in the sequel.

•The interaction between the light and the heavy particle is described by the potential
V :Rd−→R. In theorems 3.2 and 3.4 the potential V is required to fulfill some general
hypotheses (see assumptions (H1)–(H3) and related comments). For the numerical
analysis (see Section 4.2) three different kinds of V are considered, which share the
features of being non negative and rapidly decreasing, but are different in terms of local
regularity.

• We denote by HV the Hamiltonian

HV :=−1

2
Δ+V,

where V is the multiplication by V (x). In all cases we consider, HV is self-adjoint, and
UV (t) denotes the unitary group generated by HV , i.e.

UV (t) :=e
−iHV t.

• We denote by S the scattering operator between the self-adjoint operators H0 and
HV , i.e.

SV :=s− lim
t,t′→+∞

SV (t,t
′), where SV (t,t

′) :=U0(−t′)UV (t+ t
′)U0(−t), (2.2)

and the limit holds in the strong operator topology. In all cases we consider, SV is
well-defined and unitary.

• Consider the self-adjoint Hamiltonian operator HV , its unitary group UV and the
related scattering operator SV . Then, the shifts by any X ∈Rd, denoted respectively by
HX

V , UX
V , and SX

V , are also well-defined and share the properties of the unshifted ones.
More explicitly,

HX
V :=−1

2
Δ+V (·−X), UX

V (t) :=e−iHX
V t,

SX
V :=s− lim

t,t′→+∞
SX
V (t,t′), where SX

V (t,t′) := U0(−t′)UX
V (t+ t′)U0(−t).

When no confusion is possible, we will forget the subscript V and use the shorthand
notation H,S,U and HX ,UX ,SX .

• The two-particle free Hamiltonian operator and the Hamiltonian operator containing
the interaction among the two particles shall be denoted respectively by

Hf
ε :=−1

2
ΔX−

1

2ε
Δx, Hε :=−

1

2
ΔX−

1

2ε
Δx+

1+ε

ε
V (|X−x|).

Both are unbounded self-adjoint operators on L2(R2d). The associated unitary groups
will be represented respectively by Uf

ε (t) and Uε(t).
The unitary group generated by Hf

ε factorizes as

Uf
ε (t) = U0(t)⊗U0(t/ε).
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• The Fourier transform of a function φ∈L2(Rd) is denoted by φ̂ and is defined by

φ̂(k) := (2π)−
d
2

∫
Rd

e−ik·xφ(x)dx, (2.3)

where k ·x is the Euclidean scalar product in Rd between the vectors k and x.

• Given a functional space Hs(Rd) (possibly with s=0), we define the translation
operator θX by

θXφ(x) = φ(x−X),

for any φ∈Hs(Rd). It turns out that θX is a unitary operator.

• The space of self-adjoint trace-class operators (see [22]) on L2(Rd) or in L2(R2d) is
denoted by L1 and the norm of a generic element ρ in that space is given by

‖ρ‖L1 := Tr|ρ|, ∀ρ∈L1,

where Tr denotes the trace functional (see [22], Ch. VI). The subspace of the positive
elements of L1 is denoted by L1

+, without specifying whether the operator of interest
acts on L2(R2d) or on L2(Rd). Anyway, the context will always be unambiguous: if ρ is
the density operator of a single particle, then ‖ρ‖L1 denotes its trace class norm as an
operator on L2(Rd). Conversely, if ρ is the density operator of a two-particle system,
then ‖ρ‖L1 denotes its trace class norm as an operator on L2(R2d).

• We shall make occasional use of the so-called Dirac’s bra-ket notation: for example,
the state of the heavy particle will be denoted by |ϕ〉, while the state of the light particle
by |χ〉. A scalar product between two states of the light particle shall be denoted by
〈χ′|χ〉, while the orthogonal projector along the span of |χ〉 will be represented by |χ〉〈χ|.
• We will always assume that wave functions ϕ, χ, and density operators ρ are normal-
ized, i.e.

‖ϕ‖2=‖χ‖2=1, ρ∈L1
+, and ‖ρ‖L1 =1.

2.2. Assumptions. We introduce three hypotheses that we shall use in theo-
rems 3.2 and 3.4.

(H1) The Hamiltonian HV is self-adjoint on L2(Rd), its point spectrum is empty and
zero-energy resonances are absent.

(H2) Asymptotic completeness holds for the couple of self-adjoint operators H0 and
HV , and the scattering operator SV is well-defined and unitary in L2(Rd).

(H3) There exist s∈R and a constant Cs>0 such that

∀χ∈L2(Rd), ‖|x|SV χ‖2≤‖|x|χ‖2+Cs‖χ‖Hs .

Let us comment on these hypotheses. The first one, (H1), requires self-adjointness of
the Hamiltonian operator, which provides well-posedness of the associated Schrödinger
equation and unitarity of the propagator; bound states, as well as zero-energy resonances
are to be avoided for the wave operators to be well-defined. The second hypothesis (H2)
prescribes the unitarity of the scattering operator. The third one (H3) is less common,
and is a regularity assumption on the scattering operator SV . For d=1, (H3) can be
replaced by the stronger assumption
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(H3’) There exists an s∈R and a constant Cs>0 such that the reflection and trans-
mission amplitudes rk and tk (see Section 4.1) satisfy

|∂ktk|+ |∂krk|≤Cs(1+ |k|2)
s
2 . (2.4)

The fact that (H3’) implies (H3) is proven in Lemma 4.1.
Roughly speaking, hypotheses (H1)–(H3) are fulfilled by non negative, regular po-

tentials that decay fast enough at infinity. In dimension one, (H1)–(H3’) are satisfied,
among others, by the repulsive Dirac’s delta potential and potential barriers, for which
the transmission and reflection amplitudes are explicitly known. See Section 4 for more
details.

3. Analytical results
In this section we give the analytical results that provide an approximate solution

to the problem (1.1), (2.1) in the regime ε�1. In Theorem 3.2 the case of a pure state
(i.e. a wave function) is considered, and we give an approximate solution in which the
evolution of the heavy particle is decoupled from the evolution of the light one, provided
that the initial state has been suitably modified. In Theorem 3.4 we generalize the
result to the case of a mixed state (i.e. a density operator), in which the problem (1.1),
(2.1) is replaced by the operator differential equation (3.8). Theorem 3.4 provides an
approximate density operator for the heavy particle whose dynamics is governed by a
free evolution problem with modified initial data. The modification of the initial data
is given by the action of the collision operator Iχ.

For the convenience of the reader, proofs are postponed to Section 6.
Theorems 3.2 and 3.4 supply the theoretical basis of the numerical method that will

be introduced in Section 5.

Definition 3.1. Given ε>0, the operator Sε, acting on L2(R2d) is the unique unitary
extension of

Sε(ϕ⊗χ) :=ϕ⊗
[
U0(−ε−γ)SXχ

]
, ∀ϕ,χ∈L2(Rd); (3.1)

Furthermore, the operator Ŝ, acting on L2(R2d), is the unique unitary extension of

Ŝ(ϕ⊗χ) = ϕ⊗SXχ.

Notice that, with our notation, Sε=
[
I⊗U0(−ε−γ)

]
Ŝ.

Theorem 3.2. Assume that the potential V is such that hypotheses (H1)–(H3) are
satisfied and denote by s a real number for which (H3) holds. Choose ϕ∈H1(Rd) such
that |X|ϕ∈H1(Rd), and χ∈Hs+1(Rd) such that |x|χ∈H1(Rd).

Let ψε(t) denote the solution to (1.1) with M =1 and the initial condition (2.1);
moreover let ψa

ε (t) denote the solution to the free two-body Schrödinger equation{
i∂tψ

a
ε =− 1

2ΔXψ
a
ε − 1

2εΔxψ
a
ε =H

f
ε ψ

a
ε

ψa
ε (0)=ϕ⊗U0(−ε−γ)SXχ=Sε(ϕ⊗χ).

(3.2)

Then, the following estimate holds

‖ψε(t)−ψa
ε (t)‖2≤C1

(
1+ε

ε
t−ε−γ ,ε−γ

)
+C2ε+C3ε

1−γ , (3.3)



R. ADAMI, M. HAURAY, AND C. NEGULESCU 1381

where the constants are given by

C1(τ,τ
′) :=‖ϕ[S(τ,τ ′)−S]χ(·−X)‖2 (3.4)

C2 :=2
√
2
(
‖∇ϕ‖2‖|x|χ‖2+‖|X|ϕ‖2‖∇χ‖2+‖X ·∇ϕ‖2+‖x ·∇χ‖2

)
+
√
2Cs

(
‖∇ϕ‖2‖χ‖Hs +‖χ‖Hs+1

)
(3.5)

C3 :=2
√
2
(
‖∇ϕ‖2‖∇χ‖2+2‖Δχ‖2

)
, (3.6)

with s and Cs defined by the hypothesis (H3).

For the proof see Section 6.

Remark 3.1.
i) The first term in (3.3) is quite implicit, nevertheless hypotheses (H1)–(H2) guar-

antee

lim
τ,τ ′→+∞

C1(τ,τ
′)=0.

Indeed, the existence of the strong limit that defines the scattering operator (see (2.2))
implies that, for fixed X and χ,

∥∥SX(τ,τ ′)χ−SXχ
∥∥
2
→0 as τ,τ ′→+∞, and therefore,

observing that

C1(τ,τ
′)2≤|ϕ(X)|2

∥∥SX(τ,τ ′)χ−SXχ
∥∥2
2
≤4|ϕ(X)|2,

by dominated convergence one has C1(τ,τ
′)→0 as τ,τ ′→∞.

Notice that in order to explicitly estimate C1(τ,τ
′), one needs to study the one-body

scattering of the light particle by the potential V . See Proposition A.2 for an example.

ii) The constant C2 in Theorem 3.2 depends on the regularity properties of the
scattering operator through the assumption (H3). If this hypothesis is not satisfied,
then one can prove that the constant C2 may be replaced by

C ′
2 :=

∥∥∥ |x|[∇ϕ⊗SX χ+ϕ⊗SX∇χ
]∥∥∥

2
+5

∥∥ |x−X||∇ψ0|
∥∥
2
.

Remark 3.2. Matching Theorem 3.2 with Proposition A.2, one has that for the one-
dimensional system with V =αδ0, α>0, the solution ψε to (1.1) is well-approximated
by the solution ψa

ε to (3.2). More precisely, for any initial condition of the type treated
in Theorem 3.2, there exists a constant C depending on ϕ and ψ such that

∀t≥2ε1−γ , ‖ψε(t)−ψa
ε (t)‖2≤C

[(ε
t

) 1
4

+ε1−γ
]
.

Remark 3.3. There are some differences with respect to the previously known
results [2, 3]. First, we modified the initial state for the light particle by inserting the
operator U(−ε−γ). Physically, this means that in our idealized experiment the light
particle enters the system at time t=−∞ and immediately becomes entangled with the
heavy one. On the other hand, in the physical situation depicted in [2, 3, 10, 13] each
light particle is injected in the system at time zero. The mathematical consequence of
our choice is that the initial state of the light particle is (approximately) transformed
via the action of the scattering operator instead of the Møller wave operator. This is
consistent with the original Joos–Zeh’s formula ( [19]).
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The main advantage of our choice is that, in general, the operator S is rather simple
to write in Fourier variables as it involves the Fourier transform only, while the Møller
operator involves a different (and usually implicit) eigenfunction expansion. As a con-
sequence, the scattering operator is better suited for a direct analytical study and for
numerical simulations too.

Remark 3.4. Theorem 3.2 can be formally restated as follows:

Uε(t)(I⊗U0(−ε−γ)) ≈ Uf
ε (t)Sε= Uf

ε (t)(I⊗U0(−ε−γ))Ŝ (3.7)

for times of order one. Pictorially, (3.7) states that for small ε the light particle is
instantaneously scattered away by the heavy one, which may be considered as fixed
during the interaction.

Let us generalize Theorem 3.2 to the formalism of density operators. Such a step
is necessary in order to describe the dynamics of the heavy particle when interacting
with several light particles: indeed, as we can see from (3.2), the initial condition for
the limit model is not factorized, so after one collision the heavy particle lies in a mixed
state that has to be described by the appropriate density operator.

