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TEAR-OFF VERSUS GLOBAL EXISTENCE FOR
A STRUCTURED MODEL OF ADHESION MEDIATED BY

TRANSIENT ELASTIC LINKAGES∗

VUK MILIŠIĆ† AND DIETMAR OELZ‡

Abstract. We consider a microscopic non-linear model for friction mediated by transient elastic
linkages introduced in our previous works. In the present study, we prove existence and uniqueness of a
solution to the coupled system under weaker hypotheses. The theory we present covers the case where
the off-rate of linkages is unbounded but increasing at most linearly with respect to the mechanical
load.

The time of existence is typically bounded, culminating in tear-off where the moving binding site
does not have any bonds with the substrate. However, under additional assumptions on the external
force, we prove global in time existence of a solution that consequently stays attached to the substrate.

Key words. Friction coefficient, protein linkages, cell adhesion, renewal equation, effect of chemical
bonds, integral equation, Volterra kernel.
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1. Introduction

Adhesion forces at the cellular and intra-cellular scales play an important role in
several phenomenons such as cell motility (see [12] and the references therein) and cancer
growth [14]. In [12] the authors derive a complete model for a moving network of actin
filaments polymerizing near the boundary of the cell and depolymerizing close to the
nucleus, providing biologically plausible steady-state [11] and moving [8] configurations
of the cell shape. The main advantage of this method is that the parameters we use
are easy to obtain experimentally if not already available in the literature [3,4,6,7,13].
The adhesion and the stretching between filaments are written as friction terms obtained
through a formal limit of a delayed system of equations. Indeed, let ε be a dimensionless
parameter denoting the ratio of the typical lifetime of bonds versus the overall timescale
of the model, the asymptotic limit is obtained assuming that both, the rate of linkage
turnover and the stiffness of the bonds, become large. The rigorous justification of the
limit as ε→0 is the ultimate goal of our investigations [9, 10]. Nevertheless, the highly
non-linear nature of the delayed model leads to consider already the case of a fixed value
of ε. In this article we show that the data of the problem determines the well-posedness
of the model: the balance between the on-rate of the linkages and the external force is
essential. Mathematically this is seen since, depending on this balance, either we can
show blow up in finite time or global existence. Physically this means that pulling the
binding site too strongly causes a tear-off, and that our model is able to reproduce this
feature. Experimentally this is observed and it is used in order to determine the load
dependence of detachment rates [1, 2, 5, 16].

More precisely, this study is concerned with a system of equations which describes
the evolution of the time-dependent position of a single binding site as it moves on a
1D-substrate. An external force f acts on a moving point-object positioned at z(t),

∗Received: July 8, 2015; accepted (in revised form): October 3, 2015. Communicated by Benoit
Perthame.
The authors would like to thank the referees for their carefull reading, and precious remarks.
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1354 AN AGE-STRUCTURED MODEL OF ADHESION

which is attached to the substrate through continuously remodeling elastic linkages,
i.e. transiently attaching protein bonds. Their age distribution is denoted by ρ=ρ(t,a)
where a≥0 denotes the age of linkages and t≥0 denotes time.

The position of the moving binding site, z(t), solves a Volterra equation of the first
kind [9] reading

⎧⎨
⎩

1

ε

∫ ∞

0

(z(t)−z(t−εa))ρ(t,a)da=f(t), t≥0,

z(t)=zp(t), t<0,

(1.1)

where the known past positions are given by the Lipschitz function zp(t)∈R for t<0.
The age distribution ρ=ρ(t,a) is the solution of the age-structured model⎧⎪⎨

⎪⎩
ε∂tρ+∂aρ+ζ ρ=0, t>0 , a>0,

ρ(t,a=0)=β(t)(1−μ0) , t>0,

ρ(t=0,a)=ρI(a), a≥0,

(1.2)

where μ0(t) :=
∫∞
0

ρ(t,ã)dã and the on-rate of bonds is a given coefficient β times a
factor, that takes into account saturation of the moving binding site with linkages.
Here we treat ε as a fixed constant, which we keep in our notations in order to maintain
consistency with previous studies [9, 10], and to keep track about whether the results
we obtain are uniform with respect to ε, having future convergence results in mind.

When the off-rate ζ is a prescribed function, we say that the problem is weakly
coupled first one solves ρ and then ρ can be used as a given integration kernel in order
to obtain z as the solution of (1.1).

On the other hand, if ζ depends on z as for instance ζ= ζ((z(t)−z(t−εa))/ε)
(cf. [7, 15]) we speak about strong coupling. In [10] we gave a first result on global
existence of weak solutions in this case. These results relied on the change of unknowns

u(t,a)=

{
z(t)−z(t−εa)

ε if t≥εa,
z(t)−zp(t−εa)

ε otherwise.

It was shown in [10] that one could transform the system (1.1)–(1.2) replacing (1.1) by
the equation satisfied by u, which is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ε∂tu+∂au=

1

μ0

(
ε∂tf+

∫ ∞

0

(ζ(u)uρ)(t,ã)dã

)
, t>0, a>0,

u(t,a=0)=0 , t>0,

u(t=0,a)=uI(a), a≥0,

(1.3)

where the initial condition is related to the past data of (1.1) through uI(a) :=(z(0)−
zp(−εa))/ε. The structure of ζ= ζ(u(t,a)) is then consistent with the new variable and
the system (1.3)–(1.2) is closed. In [10] it has turned out to be beneficial to work on
the system (1.2)–(1.3), since it allowed to derive powerful a priori estimates on u.

The analysis in the older studies [9] and [10] relied on the existence of an upper
bound ζmax of the function ζ. It is the aim of the present study to relax the hypothesis
of boundedness of ζ. This represents a major improvement, because the lower bound on
the total mass μ0(t) strongly depends on ζmax and the analytical arguments in [10] do
rely heavily on this control. Furthermore, the upper bound ζmax had major importance



V. MILISIC AND D. OELZ 1355

in the fixed point argument used in [10] to prove the global existence result since we
used it to control the non-linear right-hand side in (1.3).

In addition to deepening the analysis, unboundedness of the off-rate is the natural
scenario from the application point of view. A typical situation is Bell’s law, i.e. an
exponential increase of the off-rate as the elastic linker is extended, ζ= ζ0 exp(|u|) (cf.
[7, 15]). However, this strongly non-linear scenario is still out of reach of the rigorous
mathematical analysis that we present in this study which relies on ζ being a (globally)
Lipschitz continuous function.

