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Abstract. In this article, we clarify the mathematical framework underlying the construction of
norm-conserving semilocal pseudopotentials for Kohn–Sham models, and prove the existence of optimal
pseudopotentials for a family of optimality criteria. Most of our results are proved for the Hartree (also
called reduced Hartree–Fock) model, obtained by setting the exchange-correlation energy to zero in
the Kohn–Sham energy functional. Extensions to the Kohn–Sham LDA (local density approximation)
model are discussed.
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1. Introduction

It is a well-known theoretical and experimental fact that the core electrons of an
atom are hardly affected by the chemical environment experienced by this atom. Pseu-
dopotential methods are efficient model reduction techniques relying on this observation,
which are widely used in electronic structure calculation, especially in solid state physics
and materials science, as well as for the simulation of molecular systems containing
heavy atoms. In pseudopotential methods, the original all-electron model is replaced by
a reduced model explicitly dealing with valence electrons only, while core electrons are
frozen in some reference state. The valence electrons are described by valence pseudo-
orbitals, and the interaction between the valence electrons and the ionic cores (an ionic
core consists of a nucleus and of the associated core electrons) is modeled by a nonlocal
operator called a pseudopotential, constructed once and for all from single-atom ref-
erence calculations. The reduction of dimensionality obtained by eliminating the core
electrons from the explicit calculation results in a much less computationally expensive
approach. The pseudopotential has the property that, for isolated atoms, the valence
pseudo-orbitals differ from the valence orbitals in the vicinity of the nucleus, i.e. in the
so-called core region, but coincide with the valence orbitals out of the core region, i.e.
in the region where the influence of the chemical environment is important. In addition
to the reduction of dimensionality mentioned above, an advantage of pseudopotential
models is that pseudopotentials are constructed in such a way that the valence pseudo-
orbitals oscillate much less than the valence orbitals in the core region, hence can be
approximated using smaller planewave bases, or discretized on coarser grids. In addi-
tion, pseudopotentials can be used to incorporate relativistic effects in non-relativistic
calculations. This is of major interest for the simulation of heavy atoms with relativis-
tic core electrons. While pseudopotentials are constructed from single-atom calculations
only, they are meant to be used in the simulation of molecular systems. The ability of
a pseudopotential to provide accurate results for a large variety of molecular systems
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and simulation settings (high temperature or pressure, charge transfer, bond breaking,
ionization, etc.) is called its transferability.

The concept of pseudopotential was first introduced by Hellmann [14] as early as
in 1934. Several variants of the pseudopotential method were then developed over the
years. Let us mention in particular Kerker’s pseudopotentials [17], Troullier–Martins
[28] and Kleinman–Bylander [18] norm-conserving pseudopotentials, Vanderbilt ultra-
soft pseudopotentials [29], and Goedecker pseudopotentials [10]. Blochl’s projected
augmented wave (PAW) method [3] can also be interpreted, to some extend, as a pseu-
dopotential method. Although existing pseudopotential methods can be justified by
convincing chemical arguments and work satisfactorily in practice, they are obtained by
ad hoc procedures, so that the error introduced by the pseudopotential approximation
is difficult to quantify a priori.

The purpose of this article is to clarify the mathematical framework underlying
the construction of semilocal norm-conserving pseudopotentials for Kohn–Sham calcu-
lations, and to prove the existence of optimal pseudopotentials for a natural family
of optimality criteria. We focus here on theoretical issues; the practical interest of
this approach will be investigated in future works. In Section 2, we recall the math-
ematical structures of all-electron and norm-conserving pseudopotential Kohn–Sham
models. In Section 3.2, we provide some results on the spectra of Hartree Hamiltonians
for neutral atoms upon which the construction of pseudopotentials is based. Recall
that the Hartree model is obtained from the exact Kohn–Sham model by discarding
the exchange-correlation energy functional. We then define and analyze in sections 3.3
to 3.5 sets of semilocal norm-conserving pseudopotentials satisfying all the requested
properties (listed in Section 3.5), leaving aside transferability issues. These sets of ad-
missible pseudopotentials, denoted by Mz,ΔE,rc,s, depend on four pieces of data: (i) the
atomic number z of the atom, (ii) an energy window ΔE=(E−,E+)⊂R− defining a
partition between core and valence electrons, (iii) the radius rc of the core region, (iv) a
Sobolev exponent s characterizing the way the regularity of the pseudopotential, hence
of the valence pseudo-orbitals, is measured. We prove that, at least for most atoms of
the first four rows (see Remark 3.4), there exists an energy window ΔE and a critical
cut-off radius r0z,ΔE,c such that for all rc>r0z,ΔE,c and all s>0, the set Mz,ΔE,rc,s is
not empty and has nice topological properties.

After establishing in Section 3.6 some stability results of the Hartree ground state
with respect to both external perturbations and small variations of the pseudopotential,
we propose in Section 3.7 a new way to construct pseudopotentials, consisting of choos-
ing the best candidate in some set Mz,ΔE,rc,s for a given optimality criterion, based
on physical insight and balancing smoothness and transferability requirements. Many
optimality criteria can be considered. We focus here in particular on a specific one
involving the response of the isolated atom to an external uniform electric field (Stark
effect). Most of our results are concerned with the Hartree model. Extensions to the
LDA (local density approximation) model are discussed in Section 4. All the proofs
are collected in Section 5, and a list of the main symbols used throughout the article is
given in Appendix.

2. Kohn–Sham models

Throughout this article, we use atomic units, in which �=1, me=1, e=1, and
4πε0=1, where � is the reduced Planck constant, me the electron mass, e the elemen-
tary charge, and ε0 the dielectric permittivity of the vacuum. For simplicity, we only
consider here restricted spin-collinear Kohn–Sham models (see [11] for a mathematical
analysis of unrestricted and spin-noncollinear Kohn–Sham models) in which the diag-
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onal components γ↑↑ and γ↓↓ of the spin-dependent density matrix are equal, and the
off-diagonal components γ↑↓ and γ↓↑ are both equal to zero. A Kohn–Sham state can
therefore be described by a density matrix

γ=γ↑↑+γ↓↓=2γ↑↑=2γ↓↓

satisfying the following properties:

• γ∈S(L2(R3)), where S(L2(R3)) denotes the space of the bounded self-adjoint
operators on L2(R3);

• 0≤γ≤2, which means 0≤ (φ,γφ)L2 ≤2‖φ‖2L2 for all φ∈L2(R3);

• Tr(γ) equals the number of electrons in the system.

As we do not consider here molecular models with magnetic fields, we can work in the
space L2(R3) of real-valued square integrable functions on R

3.