Assume that the initial state of the heavy particle is given by the density operator
ρM(0)∈L1

+, while, as before, the light particle at time zero lies in the state represented
by the wave function U0(−ε−γ)χ. Then, the density operator ρε(t) that represents the
state of the two-body system at time t solves the operator differential equation{

i∂tρε(t) = [Hε,ρε(t)]

ρε(0) :=ρM (0)⊗ |U0(−ε−γ)χ〉〈U0(−ε−γ)χ|,
(3.8)

where the symbol [A1,A2] denotes the commutator of the operators A1 and A2.
For the sake of studying the dynamics of the heavy particle, the interesting quantity

is the density operator of the heavy particle, which is denoted by ρMε (t) and defined as

ρMε (t) := Trmρε(t)=
∑
j

〈χj |ρε(t)|χj〉, (3.9)

where {χj}j∈N is a complete orthonormal set for the space L2(Rd), and Trm denotes
the so-called partial trace w.r.t. the light particle.

Let us be more precise on how to compute such a partial trace. As ρε(t) is compact,
it can be represented as an integral operator whose kernel can be denoted, with a slight
abuse of notation, by ρε(t,X,X

′,x,x′). The integral kernel of the reduced density matrix
for the heavy particle then reads

ρMε (t,X,X ′) :=
∫
Rd

ρε(t,X,X
′,x,x)dx. (3.10)

There does not exist a closed equation for the time evolution of ρMε , but, as we shall
see, as ε goes to zero and for any t �=0, the operator ρMε (t) converges to an operator
ρM,a(t) that satisfies a closed equation. In order to state this result properly, we need
to introduce a further operator on L1 which we call the collision operator.

Definition 3.3 (Collision operator). Suppose that the hypotheses (H1)–(H2) are
satisfied. Then, we define the collision operator

Iχ :L1(Rd)→L1(Rd), ρM �→Trm
(
ρM ⊗|SXχ〉〈SX′

χ|
)
. (3.11)
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Remark 3.5. It can be verified that the operator Iχ is well-defined and completely
positive (in particular it preserves positivity). Moreover, it satisfies the estimate

Tr |IχρM |≤Tr|ρM | with equality if ρM ∈L1
+. (3.12)

Remark 3.6. In terms of integral kernels, the action of the collision operator reads

[Iχρ](X,X ′)=ρ(X,X ′)Iχ(X,X ′), (3.13)

where the collision function Iχ is defined by

Iχ(X,X
′) := 〈SX′

χ|SXχ〉, X,X ′∈Rd (3.14)

Notice that the function Iχ reaches its maximum modulus at X=X ′, where it equals
one.

Theorem 3.4. Assume that the potential V is s.t. the hypotheses (H1)–(H3) are
satisfied, choose ρM (0)∈L1

+ s.t. ∇ρM (0)∇ and | · |∇ρM (0)∇|· |∈L1
+; choose χ∈Hs(Rd)

for some s≥1. Denote by ρε(t) the solution to equation (3.8) and by ρM,a(t) the unique
solution to the problem {

i∂tρ
M,a(t) = [H0,ρ

M,a(t)]

ρM,a(0) :=IχρM(0).
(3.15)

Then, the following estimate holds

‖ρMε (t)−ρM,a(t)‖L1 ≤ C̃1

(
1+ε

ε
t−ε−γ ,ε−γ

)
+ C̃2ε+ C̃3ε

1−γ , (3.16)

where the constants are given by

C̃1(τ,τ
′) :=2

∥∥ρM (0)|[S(τ,τ ′)−S]χ(·−X ′)〉〈[S(τ,τ ′)−S]χ(·−X)|
∥∥ 1

2

L1

C̃2 :=4
√
2
(
‖∇ρM (0)∇‖

1
2

L1‖|x|χ‖2+‖|X|ρM (0)|X|‖
1
2

L1‖∇χ‖2
+
∥∥|X|∇ρM (0)∇|X|

∥∥ 1
2

L1 +‖|x|∇χ‖2
)

+2
√
2Cs

(
‖∇ρM (0)∇‖

1
2

L1‖χ‖Hs +‖χ‖Hs+1

)
C̃3 :=4

√
2
(
‖∇ρM (0)∇‖

1
2

L1‖∇χ‖2+2‖Δχ‖2
)
.

The proof is given in Section 6.
The last step in our theoretical framework consists in the possibility of extending

the previous procedure to the case of many light particles to be injected in the system
one after another. To this purpose, one should use an approximation result analogous to
Theorem 3.4, but adapted to a multi-particle system with light particles arriving at dif-
ferent times. Instead of following this approach, which is fully rigorous but cumbersome
and very difficult to handle (see for instance [3] for a result with many simultaneous
“collisions”), we will repeatedly use the approximation given by Theorem 3.4. This
means that we treat the heavy particle as if it were interacting with only one light
particle at a time.
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Under that approximation, the multiple use of the collision operator Iχ is justified,

provided that the constants C̃1, C̃2, and C̃3 appearing in Theorem 3.4 do not explode
when computed for ρM,a(t) instead of ρM (0). The behavior of such constants can
be shown to depend on the regularity properties of the collision function Iχ only. In
particular, the calculation of the kinetic energy of ρM,a(0) in terms of ρM (0) and Iχ,

done in Proposition 4.2, may guarantee the correct behavior of the constants C̃1, C̃2

and C̃3, but we will not go into such details.

4. One-dimensional systems. Computation of Iχ
In this section we restrict to one-dimensional problems and provide a general ex-

pression for the collision function Iχ (see (4.11), (4.12), (4.13)) whose form shows that
Iχ depends on the reflection and transmission amplitudes associated to the potential V
and on the wave function of the light particle. Using this expression we compute the
energy and momentum transfer occurring in a two-body collision.

Furthermore, assuming that the state of the light particle is represented by a Gaus-
sian wave packet with a narrow spectrum in momentum, we prove an approximation of
Θχ (see (4.22)) to be used in Section 5.4.

4.1. Scattering operator, reflection and transmission amplitudes. Con-
sider a particle moving on a line under the action of the potential V , and assume
hypotheses (H1)–(H3). We define the transmission amplitude tk and the reflection am-
plitude rk as the two complex coefficients s.t. the action of the scattering operator S,
defined in (2.2), reads

(Sχ)(x)=
1√
2π

∫
R

[tkχ̂(k)+r−kχ̂(−k)]eikxdk, ∀x∈R, (4.1)

for any χ∈L2(R). We stress that definition (4.1) corresponds to the following formal
action on plane waves

S(eikx)= rke
−ikx+ tke

ikx,

which, in turn, agrees with the definition of reflection and transmission amplitudes
usually found in physics textbooks, namely, tk and rk are the two complex coefficients
s.t. the generalized eigenfunction ψk of the operatorHV corresponding to the generalized

eigenvalue E= k2

2 �=0,k>0 fulfills the asymptotics

ψk(x) ∼
1√
2π

(
eikx+rke

−ikx
)
, x→−∞,

ψk(x) ∼
1√
2π
tke

ikx, x→+∞.
(4.2)

It proves useful to represent the action of S through the 2×2 matrices

S(k) :=

(
tk r−k

rk t−k

)
, k>0, (4.3)

that act on the vectors (χ̂(k),χ̂(−k))k>0 as follows

∀k>0,

(
Ŝχ(k)

Ŝχ(−k)

)
=S(k)

(
χ̂(k)
χ̂(−k)

)
. (4.4)



R. ADAMI, M. HAURAY, AND C. NEGULESCU 1385

Moreover, the unitarity of S implies, for k �=0,

|tk|2+ |rk|2=1, rkt−k+ tkr−k=0, |rk|= |r−k|. (4.5)

The fact that S commutes with the Laplacian, together with its unitarity, gives

‖Sχ‖Hs =‖χ‖Hs , ∀s∈R, ∀χ∈Hs(R).

We are ready to prove that, as stated in Section 2, the condition (H3′) in dimension
one implies condition (H3).

Lemma 4.1. Suppose that for some s∈R and Cs>0 the transmission and reflection
coefficients satisfy

|∂ktk|+ |∂krk|≤Cs(1+ |k|2)
s
2 =:Cs〈k〉s. (4.6)

Then, for all χ∈Hs(R)

‖xSχ‖2=‖∂k[Ŝχ]‖2≤‖xχ‖2+2Cs‖χ‖Hs .

Proof. Since

∂k

(
Ŝχ(k)

Ŝχ(−k)

)
=[∂kS(k)]

(
χ̂(k)
χ̂(−k)

)
+S(k)

(
∂kχ̂(k)
∂kχ̂(−k)

)
,

one gets

∥∥∂kŜχ∥∥2≤
(∫ +∞

0

∣∣∣∣[∂kS(k)]( χ̂(k)
χ̂(−k)

)∣∣∣∣2dk
) 1

2

+

(∫ +∞

0

∣∣∣∣S(k)( ∂kχ̂(k)
∂kχ̂(−k)

)∣∣∣∣2dk
) 1

2

.

By unitarity of S(k), the second term in the r.h.s. equals ‖∂kχ̂‖2=‖xχ‖2. Furthermore,
by (4.6), ∫ +∞

0

∣∣∣∣[∂kS(k)]( χ̂(k)
χ̂(−k)

)∣∣∣∣2dk≤4C2
s

∫ +∞

0

〈k〉2s
(
|χ̂(k)|2+ |χ̂(−k)|2

)
dk

≤4C2
s‖χ‖2Hs .

This implies the claimed result.

The effect of translation. If the potential V is translated by a quantity X,
then the reflected wave is delayed by a phase equal to 2kX and the transmitted one
remains unchanged. As a consequence, one has the following

Lemma 4.2. Let V be s.t. the Hamiltonian operator HV =− 1
2∂

2
x+V satisfies assump-

tions (H1)–(H3). Then, the translated Hamiltonian operator HX
V =− 1

2∂
2
x+V (·−X)

satisfies (H1)–(H3) and, denoting the corresponding reflection and transmission ampli-
tudes by rXk and tXk , one has

rX

k = e2ikXrk, tXk = tk, ∀k∈R\{0}. (4.7)
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Proof. According to the notation of Section 2, we denote by θX the translation
operator s.t. θXχ=χ(·−X). Then, one easily gets

UX
V (t)=θXUV (t)θ−X , (4.8)

so that UX
V (t) and UV (t) are unitarily equivalent and assumptions (H1)–(H3) are pre-

served by translation. Furthermore, (4.8) implies

SX
V = θXSV θ−X . (4.9)

By direct computation θ̂−Xχ(k) = eikX χ̂(k), so one finally gets

ŜX
V χ(k) = e−2ikXr−kχ̂(−k)+ tkχ̂(k)

and the proof is complete.

Corollary 4.1. The matrix SX
V reads

SX

V (k)=

(
tk e−2ikX r−k

e2ikX rk t−k

)
. (4.10)

Lemma 4.2 (and Corollary 4.1) allow us to get a rather simple expression for the
collision function Iχ.

Proposition 4.1. For a one-dimensional two-particle system, endowed with an
interaction potential V such that the hypotheses (H1)–(H3) are verified, the collision
function Iχ defined in (3.14) can be expressed as

Iχ(X,X
′)=1−Θχ(X−X ′)+ iΓχ(X)− iΓχ(X

′), (4.11)

with the definitions

Θχ(Y ) :=

∫
R

(
1−e2ikY

)
|rk|2|χ̂(k)|2dk, (4.12)

Γχ(X) := i

∫
R

e2ikX r−k tk χ̂(−k)χ̂(k)dk. (4.13)

Proof. The proof is an elementary computation to be carried out using defini-
tion (3.14), the equation (4.1), the relations (4.5), and Lemma 4.2.

Remark 4.1. By the change of variable k→−k in the integral defining Iχ and the
relations (4.5), one immediately finds that Γχ(X) is real for any X.

Effect of the collision operator on kinetic energy and momentum of the
heavy particle. In order to interpret the functions Θχ and Γχ we study the transfer
of energy and momentum between the heavy and the light particle.

We recall that for a particle in the mixed state ρ lying in a d-dimensional space,
the average momentum and kinetic energy are given by

P (ρ)=Tr
(1
2

[
(−i∇)ρ+ρ(−i∇)

])
or P (ρ)=

i

2

∫
Rd

(∇2−∇1)ρ(X,X)dX, (4.14)
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Ekin(ρ)=
1

2
Tr(−i∇·ρ[−i∇]) or Ekin(ρ)=

1

2

∫
Rd

∇2 ·∇1ρ(X,X)dX. (4.15)

The probability current −→j is defined, in terms of the density operator, by

−→j :=
1

2

[
ρ(−i∇)+(−i∇)ρ

]
or −→j (X,X ′) :=

i

2
(∇2−∇1)ρ(X,X

′). (4.16)

Remark that P (ρ)=Tr−→j . For the sake of interpreting the forthcoming proposition,
one can consider that, if ρ is the density operator representing the state of the heavy
particle before the collision, then, in our approximation, Iχρ is the density operator
representing the state of the heavy particle after the collision.