The right-hand side of (1.3) for a given function u,

gu(t) :=
1

μ0,u

{
ε∂tf+

∫
R+

ζ(u(t,a))�u(t,a)u(t,a)da

}
,

where �u solves (1.2) with ζ= ζ(u) and μ0,u :=
∫
R+

�u(t,a)da, can become infinite if

either μ0,u vanishes or
∫
R+

ζ(u)u�uda blows up. We define the modified right-hand side

gu :=
1

max(μ0,u,μ)

{
ε∂tf+max

(
−p,min

(
p,

∫
R+

ζ(u)�uuda

))}
,

where μ and p are two strictly positive arbitrary constants. The strategy to prove
our existence result is first to establish existence and uniqueness of a solution of this
modified problem using a fixed point argument in the space

XT :=

{
u∈L∞

loc((0,T )×R+) s.t. sup
t∈(0,T )

‖u(t,a)ω(a)‖L∞
a
<∞

}
(1.4)

defined for any specific time T >0, with the weight function being

ω(a) :=
1

1+a
. (1.5)

To this end we introduce the map Φ :v∈XT �→u∈XT where, given v, we solve (1.2)
with ζ= ζ(v) and obtain the age distribution ρv. Then we look for the solution of the
problem: ⎧⎪⎨

⎪⎩
ε∂tu+∂au=gv(t), t>0, a>0,

u(t,0)=0, t>0,

u(0,a)=uI(a), a≥0,

(1.6)

to obtain u∈XT . The right-hand side of (1.6) becomes a bounded function whose
bounds depend on the cut-offs μ and p. This allows to prove contraction of the map Φ
on a time interval that is sufficiently small. Due to the uniform bounds this process can
be iterated to obtain (�,w), a unique solution which is global in time. Then we establish
a uniform bound on p(t) :=

∫
R+

ζ(w)wρwda, the second integral term in gw. This shows

that for p sufficiently large with respect to 1/μ, p(t) never reaches p so that the solution

(ρw,w) satisfies also a simple-cut-of problem where gu can be replaced by gu defined as

gu :=
1

max(μ0,u,μ)

{
ε∂tf+

∫
R+

ζ(u)�uuda

}
.



1356 AN AGE-STRUCTURED MODEL OF ADHESION

In a second step, we prove that if additional assumptions hold, this solution never
reaches the cut-off value μ. Otherwise, we give a lower bound to the time span during
which the cut-off is not reached. In both cases the solution of the modified problem is
also the unique solution to the original system (1.2)–(1.3) either globally in time or on
the finite interval of time.

More precisely, in Section 4, we analyze the dependence of the lower bound of μ0,u

with respect to the L∞(0,T ) norm of gu. This naturally leads to local existence results
for the original problem (1.2)–(1.3) in Section 5 by providing a minimal time for which
the solution (ρw,w) does not reach the cut-off value μ.

Even stronger results are rigorously obtained in sections 6 and 7 generalizing a
straightforward computation in the special case where ζ(u)=1+ |u| and assuming that
u remains strictly positive. In this case, integrating (1.2) in age, and using the fact that
(1.1) transforms into

∫
R+

ρ(t,a)u(t,a)da=f(t), we obtain that

ε∂tμ0−β(1−μ0)+μ0+f =0,

which can be solved directly. This provides immediately the bounds

min

(
μ0(0),

βmin−fmax

βmax+1

)
≤μ0(t)≤μ0(0)

(
1− t

t0

)
,

where

t0 :=
ε

βmin+1
ln

(
1+

μ0(0)(βmin+1)

fmin−βmax

)

and leads to 3 possible scenarios:

i) a strictly positive lower bound of μ0 when βmin>fmax, in which case one has global
existence,

ii) if fmin>βmax, the time t0 is well defined and the binding site tears off, i.e. μ0(t)
becomes zero, at t= t0, this leads to a blow up,

iii) intermediate cases for which we do not know if μ0 becomes zero in finite time, so
both previous possibilities could occur according to the balance between β and f .

These basic ideas provide global existence results (Section 6) versus tear-off results
(Section 7) under more general assumptions on ζ.

2. Technical assumptions, preliminary results and a priori estimates

2.1. Hypotheses.
Assumptions 2.1.

a) There exists a minimal value ζmin such that ζ(w)≥ ζmin>0, ∀w∈R.

b) The derivative of ζ is bounded i.e. |ζ ′(w)|≤ ζLip, ∀w∈R.

c) The function f is Lipschitz continuous on [0,T ] for any positive fixed T . If T =∞
then f is supposed to be globally Lipschitz i.e. f ∈W 1,∞(R+) in this case.

Remark 2.1. Note that this definition does not allow more than a linear growth for
ζ. But in contrast to [9,10], one does not have a hypothesis concerning boundedness on
ζ from above.

Remark 2.2. In the literature [7, 8, 12, 15], ζ is a smooth function of |u|, which
motivates choice of the Lipschitz property above.

As in [10] we assume also some hypotheses on the initial and boundary data of (1.2)

Assumptions 2.2. The initial condition ρI ∈L∞
a (R+) is
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(i) non-negative, i.e. ρI(a)≥0, a.e. in R+,

(ii) moreover, the total initial population satisfies

0<

∫ ∞

0

ρI(a)da<1,

(iii) and higher moments are bounded,

0<

∫ ∞

0

apρI(a)da≤ cp, for p=1,2.

Assumptions 2.3. For β we assume that

a) β=β(t) is a continuous function,

b) 0<βmin≤β(t)≤βmax for all positive times t.

We detail hereafter results from [9] still valid under the weaker set of assumptions
2.1, 2.2, and 2.3.

Theorem 2.1. We suppose that u is a given function in XT . Let assumptions 2.1, 2.2
and 2.3 hold, then for every fixed ε there exists a unique solution �∈C0(R+;L

1(R+))∩
L∞(R2

+) of the problem (1.2), with the off-rate ζ := ζ(u(t,a)). It satisfies (1.2) in the
sense of characteristics, namely

�(t,a)=

⎧⎪⎪⎨
⎪⎪⎩
β(t−εa)

(
1−∫∞

0
�(ã,t−εa)dã

)
×exp

(−∫ a

0
ζ(ã,t−ε(a− ã))dã

)
, when a<t/ε,

ρI(a− t/ε)exp
(
− 1

ε

∫ t

0
ζ((t̃− t)/ε+a,t̃)dt̃

)
, if a≥ t/ε,

(2.1)

where, in an abuse of notation, we wrote ζ= ζ(u(t,a))= ζ(t,a).