2.1. All electron Kohn–Sham models. Consider a molecular system with N
electrons and K point-like nuclei of charges Z=(z1, . . . ,zK)∈N

K , located at positions
R=(R1, . . . ,RK)∈ (R3)K . The Kohn–Sham ground state of the system is obtained by
solving the minimization problem

IZ,R=inf {EZ,R(γ), γ∈KN} , (2.1)

where

EZ,R(γ)=Tr

((
−1

2
Δ−

K∑
k=1

zk| ·−Rk|−1

)
γ

)
+

1

2
D(ργ ,ργ)+Exc (ργ) , (2.2)

and

KN :=
{
γ∈S(L2(R3)) |0≤γ≤2, Tr(γ)=N, Tr(−Δγ)<∞

}
,

where Tr(−Δγ) :=Tr(|∇|γ|∇|), with |∇| := (−Δ)1/2. Recall that any γ∈KN has a
density ργ ∈L1(R3), defined by

∀W ∈L∞(R3), Tr(γW )=

∫
R3

ργW,

which satisfies ργ ≥0 in R
3 and

√
ρ
γ
∈H1(R3), so that ργ ∈L1(R3)∩L3(R3). In partic-

ular,

Tr

((
−1

2
Δ−

K∑
k=1

zk| ·−Rk|−1

)
γ

)
=

1

2
Tr(−Δγ)−

K∑
k=1

zk

∫
R3

ργ(r)

|r−Rk|
dr,

where the second term of the right-hand side is well-defined by virtue of Hardy and
Hoffmann-Ostenhof inequalities [15]

0≤
∫
R3

ργ(r)

|r−Rk|
dr≤2N1/2‖∇√

ργ‖L2 ≤2N1/2Tr(−Δγ)1/2<∞.

The bilinear form D(·, ·) in (2.2) is the Coulomb interaction defined for all (f,g)∈
L6/5(R3)×L6/5(R3) by

D(f,g)=

∫
R3

∫
R3

f(r)g(r′)
|r−r′| drdr′. (2.3)
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Lastly, the exchange-correlation energy functional Exc depends on the Kohn–Sham
model under consideration. We will restrict ourselves to two different Kohn–Sham
models, namely the Hartree model, also called the reduced Hartree–Fock model, for
which

EHartree
xc (ρ)=0,

and the Kohn–Sham LDA (local density approximation) model [19], for which

ELDA
xc (ρ)=

∫
R3

εxc(ρ(r))dr,

where for each ρ∈R+, εxc(ρ)∈R− is the exchange-correlation energy density of the
homogeneous electron gas with uniform density ρ. The function ρ �→ εxc(ρ) does not have
a simple explicit expression, but it has the same mathematical properties as the exchange

energy density of the homogeneous electron gas given by εx(ρ)=− 3
4

(
3
π

)1/3
ρ4/3.

We are now going to recall some existence and uniqueness results for the Hartree
model proved in [5, 25]. Although general results for neutral and positively charged
molecular systems are available, we focus here on the case of a single neutral atom,
which is of particular interest for the study of pseudopotentials. Weaker results have
been obtained for the Kohn–Sham LDA model [1] (see also Section 4).

For convenience, we will call atom z the neutral atom with atomic number z.

Proposition 2.1 (All-electron Hartree model for neutral atoms [5, 25]). Let z∈N
∗.

The all-electron Hartree model for atom z

IAA
z := inf

{
EAA

z (γ), γ∈Kz

}
, (2.4)

where

EAA
z (γ)=Tr

(
−1

2
Δγ

)
−z

∫
R3

ργ(r)

|r| dr+
1

2
D(ργ ,ργ) ,

has a minimizer γ0
z , and all the minimizers of (2.4) share the same density ρ0z. In

addition,

1. the ground state density ρ0z is a radial positive function belonging to H2(R3)∩
C0,1(R3)∩C∞(R3 \{0}) (hence vanishing at infinity);

2. the Hartree Hamiltonian

HAA
z =−1

2
Δ+WAA

z , where WAA
z =− z

| · |+ρ0z � | · |−1,

is a bounded below self-adjoint operator on L2(R3) with domain H2(R3) and
such that σess(H

AA
z )= [0,+∞);

3. the minimizers γ0
z satisfy the first-order optimality condition

γ0
z =21(−∞,ε0z,F)

(HAA
z )+δ,

where ε0z,F≤0 is the Fermi level (that is the Lagrange multiplier of the con-
straint Tr(γ)=z), and where δ is a finite-rank operator such that 0≤ δ≤2 and
Ran(δ)⊂Ker(HAA

z −ε0z,F);
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4. if ε0z,F is negative and is not an accidentally degenerate eigenvalue of HAA
z , then

the minimizer γ0
z of (2.4) is unique.

Remark 2.2 (on the Fermi level). Consider, for each j∈N
∗, the real number

εz,j := inf
Xj∈Xj

sup
φ∈Xj\{0}

〈φ|HAA
z |φ〉

‖φ‖2L2

, (2.5)

where Xj is the set of the vector subspaces of H1(R3) of dimension j and 〈φ|HAA
z |φ〉

the quadratic form associated with the self-adjoint operator HAA
z (whose form domain

is H1(R3)). According to the minmax principle [22, Theorem XIII.1], εz,j is equal to
the jth lowest eigenvalue of HAA

z (counting multiplicities) if HAA
z has at least j non-

positive eigenvalues (still counting multiplicities), and to min(σess(H
AA
z ))=0 otherwise.

If z is odd, then ε0z,F=εz,(z+1)/2. If z is even, that is if z=2Np, where Np is the

number of electron pairs, two cases can be distinguished: if εz,Np =εz,Np+1, then ε0z,F=
εz,Np

, otherwise, any number in the interval (εz,Np
,εz,Np+1) is an admissible Lagrange

multiplier of the constraint Tr(γ)= z.

Remark 2.3 (on essential and accidental degeneracies). Let us clarify the meaning
of the last statement of Proposition 2.1. The mean-field operator HAA

z being invariant
with respect to rotations, some of its eigenvalues may be degenerate. More precisely,
all its eigenvalues corresponding to p, d, f, etc. shells (see Section 3.2) are degenerate,
and only those corresponding to s shells are (in general) non-degenerate. Eigenvalue de-
generacies due to symmetries are called essential. By contrast, eigenvalues degeneracies
of HAA

z which are not due to rotational symmetry are called accidental. For instance,
the fact that the 2s and 2p shells of the Hamiltonian H=− 1

2Δ− 1
|·| (hydrogen atom)

both correspond to the eigenvalue −1/8 is an accidental degeneracy. We have checked
numerically that ε0z,F is negative and is not an accidentally degenerate eigenvalue for

any 1≤ z≤20. On the other hand, for z=21, ε0z,F is very close or equal to zero (see [6]).