Proposition 4.2. The momentum and the kinetic energy of a particle moving on a
line, as it lies in the mixed state represented by the density operator Iχρ, are given by

P
(
Iχρ

)
=P (ρ)+ iΘ′

χ(0)+
1

2
Tr
(
Γ′
χρ+ρΓ

′
χ

)
, (4.17)

Ekin(Iχρ)=Ekin(ρ)+ iΘ
′
χ(0)P (ρ)+

1

2
Θ′′

χ(0)+
1

2
Tr
(
Γ′
χj+jΓ

′
χ

)
, (4.18)

where Γ′
χ denotes the operator whose action is the multiplication by the derivative of

Γχ and j is the only component of the current �j that is present in the one-dimensional
case.

Proof. From decomposition (4.11), one immediately gets

∂1Iχ(X,X
′)=−Θ′

χ(X−X ′)+ iΓ′
χ(X)

∂2Iχ(X,X
′)=Θ′

χ(X−X ′)− iΓ′
χ(X

′),

where ∂j denotes the derivative w.r.t. the jth argument. By exploiting the second
identity in (4.14), a straightforward computation yields

P
(
Iχρ

)
=P (ρ)+ iΘ′

χ(0)+

∫
R

Γ′
χ(X)ρ(X,X)dX,

which may be rewritten as (4.17).
Concerning kinetic energy, by the second identity in (4.15) one gets

2Ekin(Iχρ)=2Ekin(ρ)+

∫
R

[
(∂1Iχ)(X,X)(∂2ρ)(X,X)+(∂2Iχ)(X,X)(∂1ρ)(X,X)

]
dX

+

∫
R

(
∂2∂1Iχ

)
(X,X)ρ(X,X)dX.

Using decomposition (4.11), one finally has

Ekin(Iχρ)=Ekin(ρ)−
1

2
Θ′

χ(0)

∫
R

[
(∂2ρ)(X,X)−(∂1ρ)(X,X)

]
dX

+
i

2

∫
R

Γ′
χ(X)

[
(∂2ρ)(X,X)−(∂1ρ)(X,X)

]
dX+

1

2
Θ′′

χ(0).

This finally leads to (4.18).
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Remark 4.2. First, by (4.12), one has Θχ(0)=0, Re(Θ′
χ(0))=0, and Im(Θ′′

χ(0))=0,
so that all quantities in Proposition 4.2 are real. In particular, notice that

iΘ′
χ(0)=2

∫
R

k|rk|2|χ̂(k)|2dk, (4.19)

which is in general different from zero, so that a transfer of momentum and energy
is possible even though one could intuitively suspect that the light particle is in fact
too light in order to exchange momentum or energy with the heavy one. In order to
understand this fact, recall that the light particle has a momentum independent of ε
and a kinetic energy of order ε−1. Thus the collision occurs between two particles with
momentum of the same order, for which exchanges of momentum and energy can take
place.

Besides, the above formula (4.19) has a relatively simple interpretation. The plane
wave eikx has a probability |rk|2 of being reflected, i.e. to gain a momentum −2k. Since
the state of the incoming particle can be understood as a superposition of plane waves
with weight χ̂(k), the average gain in momentum amounts to −2

∫
R
k |rk|2|χ̂(k)|2dk for

the light particle. By conservation of momentum, the average gain in momentum for
the heavy particle equals the r.h.s. of (4.19).

On the other hand, the last term in (4.17) does not have, at least to our concern, a
clear interpretation. This is due to the fact that it takes into account the interference
between the reflected and the transmitted waves, so that there is no classical counterpart
to provide some understanding.

For the kinetic energy the situation is analogous: the sum of the second and the
third term in the r.h.s. of (4.18)

iΘ′
χ(0)P (ρ)+

1

2
Θ′′

χ(0)=2

∫
R

(k+P (ρ))k|rk|2|χ̂(k)|2dk

=
1

2

∫
R

[
(2k+P (ρ))2−P (ρ)2

]
|rk|2|χ̂(k)|2dk

can be understood similarly to the first term in the r.h.s. of (4.17), while the last term is
due to a superposition effect between transmitted and reflected waves and its meaning
is therefore less transparent.

The case of an initial Gaussian state for the light particle. Let us spe-
cialize to the case in which the initial state of the incoming light particle is represented
by a Gaussian wave function, i.e.

χ(x)=
1

(2πσ2)1/4
e−

(x−xl)
2

4σ2 +ipx, (4.20)

where xl∈R is the centre of the wave packet, σ its spread, and p its mean momentum.
Then,

χ̂(k)=

(
2σ2

π

)1/4

e−σ2(k−p)2−i(k−p)xl .

We shall make this choice of state for the light particle in Section 5, when dealing with
numerical simulations. For this reason, we give simplified expressions for Θχ and Γχ

and we provide some related approximation formulas that prove easy to handle. In fact,
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for the Gaussian case definitions (4.12) and (4.13) yield

Θσ,p(Y ) = σ
√

2
π

∫
R

(
1−e2ikY

)
|rk|2e−2σ2(k−p)2 dk,

Γσ,p(X) = iσ
√

2
π e

−2σ2p2 ∫
R
tkr−k e

−2σ2k2+2ik(X−xl)dk.

(4.21)

If the wave packet has a large spread in position, so that its support in momentum is
small compared to the scale at which |rk|2 varies, then we can approximate Θσ,p by
using |rp|2 instead of |rk|2 in the integral, and get the following approximation

Θapp
σ,p (Y ) := |rp|2

(
1−σ

√
2

π

∫
R

e2ikY−2σ2(k−p)2 dk

)
= |rp|2

(
1−e2ipY− Y 2

2σ2

)
. (4.22)

Approximating Γχ turns out to be more difficult. However, as a first step, assuming
that the light particle has a large momentum, we can approximate Γχ by 0 since the

factor e−2σ2p2

is negligible for σp large enough.

The approximations introduced here can be expressed in terms of density matrices.
Indeed, one has the following proposition:

Proposition 4.3. For any positive, self-adjoint operator ρ with Trρ=1, the following
estimate holds

∥∥Θσ,p(X−X ′)ρ(X,X ′)−Θapp
σ,p (X−X ′)ρ(X,X ′)

∥∥
L1 ≤

√
2

πσ2

∥∥∥∥d|rk|2dk

∥∥∥∥
∞
,∥∥i[Γσ,p(X)−Γσ,p(X

′)]ρ(X,X ′)
∥∥
L1 ≤2e−2σ2p2

,

where we denoted an operator by its integral kernel.

Proof. We will use the following simple estimates: for a wave packet χ with centre
x0, spread σ, and momentum p, we have∫

R

∣∣|rk|2−|rp|2∣∣ |χ̂(k)|2dk≤∥∥∥∥d|rk|2dk

∥∥∥∥
∞

∫
R

|χ̂(k)|2|k−p|dk

=
2

σ
√
2π

∥∥∥∥d|rk|2dk

∥∥∥∥
∞

∫ +∞

0

ke−k2

dk

=
1

σ
√
2π

∥∥∥∥d|rk|2dk

∥∥∥∥
∞

(4.23)

and

|Γσ,p(X)|≤σ
√

2

π
e−2σ2p2

∫
R

e−2σ2k2

dk= e−2σ2p2

. (4.24)

We shall only perform the proof in the case where ρ is a rank one projector:
ρ(X,X ′)=ϕ(X)ϕ(X ′), where ‖ϕ‖2=1. The general case follows by diagonalisation
of a general ρ and summation of the error given in the rank one case. Using (4.23), we
get
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σ,p (X−X ′)−Θσ,p(X−X ′))ρ(X,X ′)

∥∥
L1

≤‖ρ‖L1

∫
R

∣∣|rk|2−|rp|2∣∣ |χ̂(k)|2dk+∥∥∥∥∫
R

(|rk|2−|rp|2)e2ik(X−X′)|χ̂(k)|2ρ(X,X ′)dk
∥∥∥∥
L1

≤ 1

σ
√
2π

∥∥∥∥d|rk|2dk

∥∥∥∥
∞
+

∫
R

∥∥e2ikXϕ(X)e−2ikX′
ϕ(X ′)

∥∥
L1

∣∣|rk|2−|rp|2∣∣ |χ̂(k)|2dk
≤
√

2

πσ2

∥∥∥∥d|rk|2dk

∥∥∥∥
∞
.

Before going to the estimate on Γσ,p, we recall that for any rank one operator ρ′, i.e.
operator with kernel of the form ρ′(X,X ′)=ϕ1(X)ϕ2(X ′), we have the equality ‖ρ′‖L1 =
‖ϕ1‖2‖ϕ2‖2. If we apply this to the rank one operators with kernel Γσ,p(X)ϕ(X)ϕ(X ′)
and ϕ(X)Γσ,p(X ′)ϕ(X ′), we get∥∥i[Γσ,p(X)−Γσ,p(X

′)]ρ(X,X ′)
∥∥
L1

≤
∥∥Γσ,p(X)ϕ(X)ϕ(X ′)

∥∥
L1 +

∥∥Γσ,p(X
′)ϕ(X)ϕ(X ′)

∥∥
L1

≤2‖Γσ,pϕ‖2‖‖ϕ‖2≤2‖Γσ,p‖∞≤2e−2σ2p2

.

This concludes the proof.

4.2. Particular potentials of interest. Here, we briefly introduce three
particular potentials that we shall use in the numerical simulations.

Dirac’s delta potential. In the case V =αδ0, with α>0, the reflection and
transmission amplitudes are given by (see Proposition A.2)

rk=−
α

α− i|k| , tk=−
i|k|

α− i|k| , ∀k∈R. (4.25)

In the next section, we will use (4.25) to compute the function Iχ numerically via (4.11),
(4.12), (4.13). To avoid the numerical integration, one can use formula (4.22), which
gives

Θδ,app
σ,p (Y )=

α2

α2+p2

(
1−e2ipY− Y 2

2σ2

)
. (4.26)

Potential barrier. A further potential for which the scattering matrix can be
explicitly computed is the potential barrier, i.e.

V (x) :=V0�[−a,a], V0=
α

2a
a>0,

where � denotes the characteristic function and α>0 measures the strength of the

interaction. Letting E= k2

2 denote the energy of the incoming wave and defining k0 :=√
2(E−V0)∈C, the transmission and reflection amplitudes have the forms

tk=
4kk0e

−2ika

(k+k0)2e−2ik0a−(k−k0)2e2ik0a
, ∀k∈R\{0}, (4.27)

rk=
(k2−k20)e−2ika(e−2ik0a−e2ik0a)

(k+k0)2e−2ik0a−(k−k0)2e2ik0a
, ∀k∈R\{0}. (4.28)
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Numerical approximation for more general potentials. In the case of
more general potentials, there is no analytic expression for the amplitudes rk and tk,
however, we can compute them numerically.

We assume that the potential V rapidly decreases at infinity, and choose a suf-
ficiently large a such that we can approximate V by 0 on R\ [−a,a]. Let us shortly
summarize the classical procedure to calculate the reflection and transmission ampli-
tudes.

We look for generalized eigenfunctions ψk of the Hamiltonian − 1
2Δ+V associated to

the eigenvalue E= k2

2 . Due to our approximation, these eigenfunctions are combinations
of the free waves eikx and e−ikx outside the interval [−a,a]. For k>0 we look for
solutions satisfying

ψk(x) :=

{
eik(x+a)+rke

−ik(x+a) for x<−a,
tke

ik(x−a) for x>a.
(4.29)

In order to find the values of tk and rk, one must solve the stationary Schrödinger
equation associated with transparent boundary conditions in the interval [−a,a]⎧⎪⎨⎪⎩

− 1
2ψ

′′
k (x)+V ψk=Eψ, x∈ [−a,a],

ψ′
k(−a)+ ikψk(−a)=2ik,

ψ′
k(a)− ikψk(a)=0.

(4.30)

Transparent boundary conditions express the fact that the wave function as well as its
derivative are continuous at ±a. Using the continuity of the wave function and of its
derivative at x=±a, it can be checked that the boundary conditions in (4.30) are indeed
satisfied if and only if conditions (4.29) are satisfied for some rk and tk. The reflection
and transmission amplitudes are then given by

tk :=ψk(a), rk :=ψk(−a)−1, ∀k>0. (4.31)

For a wave coming from the right, i.e. k<0, the procedure is analogous.

5. Numerical asymptotic resolution of the two-body Schrödinger system

In this section we use the approximations introduced in sections 3 and 4 in order to
efficiently resolve the two body Schrdinger equation (1.1), with initial condition given
by (2.1), in the regime ε�1. The final aim is to quantify and study numerically the
decoherence effect induced on the heavy particle by the interaction with the light one.