Lemma 2.2. Under the same assumptions as in Theorem 2.1, let � be the unique
solution of problem (1.2), then it satisfies a weak formulation of this problem, namely

∫ ∞

0

∫ T

0

�(t,a)(ε∂tϕ+∂aϕ−ζϕ) dtda−ε

∫ ∞

0

�(t,a)ϕ(t=T,a)da

+

∫ T

0

�(t,a=0)ϕ(t,0)dt+ε

∫ ∞

0

ρI(a)ϕ(t=0,a)da=0, (2.2)

for every T >0 and every test function ϕ∈D([0,T ]×R+).

Following the same argumentation as Lemma 2.2 in [9], one has

Lemma 2.3. Under the same assumptions as in Theorem 2.1, it holds that μ0(t)<1
for any time. This in turn implies that �(t,a)≥0 for almost every (t,a) in R2

+.

For p∈N we define the pth moment of the solution ρ of (1.2)

μp(t) :=

∫ ∞

0

ap�(t,a)da.

Then, following the same argumentation as Lemma 2.2 in [9], one has

Lemma 2.4. Under the same assumptions as in Theorem 2.1,

μp(t)≤μp,max for p=1,2,
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where the generic constants μp,max read:

μp,max :=

p∑
�=0

p!


!ζp−�
min

μ�(0)+
p!

ζpmin

βmax

βmin+ζmin
.

Proof. When p=0 we simply integrate (1.2) with respect to age

ε∂tμ0+βμ0+

∫
R+

ζρda=β,

as ζ is bounded from below and using Gronwall’s Lemma one has

μ0(t)≤μ0(0)+
βmax

βmin+ζmin
.

For any integer p we then write

ε∂tμp+ζminμp−pμp−1≤0,

which, using Gronwall’s Lemma again, gives

‖μp‖L∞(0,T )≤μp(0)+
p

ζmin
‖μp−1‖L∞(0,T ).

By induction, one proves the claim.

We define the entropy introduced in [9] that compares solutions of (1.2)

H0[ρ](t) :=

∫
R+

|ρ(t,a)|da+
∣∣∣∣∣
∫
R+

ρ(t,a)da

∣∣∣∣∣ .
Proposition 2.5. Under assumptions 2.1, 2.2, and 2.3, setting ρ̂ :=�2−�1 where �2
and �1 solve (1.2) with off-rates ζ(w2) (resp. ζ(w1)) where w2 (resp. w1) is a function
in XT , we find that

H0[ρ̂](t)≤ c0(1−exp(ζmint/ε))‖ŵ‖Xt
, ∀t∈ (0,T ),

where ŵ :=w2−w1, c0 :=
2

ζmin
ζLipμ1,max, μ1,max being the bound on the first moment of

�1.

Proof. The proof follows the same lines as for Lemma 3.2 and Lemma 3.3 in [9]
based on the system satisfied by ρ̂,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ε∂tρ̂+∂aρ̂+ζ2ρ̂=−ζ̂�1 t>0,a>0,

ρ̂(t,0)=−β(t)

∫
R+

ρ̂(t,ã)dã, t>0,

ρ̂(0,a)=0, a>0,

where ζ̂ := ζ(w2)−ζ(w1).

For k≥1 we define

Hk[ρ] :=

∫
R+

(1+a)kρ(t,a)da.
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For these functionals one has

Proposition 2.6. Under the same hypotheses as in the previous proposition, and if
moreover ∫

R+

(1+a)�ρI(a)da<∞, ∀
∈{0,k+1},

then

Hk[ρ̂](t)≤hk(1−exp(−ζmint/ε))‖ŵ‖Xt
, ∀t∈ (0,T ),

where the constants hk depend only on ζmin, ζLip, and on the constants (μ�,max)�∈{0,k+1}
related to the bound on the 
th moment of �2.

Proof. We apply a recursion argument. The case k=0 is proved by Proposition
2.5. We suppose that the claim is true for 
≤k−1. We have formally that

ε∂t(1+a)k|ρ̂|+∂a(1+a)k|ρ̂|−k(1+a)k−1|ρ̂|+ζmin(1+a)k|ρ̂|≤ |ζ̂|(1+a)k�2.

Integrating in age, one gets that

ε∂tHk[ρ̂]−β|μ̂|+ζminHk[ρ̂]≤kHk−1[ρ̂]+ζLip‖ŵ‖Xt

∫
R+

(1+a)k+1�2(t,a)da,

which is then estimated giving

ε∂tHk[ρ̂]+ζminHk[ρ̂]≤kHk−1[ρ̂]+ζLipCk+1‖ŵ‖Xt
+βmaxH0[ρ̂].

Using Gronwall’s Lemma gives

Hk[ρ̂](t)≤ 1−exp(−ζmint/ε)

ζmin
sup

s∈(0,t)

(
kHk−1[ρ̂](s)+βmaxH0[ρ̂](s)+ζLipCk+1‖ŵ‖Xs

)
,

where we used, in the last estimates, the recursion hypothesis and Proposition 2.5.

We give ourselves T >0 and a function g∈L∞(0,T ) and we compute w as the
solution in the sense of characteristics of⎧⎪⎨

⎪⎩
ε∂tw+∂aw=g(t), t>0, a>0,

w(t,0)=0, t>0,

w(0,a)=uI(a), a≥0.

(2.3)

And all along the paper we will assume that the initial condition uI belongs to
L∞(R+,ω). For this simple transport problem it holds that

Theorem 2.7. For any fixed T >0, any g∈L∞(0,T ), and for any fixed ε, there exists
a unique w∈XT solving problem (2.3). Moreover one has the a priori estimates

‖w‖XT
≤
(

T

T +ε

)
‖g‖L∞(0,T )+‖uI‖L∞

a (R+,ω)

Moreover the maximal time of existence is infinite if g∈L∞(R+).