2.2. Kohn–Sham models with norm-conserving pseudopotentials.
In pseudopotential calculations, the electrons of each chemical element are partitioned
into two categories, core electrons on the one hand and valence electrons on the other
hand, according to the procedure detailed in Section 3.4 below. We denote by Nz,c the
number of core electrons in atom z, and by Nz,v= z−Nz,c the number of valence elec-
trons. Each chemical element is associated with a bounded nonlocal rotation-invariant
self-adjoint operator V PP

z , called the atomic pseudopotential, a core pseudo-density
ρ̃0z,c∈L1(R3)∩L3(R3), and a core energy Ez,c∈R which will be precisely defined in
Section 3.5. Only valence electrons are explicitly dealt with in pseudopotential cal-
culations. For the molecular system considered in Section 2.1, the pseudopotential
approximation of the ground state energy is given by

IPP
Z,R=inf

{
EPP

Z,R(γ̃), γ̃∈KNv

}
+

K∑
k=1

Ezk,c, (2.6)

where

Nv=N−
K∑

k=1

Nzk,c
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is the total number of valence electrons in the system (Nv=
∑K

k=1Nzk,v if the system
is electrically neutral). The Kohn–Sham pseudo-energy functional is

EPP
Z,R(γ̃)=Tr

((
−1

2
Δ+

K∑
k=1

τRk
V PP
zk

τ−Rk

)
γ̃

)
+
1

2
D(ργ̃ ,ργ̃)+Exc

(
ργ̃+

K∑
k=1

τRk
(ρ̃0zk,c)

)
,

where for all R∈R
3, τR is the translation operator defined on L2(R3) by (τRφ)(r)=

φ(r−R).

We will describe the precise nature of the atomic pseudopotentials V PP
z in Sec-

tion 3.5. Let us just mention at this stage that V PP
z is a rotation-invariant operator of

the form

V PP
z =Vz,loc+Vz,nl (2.7)

where Vz,loc and Vz,nl are respectively the local and nonlocal parts of the pseudopotential
operator V PP

z . The operator Vz,loc is a multiplication operator by a real-valued radial
function Vz,loc∈L2

loc(R
3) satisfying

Vz,loc(r) ∼
|r|→∞

−Nz,v

|r| . (2.8)

The operator Vz,nl is a −Δ-compact, rotation-invariant, bounded self-adjoint operator
on L2(R3) such that

∀φ∈L2(R3),
(
ess-Supp(φ)⊂R

3 \Brc

)
⇒ (Vz,nlφ=0) , (2.9)

where rc is a positive real number (depending of z) called the core radius of atom z,
and where Brc is the closed ball of R3 centered at the origin, with radius rc.

The results below are straightforward extensions of the existence and uniqueness
results established in [1, 5, 25]. We skip their proofs for brevity.

Proposition 2.4 (Kohn–Sham models with norm-conserving pseudopotential). As-
sume that the molecular system is neutral or positively charged, and that the atomic
pseudopotentials satisfy (2.7)–(2.9). Then

1. the Hartree model (2.6) with Exc=EHartree
xc =0 has a minimizer and all the

minimizers share the same density;

2. the Kohn–Sham LDA model (2.6) with Exc=ELDA
xc has a minimizer.

Proposition 2.5 (Hartree model for neutral atoms and norm-conserving pseudopo-
tentials). Let z∈N

∗. If the atomic pseudopotential V PP
z satisfies (2.7)–(2.9), then the

Hartree model

inf
{
EPP

z (γ̃), γ̃∈KNz,v

}
, (2.10)

where

EPP
z (γ̃)=Tr

((
−1

2
Δ+V PP

z

)
γ̃

)
+

1

2
D(ργ̃ ,ργ̃) ,

has a minimizer γ̃0
z and all the minimizers share the same density ρ̃0z. In addition,
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1. the pseudo-density ρ̃0z is a radial positive function belonging to H2(R3) (hence
vanishing at infinity);

2. the Hartree pseudo-Hamiltonian

HPP
z =−1

2
Δ+WPP

z , where WPP
z =V PP

z + ρ̃0z � | · |−1, (2.11)

corresponding to the pseudopotential V PP
z , is a bounded below self-adjoint oper-

ator on L2(R3) with domain H2(R3) and such that σess(H
PP
z )= [0,+∞);

3. the minimizers γ̃0
z satisfy the first-order optimality condition

γ̃0
z =21(−∞,ε̃0z,F)

(HPP
z )+ δ̃,

where ε̃0z,F≤0 the pseudo Fermi level (the Lagrange multiplier associated with

the constraint Tr(γ̃)=Nz,v), and where δ̃ is a finite-rank operator such that

0≤ δ̃≤2 and Ran(δ̃)⊂Ker(HPP
z − ε̃0z,F);

4. if ε̃0z,F is negative and is not an accidentally degenerate eigenvalue of HPP
z , then

the minimizer γ̃0
z of (2.4) is unique.

Remark 2.6. We will see later that for the class of pseudopotentials constructed in
Section 3.5, the Fermi level ε0z,F and the pseudo Fermi level ε̃0z,F can be chosen equal,

and that if ε0z,F is negative and is not an accidentally degenerate eigenvalue of HAA
z ,

then ε̃0z,F is (obviously) negative and is not an accidentally degenerate eigenvalue of

HPP
z .

3. Analysis of norm-conserving semilocal pseudopotentials
In this section, we restrict ourselves to the Hartree model. Extensions to the Kohn–

Sham LDA model are discussed in Section 4.

3.1. Atomic Hamiltonians and rotational invariance. In both all-electron
and pseudopotential calculations, atomic Hartree Hamiltonians are self-adjoint oper-
ators on L2(R3) invariant with respect to rotations around the nucleus (assumed lo-
cated at the origin). These operators are therefore block-diagonal in the decomposition
of L2(R3) associated with the eigenspaces of the operator L2 (the square of the an-
gular momentum operator L=r×p=r×(−i∇)). More precisely, the Hilbert space
L2(R3) can be decomposed as the direct sum of the pairwise orthogonal subspaces
Hl :=Ker(L2− l(l+1)):

L2(R3)=
⊕
l∈N

Hl. (3.1)

It is convenient to introduce the spaces

L2
o(R)=

{
f ∈L2(R) |f(−r)=−f(r) a.e.