5.1. Model and initial data. According to Theorem 3.4, for small values of
ε we can replace the resolution of the two-body Schrödinger equations (1.1)-(2.1) or,
equivalently, of equation (3.8) for density operators, by the resolution of system (3.15)
for the reduced density operator of the heavy particle. Rephrasing the latter as an
equation for the integral kernel ρM,a(t,X,X ′) of the operator ρM,a(t), one gets⎧⎪⎨⎪⎩

i∂tρ
M,a(t,X,X ′)=− 1

2M
(ΔX−ΔX′)ρM,a(t,X,X ′), ∀(X,X ′)∈R2, ∀t∈R+

ρM,a(0,X,X ′)=ρM0 (X,X ′)Iχ(X,X ′),
(5.1)
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where the collision function Iχ is given by formulas (4.11), (4.12), (4.13), and ρM0 (X,X ′)
is the integral kernel of the operator ρM0 , which represents the state of the heavy particle
before the collision. We set

ρM0 (X,X ′) :=ϕ(X)ϕ(X ′), (5.2)

where

ϕ(X) :=N (ϕ−(X)+ϕ+(X)) (5.3)

with

ϕ±(X) :=
1

(2π)1/4
√
σH

e
− (X∓X0)2

4σ2
H e∓ipHX (5.4)

N :=
√
2

(
1+e

− X2
0

2σ2
H e−2σ2

Hp2
H

) 1
2

. (5.5)

The parameters X0, pH , and σH are positive.
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Fig. 5.1. Left: Probability density associated to the initial state of the heavy particle. Right:
Probability density associated to the state of the heavy particle in the case of no interaction, at the
time of maximal overlap of the two bumps.

Then, the integral kernel (5.2) can be rewritten as

ρM0 (0,X,X ′)=N2
[
ϕ−(X)+ϕ+(X)

][
ϕ−(X ′)+ϕ+(X ′)

]
=N2

[
ϕ−(X)ϕ−(X ′)+ϕ−(X)ϕ+(X ′)+ϕ+(X)ϕ−(X ′)+ϕ+(X)ϕ+(X ′)

]
. (5.6)

The two terms ϕ±(X)ϕ±(X ′) are called diagonal, while the two terms ϕ±(X)ϕ∓(X ′)
are called antidiagonal. In fact, in view of definition (5.4) the products ϕ±(X)ϕ±(X ′)
rapidly decay outside of a diagonal region {|X−X ′|�σH}, while the products
ϕ±(X)ϕ∓(X ′) are essentially supported in the region {|X+X ′|�σH}.

Physically, the density matrix “before the collision” ρM0 or, equivalently, the initial
wave function (5.3), describes a state consisting of a quantum superposition of two
localized bumps centred respectively at ±X0 and moving against each other with relative
speed 2pH/M , as illustrated in the left plot of Figure 5.1. If no light particle or, more
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generally, no interaction is present, then one should use ρM0 (X,X ′) as initial data in
(5.1). Thus, at timeMX0/pH the non-diagonal terms in (5.6) give rise to an interference
pattern, shown in the right plot of Figure 5.1. The emergence of interference is due to
the non-diagonal terms in (5.6). On the other hand, due to the collision, the initial data

in (5.1) is is replaced by ρM,a
0 (X,X ′)= Iχ(X,X ′)ρM0 (X,X ′). We will show in Section

5.3 that the presence of the factor Iχ dampens the interference.

5.2. Numerical domain and discretization. Here we give some brief expla-
nation about the numerical resolution of equation (5.1).

First, we truncate the spatial domain R2 to a bounded simulation domain Ω2
X :=

(−H,H)×(−H,H) and impose boundary conditions on ∂ΩX . To simplify computa-
tions, we choose homogeneous Neumann boundary conditions, which prescribe that the
particle is reflected at the boundaries. However, if the domain is sufficiently large,
the presence of the boundaries has negligible influence on the dynamics of the heavy
particle.

Second, we discretize equation (5.1). For the discretization in time we employ the
Peaceman–Rachford scheme which is unconditionally stable and second-order accurate.
Let us explain in more detail the steps in the scheme. We start by discretizing the time
interval [0,T ] and the simulation domain of the heavy particle ΩX =(−H,H). Let us
introduce the time and space steps

Δt=
T

L
>0, hX :=

2H

J−1
>0, with L,J ∈N

and define the homogeneous discretization tl := lΔt, Xj =−H+(j−1)hX , so that

0= t0≤···≤ tl≤···≤ tL=T, −H=X1≤···≤Xj≤···≤XJ =H.

Then, defining the operators A,B :H⊂L2(ΩX)→L2(ΩX)

A :=− 1

2M
ΔX , B :=

1

2M
ΔX′ , H :={φ∈H2(ΩX) / ∂nφ=0, on ∂ΩX },

where ∂n denotes the outward normal to the boundary ∂ΩX , the Peaceman–Rachford
scheme for the system (5.1) writes

ρl+1=

(
iId−Δt

2
A

)−1(
iId+

Δt

2
B

)(
iId−Δt

2
B

)−1(
iId+

Δt

2
A

)
ρl, l=0, . . . ,L−1,

(5.7)
where ρl (resp. ρlij) denotes the approximation of ρM,a(tl) (resp. ρM,a(tl,Xi,Xj)).
Notice that (5.7) is a sequence of Euler-explicit, Crank–Nicolson and Euler-implicit
steps. Equivalently, one performs a sequential resolution of two 1D systems(

iId−Δt

2
B

)
ρl+1/2=

(
iId+

Δt

2
A

)
ρl,

(
iId−Δt

2
A

)
ρl+1=

(
iId+

Δt

2
B

)
ρl+1/2.

Finally, we discretize the operators A and B in space via a standard second-order centred
method.

The parameters employed in the simulations are summarized in Table 5.1.
Let us briefly explain the reasons why the present numerical method is faster than

the one previously employed in [4].
First, thanks to Theorem 3.4 all information on the interaction is embodied in the
collision operator Iχ and is present in problem (5.1) through the initial condition only.
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2∗H 2∗10−1 J 201

T 1.92∗10−2 L 120∗20+1
� 1 pH 3.4∗M
M 100 p 1.25; 2.5; 3.5∗102
σH ,σ 10−2,2∗10−2 X0,xl 5∗10−2,2∗10−1

α 0, . . . ,40∗102

Table 5.1. Parameters used in the numerical simulations.

Therefore, one can get rid of any variable related to the light particle and thus of the
fast time scale. The initial multi-scale problem then reduces to a one-scale problem,
allowing a considerable gain in efficiency as compared to the method employed in [4].
Second, the scheme is an alternating-direction implicit (ADI) one, i.e. the actions of
the two operators A and B, acting respectively on the variable X and X ′, are sepa-
rated, so that, compared to a direct resolution of (5.1) via Crank–Nicolson method, the
computational costs are drastically reduced.

5.3. Numerical results and interpretation. Here we present some numerical
results obtained via the resolution method of the evolution equation (5.1) introduced in
the previous section. We give a detailed analysis for the case of a Dirac’s delta interaction
potential, and then stress the main analogies with the cases of a potential barrier and
of a Gaussian potential. Finally, we sketch the case with multiple light particles. For
any choice of the interaction potential V , the reflection and transmission amplitudes
are computed as detailed in Section 4 and the corresponding collision function Iχ is
calculated numerically by formulas (4.11), (4.12), and (4.13).

5.3.1. Dirac’s delta potential. Here we consider the case V (x)=αδ0(x), with
α∈R+.

The left plot in Figure 5.2 shows the quantity |ρM0 (X,X ′)| (i.e. the state of the
heavy particle before the collision with the light one). Notice that the non-trivial values
of ρM0 (X,X ′) are concentrated in four bumps. In accordance with the terminology
introduced in Section 5.1, the two bumps located around the diagonal X=X ′ are called
diagonal while the two others, located around the set X=−X ′, are called antidiagonal.
The diagonal bumps give the probability density associated to the state of the heavy
particle, while the antidiagonal bumps are responsible for the interference. Diagonal
and antidiagonal bumps share the same shape and the same size.
The right plot in Figure 5.2 displays |ρM,a(0,X,X ′)|= |Iχ(X,X ′)ρM0 (X,X ′)| (i.e. the
state of the heavy particle immediately after the collision) in the test case α=103. It
is easily seen that, as an effect of the collision with the light particle, the antidiagonal
bumps are damped, thus providing the expected attenuation of the interference.

Figure 5.3 is devoted to the collision function Iχ. In the left plot we show |Iχ(X,X ′)|
corresponding to the right plot of Figure 5.2, while in the right plot of Figure 5.3 we
give |Iχ(X,−X)| for different values of α. One can observe that, as the strength of
the potential varies, the band width of |Iχ(X,−X)| remains unchanged; on the other
hand, notice that the more the potential is intense, the more the quantity |Iχ(X,−X)|
is reduced for large values of X. It is precisely this reduction which causes the damping
of the antidiagonal bumps in Figure 5.2.

In order to examine how the decoherence effect varies with the momentum of the
light particle, in Figure 5.4 we plot |Iχ(0.05,−0.05)| for several values of α and three
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Fig. 5.2. Test case: Dirac potential with α=103. Left: Plot of |ρM0 (X,X′)| before the collision;
Right: Plot of |ρM,a(0,X,X′)| immediately after the collision.
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Fig. 5.3. Left: Plot of |Iχ(X,X′)| for α=103. Right: Plot of |Iχ(X,−X)| for several values of α.

different momenta p of the light particle. We observe that the larger the momentum is,
the smaller the decoherence effect on the heavy particle is. This can be explained by
the fact that most of the light particle is transmitted when its momentum is large.

Finally, in Figure 5.5 we display the probability density ρM,a(t∗,X,X) associated
to the state of the heavy particle at the time t∗=X0M/pH of maximal overlap of the
two diagonal bumps. The left plot in Figure 5.5 corresponds to a collision with a
light particle arriving from the right with mean momentum p=−2.5∗102, for several
potential strengths α. One sees that the probability density associated to the state of the
heavy particle splits into a component that exhibits complete interference and a bump
that travels with mean momentum pH +p>pH towards the right without experiencing
interference. We refer to the component that displays interference as the coherent part,
while the component in which interference is absent is referred to as the decoherent part.

In the right plot, the light particle has momentum p=0 and is located at the centre
xl=0. The interference pattern exhibits a clear decoherence effect. In particular, notice
that inside the pattern there are no points with zero probability. The corresponding
plot is similar to the ones exhibited in [4] through a direct use of the Joos–Zeh formula.
In fact, this plot too can be understood as the simultaneous presence of a coherent and
of a decoherent part, except that here, since the momentum of the decoherent part is
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Fig. 5.4. The quantity |Iχ(0.05,−0.05)| as a function of α for three different values of the mo-
mentum of the light particle.

zero, the two components share the same support.
A theoretical explanation of the appearance of the decoherent bumps is given is

Section 5.4.
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Fig. 5.5. Attenuation of the interference pattern of the heavy particle, in the case that the light
particle comes from the left with p=2.5∗102 (left) resp. p=0 (right)

5.3.2. Potential barrier and Gaussian potential. For the potential barrier

V (x) :=V0�[−a,a], V0=
α

2a
, α∈R+, a∈ [10−4,10−2], (5.8)

as well as for the Gaussian potential

V (r) :=V0e
− r2

2σ2 , V0=
α√
2πσ

, α∈R+, σ∈ [10−4,10−2], (5.9)

we carried out computations and simulations following the line of Section 5.3.1.
For the former case, reflection and transmission amplitudes are given by formulas

(4.27),(4.28). For the latter case, we followed the computation of the reflection and
transmission amplitudes as defined by the procedure detailed in (4.30),(4.31).
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In both cases, the normalization constants V0 have been chosen in order to guarantee
that ∫

R

V (x)dx=α,

so that the effects put in evidence in this section can be compared with the effects
carried out by the Dirac’s delta potential αδ0.