For sake of clarity we repeat and detail here the proof given in [10, Theorem 6.1, p.
2116].
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Proof. Since g∈L∞(0,T ), w is a mild solution (in the sense of characteristics).
We use the Duhamel’s principle: w can be computed explicitly and reads

w(t,a)=

{∫ 0

−a
g
(
t+ s

ε

)
ds if t≥εa,

uI(a− t/ε)+
∫ 0

−t
g
(
t+ s

ε

)
ds otherwise,

and then, using Hölder’s inequality, we write for all (t,a) such that εa≤ t≤T ,∣∣∣∣w(t,a)1+a

∣∣∣∣≤ a

1+a
‖g‖L∞(0,T )≤

T

T +ε
‖g‖L∞(0,T ),

the latter inequality being true since a/(1+a) is an increasing function on R+. On the
contrary, if t≤εa then

∣∣∣∣w(t,a)1+a

∣∣∣∣≤ |uI(a− t/ε)|
1+a

+

∫ 0

−t

∣∣g(t+ s
ε

)∣∣ds
1+a

≤ |uI(a− t/ε)|
1+a− t/ε

+
t

1+a
‖g‖L∞(0,T ),

thus one concludes that if t≤εa∣∣∣∣w(t,a)1+a

∣∣∣∣≤‖uI‖L∞(R+,ω)+
T

T +ε
‖g‖L∞(0,T ).

Gathering both cases, one recovers

‖w(t, ·)‖L∞(R+,ω)≤‖uI‖L∞(R+,ω)+
T

T +ε
‖g‖L∞(0,T ).

Taking then the supremum over all t∈ (0,T ) gives the bound in XT as claimed. We
underline that this estimate is uniform with respect to T and ε, in particular if the
maximal time of definition of g is infinite then w is in L∞(R+;L

∞(R+,ω)).

3. Global existence results for cut-off problems
We solve the coupled problem: find (�,w) satisfying⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε∂t�+∂a�+ζ(w)�=0, t>0, a>0,

�(t,0)=β(t)

(
1−

∫
R+

�(t,a)da

)
, t>0,

�(0,a)=ρI(a), a≥0,

(3.1)

and ⎧⎪⎨
⎪⎩
ε∂tw+∂aw=gw(t), t>0, a>0,

w(t,0)=0, t>0,

w(0,a)=uI(a) a≥0,

(3.2)

where we set

gw(t) :=
1

max(μ0(t),μ)

(
ε∂tf+max

(
−p,min

(∫
R+

(ζ(w)�w)(t,a)da, p

)))
, (3.3)

where μ0(t)=
∫
R+

�(t,a)da. The two constants μ and p are positive.
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Theorem 3.1. We suppose that assumptions 2.1, 2.2, and 2.3 hold. Moreover we
assume that uI ∈L∞(R+,ω) and ‖∂tf‖L∞(R+) is finite and that the constants μ and p
are fixed. For any fixed time T possibly infinite, there exists a unique pair of solutions
(�,w)∈C([0,T ];L1(R+))×XT solving the coupled problems (3.1), (3.2), and (3.3).

Proof. We apply the Banach fixed point Theorem to Φ mapping w∈XT �→u∈XT

such that ⎧⎪⎨
⎪⎩
ε∂tu+∂au=gw(t), t>0,a>0,

w(t,0)=0, t>0,

w(0,a)=uI(a), a>0.

We prove that Φ is actually contractive in XT for a time T small enough.

a) The map Φ is endomorphic. For any given w∈XT one has invariably

|gw|≤
1

μ

(
ε‖∂tf‖L∞(0,T )+p

)
, (3.4)

which by the same method as in Theorem 2.7 provides a bound independent on T
in XT on u

‖u‖XT
≤∥∥gw∥∥L∞(0,T )

+‖uI‖L∞
ω (R+).

b) The map Φ is a contraction. We set ĝw :=gw2
−gw1

and ρ̂ :=�w2
−�w1

and so on.
As gw is Lipschitz with respect to μ0(t) and

∫
R+

ζ�wda

|ĝw(t)|≤ |μ̂|
μ2

{
ε‖∂tf‖L∞(0,T )+p

}
+

1

μ

∣∣∣∣∣∣
̂(∫

R+

ζ�wda

)∣∣∣∣∣∣=: I1+I2.

I1 is immediately estimated thanks to Proposition 2.5, and one has

I1≤ 1

μ2

{
ε‖∂tf‖L∞(0,T )+p

}
H0[ρ̂](t)≤ 1

μ2

{
ε‖∂tf‖L∞(0,T )+p

}
c0‖ŵ‖Xt

,

while we decompose the difference of triple products in I2 as

I2≤ 1

μ

∣∣∣∣∣
∫
R+

ζ̂�w2
w2+ζ1ρ̂w2+ζ1�w1

ŵda

∣∣∣∣∣
≤ 1

μ

(∫
R+

ζLip|ŵ|�w2 |w2|da

+
(
ζLip‖w1‖Xt

+ζ0
){∫

R+

(1+a)2|ρ̂|da‖w2‖Xt
+

∫
R+

(1+a)2�w1
da‖ŵ‖Xt

})

≤c
{‖ŵ‖Xt

+H2[ρ̂](t)
}≤ c‖ŵ‖Xt

,

where the constant c depends on ζLip, ζ0, (‖wi‖Xt
)i∈{1,2}, μ, and

∫
R+

akρI(a)da for

k∈{0,1,2}. Using again Theorem 2.7, one has

‖û‖Xt
≤ t

t+ε
‖ĝw‖L∞(0,t)≤

t

ε
‖ĝw‖L∞(0,t)≤

tc

ε
‖ŵ‖Xt

.

If T0<ε/c then there exists a unique fixed point w∈XT0
of the mapping Φ.
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c) Global existence for any time. We suppose that existence and uniqueness are estab-
lished for the tuple (�,w) solving (3.1)–(3.2), on the time interval [0,Tn−1] for n≥1.
We construct a fixed point for the next interval [Tn−1,Tn :=Tn−1+ΔTn] on the map
u=Φ(v)

⎧⎪⎨
⎪⎩
ε∂tu+∂au=gv(t), t∈ (Tn−1,Tn),a>0,

u(t,0)=0, t∈ (Tn−1,Tn),

u(Tn−1,a)=w(Tn−1,a) a>0,

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε∂tρ+∂aρ+ζ(v)ρ=0, t∈ (Tn−1,Tn),a>0,

ρ(t,0)=β(t)

(
1−

∫
R+

ρ(t,a)da

)
, t∈ (Tn−1,Tn),

ρ(Tn−1,a)=�(Tn−1,a), a>0.