}
(odd square integrable functions on R) and

L2
r (R

3)=
{
u∈L2(R3) |u is radial

}
(radial square integrable functions on R

3). To any u∈L2
r (R

3) is associated a (unique)
function Ru∈L2

o(R) such that

u(r)=
Ru(|r|)√
2π|r|

for a.e. r∈R
3.
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When there is no ambiguity, we will also denote by

u(r)=
Ru(r)√
2πr

for a.e. r∈R

(r �→u(r) then is an even function of r, belonging to the weighted L2 space L2
(
R,r2dr

)
).

It is easily checked that the mapping

R :L2
r (R

3)�u �→Ru∈L2
o(R)

is unitary. For s∈R, we denote by

Hs
r (R

3) and Hs
o(R)

the subspaces of the Sobolev spaces Hs(R3) and Hs(R) consisting of radial, and odd
distributions respectively, and, for s∈R+, we denote by Hs

loc,r(R
3) the space of radial

locally Hs distributions in R
3.

Lemma 3.1. For all s∈R+ and all u∈Hs
r (R

3), we have that Ru∈Hs
o(R). In addition,

the mapping Hs
r (R

3)�u �→Ru∈Hs
o(R) is unitary.

Denoting by Pl∈S(L2(R3)) the orthogonal projector onHl, the spacesHl=Ran(Pl)
are given by

Hl=

{
vl(r)=

l∑
m=−l

√
2vl,m(|r|)

|r| Ym
l

(
r

|r|

) ∣∣∣∣vl,m∈L2
o(R), ∀− l≤m≤ l

}
,

where (Ym
l )l≥0,−l≤m≤l are the real spherical harmonics [31], normalized in such a way

that ∫
S2

Ym
l Ym′

l′ = δll′δmm′ ,

where S
2 is the unit sphere of R3. Clearly,

∀vl∈Hl, ‖vl‖2L2(R3)=

l∑
m=−l

‖vl,m‖2L2(R).

We also have for all s∈R+,

Hs(R3)=
⊕
l∈N

(
Hl∩Hs(R3)

)
,

Hl∩Hs(R3)=

{
vl(r)=

l∑
m=−l

√
2vl,m(|r|)

|r| Ym
l

(
r

|r|

) ∣∣∣∣vl,m∈Hs
o(R), ∀− l≤m≤ l

}
,

∀vl∈Hl∩H1(R3), ‖vl‖2H1(R3)=

l∑
m=−l

‖vl,m‖2H1(R)+ l(l+1)

l∑
m=−l

‖r−1vl,m‖2L2(R),

∀vl∈Hl∩H2(R3), ‖vl‖2H2(R3)=

l∑
m=−l

∥∥−v′′l,m+ l(l+1)r−2vl,m+vl,m
∥∥2
L2(R)

.

By rotational invariance, any atomic Hamiltonian Hz is block-diagonal in the decom-
position (3.1), which we write

Hz =
⊕
l∈N

Hz,l. (3.2)
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3.2. All-electron atomic Hartree Hamiltonians. All-electron atomic
Hartree Hamiltonians are Schrödinger operators of the form

HAA
z =−1

2
Δ+WAA

z , (3.3)

where WAA
z is the multiplication operator by the radial function

WAA
z (r)=− z

|r|+
(
ρ0z � | · |−1

)
(r),

where ρ0z is the radial all-electron atomic Hartree ground state density of atom z (see
Proposition 2.1). The operator HAA

z,l associated with the decomposition (3.2) is the

self-adjoint operator on Hl with domain Hl∩H2(R3) defined for all vl∈Hl∩H2(R3) by

(HAA
z,l vl)(r)=

l∑
m=−l

√
2

|r|

(
−1

2
v′′l,m(|r|)+ l(l+1)

2|r|2 vl,m(|r|)+WAA
z (|r|)vl,m(|r|)

)
Ym
l

(
r

|r|

)
.

This leads us to introduce, for each l∈N, the radial Schrödinger equations

−1

2
R′′(r)+

l(l+1)

2r2
R(r)+WAA

z (r)R(r)= εR(r), R∈H1
o (R),

∫
R

R2=1. (3.4)

Recall that, for convenience, we also denote by WAA
z the even function from R to R

such that for all r∈R
3, WAA

z (r)=WAA
z (|r|).

The spectral properties of atomic Hartree Hamiltonians which will be useful to
construct atomic pseudopotentials are collected in the following proposition.

Proposition 3.2 (spectrum of atomic Hartree Hamiltonians). Let z∈N
∗ for which

ε0z,F<0. The atomic Hartree Hamiltonian HAA
z is a bounded below self-adjoint operator

on L2(R3) with domain H2(R3), and it holds for any l∈N, σess(H
AA
z,l )=σess(H

AA
z )=

[0,+∞). In addition,

1. HAA
z has no strictly positive eigenvalues and the set of its non-positive eigen-

values is the union of the non-positive eigenvalues of the operators HAA
z,l , which

are obtained by solving the one-dimensional spectral problem (3.4);

2. for each l∈N, the negative eigenvalues of (3.4), if any, are simple, and the
eigenfunctions associated with the nth eigenvalue have exactly n−1 nodes on
(0,+∞);

3. for each l∈N, (3.4) has at most a finite number nz,l of negative eigenvalues.
The sequence (nz,l)l∈N is non-increasing and nz,l=0 for l large enough. We
denote by

l+z =min{l∈N |nz,l+1=0};

4. denoting by (εz,n,l)1≤n≤nz,l
the negative eigenvalues of (3.4), ranked in increas-

ing order, we have

∀0≤ l1<l2≤ l+z , ∀n≤nz,l2 , εz,n,l1 <εz,n,l2 . (3.5)

We denote by Rz,n,l the L2-normalized eigenfunction associated with the (simple)
eigenvalue εz,n,l of (3.4) taking positive values for r>0 large enough:

Rz,n,l∈H1
o (R), −1

2
R′′

z,n,l(r)+
l(l+1)

2r2
Rz,n,l(r)+WAA

z (r)Rz,n,l(r)= εz,n,lRz,n,l(r),



1324 A TYPE OF OPTIMAL PSEUDOPOTENTIALS FOR KOHN–SHAM MODELS∫
R

R2
z,n,l=1, Rz,n,l(r)>0 for r�1.

An orthonormal family of eigenfunctions of the negative part of the atomic Kohn–
Sham Hamiltonian HAA

z is thus given by

φm
z,n,l(r)=

√
2Rz,n,l(|r|)

|r| Ym
l

(
r

|r|

)
, 0≤ l≤ l+z , 1≤n≤nz,l,−l≤m≤ l.