As far as scattering is concerned, the only consequence of the interaction potential
is the values of the reflection and transmission amplitudes. Thus, we just compare rk, tk
and Iχ for the Dirac’s delta, the potential barrier (5.8) and the Gaussian potential (5.9).
The results are illustrated in figures 5.6 and 5.7 for fixed potential strength α=5∗102,
momentum p=−2.5∗102 and several choices of a and σ. As expected, we found that
the results obtained for the potential barrier as a→0, as well as those obtained for the
Gaussian potential as σ→0, approach those obtained using the Dirac’s delta potential.
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Fig. 5.6. Comparison of the reflection amplitudes |rk|2 corresponding to three different interaction
potentials, with fixed potential strength α=5∗102 and various a and σ values. Left: Dirac’s delta and
potential barrier. Right: Dirac’s delta and Gaussian potential.
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Fig. 5.7. Comparison of the collision function Iχ(X,−X) corresponding to three different inter-
action potentials, with fixed potential strength α=5∗102 and various a and σ values. Left: Dirac’s
delta and potential barrier. Right: Dirac’s delta and Gaussian potential.
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5.3.3. Several light particles. We suppose that many light particles are
injected one-by-one into the computation domain, in such a way that the heavy particle
undergoes a finite sequence of collisions at times tk :=4kΔt. At any collision, the state
of the light particle is supposed to be the same, i.e., the kth colliding light particle
lies in the state represented by the wave function U0(tk−ε−γ)χ. Through any time
interval (tk,tk+1) between two collisions, the heavy particle evolves freely. The state of
the heavy particle after each collision ρ(t+k ) is then related to the state before collision
ρ(t−k ) by

ρ(t+k )=Iχ[ρ(t−k )].

On the left plot of Figure 5.8 we show the probability density ρM,a(t∗,X,X) associated
to the state of the heavy particle at the time of maximal overlap. The plot refers to the
case of a Dirac’s delta potential with strength α=10, momentum of the light particle
p=0 and N =1,2,3 collisions. As expected, multiple collisions enforce the destruction
of the interference pattern.

If one is interested in the limit of infinite incoming light particles, then a significant
re-scaling of the potential should be α/

√
N with fixed α: with this scaling, the deco-

herence effect should remain of order one (see the right plot in Figure 5.8). A detailed
mathematical study of this effect in the case N→∞ will be treated in a subsequent
paper.
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Fig. 5.8. Attenuation of the interference pattern of the heavy particle in the case of several
collisions. Test case: Dirac’s delta potential, p=0. Left: Fixed α=10 and several collisions N =1,2,3.
Right: N =1,2,3 with α=10/

√
N .

5.4. Theoretical explanation. Here we propose a theoretical explanation
for the plots in Figure 5.5, described in Subsection 5.3.1 as the decomposition of the
probability density associated to the heavy particle into a coherent and a decoherent
part.

To this purpose, we first assume σp�1, which means that the light particle must
travel fast enough; as proven in Proposition 4.3, this assumption makes the function
Γχ, defined in (4.13), negligible. Besides, owing to this hypothesis, the normalization
constant N defined in (5.5) can be approximated by one.

Second, we suppose
∥∥∥d|rk|2

dk

∥∥∥
∞
�σ, so that the variation of the reflection amplitude

is slow, and rk can be always considered as equal to rp.
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By these assumptions one easily gets

Iχ(X,X
′)≈1−Θapp

σ,p (X−X ′)=1−|rp|2+ |rp|2e2ip(X−X′)− (X−X′)2
2σ2 ,

where Θapp
σ,p was defined in (4.22).

Now, the main assumption states that the following ordering holds between the
spatial scales involved in the collision:

σH�σ�X0. (5.10)

The physical meaning of (5.10) is transparent: if σ�X0, then the incoming light particle
can distinguish the two bumps of the heavy particle from each other; furthermore, if
σH�σ, then any bump of the heavy particle approximately acts on the light particle
as a pointwise scattering centre.

From Table 5.1 one has that this condition is satisfied if one replaces the symbol
“�” by “<”; this fact suggests that the following explanation can hold also under more
relaxed hypotheses.

Due to (5.10), referring to the initial density matrix as expressed in (5.6), the
two diagonal terms ϕ±(X)ϕ±(X ′) are essentially supported in the region |X−X ′|�σ,
while the non-diagonal terms ϕ±(X)ϕ∓(X ′) are essentially supported in the region
|X+X ′|�σ. Therefore, we can further approximate Iχ in the two regions {|X−X ′|�
σ} and {|X−X ′|�σ} by

Iχ(X,X
′)≈

{
1−|rp|2 if |X−X ′|�σ,

1−|rp|2+ |rp|2e2ip(X−X′) if |X−X ′|�σ.

so that, using also N ≈1, one obtains ρM,a(0,X,X ′)≈ρM,b(0,X,X ′), where

ρM,b(0,X,X ′) := |tp|2ρM0 (X,X ′)+
|rp|2
2

e2ipXϕ−(X)e2ipX′ϕ−(X ′)

+
|rp|2
2

e2ipXϕ+(X)e2ipX′ϕ+(X ′). (5.11)

Thus, the approximated initial state ρM,b(0) can be understood as the statistical mixing
of three pure states:

• the initial pure state ρM (0) with weight |tp|2;
• the pure state represented by the wave function e2ip·ϕ− with weight 1

2 |rp|2;
• the pure state represented by the wave function e2ip·ϕ+ with weight 1

2 |rp|2.
We remark that the wave functions e2ip·ϕ± show the same spatial localization as

ϕ±, respectively, but their momentum has increased by 2p. Therefore, the wave function
e2ip·ϕ− (e2ip·ϕ+) describes the heavy particle localized on the left (right) and accelerated
by the reflection of the light one.

We are now ready to interpret Figure 5.5. Let us evolve ρM,b according to the free
dynamics (5.1). At the time t∗ of maximal overlap of the two initial bumps, the first
pure state on the r.h.s. of (5.11) shows the expected interference fringes as in Figure 5.1,
but such fringes are damped by the factor |tp|2. This explains the fringes in the images
on the left of Figure 5.5. We remark in particular that all the oscillations reach the zero
value, as it occurs when the heavy particle lies in a pure state. At the same time, the
pure states corresponding to the second and third terms in (5.11) are also overlapping,
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since they are both accelerated by the same quantity. But, since the r.h.s. of (5.11) is
a statistical mixture, the two bumps will superpose classically, without giving rise to
interference fringes. This explains the bump on the right side of the left diagram in
Figure 5.5.

In the image on the right of Figure 5.5, this interpretation can still hold, but since in
that case p=0, the interference fringes of the first state are also superposed with the two
bumps created by the second and third states of the mixing, so the decomposition (5.11)
is not so clearly readable.

The content of the present subsection can be made rigorous by proving that the
approximation (5.11) holds in the trace-class norm. This is indeed the case since we
have the following result:

Theorem 5.1. Let the initial state ϕ of the heavy particle have the form stipulated
in (5.3)–(5.5), and let the incoming state χ of the light particle be chosen as in (4.20).
Define the density matrix ρM,a(0) as in (3.15), and let ρM,b(0) denote the density matrix
with integral kernel having the form (5.11).

Then, the following estimate holds:

‖ρM,a(0)−ρM,b(0)‖L1 ≤C
(
e−σ2p2

+
1

σ

∥∥∥∥d|rk|2dk

∥∥∥∥
∞
+
σH
σ

+e−
2X2

0
σ2 +e

− X2
0

2σ2
H

)
. (5.12)

Remark 5.1. As an immediate consequence, if

σH�σ�X0,

∥∥∥∥d|rk|2dk

∥∥∥∥
∞
�σ, and

1

σ
�p,

then the difference between ρM,a and ρM,b is small.
The proof of Theorem 5.1 is given in Section 6.3.

Remark 5.2 (Entanglement between the two particles). Under the same hypotheses
of Theorem 5.1, one can work out a simpler expression for the initial two-particle wave
function than the one given in Theorem 3.2. First, the assumption ‖drkdk ‖∞�σ gives

Sχ≈Sappχε := tpχε+rpR0χε,

where χε=U(−ε−γ)χ, and the reflection operator R0 is defined by R0χε(x) :=χε(−x)
(its action is invariant under Fourier transformation). Second, by translational invari-
ance

SX,appχε := tpχε+rpθ2XR0χε, (5.13)

where θ2Xu=u(·−2X). Thus, after some computations (that can be performed more
easily in the Fourier space), one can replace the initial condition of the limit equa-
tion (3.2) by

ϕ⊗SXχε≈ϕ⊗SX,appχε≈ tpϕ⊗χε+
rp√
2
e2ipXϕ−⊗

(
e−2ipX0θ−2X0

R0χε

)
+
rp√
2
e2ipXϕ+⊗

(
e2ipX0θ2X0R0χε

)
. (5.14)

The new phase factors come from the approximation of θ2X by θ2X0
or θ−2X0

. Remark
that the phase factor on the light particle is constant and thus not important; on the
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contrary, the phase factor on the heavy particle means that it is accelerated by 2p.
The two-body wave function in (5.14) represents an entangled state: the light particle
is transmitted when the heavy particle remains in its initial state, it is reflected from
−X0 when the heavy particle is located at −X0 (and accelerated) and so on. Since the
three states of the light particle that appear in the previous approximation are almost
orthogonal under the assumptions of Theorem 5.1, the associated density matrix for the
heavy particle turns out to be well approximated by (5.11).

6. Proofs
The present section contains the proofs of the approximation theorems presented

in Section 3. In particular, Section 6.1 deals with Theorem 3.2 and Section 6.2 with
Theorem 3.4.

6.1. Proof of Theorem 3.2. We preliminarily warn the reader that part of
this section is devoted to the proof of results that are analogous to those contained
in [2, Theorem 1]. We include this section anyway, both for the sake of completeness
and because the results we need are slightly different from the one in [2]. All proofs
presented here are new.

The reduced variables and a useful lemma. Let us first introduce the centre
of mass R and the relative position r of the two-body problem. We define

R :=
X+εx

1+ε
, r :=x−X,

or, equivalently,

X :=R− εx

1+ε
, x=R+

r

1+ε
.

The new variables naturally induce a unitary transformation on L2(Rd), given by

(Tεψ)(R,r) := ψ

(
R− εx

1+ε
,R+

r

1+ε

)
, (T −1

ε φ)(X,x) := φ

(
X+εx

1+ε
,x−X

)
.

The previous definition can be extended to the case ε=0. The following lemma compares
Tεψ and T0ψ.
Lemma 6.1. For any ψ∈L2(R2d) s.t. (x−X) ·(∇X +∇x)ψ∈L2(R2d), we have the
following estimate

‖Tεψ−T0ψ‖2≤ε‖(x−X) ·(∇X +∇x)ψ‖2 ≤ ε‖r ·∇RT0ψ‖2.

Proof. Denoting φ=T0ψ and

φ̂(k,r) =
1

(2π)
d
2

∫
Rd

e−ik·Rφ(R,r)dR

one has

‖Tεψ−T0ψ‖22≤‖TεT −1
0 φ−φ‖22

=

∫
R2d

∣∣∣∣φ(R− εr

1+ε
,r

)
−φ(R,r)

∣∣∣∣2dRdr
=

∫
R2d

∣∣∣e−ik· εr
1+ε −1

∣∣∣2 |φ̂(k,r)|2dkdr
≤ε2‖r ·∇Rφ‖22,
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and we get the claimed inequality using that ∇Rφ(R,r)=(∇X +∇x)ψ(R,R+r).

Moreover, T0 has the following property

T0 Ŝ=[I⊗S]T0, (6.1)

which is a consequence of the definition of Ŝ (see Definition 3.1). In that definition the

action of Ŝ includes the scattering of the light particle by a potential centred at the
location of the heavy particle, while in the reduced variables, the scattering takes place
in the relative position variable. We will also use the following elementary identity,
which may be proved directly.

Lemma 6.2. For all j=1, . . . ,d, any τ ∈R, and any χ∈L2(Rd) such that |x|χ∈L2(Rd)

xjU0(τ)χ = U0(τ)
[
iτ∂jχ+xjχ

]
. (6.2)

This implies in particular that

‖|x|U0(τ)χ‖2 ≤
√
2
[
‖|x|χ‖2+τ‖∇χ‖2

]
. (6.3)

Step 1. Rewriting the problem in reduced variables. Let ψε be the
solution to (1.1), (2.1) with M =1. Denoting

ψ̃ε :=Tεψε, ψ̃a
ε :=Tεψa

ε , (6.4)

one has that ψ̃ε and ψ̃a
ε are respectively solutions to{

i∂tψ̃ε=− 1
2(1+ε)ΔRψ̃ε+

1+ε
ε

(
− 1

2Δrψ̃ε+V (r)ψ̃ε

)
,

ψ̃ε(0)=Tεψ0
ε =Tε

[
I⊗U0(−ε−γ)

]
ψ,

(6.5)

and {
i∂tψ̃

a
ε =− 1

2(1+ε)ΔRψ̃ε− 1+ε
2ε Δrψ̃ε,

ψ̃a
ε (0)=TεSεψ=Tε[I⊗U(−εγ)]Ŝψ,

(6.6)

where ψ :=ϕ⊗χ. Notice that in problem (6.5) the variables R and r are decoupled,
therefore we can express the solution in terms of semigroups acting separately on R and
r, i.e.