If we denote the extensions to [0,Tn] of (ρ,u) as

ρe(t,a) :=

{
ρ(t,a) if t∈ [Tn−1,Tn)

�(t,a) t∈ (0,Tn−1]
, we :=

{
u(t,a) if t∈ [Tn−1,Tn)

w(t,a) t∈ (0,Tn−1].
,

The continuity of ρe allows to apply Lemma 2.4. Similarly for we one has

‖we‖XTn
≤∥∥gv(t)χ[Tn−1,Tn)+gwχ[0,Tn−1]

∥∥
XTn

+‖uI‖L∞
ω (R)

≤ (ε‖∂tf‖L∞(0,Tn)
+p)

μ
+‖uI‖L∞

ω (R),

where χA is the characteristic function of the set A, and we used the uniform estimate
on gw provided by (3.4). These estimates prove that the constant c in the contraction
in b) is not changing as time evolves. Thus we can fix-point again choosing ΔTn

as in the previous paragraph and prove contraction in [Tn−1,Tn]. At this step the
recursion is complete. The theorem is proven for any positive time.

Corollary 3.2. Under the same hypotheses as above, for any pair of positive definite
reals (μ,p), the solution-pair (�,w) solving (3.1)–(3.3) satisfies the a priori estimates

∫
R+

�(t,a)|w(t,a)|da≤
∫
R+

ρI(a)|uI(a)|da+
∫ t

0

|∂tf(t̃)|dt̃=:1/γ0. (3.5)

Proof. We use that

|gw(t)|≤
1

μ0(t)

{
ε|∂tf |+min

(
p,

∣∣∣∣∣min

(∫
R+

ζ(w)w�da,p

)∣∣∣∣∣
)}

≤ 1

μ0(t)

{
ε|∂tf |+min

(
p,

∫
R+

ζ(w)�|w|da
)}

≤ 1

μ0(t)

{
ε|∂tf |+

∫
R+

ζ(w)�|w|da
}
.
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Then same arguments as in the proof of Lemma 5.1 in [10] provide a priori estimates.
Indeed, in the sense of characteristics |w| satisfies

ε∂t|w|+∂a|w|≤ |gw|≤
1

μ0(t)

{
ε|∂tf |+

∫
R+

ζ(w)�|w|da
}
.

Then multiplying the later inequality by � and integrating with respect to age, one gets

ε∂t

∫
R+

�|w|da+
∫
R+

ζ(w)|w|�da≤ε|∂tf |+
∫
R+

ζ(w)|w|�da.

Because on the right- and on the left-hand sides the same integral terms cancel, the
claim follows.

Proposition 3.3. Under assumptions 2.1, 2.2, and 2.3, let (�,w) be the solution of
the fully coupled and stabilized problem (3.1)–(3.3), there exists a positive finite constant
γ1 such that ∫

R+

ζ(w(t,a))|w(t,a)|�(t,a)da≤ γ1
μ
, ∀t≥0,

where the constant γ1 depends on

• the a priori bound only on
∫
R+

�|w|da (obtained in Corollary 3.2) ,

• ‖∂tf‖L∞(0,T ),

• ζLip, and ζ(0).

Proof. Using equations (3.1), (3.2), and hypotheses 2.1, one has

ε∂t(�|w|ζ)+∂a(�|w|ζ)+ζ2|w|�≤�|w|(ε∂tζ+∂aζ)+ζ�|gw|.
Integrating in age and setting p(t) :=

∫
R+

�(t,a)|w(t,a)|ζ(w(t,a))da gives

ε∂tp+

∫
R+

ζ2|w(t,a)|�(t,a)da≤|gw|
(
ζLip

∫
R+

�|w|da+
∫
R+

ζ(w)�(t,a)da

)

≤|gw|
(
2ζLip

∫
R+

�|w|da+ζ(0)

)

≤ 1

μ
(ε|∂tf |+p)(2ζLip/γ0+ζ(0)) ,

where
∫
R+

�|w|da≤1/γ0. Now, we consider the second term in the left-hand side above:

using Jensen’s inequality one writes(∫
R+

ζ(w)|w(t,a)|�(t,a)da∫
R+

|w|�da

)2

≤
∫
R+

(ζ(w))2|w(t,a)|�(t,a)da∫
R+

|w|�da ,

since |w|�/∫
R+

|w|�da is a unit measure. This implies that

∫
R+

(ζ(w))2|w(t,a)|�(t,a)da≥
(∫

R+
ζ(w)|w(t,a)|�(t,a)da

)2

∫
R+

|w|�da ≥γ0p
2.
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We obtain a Riccati inequality

ε∂tp+γ0p
2≤h/μ+p/μ, p(0)=

∫
R+

ζ(uI(a))|uI(a)|ρI(a)da,

where h :=ε‖∂tf‖∞ (2ζLip/γ0+ζ(0)) is a constant. We denote by P± the solutions of the
steady state equation associated to the last inequality, i.e. P solves γ0P

2−P/μ−h/μ=
0. The solutions are given by

P±=
1

μ

(
1±

√
1+4hμγ0

)
/(2γ0)≤ 1

μ
max

(
p(0),

(
1±

√
1+4hγ0

)
/(2γ0)

)
=:

γ1
μ
.

Applying Lemma A.1, we conclude that p(t)≤max{p(0),P+}≤γ1/μ, which ends the
proof.

Theorem 3.4. Suppose that assumptions 2.1, 2.2, and 2.3 hold, moreover, suppose
that uI ∈L∞(R+,ω) and that ‖∂tf‖L∞(0,T ) is finite, if (�,w) is the unique solution of

the stabilized problem (3.1)–(3.3), it is also the unique solution of (3.1)–(3.2) together
with the modified right-hand side

gw=
1

max(μ0,w,μ)

(
ε∂tf+

∫
R+

ζ(w)w�da

)
. (3.6)

Proof. The proof is a simple application of Proposition 3.3 above and taking
p>γ1/μ when solving (3.1)–(3.3). Indeed, in this case, the truncated right-hand side
from (3.3) becomes (3.6), since p(t) :=

∫
R+

ζ(w)w�da never reaches ±p.

4. Impact of the cut-off value on the mean bonds’ population
In the previous section, (3.2) was solved with a bounded source term (either gw or

gw) that we denote in this section as a generic bounded function g∈L∞(0,T ), so that
hereafter w solves (3.2) with g as a source term. In what follows we are interested in
computing a sharp lower bound on the total population μ0,w(t) :=

∫
R+

�(t,ã)dã where �

solves (3.1) with ζ(w).