Note that φm
z,n,l∈Hl∩H2(R3).

Remark 3.3. The integers l and m are respectively called the azimuthal and magnetic
quantum numbers. With the labeling of the eigenvalues of HAA

z we have chosen, the so-
called principal quantum number is equal to (n+ l). Thus, the 2p and 4d shells of atom z
(see e.g. [8] for a proper mathematical definition of atomic shells) respectively correspond
to the eigenvalues εz,1,1 (first eigenvalue of HAA

z |H1) and εz,2,2 (second eigenvalue of
HAA

z |H2
).

The ground state density matrix γ0
z can be written as

γ0
z =

l+z∑
l=0

nz,l∑
n=1

l∑
m=−l

pz,n,l|φm
z,n,l〉〈φm

z,n,l|, (3.6)

where 0≤pz,n,l≤2 is the occupation number of the Kohn–Sham orbital φm
z,n,l. Note that

pz,n,l is independent of the magnetic quantum number m. The occupation numbers are
such that

pz,n,l=2 if εz,n,l<ε0z,F, 0≤pz,n,l≤2 if εz,n,l= ε0z,F, pz,n,l=0 if εz,n,l>ε0z,F, (3.7)

and

l+z∑
l=0

nz,l∑
n=1

(2l+1)pz,n,l= z.

We call occupied l-shells of atom z the shells s (l=0), p (l=1), d (l=2), f (l=3), etc.
for which nz,l>0 and pz,1,l>0. In view of (3.5)–(3.7) if a shell l is occupied, then so
are all the shells l′ with l′<l. Denoting by

l−z =max
{
0≤ l≤ l+z |pz,1,l>0

}
,

we thus obtain that all the shells l≤ l−z are occupied, and all the shells l−z <l≤ l+z (if
any, see Remark 3.4 below) are unoccupied.

It follows from (3.6)–(3.7) that if ε0z,F is not an eigenvalue of HAA
z (non-degenerate

case in the terminology used in [5]), that is if the highest occupied shell is fully occupied,
then the ground state density matrix is unique and is the orthogonal projector

γ0
z =2

∑
n,l,m | εz,n,l<ε0z,F

|φm
z,n,l〉〈φm

z,n,l| (non-degenerate case).

We also know (see Proposition 2.1 and Remark 2.3) that if ε0z,F is an eigenvalue εz,n0,l0

of HAA
z which is negative (degenerate case in the terminology used in [5]), and is not
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accidentally degenerate, then the ground state density matrix is still unique and is given
by

γ0
z =2

∑
n,l,m | εz,n,l<ε0z,F

|φm
z,n,l〉〈φm

z,n,l|+
z−Nf

2l0+1

l0∑
m=−l0

|φm
z,n0,l0〉〈φ

m
z,n0,l0 | (degenerate case),

where Nf =2
∑

n,l | εz,n,l<ε0z,F

(2l+1) is the number of electrons in the fully occupied shells.

3.3. Atomic semilocal norm-conserving pseudopotentials. Atomic norm-
conserving pseudopotentials are operators of the form

V PP
z =Vz,loc+

lz∑
l=0

PlVz,lPl, for some l−z ≤ lz ≤ l+z , (3.8)

where Vz,loc∈Hs
loc,r(R

3) and where we recall that Pl∈B(L2(R3)) is the orthogonal pro-
jector on the space Hl. The first term in the right-hand side of (3.8) therefore is a local
operator, while the second term is nonlocal. The structure of the operator Vz,l depends
on the nature of the pseudopotential under consideration:

• in semilocal pseudopotentials, Vz,l is a multiplication operator by a function
Vz,l∈Hs

r (R
3); otherwise stated, Vz,l is a local operator on Hl;

• in Kleinman–Bylander pseudopotentials, Vz,l is a finite-rank rotation-invariant
operator.

We restrict our analysis to semilocal pseudopotentials. The case of finite-rank pseu-
dopotentials can be handled as well using the same techniques, provided the rank of the
operator Vz,l is not constrained to be bounded by a fixed integer. The case of Kleinman–
Bylander pseudopotentials, for which the rank of Vz,l is fixed, is more difficult to analyze,
due to the possible presence of ghost states [12].

The overall regularity of the pseudopotential is governed by the parameter s. For
each 0≤ l≤ lz, the function Vz,l is supported in a ball of radius rc,l. The positive number

rc := max
0≤l≤lz

rc,l

is called the core radius.
The operators HPP

z,l involved in the decomposition (3.2) of the atomic Hartree

pseudo-Hamiltonian HPP
z are then given by: for all 0≤ l≤ lz,

(HPP
z,l vl)(r)=

l∑
m=−l

√
2

|r|

(
−1

2
v′′l,m(|r|)+ l(l+1)

2|r|2 vl,m(|r|)+(Wz,loc+Vz,l)(r)vl,m(|r|)
)

×Ym
l

(
r

|r|

)
,

and for all l> lz,

(HPP
z,l vl)(r)=

l∑
m=−l

√
2

|r|

(
−1

2
v′′l,m(|r|)+ l(l+1)

2|r|2 vl,m(|r|)+Wz,loc(r)vl,m(|r|)
)
Ym
l

(
r

|r|

)
,

where

Wz,loc=Vz,loc+ ρ̃0z � | · |−1,
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ρ̃0z being the ground state pseudo-density defined in Proposition 2.5.
The mathematical construction of a semilocal pseudopotential for atom z goes as

follows:

Step 1: choose an energy window ΔE=(E−,E+)⊂R−, which, in particular, defines a
partition between core and valence electrons;

Step 2: choose the core radius rc and the Sobolev exponent s, and check that the
so-obtained set Mz,ΔE,rc,s of admissible pseudopotentials (see Section 3.5) is
non-empty;

Step 3: choose the “best” pseudopotential in the set Mz,ΔE,rc,s.

Steps 1 and 2 are detailed in the next two sections. In Section 3.6, we investigate the
stability of the atomic ground state of the pseudopotential model with respect to both
external perturbations and variations of the pseudopotential itself. In Section 3.7, we
address the existence of optimal pseudopotentials for a variety of optimality criteria.