ψ̃ε(t)=
[
U0

(
t

1+ε

)
⊗UV

(
(1+ε)t

ε

)]
Tε
[
I⊗U0(−ε−γ)

]
ψ, (6.7)

ψ̃a
ε (t)=

[
U0

(
t

1+ε

)
⊗U0

(
(1+ε)t

ε

)]
Tε
[
I⊗U0(−ε−γ)

]
Ŝψ. (6.8)

In order to estimate the distance between ψε(t) and ψ
a
ε (t) we introduce two intermediate

terms ψb
ε(t) and ψ

c
ε(t), defined as follows

ψ̃b
ε(t)=

[
U0

(
t

1+ε

)
⊗UV

(
(1+ε)t

ε

)]
T0
[
I⊗U0(−ε−γ)

]
ψ (6.9)

ψ̃c
ε(t)=

[
U0

(
t

1+ε

)
⊗U0

(
(1+ε)t

ε

)]
T0
[
I⊗U0(−ε−γ)

]
Ŝψ. (6.10)
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Then,

‖ψε(t)−ψa
ε (t)‖2≤‖ψ̃ε(t)− ψ̃b

ε(t)‖2+‖ψ̃b
ε(t)− ψ̃c

ε(t)‖2+‖ψ̃c
ε(t)− ψ̃a

ε (t)
∥∥
2
. (6.11)

A control of ψ̃ε(t)− ψ̃b
ε(t) may be obtained thanks to lemmas 6.1 and 6.2, and the same

lemmas together with the hypothesis (H3) allows us to control ψ̃c
ε(t)− ψ̃a

ε (t). This will

be explained in Step 2. To control the term ψ̃b
ε(t)− ψ̃c

ε(t), we will use the commutation

properties of Ŝ. We explain in Step 3 how it leads to the term involving C1 in the
estimate (3.3).

Step 2. The approximation of infinitely massive particle. In fact, the
replacement of Tε by T0 is equivalent to the approximation that the massive particle has
an infinite mass, so that it does not move during the evolution of the light one. Using
definition (6.9), the unitarity of U0 and UV , and Lemma 6.1 we get

‖ψ̃ε(t)− ψ̃b
ε(t)‖2=‖(Tε−T0)[I⊗U0(−εγ)]ψ‖2

≤ε‖(x−X) ·(∇X +∇x)[I⊗U0(−εγ)]ψ‖2
≤ε‖(x−X) ·(∇ϕ⊗U0(−ε−γ)χ+ϕ⊗U0(−ε−γ)∇χ)‖2,

ε−1‖ψ̃ε(t)− ψ̃b
ε(t)‖2≤‖∇ϕ‖2‖| · |U0(−ε−γ)χ‖2+‖X ·∇ϕ‖2

+‖x ·U0(−ε−γ)∇χ‖2+‖Xϕ‖2‖∇χ‖2,

where we used the fact that U0 commutes with derivatives and that ‖ϕ‖2=‖χ‖2=1.
Using Lemma 6.2, one can get rid of the propagators U0(−ε−γ) in the previous estimate,
namely

ε−1‖ψ̃ε(t)− ψ̃b
ε(t)‖2≤

√
2‖∇ϕ‖2

(
‖| · |χ‖2+ε−γ‖∇χ‖2

)
+‖X ·∇ϕ‖2

+
√
2
(
‖x ·∇χ‖2+ε−γ‖Δχ‖2

)
+‖| · |ϕ‖2‖∇χ‖2,

so that eventually

‖ψ̃ε(t)−ψ̃b
ε(t)‖2≤K1ε+K2ε

1−γ , (6.12)

with K1 :=
√
2
(
‖∇ϕ‖2‖|x|χ‖2+‖x ·∇χ‖2

)
+‖|X|ϕ‖2‖∇χ‖2+‖X ·∇ϕ‖2,

K2 :=
√
2
(
‖∇ϕ‖2‖∇χ‖2.+‖Δχ‖2

)
.

Similarly, from definitions (6.8) and (6.10) one gets

‖ψ̃c
ε(t)− ψ̃a

ε (t)‖2=‖(Tε−T0)[I⊗U0(−εγ)]Ŝψ‖2
≤ε‖r · [I⊗U0(−εγ)][I⊗S]∇RT0ψ‖2,

where we have used that U0 commutes with translation, the relation (6.1), and the fact
that ∇R commutes with I⊗S and I⊗U0(τ). Applying Lemma 6.2 (integrated on R) to
the function φ̄ := [I⊗U0(−εγ)][I⊗S]∇RT0ψ, we get

2−1/2‖ψ̃c
ε(t)− ψ̃a

ε (t)‖2≤ε‖r · [I⊗S]T0(∇X +∇x)ψ‖2+ε1−γ‖∇r[I⊗S]T0(∇X +∇x)ψ‖2,

where in the last line we used that ψ=ϕ⊗χ. In order to bound the second term in the
r.h.s. we can use the conservation of the kinetic energy under the action of S and get

‖∇r[I⊗S]T0(∇X +∇x)ψ‖2=‖T0∇x(∇X +∇x)ψ‖2
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≤‖∇ϕ‖2‖∇χ‖2+‖Δχ‖2.

Using the regularity assumption (H3) on the scattering operator to bound the first term
of the r.h.s. we get

‖r · [I⊗S]T0(∇X +∇x)ψ‖2
≤‖|r|T0(∇X +∇x)ψ‖2+Cs‖T0(∇X +∇x)ψ‖L2

R(Hs
r )

≤‖|x−X|(∇X +∇x)ψ‖2+Cs

(
‖ψ‖L2

X(Hs+1
x )+‖∇Xψ‖L2

X(Hs
x)

)
≤‖∇ϕ‖2‖|x|χ‖2+‖|X|∇ϕ‖2+‖|x|∇χ‖2+‖|X|ϕ‖2‖∇χ‖2

+Cs

(
‖∇ϕ‖2‖χ‖Hs +‖χ‖Hs+1

)
,

where we used the fact that ψ0=ϕ⊗χ is factorized. Putting all together, we get

‖ψc
ε(t)−ψa

ε (t)‖2≤K3ε+K4ε
1−γ , (6.13)

with 2−1/2K3 :=‖∇ϕ‖2‖|x|χ‖2+‖|X|∇ϕ‖2+‖|x|∇χ‖2+‖|X|ϕ‖2‖∇χ‖2
+Cs

(
‖∇ϕ‖2‖χ‖Hs +‖χ‖Hs+1

)
,

2−1/2K4 :=‖∇ϕ‖‖∇χ‖+‖Δχ‖.

Step 3. The approximation of a fast scattering. Now we estimate ‖ψ̃b
ε(t)−

ψ̃c
ε(t)‖. Starting from definitions (6.9) and (6.10), using the fact that T0 commutes with

I⊗U0(t) and the relation (6.1), we obtain

ψ̃b
ε(t)=

[
U0

(
t

1+ε

)
⊗UV

(
(1+ε)t

ε

)][
I⊗U0(−ε−γ)

]
T0ψ

=
[
U0

(
t

1+ε

)
⊗U0

(
(1+ε)t

ε −ε−γ
)][

I⊗S(τ,τ ′)
]
T0ψ

and ψ̃c
ε(t)=

[
U0

(
t

1+ε

)
⊗U0

(
(1+ε)t

ε −ε−γ
)]

[I⊗S]T0ψ,

where we introduced τ =ε−γ and τ ′= (1+ε)t
ε −ε−γ . Using the unitarity of U0, we get

‖ψ̃b
ε(t)− ψ̃c

ε(t)‖2=‖I⊗ [S(τ,τ ′)−S]T0ψ‖2
=‖ϕ[S(τ,τ ′)−S]χ(·−X)‖2. (6.14)

Conclusion. Putting together (6.11), (6.12), (6.13), and (6.14) the proof is
complete.

6.2. Proof of Theorem 3.4. We preliminarily recall that the initial density
operator ρM (0) of the heavy particle (see (3.8)) is a compact, positive, self-adjoint
operator whose trace equals one. Thus by the spectral theorem there exists a sequence
0≤λj≤1,

∑
jλj =1, and a complete orthonormal set |ϕj〉∈L2(Rd) such that

ρM (0) =
∑
j

λj |ϕj〉〈ϕj |. (6.15)

Estimate of the difference of the two-body density operators ρε(t) and
ρaε(t). We recall from Section 3 that the two-body density operator ρε is the solution
to the operator equation

i∂tρε(t)= [Hε,ρε(t)]
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with initial data

ρε(0) = ρM (0)⊗|U(−ε−γ)χ〉〈U(−ε−γ)χ| =
∑
j

λj |ψj,ε(0)〉〈ψj,ε(0)|,

|ψj,ε(0)〉 := |ϕj〉|U0(ε
−γ)χ〉,

where we applied the decomposition in (6.15). Therefore,

ρε(t)=
∑
j

λj |ψj,ε(t)〉〈ψj,ε(t)|,

where ψj,ε(t) is the solution to equation (1.1) with initial data ψj,ε(0).
Analogously, the two-body density operator ρaε is the solution to

i∂tρ
a
ε(t)= [Hf

ε ,ρ
a
ε(t)],

with initial data

ρaε(0)=Sε
[
ρM (0)⊗|χ〉〈χ|

]
S∗
ε =

∑
j

λj |ψa
j,ε(0)〉〈ψa

j,ε(0)|,

|ψa
j,ε(0)〉 := |ϕj〉|U0(ε

−γ)SXχ〉,

where we applied decomposition (6.15). Then,

ρaε(t)=
∑
j

λj |ψa
j,ε(t)〉〈ψa

j,ε(t)|,

where ψa
j,ε(t) is the solution to equation (1.1) with initial data ψa

j,ε(0).
Let us estimate the distance between ρε(t) and ρ

a
ε . We get

‖ρε(t)−ρaε(t)‖L1 ≤
∑
j

λj
∥∥|ψj,ε(t)〉〈ψj,ε(t)|−|ψa

j,ε(t)〉〈ψa
j,ε(t)|

∥∥
L1

≤2
∑
j

λj
∥∥ψj,ε(t)−ψa

j,ε(t)
∥∥
2
,

where we have used the fact that for any ζ1,ζ2 in L2(R2d) with ‖ζ1‖2=‖ζ2‖2=1

Tr
∣∣|ζ1〉〈ζ1|−|ζ2〉〈ζ2|∣∣≤ 2‖ζ1−ζ2‖2.

It remains to sum up the error bounds given by Theorem 3.2. One gets

1

2
‖ρε(t)−ρaε(t)‖L1 ≤

∑
j

λj‖e−itHε |ϕj〉|U0(−ε−γ)χ〉−Uf
ε (t)|ϕj〉|U0(−ε−γ)SXχ〉‖

≤2
√
2‖Δχ‖2ε1−γ+

√
2Csε‖χ‖Hs+1

+
∑
j

λj

[
C1,j

(
1+ε
ε t−ε−γ ,ε−γ

)
+C2,jε+C3,jε

1−γ

]
, (6.16)

where

C1,j(τ,τ
′) :=‖ϕj [S(τ,τ

′)−S]χ(·−X)‖2 , (6.17)

C2,j :=2
√
2
(
‖∇ϕj‖2‖|x|χ‖2+‖Xϕj‖2‖∇χ‖2+‖|X|∇ϕj‖2+‖|x|∇χ‖2

)
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+Cs‖∇ϕj‖2‖χ‖Hs , (6.18)

C3,j :=2
√
2‖∇ϕj‖2‖∇χ‖2. (6.19)

Summing up in all constants with respect to j and using Cauchy–Schwarz inequality
leads to the error bounds given by Theorem 3.2. For instance,∑

j

λjC1,j(τ,τ
′)=

∑
j

λj
∥∥ϕj

[
SX(τ,τ ′)−SX

]
χ
∥∥

≤

⎛⎝∑
j

λj

⎞⎠ 1
2
⎛⎝∑

j

λj
∥∥ϕj

[
SX(τ,τ ′)−SX

]
χ
∥∥2⎞⎠ 1

2

=

⎛⎝Tr

⎡⎣∑
j

λj
∣∣ϕj

[
SX(τ,τ ′)−SX

]
χ
〉〈
ϕj

[
SX(τ,τ ′)−SX

]
χ
∣∣⎤⎦⎞⎠ 1

2

=2
∥∥ρM (0)|[S(τ,τ ′)−S]χ(·−X ′)〉〈[S(τ,τ ′)−S]χ(·−X)

∥∥ 1
2

L1 ,

and analogously

∑
j

λj‖X ·∇ϕj‖2≤

⎛⎝∑
j

λj

⎞⎠ 1
2
⎛⎝∑

j

λj‖|X|∇ϕj‖22

⎞⎠ 1
2

≤
[
Tr
(
|X|i∇ρM (0)i∇|X|

)] 1
2

.