Lemma 4.1. Let assumptions 2.1 and 2.3 hold. Let w∈XT be given arbitrarily. Let
� be the solution of (3.1) with ζ(w). We suppose that μ0,w(0)<1. Let us fix a positive
constant γ2 such that

γ2<min

(
1−μ0,w(0),

ζmin

ζmin+βmax

)
.

Under assumptions 2.1, 2.2, and 2.3, μ0,w(t)<1−γ2 holds for every positive time t.

Proof. We proceed similarly as in Lemma 2.2 in [9]. The computations are thus
only formal although they can be made rigorous exactly as therein. By hypothesis,
the data satisfies 1−γ2−μ0,w(0)>0. By continuity this also holds on a time interval
[0,t0) small enough. We proceed by contradiction and suppose that at time t0 the mass
μ0,w(t0) reaches 1−γ2. The equation on μ0,w reads

ε∂tμ0,w−β(1−μ0,w)+

∫
R+

�(t,a)ζ(w(t,a))da=0.
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Multiplying by −1 and using the upper bound of β, one deduces that

ε∂t(1−γ2−μ0,w)+βmax(1−γ2−μ0,w)+γ2βmax−
∫
R+

�(t,a)ζ(w(t,a))da≥0,

then the lower bound on ζ implies

ε∂t(1−γ2−μ0,w)+βmax(1−γ2−μ0,w)+γ2βmax≥ ζminμ0,w.

We transform the latter right-hand side writing

ζminμ0,w=−ζmin(1−γ2−μ0,w)+ζmin(1−γ2).

Setting q(t) :=(1−γ2−μ0,w(t)), one then has

ε∂tq+(ζmin+βmax)q≥ ζmin−(ζmin+βmax)γ2>0,

the latter estimate being true under the hypothesis that γ2<ζmin/(ζmin+βmax). The
conclusion then follows integrating the latter inequality in time

q(t0)> exp

(
− (βmax+ζmin)t0

ε

)
q(0)>0,

under the hypothesis that γ2< (1−μ0,w(0)). But this contradicts the assumption that
q(t0)=0, which ends the proof.

Proposition 4.2. Let g∈L∞(0,T ) be given, and let (�,w) be the solutions of (3.1)–
(3.2) with g as a source term. Under assumptions 2.1, 2.2, and 2.3 and if μ0,w(0)≤
1−γ2, there exists a constant ζ̄ independent of ε such that it holds that for any δ>0,∫

R+

ζ(w(t,a))
�(t,a)

μ0,w+δ
da≤ ζ̄+ζLip‖g‖L∞(0,T ) min

(
2

γ2βmin
,
T

ε

)
, ∀t≥0,

where ζ̄ := ζ(0)+
∫
R+

ζ(uI(a))ρ̃ε,I(a)da.

Proof. We do not have a positive definite lower bound on μ0,w yet: at this stage we
only know that μ0,w(t)≥0. For this reason we define �̃δ(t,a) :=�(t,a)/(μ0,w(t)+δ) and
we observe that this new function is in L∞

loc((0,T )×R+)∩C([0,T ];L1(R+)). It solves,
in the sense of characteristics, the equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∂t�̃
δ+∂a�̃

δ+

(
ζ−

∫
R+

ζ�̃δ

)
�̃δ

+β

(
1

μ0,w+δ
− μ0,w

μ0,w+δ

)
�̃δ =0, t>0, a>0,

�̃δ(t,a=0)=β(t)

(
1

μ0,w+δ
− μ0,w

μ0,w+δ

)
, t>0,

�̃δ(t=0,a)=ρI(a)/(μ0,w+δ), a≥0.

(4.1)

The product π(t,a) := ζ(w(t,a))�̃δ(t,a) satisfies

ε∂tπ+∂aπ+

(
ζ2−ζ

∫
R+

ζ�̃δ

)
�̃δ+ �̃δ(t,0)π= ζ ′(w)g(t)�̃δ.
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Indeed, using arguments as in Lemma 2.1 (p. 489) and Lemma 3.1 (p. 493) [9], one
proves that if w solves (2.3) and ζ is uniformly Lipschitz on R, then ζ(w) solves
(ε∂t+∂a)ζ(w)= ζ ′(w)g in the sense of characteristics (as in Theorem 2.1) with the
corresponding boundary conditions. Then the latter equation on π is understood in the
same manner.

Integrating in age and setting q(t) :=
∫
R+

π(t,a)da, we conclude that

ε∂tq−ζ(t,0)�̃δ(t,0)+

∫
R+

ζ2�̃δda−
(∫

R+

ζ�̃δ

)2

+q�̃δ(t,0)≤ ζLip‖g‖∞. (4.2)

To find a lower bound for �̃δ(0,t) we choose δ<γ2/2 and use the upper bound on μ0,w(t)
established in Lemma 4.1 in order to obtain

�̃δ(t,0)≥βmin

(
1

1−γ2+δ
−1

)
≥βmin

γ2
2
. (4.3)

Assuming μ0,w(t)>0 we also find, using Jensen’s inequality, that

(∫
R+

ζ(w(t,a))�̃δ(t,a)da

)2

≤
∫
R+

(ζ(w(t,a)))2�̃δda
μ0,w

(μ0,w+δ)

≤
∫
R+

(ζ(w(t,a)))2�̃δda.

If μ0,w(t)=0 the same inequality holds true since then �(t,a)=0 for almost every a.
These considerations allow then to rewrite (4.2) as

ε∂tq+ �̃δ(t,0)(q−ζ(0))≤ ζLip‖g‖∞.

Setting q̃ := q−ζ(0) and using Gronwall’s Lemma gives

q̃(t)≤ exp

(
−1

ε

∫ t

0

�̃δ(s,0)ds

)
q̃(0)+

ζLip‖g‖∞
ε

∫ t

0

exp

(
−1

ε

∫ t

τ

�̃δ(s,0)ds

)
dτ.

Thanks to the uniform lower bound (4.3), we conclude

q̃(t)≤ exp

(
−βminγ2t

2ε

)
q̃(0)+

2ζLip‖g‖∞
γ2βmin

(
1−exp

(
−βminγ2t

2ε

))
,

which then gives, turning to the variable q, that

q(t)≤ ζ(0)+

∫
R+

ζ(uI(a))ρ̃ε,I(a)da+
2ζLip‖g‖∞
γ2βmin

(
1−exp

(
−βminγ2t

2ε

))
. (4.4)

This bound is uniform in δ.