3.4. Partition between core and valence electrons. As mentioned above,
the first task to construct a pseudopotential is to partition the electrons into core and
valence electrons. We assume here that z∈N

∗ is such that ε0z,F<0. This partitioning is
made through the choice of an energy window ΔE=(E−,E+), with −∞<E−<E+<0,
containing the Fermi level ε0z,F (or a Fermi level in the case when the highest occupied
energy level is fully occupied, see Remark 2.2) and such that there exists an integer lz
satisfying l−z ≤ lz ≤ l+z and

∀l≤ lz, #
(
{εz,n,l}n∈N

∩ΔE
)
=#

(
{εz,n,l}n∈N

∩ΔE
)
=1, (3.9)

∀l> lz, #
(
{εz,n,l}n∈N

∩ΔE
)
=0. (3.10)

All the electrons occupying the shells such that εz,n,l<E− are considered as core
electrons. For each l≤ lz, we denote by n�

z,l, the unique non-negative integer such

that εz,n�
z,l,l

∈ΔE. The set
{
εz,n�

z,l,l

}
0≤l≤lz

constitute the set of the valence energy

levels, which can a priori be fully occupied (E−<εz,n�
z,l,l

<ε0z,F), partially occupied

(εz,n�
z,l,l

= ε0z,F) or unoccupied (ε0z,F<εz,n�
z,l,l

<E+).

Remark 3.4. Let us emphasize that it is not clear a priori that one can find
energy windows ΔE satisfying (3.9)–(3.10). Here again, we need to rely on numerical
simulations to establish that our assumptions make sense and are satisfied in practice, at
least for some atoms. In another contribution [6] more focused on numerical simulations,
we show in particular that for most atoms of the first four rows of the periodic table,
ε0z,F<0 and energy windows ΔE satisfying (3.9)–(3.10) do exist. Besides, for most atoms
of the first four rows, atomic Hartree Hamiltonians do not seem to have unoccupied
energy levels with negative energies, so that for those atoms, l+z = l−z and therefore
lz = l−z = l+z . For instance, it can be checked numerically that the Hartree valence energy
levels of the copper atom (z=29) are such that

lz =2, n�
z,0=4, n�

z,1=2, n�
z,2=1, E−<εz,2,1<εz,4,0<ε0z,F= εz,1,2<E+, (for Cu).

This is the situation depicted on Figure 3.1. The core and valence configurations are
respectively denoted by 1s2 2s2 2p6 3s2 and 3p6 4s2 3d9 in the chemistry literature.
Let us observe that the valence configuration of Cu for the Hartree model differs from
the one obtained from the N -body Schrödinger equation with infinitesimal Coulomb
repulsion [8], that is 3p6 3d10 4s1.



E. CANCÉS AND N. MOURAD 1327

3d

−

E +

E

l=0 l=1 l=2 l=3 l=4 l=5 l=6

Core states

Valence states

2p

3p

1s

2s

4s

3s

Fig. 3.1. Sketch of the spectra of the operators HAA
z |Hl

and admissible energy window ΔE=
(E−,E+) for the copper atom (z=29). The energy scale is arbitrary. The actual values of the en-
ergy levels are the following: εz,1,0�−312.78 Ha (1s), εz,2,0�−36.42 Ha (2s), εz,1,1�−31.57 Ha
(2p), εz,3,0�−3.716 Ha (3s), εz,2,1�−2.294 Ha (3p), εz,4,0�−5.540×10−2 Ha (4s), ε0z,F= εz,1,2�
−1.371×10−2 Ha (3d). The self-consistent Hartree Hamiltonian HAA

z seems to have no negative
eigenvalue above the Fermi level ε0z,F.

We therefore have

Nz,c=
∑

n,l |εz,n,l≤E−

(2l+1)pz,n,l and Nz,v= z−Nz,c,

where we recall that Nz,c and Nz,v respectively denote the numbers of core and valence
electrons. We also introduce the core and valence all-electron Hartree ground state
densities, respectively defined as

ρ0z,c(r) :=2
∑

n,l |εz,n,l≤E−

l∑
m=−l

|φm
z,n,l(r)|2 and ρ0z,v(r) :=

lz∑
l=0

l∑
m=−l

pz,n�
z,l,l

|φm
z,n�

z,l,l
(r)|2.

Note that the core density ρ0z,c should not be confused with the core pseudo-density ρ̃0z,c
mentioned in Section 2.2 and whose expression will be given below (see (3.21)).

3.5. Admissible pseudopotentials. Let z∈N
∗ be such that ε0z,F<0, and

let ΔE=(E−,E+) be an energy window satisfying the properties (3.9)–(3.10). An
admissible semilocal norm-conserving pseudopotential with core radius rc and regularity
Hs (s>0) is an operator V PP

z of the form

V PP
z =Vz,loc+

lz∑
l=0

PlVz,lPl, for some l−z ≤ lz ≤ l+z ,

for which the radial functions Vz,loc and Vz,l satisfy the following properties:

(1) values out of the core region:

in R
3 \Brc , Vz,loc=− z

| · |+ρ0z,c � | · |−1 and Vz,l=0 for all 0≤ l≤ lz; (3.11)
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(2) Hs-regularity:

Vz,loc∈Hs
loc,r(R

3) and for all 0≤ l≤ lz, Vz,l∈Hs
r (R

3); (3.12)

(3) consistency: the atomic Hartree pseudo-Hamiltonian

HPP
z =−1

2
Δ+WPP

z , where WPP
z =Wz,loc+

lz∑
l=0

PlVz,lPl,

obtained with the pseudopotential V PP
z (see Proposition 2.5) is such that

1(−∞,E+)(H
PP
z )=

lz∑
l=0

l∑
m=−l

|φ̃m
z,l〉〈φ̃m

z,l|, (3.13)

Wz,loc=Vz,loc+ ρ̃0z � | · |−1, ρ̃0z(r)=

lz∑
l=0

l∑
m=−l

pz,n�
z,l,l

|φ̃m
z,n�

z,l,l
(r)|2, (3.14)

where

φ̃m
z,l(r)=

√
2R̃z,l(|r|)

|r| Ym
l

(
r

|r|

)
, (3.15)

with, for each 0≤ l≤ lz,

R̃z,l∈H1
o (R), (3.16)

− 1

2
R̃′′

z,l(r)+
l(l+1)

2r2
R̃z,l(r)+(Wz,loc(r)+Vz,l(r))R̃z,l(r)= εz,n�

z,l,l
R̃z,l(r),

(3.17)∫
R

R̃2
z,l=1, (3.18)

R̃z,l=Rz,n�
z,l,l

on (rc,l,+∞) for some 0<rc,l≤ rc, (3.19)

R̃z,l≥0 on (0,+∞). (3.20)

We can therefore define the set of admissible semilocal norm-conserving pseudopotentials
with energy window ΔE=(E−,E+), core radius rc and regularity Hs, for the atom z
as

Mz,ΔE,rc,s :=

{
V PP
z =Vz,loc+

lz∑
l=0

PlVz,lPl

∣∣∣∣ such that (3.11)–(3.20) hold

}
.