The others terms may be handled analogously. Due to (3.12) the same estimate as
(6.16) holds for ‖ρMε −ρM,a

ε ‖L1 . It only remains to recall that ρM,a
ε =U0(t)ρ

M (0)U0(−t)
is indeed independent of ε.

The dynamics of the density operator ρM,a
ε . From the fact that ρaε is the

solution to i∂tρ
a
ε := [Hf

ε ,ρ
a
ε ], using the notation t̄(ε) := 1+ε

ε t, we get

ρaε(t)= [U0(t)⊗U0(t̄(ε))]ρ
a
ε(0)[U0(−t)⊗U0(−t̄(ε))].

Choosing a basis (χi)i∈N of L2(Rd) one gets by definition of the partial trace

ρaε(t)=
∑
i

〈U0(t̄(ε))χi|ρaε(t)|U0(t̄(ε))χi〉

=
∑
i

〈U0(t̄(ε))χi|[U0(t)⊗U0(t̄(ε))]ρ
a
ε(0)[U0(−t)⊗U0(−t̄(ε))]|U0(t̄(ε))χi〉

=
∑
i

〈χi|[U0(t)⊗I]ρaε(0)[U0(−t)⊗I]|χi〉

=U0(t)
[∑

i

〈χi|ρaε(0)|χi〉
]
U0(−t)

=U0(t)ρ
M,a
ε (0)U0(−t).

This implies that ρM,a
ε is a solution to the free transport equation. Then, it remains to

identify the initial condition. One finds

ρaε(0) := [I⊗U0(−ε−γ)]ŜρM (0)⊗|χ〉〈χŜ∗[I⊗U0(+ε
−γ)],
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ρM,a
ε (0)=Tr

[
Ŝ
(
ρM (0)⊗|χ〉〈χ|

)
Ŝ∗]

=Tr
[
ρM (0)⊗|SXχ〉〈SX′

χ|
]
.

In terms of kernels, the last identity can be expressed as

ρM,a
ε (0,X,X ′)=ρM (0,X,X ′)〈SXχ|SX′

χ〉=ρM (0,X,X ′)Iχ(X,X ′).

6.3. Proof of Theorem 5.1. First, we can cut the error into three parts

‖ρM,a(0,X,X ′)−ρM,b(0,X,X ′)‖L1

≤‖(iΓχ(X)− iΓχ(X
′))ρM (0,X,X ′)‖L1

+‖(Θapp
σ,p (X−X ′)−Θχ(X−X ′))ρM (0,X,X ′)‖L1

+‖(1−Θapp
σ,p (X−X ′))ρM (0,X,X ′)−ρM,b(0,X,X ′)‖L1

≤(I)+(II)+(III).

The terms (I) and (II) are easily estimated using Proposition 4.3. We get

(I)≤2e−2σ2p2

and (II)≤
√

2

πσ2

∥∥∥∥d|rk|2dk

∥∥∥∥
∞
. (6.20)

It remains to estimate (III). Denoting ϕ̃±(X) := e2ipXϕ±(X), we may separate (III)
into

(III)=

∥∥∥∥|rp|2e2ip(X−X′)− (X−X′)2
2σ2 ρM (0,X,X ′)− |rp|

2

2

[
ϕ̃−(X)ϕ̃−(X ′)− ϕ̃+(X)ϕ̃+(X ′)

]∥∥∥∥
L1

≤ |N
2−1|
2

|rp|2
∥∥∥∥e2ip(X−X′)− (X−X′)2

2σ2 (ϕ+(X)+ϕ−(X
′))(ϕ+(X ′)+ϕ−(X ′))

∥∥∥∥
L1

+
|rp|2
2

∥∥∥∥ϕ̃+(X)ϕ̃+(X ′)
(
1−e

− (X−X′)2
2σ2

)∥∥∥∥
L1

+
|rp|2
2

∥∥∥∥ϕ̃−(X)ϕ̃−(X ′)
(
1−e

− (X−X′)2
2σ2

)∥∥∥∥
L1

+
|rp|2
2

∥∥∥∥ϕ̃+(X)ϕ̃−(X ′)e−
(X−X′)2

2σ2

∥∥∥∥
L1

+
|rp|2
2

∥∥∥∥ϕ̃−(X)ϕ̃+(X ′)e−
(X−X′)2

2σ2

∥∥∥∥
L1

=(III.a)+(III.b)+(III.c)+(III.d)+(III.e).

To estimate (III.a), we use |1−N−2|≤e−
X2

0
2σ2

H , and notice that∥∥∥∥e2ip(X−X′)− (X−X′)2
2σ2 (ϕ+(X)+ϕ−(X ′))(ϕ+(X ′)+ϕ−(X ′))

∥∥∥∥
L1

=
2

N2
.

Indeed, by the identity

e−
(X−X′)2

2σ2 =

√
2√
πσ

∫
R

e−
(X−λ)2

σ2 e−
(X′−λ)2

σ2 dλ (6.21)

one immediately has

e
2ip(X−X′)− (X−X′)2

2σ2 (ϕ+(X)+ϕ−(X))(ϕ+(X ′)+ϕ−(X ′))

=

√
2√
πσ

∫
R

(
e2ipXe

− (x−λ)2

σ2 (ϕ+(X)+ϕ−(X))

)(
e−2ipX′

e
− (X′−λ)2

σ2 (ϕ+(X ′)+ϕ−(X ′))
)
dλ.
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Therefore the operator to be estimated is positive and its trace norm can be com-
puted by integrating the integral kernel on the diagonal X=X ′, which obtains 2

N2 .
Summarizing, one obtains

(III.a) ≤ e
− X2

0
2σ2

H . (6.22)

Let us estimate (III.b). Denoting γ̃(X,X ′) :=e−
(X−X′)2

2σ2 ϕ̃+(X)ϕ̃+(X ′), one has

(III.b)=
|rp|2
2

∥∥∥ϕ̃+(X)ϕ̃+(X ′)− γ̃(X,X ′)
∥∥∥
L1

.

Proceeding as was done for (III.a), we see that γ̃ is a positive operator with trace one.
To go on, we follow [24, Remark 1.4]. Setting A(X,X ′)= ϕ̃+(X)ϕ̃+(X ′)− γ̃(X,X ′), we
see that A (seen now as an operator) can have only one positive eigenvalue, denoted λ+
(otherwise there would exist a space of dimension two where A is positive, but this is
impossible because ϕ̃+(X)ϕ̃+(X ′) is the kernel of a rank one projection). Since A has
zero trace, it must be Tr|A|=2λ+ and ‖A‖L1 =2‖A‖≤2‖A‖L2 , where L2 denotes the
Hilbert–Schmidt norm and the norm without index is the usual operator norm. This
fact allows one to bound (III.b) by

(III.b)≤|rp|2
∥∥∥|ϕ̃+(X)ϕ̃+(X ′)− γ̃(X,X ′)

∥∥∥
L2

and the Hilbert–Schmidt norm can easily be computed as the L2-norm of the corre-
sponding integral kernel, namely∥∥∥|ϕ̃+(X)ϕ̃+(X ′)− γ̃(X,X ′)

∥∥∥2
L2

=

∫
R2

∣∣∣∣ϕ̃+(X)ϕ̃+(X ′)
(
1−e−

(X−X′)2
2σ2

)∣∣∣∣2 dXdX ′

≤ 1

2πσ2
H

∫
R2

e
−X2+(X′)2

2σ2
H

(
1−e−

(X−X′)2
2σ2

)
dXdX ′

=1− 1

π

∫
R2

e−(X2+(X′)2)e−
σ2
H

σ2 (X−X′)2 dXdX ′.

In the last line we rescaled variables as X→
√
2σHX and X ′→

√
2σHX

′. Now, observe
that

e−
σ2
H

σ2 (X−X′)2 ≥ e−
2σ2

H
σ2 (X2+(X′)2),

so the integral decouples and one obtains∥∥∥|ϕ̃+(X)ϕ̃+(X ′)− γ̃(X,X ′)
∥∥∥2
L2

≤1− 1

π

(∫
e−

σ2+2σ2
H

σ2 X2

dX

)2

≤2
σ2
H

σ2
,

and finally

(III.b) ≤
√
2 |rp|2

σH
σ
. (6.23)

The term (III.c) may be bounded by the same quantity. Let us focus on (III.d). In
order to estimate it, we make use of the identity (6.21) and obtain

(I.d)=
|rp|2
σ
√
2π

∥∥∥∥∫
R

ϕ̃+(X)e−
(X−λ)2

σ2 e−
(X′−λ)2

σ2 ϕ̃−(X ′)dλ
∥∥∥∥
L1



R. ADAMI, M. HAURAY, AND C. NEGULESCU 1409

≤ |rp|2
σ
√
2π

∫
R

∥∥∥∥ϕ̃+(X)e−
(X−λ)2

σ2 e−
(X′−λ)2

σ2 ϕ̃−(X ′)
∥∥∥∥
L1

dλ

=
|rp|2
σ
√
2π

∫
R

∥∥∥∥ϕ̃+(X)e−
(X−λ)2

σ2

∥∥∥∥
2

∥∥∥∥e− (X′−λ)2

σ2 ϕ̃−(X ′)
∥∥∥∥
2

dλ.

By a direct computation,∥∥∥∥e2ipXϕ±(X)e−
(X−λ)2

σ2

∥∥∥∥2
2

=
σ√

4σ2
H +σ2

e
− (λ∓X0)2

2σ2
H

+σ2
2

so that

(III.d)≤ |rp|2√
2π

√
4σ2

H +σ2

∫
R

e
− (λ−X0)2

4σ2
H

+σ2
e
− (λ+X0)2

4σ2
H

+σ2
dλ=

|rp|2
2
√
2
e
− X2

0

2σ2
H

+σ2
2 .

Term (III.e) can be estimated in the same way. Finally, putting everything together,
we get the requested bound.

Appendix A.

A.1. The Dirac’s delta potential in dimension one. Assume that the
potential is a Dirac’s delta with strength α, i.e. V =αδ0.

The operator − 1
2Δx+αδ0 :D(Hα)⊂L2(R)→L2(R) is defined on the domain

D(Hα) :={ψ∈H2(R−)∩H2(R+) s.t. ψ(0+)=ψ(0−) and ψ′(0+)−ψ′(0−)=2αψ(0+)}
(A.1)

by the action (
−1

2
Δx+αδ0

)
ψ(x)=−1

2
ψ′′(x), x �=0,

and is a self-adjoint operator in L2(R).

The propagator

Uα(t) :=exp

[
−it

(
−1

2
Δx+αδ0

)]
is explicitly known (see [5,15]). In order to express it, we shall use the following opera-
tors:

the symmetry operator Rχ := 1

2
[χ+χ(−·)],

the projection on positive positions P+
x χ :=�R+χ,

the projection on positive momenta P+
k χ :=F−1 (�R+ χ̂) ,

the translation by u θuχ :=χ(·−u),

where F−1 denotes the inverse Fourier transform. The projection on negative positions
P−
x and on negative momenta P−

k are defined in a similar way. Remark that all these
operators on L2(R) have norm equal to 1, and that R, P+

k , P−
k , and θu commute with

the free evolution group U0(τ).
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Proposition A.1. Given α>0, for any t∈R\{0} the propagator Uα(t) can be
expressed as

Uα(t)=U0(t)−4αRP+
x

(∫ +∞

0

e−αuθ−udu

)
U0(t)P−

x R. (A.2)

Proof. From [5, 15] we know that Uα(t) is the integral operator defined by the
kernel

Uα(t,x,x
′) :=U0(t,x−x′)−α

∫ ∞

0

e−αuU0(t,u+ |x|+ |x′|)du, (A.3)

where U0 denotes the propagation kernel of the free Schrödinger equation

U0(t,y) :=
1√
2iπt

e
i
2ty

2

. (A.4)

In order to obtain (A.2) it suffices to notice∫
R

U0(t,u+ |x|+ |x′|)χ(x′)dx=
∫
R

U0(t,u+ |x|+ |x′|)Rχ(x′)dx′

=2

∫
R

U0(t,u+ |x|−x′)�R−(x′)Rχ(x′)dx′

=4R�R+(x)

∫
R

U0(t,u+x−x′)P−
x Rχ(x′)dx′

=4RP+
x θ−uU0(t)P−

x Rχ(x).

and the proof is complete.