Proposition 4.3. Let g∈L∞(0,T ) be given, and let (�,w) be the solutions of (3.1)–
(3.2) with g as a source term. Under assumptions 2.1, 2.2, and 2.3 and if μ0,w(0)≤
1−γ2, and choosing μ0,min such that

μ0,min<min

⎛
⎝μ0,w(0),

βmin

βmin+ ζ̄+ζLip‖g‖L∞(0,T ) min
(

2
γ2βmin

, Tε

)
⎞
⎠ ,



V. MILISIC AND D. OELZ 1367

one has a lower bound on μ0,w

μ0,w(t)≥μ0,min, ∀t≥0.

Proof. We integrate (1.2) with respect to age⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε∂tμ0,w−β(1−μ0,w)+

∫
R+

�(t,a)ζ(w(t,a))da=0, t>0,

μ0,w(0)=

∫
R+

ρI(a)da, t=0.

In a weak form this means for any ϕ∈W 1,∞(0,T ) and any t0≤T ,

−
∫ t0

0

μ0,w
dϕ

dt
dτ+[μ0,wϕ]

τ=t0
τ=0 +

∫ t0

0

βμ0,wϕdτ

+

∫ t0

0

∫
R+

ζ(w(τ,a))�(τ,a)da

μ0,w(τ)+δ
(μ0,w(τ)+δ)ϕdτ =

∫ t0

0

βϕdτ.

Now if we denote Lδ(t) :=
∫
R+

ζ(w(τ,a))�(τ,a)da/(μ0,w(τ)+δ). By Proposition 4.2, Lδ ∈
L∞(0,t0) uniformly with respect to δ: there exists a weak-* limit L∈L∞(0,t0) when
δ goes to zero, satisfying the same bound. On the other hand μ0,w(τ)+δ converges
strongly in L1(0,t0) to μ0,w(τ) which means, passing to the limit when δ→0 in the
weak formulation above, that

−
∫ t0

0

μ0,w
dϕ

dt
dτ+[μ0,wϕ]

τ=t0
τ=0 +

∫ t0

0

(β+L)μ0,wϕdτ =

∫ t0

0

βϕdτ.

Inserting a constant μ0,min in the previous expression and rearranging the different
terms, one has

−
∫ t0

0

(μ0,w−μ0,min)

(
dϕ

dt
−(β+L)ϕ

)
dτ+[(μ0,w−μ0,min)ϕ]

τ=t0
τ=0

=

∫ t0

0

(β(1−μ0,min)−Lμ0,min)ϕdτ.

We choose ϕ(t) :=exp
(
−∫ t0

t0−t
(β+L)dτ

)
as a test function. This gives

[(μ0,w−μ0,min)ϕ]
τ=t0
τ=0 =

∫ t0

0

(β(1−μ0,min)−Lμ0,min)ϕdτ.

Setting L := ζ̄+ζLip‖g‖L∞(0,t0)
min

(
2

γ2βmin
, t0ε

)
and using the definition of μ0,min one

has that

(μ0,w(t0)−μ0,min)≥ (μ0,w(0)−μ0,min)exp

(
−
∫ t0

0

(β+L)dτ

)
>0.

Now suppose that there exists a time small enough such that μ0,w(t)>μ0,min for all
t∈ [0,t0) and that μ0,w(t0)=μ0,min. Then the previous estimate contradicts the fact
that μ0,w(t0)=μ0,min. This ends the proof.
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5. Local existence of the fully coupled problem
Theorem 5.1. Let f be a Lipschitz function on (0,T ) and uI ∈L∞(R+,ω). We
suppose that assumptions 2.1, 2.2, and 2.3 hold. Let (�,w) be the solution of (3.1)–(3.2)
together with gw, the simple cut-off defined by (3.6). Then for any fixed μ<μ0,w(0) there
exists a time

T =
ε

γ3

(
βminμ−(βmin+ ζ̄)μ2

)
for which μ0,w(t)>μ for any t∈ (0,T ). So the solution (�,w) of (3.1)–(3.6) is also the
unique local solution of the fully coupled system (1.2)–(1.3).

Proof. Gathering results above, one has

‖gw‖L∞(0,T )≤
1

μ
(ε|∂tf |+p(t))≤ 1

μ

(
ε‖∂tf‖L∞(0,T )+

γ1
μ

)
≤ γ3

μ2
,

since we suppose that μ<1 and we set γ3 :=ε‖∂tf‖L∞(0,T )+γ1. Thanks to Proposition
4.3, the lower bound on μ0,w then becomes

μ0,w(t)>min

(
μ0,w(0),

βminμ
2

(βmin+ ζ̄)μ2+ γ3T
ε

)
.

Choosing μ<μ0,w(0) we define T such that

βminμ
2

(βmin+ ζ̄)μ2+ γ3T
ε

>μ,

so that max(μ0,w(t),μ)=μ0,w(t) on [0,T ] and thus gw(t)=gw(t) on that same time
interval.

6. Global existence for specific data
Under hypotheses of Theorem 3.1, whatever be the time of existence T for (�,w),

the solutions of the stabilized model, then thanks to Corollary 3.2 one has that∫
R+

ζ(w(t,a))�(t,a)da≤
∫
R+

(ζ(0)+ζLip|w|)�da

≤ ζ(0)+ζLip

(∫
R+

|uI |ρIda+
∫ T

0

|∂tf |ds
)
=: ζ̆ , ∀t∈ (0,T ).

Proposition 6.1. Under assumptions 2.1, 2.2, and 2.3, if βmin>ζ̆ and if we set

0<μ0,min<min

(
1− ζ̆

βmin
,μ0,w(0)

)
,

one has that μ0,w(t)≥μ0,min, ∀t∈ (0,T ).

Proof. We set μ̂ :=μ0,w(t)−μ0,min and write the equation that it satisfies

ε∂tμ̂+βμ̂=−
∫
R+

ζ�da+β(1−μ0,min)≥−ζ̆+βmin(1−μ0,min).
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The lower bound is positive definite provided that βmin>ζ̆ and that μ0,min<1− ζ̆/βmin.
Using Gronwall’s Lemma, one has

μ̂(t)≥ exp(−βmaxt/ε)μ̂(0)>0

if μ0,min<μ0,w(0), which ends the proof.