Several comments are in order:

• condition (3.11) implies conditions (2.8)–(2.9), so that the existence and unique-
ness of the atomic ground state valence pseudo-density ρ̃0z is guaranteed by
Proposition 2.5 as soon as (3.11) is satisfied;

• it follows from (3.16)–(3.18) and (3.20) that εz,n�
z,l,l

is the ground state eigen-

value of HPP
z |Hl

and that the (2l+1) functions φ̃m
z,l, −l≤m≤ l, form an or-

thonormal basis of associated eigenfunctions;
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• by construction (see Section 3.4), the energy window ΔE contains ε0z,F. In

addition, HAA
z and HPP

z have the same spectra in ΔE (including multiplicities),
and in both all-electron and pseudopotential models, Nz,v electrons are placed
in the energy levels in ΔE, according the Aufbau and Pauli principles (that is,
occupy the lower energy states with no more than two electrons per state). As
a consequence, and as already mentioned in Remark 2.6, the all-electron Fermi
level ε0z,F and the pseudo Fermi level ε̃0z,F can be chosen equal, and if ε0z,F is

not an accidentally degenerate eigenvalue of HAA
z , then ε̃0z,F= ε0z,F cannot be

an accidentally degenerate eigenvalue of HPP
z ;

• it also follows from (3.13) that the εz,n�
z,l,l

’s are the only eigenvalues of HPP
z in

the energy range (−∞,E+). This property is referred to as the absence of ghost
states in the physics literature;

• out of the core region, (3.11) is compatible with (3.17) and (3.19). Indeed,
(3.17) and (3.19) imply that

∀r∈R
3 \Brc , ρ̃0z(r)=ρ0z,v(r) and Wz,loc(r)+Vz,l(r)=WAA

z (r),

hence, applying Gauss theorem, that ρ̃0z � | · |−1=ρ0z,v � | · |−1 in R
3 \Brc , which

finally leads to

Vz,loc+Vz,l=WAA
z −ρ0z,v � | · |−1=− z

| · |+ρ0z,c � | · |−1 in R
3 \Brc ;

• the core energies and the core pseudo-densities ρ̃0,c of the atoms appearing in
(2.6) are defined in such a way that for an isolated atom, the pseudopotential
calculation gives the same energy as the all-electron model. In the Hartree case,
the core energy of atom z is therefore given by

Ez,c= IAA
z − inf

{
EPP

z (γ̃), γ̃∈KNz,v

}
= IAA

z −Tr

((
−1

2
Δ+V PP

z

)
γ̃0
z

)
− 1

2
D
(
ρ̃0z, ρ̃

0
z

)
= IAA

z −
lz∑
l=0

(2l+1)pz,n�
z,l,l

εz,n�
z,l,l

+
1

2
D
(
ρ̃0z, ρ̃

0
z

)
.

The core pseudo-density of atom z is defined by

ρ̃0z,c=ρ0z− ρ̃0z. (3.21)

Note that atomic core pseudo-densities do not play any role in the Hartree
model, since they are only involved in the exchange-correlation energy func-
tional.

The rest of this section is devoted to the study of the set Mz,ΔE,rc,s. We assume
here that z∈N

∗ is such that ε0z,F<0 and that ΔE=(E−,E+) is a fixed energy window
satisfying (3.9)–(3.10). It readily follows from the definition of Mz,ΔE,rc,s that

∀0<rc≤ r′c<+∞, Mz,ΔE,rc,s⊂Mz,ΔE,r′c,s, (3.22)

∀0≤s≤s′<+∞, Mz,ΔE,rc,s′ ⊂Mz,ΔE,rc,s. (3.23)
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Let

r−z,ΔE,c= max
0≤l≤lz

(
maxR−1

z,n�
z,l,l

(0)
)
≥0

be the maximum over 0≤ l≤ lz of the largest node of the function Rz,n�
z,l,l

. If rc<

r−z,ΔE,c, then (3.19) and (3.20) are obviously inconsistent, and Mz,ΔE,rc,s=∅. On the
other hand, we are going to see that Mz,ΔE,rc,s is not empty, for any s≥0, as soon

as rc is large enough. To any potential W ∈L
3/2
r (R3), we associate the function TW :

(0,+∞)→R− defined for all r>0 by

TW (r) := inf
φ∈H1

0(Bc
r)‖φ‖

L2(Bc
r)

=1

∫
B

c
r

(
1

2
|∇φ|2+Wφ2

)
,

where B
c

r=R
3 \Br. We will prove in Section 5.3 that TWAA

z
is continuous and non-

decreasing, and that it maps (0,+∞) onto (εz,1,0] (where we recall that εz,1 is the
lowest eigenvalue of HAA

z , see (2.5)).

Lemma 3.5. Let z∈N
∗ be such that ε0z,F<0. Let ΔE=(E−,E+) be an energy window

satisfying (3.9)–(3.10). The equation TWAA
z

(r)=E+ has a unique solution r+z,ΔE,c>0.

In addition, r−z,ΔE,c<r+z,ΔE,c and for all rc≥ r+z,ΔE,c and all s≥0, the set Mz,ΔE,rc,s is
nonempty.

We were not able to provide a simple characterization of the critical core radius
r0z,ΔE,c, r

−
z,ΔE,c≤ r0z,ΔE,c≤ r+z,ΔE,c, such that for all s≥0,

∀rc<r0z,ΔE,c, Mz,ΔE,rc,s=∅ and ∀rc>r0z,ΔE,c, Mz,ΔE,rc,s �=∅.

We can only show, using the same regularization argument as in the proof of Lemma 3.5,
that r0z,ΔE,c is indeed independent of s.

Remark 3.6. We have seen that rc cannot be chosen too small. On the other
hand, it should not be chosen too large for transferability issues. In particular, the
core regions of the atoms of the molecular system under study should not overlap. In
practice, the radius rc,l in (3.19) is chosen by trial and error procedures in the range

(maxR−1
z,n∗

z,l,l
(0),max

dRz,n∗
z,l

,l

dr

−1

(0)) between the outermost node and the outermost

peak of the radial orbital Rz,n∗
z,l,l

.