The following proposition gives the convergence rate to the scattering operator
needed in order to obtain Corollary 3.2 from Theorem 3.2 and 3.4.

Proposition A.2. If V =αδ0, with α>0, then the scattering operator Sα for the
Hamiltonian − 1

2Δ+V is well defined and given by

Sα=Id−4αRP+
k

(∫ +∞

0

e−αuθ−udu

)
R. (A.5)

The associated scattering matrix is defined as usual by the following transmission and
reflection amplitudes

rk=−
α

α− i|k| , tk=−
i|k|

α− i|k| . (A.6)

Moreover, there exists a constant C2 such that, for any χ∈L2(R) satisfying 〈·〉2χ∈
L2(R), one has

‖[Sα(τ,τ
′)−Sα]χ‖2≤C2

(
3‖〈x〉2χ‖2+

2

α2

)
min(τ,τ ′)−

1
4 . (A.7)

The key ingredient of the proof is the stationary phase estimate (A.11), see
Lemma A.1, which is proven in the next section.
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Proof. (Proof of Proposition A.2.)
Step 1. Identifying the limit. We need to study the limit of U0(−τ)U ′

α(τ+
τ ′)U0(−τ ′) as τ,τ ′→+∞. Using formula (A.2) and the fact that R and U0 commute,
one gets

U0(−τ)U ′
α(τ+τ

′)U0(−τ ′)

=Id−4αRU0(−τ)P+
x

(∫ +∞

0

e−αuθ−udu

)
U0(τ+τ

′)P−
x U0(−τ ′)R.

Roughly speaking, for large negative times the component of the wave function lying
in the negative half-line approximately coincides with the component of the wave func-
tion that travels with positive speed. It seems then natural to replace, for large τ ′,
P−
x U0(−τ ′) by U0(−τ ′)P+

k . Using the fact that U0(t), θu, and P+
k commute with one

another at any t, one obtains

U0(−τ)U ′
α(τ+τ

′)U0(−τ ′)

=Id−4αRU0(−τ)P+
x U0(τ)P+

k

(∫ +∞

0

e−αuθ−udu

)
R+η1(τ,τ

′),

with ‖η1(τ,τ ′)χ‖2≤4
∥∥[P−

x U0(−τ ′)−U0(−τ ′)P+
k ]Rχ

∥∥
2
. (A.8)

In the last estimate we used the fact that all concerned operators have norm one, and
a factor α−1 comes by the integral in u. The next step consists in erasing the operator
P+
x in the r.h.s. of (A.8). Indeed, it acts after the operator P+

k , and therefore everything
should move to the left for positive times anyway. We obtain

U0(−τ)Uα(τ+τ
′)U0(−τ ′)=Id−S′

α+η2(τ,τ
′)+η1(τ,τ ′)

with S′
α :=4αRP+

k

(∫ +∞

0

e−αuθ−udu

)
R (A.9)

and, definedχα :=α

∫ +∞

0

e−αuθ−uRχdu, ‖η2(τ,τ ′)χ‖2≤4
∥∥P−

x U0(τ)P+
k χα

∥∥
2
,

(A.10)

where in the last line, we used P+
x +P−

x =Id. The operator Sα=Id−αS′
α can be ex-

plicitly written in Fourier variables. Indeed, for all χ∈L2, using that R commutes with
the Fourier transform F , one has

Ŝ′
αχ(k)=F

[
4RP+

k

(
α

∫ +∞

0

e−αuθ−udu

)
Rχ

]
(k)

=2F
[
α

(∫ +∞

0

e−αuθ−udu

)
Rχ

]
(|k|)=2α

∫ +∞

0

e−αuF [θ−uRχ](|k|)du

=2α

∫ +∞

0

e−(α−i|k|)uF [Rχ](|k|)du= 2α

α− i|k|Rχ̂(|k|)

=α
χ̂(k)+ χ̂(−k)
α− i|k| .

Owing to (A.3), the scattering operator Sα is given by

Ŝαχ(k) := χ̂(k)−
α

α− i|k| (χ̂(k)+ χ̂(−k))
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=
−i|k|
α− i|k| χ̂(k)−

α

α− i|k| χ̂(−k),

which, in view of (4.3), provides the transmission and reflection amplitudes.

Step 2. Control of the error terms η1(τ,τ
′)χ and η2(τ,τ

′)χ. For the control of
η1(τ,τ

′)χ one first observes

P−
x U0(−τ ′)−U0(−τ ′)P+

k =P−
x U0(−τ ′)[P−

k +P+
k ]− [P−

x +P+
x ]U0(−τ ′)P+

k

=P−
x U0(−τ ′)P−

k −P+
x U0(−τ ′)P+

k ,

so that a bound on ‖η1(τ,τ ′)χ‖2 follows from two applications of Lemma A.1, to be
proven in the next section. Thus, for any n≥2

‖η1(τ,τ ′)χ‖2≤2C2‖〈x〉2χ‖2 (τ ′)−
1
4 .

Next, a bound on ‖η2(τ,τ ′)χ‖2 follows by Lemma A.1, with χα as initial data, and by
noticing that the moments of χα are related to those of χ. Precisely,

‖〈x〉2χα‖2 :=α
∥∥∥∥∫ +∞

0

e−αu〈x〉2θ−uRχdu
∥∥∥∥
2

≤α
∫ +∞

0

e−αu
∥∥〈x−u〉2Rχ∥∥

2
du

≤ 2α

∫ +∞

0

e−αu
(∥∥〈x〉2χ∥∥

2
+〈u〉2‖χ‖2

)
du

≤ 2
∥∥〈x〉n+1χ

∥∥
2
+

2

α2
.

Therefore,

‖η2χ‖2≤C2‖〈x〉n+1χα‖2 τ−
1
4 ≤C2

[∥∥〈x〉2χ∥∥
2
+

2

α2

]
τ−

1
4 .

A.2. A stationary phase estimate. Here we give a stationary phase lemma.
It is crucial in order to prove the convergence of the scattering operator for the Dirac’s
delta potential in dimension one, as stated in Proposition A.2.

Lemma A.1. There exists a constant C2 such that the following estimate holds

∀τ ∈R+, ‖P−
x U(τ)P+

k χ‖2≤C2‖〈x〉2χ‖2 τ−
1
4 . (A.11)

The same estimates are also valid for P+
x U(τ)P−

k , P+
x U(−τ)P+

k , and P−
x U(−τ)P−

k ,
always with positive τ .

Proof. (Proof of Lemma A.1.) We follow the classical argument used to obtain
stationary phase estimates. The first step consists in separating low frequencies from
high ones in χ. We choose a smooth function g :R→ [0,1] such that g=1 on (−∞,1],
g=0 on [2,+∞). We introduce a scale η<1 to be fixed more precisely later, and the

associated function gη(k) :=g
(

k
η

)
. We shall use the decomposition

χ=χl+χh, with χ̂l= χ̂gη, χ̂h= χ̂(1−gη). (A.12)

The contribution of χl is bounded by

‖P−
x U(τ)P+

k χl‖2≤‖P+
k χl‖2=‖�R+ χ̂l‖2≤

√
2η‖χ̂l‖∞
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≤
√
2η‖χ̂l‖2‖∂kχ̂l‖2≤C ‖〈x〉χ‖2

√
η, (A.13)

where we have used a Gagliardo–Nirenberg–Sobolev inequality.
The contribution of χh can be controlled by using stationary phase methods. In fact,
denoting, for some fixed τ , χ∗

h=P−
x U(τ)P+

k χh, for any x<0 we get

χ∗
h(x)=

∫
eikxχ̂∗

h(k)
dk√
2π

=

∫
eikx ̂U(τ)P+

k χh(k)
dk√
2π

=

∫ +∞

η

e
−iτ

(
k2

2 − kx
τ

)
P̂+
k χh(k)

dk√
2π
. (A.14)

Introducing the differential operator �y defined by

[�yh](k)=
d

dk

(
h(k)

k−y

)
, (A.15)

and integrating twice by parts, we obtain

χ∗
h(τy)=

∫
e
−iτ

(
k2

2 −ky
)
χ̂h(k)dk=−

i

τ

∫
e
−iτ

(
k2

2 −ky
)
�yχ̂h(k)dk

=− 1

τ2

∫ +∞

η

e
−iτ

(
k2

2 −ky
)
�2

yχ̂h(k)dk. (A.16)

The quantity �2
yχ̂h may be rewritten as the following sum

�2
xχ̂h(k)=

∑
n1+n2+n3=2

cn1,n2,n3

1

ηn2

∂n1

k χ̂(k)

(k−y)2+n3
∂n2

k

[
1−g

(
k

η

)
,

]
where all amplitudes cn1,n2,n3 are bounded (in absolute value) by 3. Using this sum in
equation (A.16), we can perform some integration on k and get

|χ∗
h(τy)|≤

‖∂2kχ̂‖2
τ2(η−y)3/2 +

C2

τ2

∑
n1+n2+n3=2,n1 	=2

‖∂n1

k χ̂‖∞
ηn2(η−y)2+n3−1

.

The first term in the r.h.s. comes from the term with n1=2, for which we used Cauchy–
Schwarz inequality. The constant C2 depends on ‖∂ig‖∞ for i=1,2. Remark that for
n1=0,1, we may always bound ‖∂n1

k χ̂‖∞ by ‖∂2kχ̂‖2 thanks to the Gagliardo–Nirenberg–
Sobolev inequality ‖ζ‖2∞≤‖∂kζ‖2‖ζ‖2. In view of this and since y<0, the worst term
in the sum of the r.h.s. is the one obtained for n2=2. This leads to the bound

|χ∗
h(τy)|≤

C2‖∂2kχ̂‖2
τ2

(
1

(η−y)3/2 +
1

η2(η−y)

)
.

Taking the square and integrating with respect to x= τy, we obtain

‖χ∗
h‖2≤

C2‖∂2kχ̂‖2
τ3/2

(
1

η
+

1

η5/2

)
≤ C2‖∂2kχ̂‖2

τ3/2η5/2
, (A.17)

when η≤1. Adding (A.13) and (A.17), we finally obtain

‖P−
x U(τ)P+

k χ‖2≤C2‖〈x〉2χ‖2
(√

η+τ−3/2η−5/2
)
.
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The optimal choice for η is then η= τ−1/2 which leads to

‖P−
x U(τ)P+

k χ‖2≤C2‖〈x〉2χ‖2τ−
1
4 .
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[14] Detlef Dürr and Herbert Spohn, Decoherence through coupling to the radiation field, in Deco-
herence: Theoretical, Experimental and Conceptual Problems, Ph. Blanchard, D. Giulini, E.
Joos, C. Kiefer, Stamatescu I.-O. eds., Lect. Notes in Phys., Springer, 538, 77–86, 2000.

[15] B. Gaveau and R.S. Schulman, Explicit time-dependent Schrödinger propagators, J. Phys. A:
Math. Gen., 19, 1833–1846, 1986.

[16] K. Hornberger and J.E. Sipe, Collisional decoherence reexamined, Phys. Rev. A, 68, 012105, 2003.
[17] K. Hornberger, S. Uttenhaler, B. Brezger, L. Hackermuller, M. Arndt, and A. Zeilinger, Collisional

decoherence observed in matter wave interpherometry, Phys. Rev. Lett., 90, 160401, 2003.
[18] K. Hornberger and B. Vacchini, Monitoring derivation of the quantum linear Boltzmann equation,

Phys. Rev. A, 77, 022112, 2008.
[19] E. Joos and H.-D. Zeh, The emergence of classical properties through interaction with the envi-

ronment, Z. Phys. B, 59, 223–243, 1985.
[20] R. Omnès, The Interpretation of Quantum Mechanics, Princeton University Press, Princeton,

1994.
[21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer-Verlag, New-York, 1983.
[22] M. Reed and B. Simon, Methods of Modern Mathematical Physics vol. I: Functional Analysis,

Academic Press Inc., 1970.



R. ADAMI, M. HAURAY, AND C. NEGULESCU 1415

[23] M. Reed and B. Simon, Methods of Modern Mathematical Physics vol. III: Scattering Theory,
Academic Press Inc., 1970.

[24] I. Rodnianski and B. Schlein, Quantum fluctuations and rate of convergence towards mean field
dynamics, Commun. Math. Phys., 291, 31–61, 2009.

[25] M. Schechter, Operator Methods in Quantum Mechanics, Courier Dover Publications, 2003.
[26] M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, Springer-Verlag, 2007.