Theorem 6.2. If we fix a finite time T >0, under assumptions 2.1 and 2.2, and
assuming that

i) f is Lipschitz on (0,T ),

ii) β satisfies Assumptions 2.3 together with βmin>ζ̆
there exists a unique solution (ρ,u)∈C(0,T ;L1(R+))×XT solving system (1.2)–(1.3).

Proof. By Theorem 3.4, there exists a unique couple (�,w)∈C(0,∞;L1(R+))×
X∞ solving (3.1)–(3.6) for any given constant μ. We choose T >0 and provided that
β satisfies hypothesis required by Proposition 6.1, we set the constants 0<μ<μ0,min

according to Proposition 6.1. Then μ0,w does not reach the threshold value μ so that

gw(t)=
1

max(μ0,w(t),μ)

(
ε∂tf+

∫
R+

(ζ(w)�w)(t,a)da

)

=
1

μ0,w(t)

(
ε∂tf+

∫
R+

(ζ(w)�w)(t,a)da

)
=gw(t), a.e. t∈ (0,T ).

The pair (�,w) is in fact also solving (1.2)–(1.3) on this time interval. This provides
existence of a solution (ρ,u)=(�,w) on [0,T ]. Since by Theorem 3.4 (�,w) is unique, so
is (ρ,u) in this time period.

7. Blow up for positive solutions
Theorem 7.1. Under Assumption 2.2 and if T0 is the time of existence of (ρ,u)
solving (1.2)–(1.3), and if

i) uI(a)≥0 for a.e. a∈R+,

ii) ∂tf(t)>0 for a.e. t∈ (0,T0),
then the product ρ(t,a)u(t,a) is non-negative for a.e. (t,a)∈ (0,T0)×R+.

Proof. Since f(0)=
∫
R+

ρI(a)uI(a)da and f(t)=
∫
R+

ρ(t,a)u(t,a)da, by Corollary

3.2, it holds that

∫
R+

ρ(t,a)|u(t,a)|da≤
∫
R+

ρI(a)|uI(a)|da+
∫ t

0

|∂tf(t̃)|dt̃

=

∫
R+

ρI(a)uI(a)da+

∫ t

0

∂tf(t̃)dt̃=f(t)=

∫
R+

ρ(t,a)u(t,a)da,

which implies the result.

Proposition 7.2. Under assumptions 2.2 and 2.3 and if

i) ζ satisfies Assumption 2.1 and admits a locally differentiable lower convex envelop
ζc such that ζc(u)≤ ζ(u) for all u∈R+ with ζ ′c(0)>0,

ii) let f be a Lipschitz function such that ∂tf(t)>0 for a.e. t∈ (0,T ),
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iii) f and β are such that βmax<ζ ′c(0)fmin,

iv) uI(a)≥0 for a.e. a∈R+,

then if the solution (ρ,u) solving (1.2)–(1.3) exists until a finite time T0, this time cannot
be greater than

t0 :=
ε

βmin+ζc(0)
ln

(
1+

μ0(0)(βmin+ζc(0))

ζ ′c(0)fmin−βmax

)
,

for which

μ0(T0)≤0.

Moreover, on (0,t0)×R+, one has a lower bound on the profile of u namely

u(t,a)≥εγ5 ln

(
1+

min(t,εa)

(t0− t)

)
,

where γ5 := t0 inft∈(0,t0)∂tf/μ0(0).

Proof. By Theorem 7.1, u(t,a)≥0 a.e. (t,a)∈ (0,T0)×R+. The equation for μ0

reads

ε∂tμ0−β(1−μ0)+

∫
R+

ζ(u(t,a))ρ(t,a)da=0.

Since ζ admits ζc, a lower convex envelope, it follows that

ε∂tμ0−β(1−μ0)+ζ ′c(0)
∫
R+

u(t,a)ρ(t,a)da+ζc(0)μ0≤0

which becomes simply

ε∂tμ0−β(1−μ0)+ζ ′c(0)f+ζc(0)μ0≤0. (7.1)

We can deduce from this inequality that

ε∂tμ0+(βmin+ζc(0))μ0≤βmax−ζ ′c(0)fmin,

which gives using Gronwall’s Lemma that μ0(t)≤μ(t), where

μ(t) :=μ0(0)exp

(
− (βmin+ζc(0))

ε
t

)
− ζ ′c(0)fmin−βmax

(βmin+ζc(0))

(
1−exp

(
− (βmin+ζc(0))

ε
t

))
.

Looking for the time t0 such that μ(t0)=0 provides the explicit form of t0 in the claim.
Thus T0<t0. Moreover, as μ(t) is a convex function in time, one has that

μ0(t)≤
(
1− t

t0

)
μ(0)+

t

t0
μ(t0)≡

(
1− t

t0

)
μ(0),

and because, by Theorem 7.1, ζ(u)uρ is positive almost everywhere on (0,t0)×R+,

ε∂tu+∂au≥ ε∂tf

μ0(t)
≥ εγ5

t0− t
, a.e. in (0,t0)×R+.
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Using Duhamel’s formula provides

u(t,a)≥
{
εγ5

∫ 0

−a
ds

t0−(t+εs)ds, if t≥εa,

uI(a− t/ε)+εγ5
∫ 0

−t/ε
ds

t0−(t+εs)ds otherwise,

which then gives the lower estimate on u.

Appendix A. Riccati inequalities.
Lemma A.1. Let ε>0 and real, let y be a positive differentiable function of t∈R+,
satisfying {

ε∂ty+Ay2≤By+C, t>0,

y(0)=y0, t=0,

where y0>0 and (A,B,C)∈ (R+)
3. Setting y+ := (B+

√
B2+4AC)/(2A), one has that

y(t)≤max(y0,y+), ∀t∈R+.

Proof. We set m :=max(y0,y+), it satisfies −Am2+Bm+C≤0. Then we define
ỹ :=y−m which then solves the differential inequality

ε∂tỹ+Aỹ2+(2mA−B)ỹ≤0. (A.1)

Since the quadratic term is positive we neglect it and apply Gronwall’s Lemma

ỹ(t)≤ exp

(
− (2Am−B)t

ε

)
ỹ(0)=exp

(
− (2Am−B)t

ε

)
(y0−m)≤0,

which ends the proof.
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