Remark 3.7. The smoothness parameter s affects the numerical properties of the
pseudopotential, and more precisely the convergence rate of the numerical solution
toward the exact solution of the pseudopotential model with respect to the discretization
parameters [4]. For example, Troullier–Martins pseudopotentials [28] are constructed

in such a way that the pseudo-orbitals R̃TM
z,l are of the form

R̃TM
z,l (r)=

{
rl+1epz,l,rc,l

(r) if 0≤ r<rc,l,
Rz,n∗

z,l,l
(r) if r≥ rc,l,

(3.24)

where pz,l,rc,l is an even polynomial of degree 12 whose seven non-zero coefficients

are fitted so that R̃TM
z,l is L2-normalized and of class C4 in the vicinity of rc,l. The

additional condition allowing one to unambiguously determine the seven non-zero coef-
ficients of pz,l,rc,l is that the second derivative of (Wz,loc+Vz,l) vanishes at r=0. It can
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be checked that this implies that Troullier–Martins pseudopotentials are in Mz,ΔE,rc,s

for all 0<s≤7/2.

Our next results will be established under the following:

Assumption 1: z∈N
∗ is such that ε0z,F is negative and is not an accidentally degenerate

eigenvalue of HAA
z , ΔE=(E−,E+) satisfies (3.9)–(3.10), rc>r0z,ΔE,c and s>0.

Consider now the Hilbert space

Xz,ΔE,rc,s=

{
v=vloc+

lz∑
l=0

PlvlPl

∣∣∣∣ (vloc,(vl)0≤l≤lz )∈ (Hs
0,r(Brc))

lz+2

}
≡ (Hs

0,r(Brc))
lz+2,

whereHs
0,r(Brc) is the closure inHs(R3) of the space of radial, real-valued, C∞ functions

on R
3 with compact supports included in the open ball Brc :=

{
r∈R

3 | |r|<rc
}
, and the

affine space

Xz,ΔE,rc,s=

{
V =Vloc+

lz∑
l=0

PlVlPl

∣∣∣∣ such that (3.11)−−(3.12) hold

}
.

Note that

∀V ∈Xz,ΔE,rc,s, Xz,ΔE,rc,s=V +Xz,ΔE,rc,s.

As Mz,ΔE,rc,s is a subset of Xz,ΔE,rc,s, we can endow the former set with the topology
of the latter, and say that a sequence (V PP

z,k )k∈N∈Mz,ΔE,rc,s of admissible pseudopo-
tentials

• strongly converges to some V ∈Xz,ΔE,rc,s if (with obvious notation)

‖Vz,loc,k−Vloc‖2Hs +

lz∑
l=0

‖Vz,l,k−Vl‖2Hs →
k→∞

0; (3.25)

• weakly converges to some V ∈Xz,ΔE,rc,s if

∀V ′∈Xz,ΔE,rc,s, (Vz,loc,k−Vloc,V
′
loc)Hs +

lz∑
l=0

(Vz,l,k−Vl,V
′
l )Hs →

k→∞
0.

(3.26)
Theorem 3.8 (properties of the set of norm-conserving pseudopotentials). Under
Assumption 1, Mz,ΔE,rc,s is a nonempty weakly (hence strongly) closed subset of the
affine space Xz,ΔE,rc,s.

In practice, some classes of pseudopotentials are constructed by first defining the
pseudo-orbitals R̃z,l, 0≤ l≤ lz, and then deducing from these functions the local and
nonlocal components of the atomic pseudopotential using the relations

∀r∈R
3 \{0} , Vz,loc(r)+Vz,l(r)= εz,n�

z,l,l
+

1

2

R̃′′
z,l(|r|)

R̃z,l(|r|)
− l(l+1)

2|r|2 −
(
ρ̃0z � | · |−1

)
(r),

where ρ̃0z is defined by (3.14) and (3.15). This is notably the case for the Troullier–
Martins pseudopotentials mentioned in Remark 3.7. The reason why pseudopotentials
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are usually constructed in this way is that it is easy to enforce the constraints (3.16)–
(3.20) when dealing with explicit pseudo-orbitals (as in (3.24)).

The following lemma is useful to select admissible functions R̃z,l.

Lemma 3.9. Let V PP
z ∈Mz,ΔE,rc,s for some s> 1

2 (so that the functions Vz,loc and Vz,l

are continuous). For each 0≤ l≤ lz, the radial function R̃z,l, defined by (3.16)–(3.20)
in is Hs+2

o (R) and

R̃z,l(r)=O(rl+1) as r→0.

One can check that the Troullier–Martins pseudo-orbitals defined in (3.24) indeed
satisfy the above property.

3.6. Some stability results. Let z,ΔE,rc,s satisfy Assumption 1. Let V PP
z ∈

Mz,ΔE,rc,s be a reference pseudopotential. It follows from Proposition 2.5 and the
definition of Mz,ΔE,rc,s (see also Remark 2.6) that ε0z,F is not an accidentally degenerate

eigenvalue of HPP
z and that the ground state pseudo-density matrix γ̃0

z corresponding
to V PP

z is unique.

We can study the sensitivity of γ̃0
z with respect to both an external perturbation

and the choice of the pseudopotential by considering the minimization problem

EV PP
z

(v,W ) := inf
{
EV PP

z
(γ̃,v,W ), γ̃∈KNz,v

}
, (3.27)

where the energy functional EV PP
z

is defined on KNz,v
×Xz,ΔE,rc,s×C′ by

EV PP
z

(γ̃,v,W ) :=Tr

((
−1

2
Δ+V PP

z +v

)
γ̃

)
+

1

2
D(ργ̃ ,ργ̃)+

∫
R3

ργ̃W,

and where we have denoted by

C′=
{
W ∈L6(R3) |∇W ∈ (L2(R3))3

}
the space of potentials with finite Coulomb energies, endowed with the scalar product
defined by

∀(W1,W2)∈C′×C′, (W1,W2)C′ =

∫
R3

∇W1 ·∇W2.

For η>0 and X a normed vector space, we denote by Bη(X) the open ball of
X with center 0 and radius η. The following result guarantees the stability of the
pseudopotential model with respect to the choice of the pseudopotential.

Proposition 3.10. Let z,ΔE,rc,s satisfy Assumption 1. Then, for all V PP
z ∈

Mz,ΔE,rc,s, there exists η>0 such that for all (v,W )∈Bη(Xz,ΔE,rc,s)×Bη(C′), problem
(3.27) has a unique minimizer γ̃v,W (V PP

z ). Moreover, for each V PP
z ∈Mz,ΔE,rc,s, the

function (v,W ) �→ γ̃v,W (V PP
z ) is real analytic from Bη(Xz,ΔE,rc,s)×Bη(C′) to the space

S1,1 :=
{
T ∈S1(L

2(R3))∩S(L2(R3)) | |∇|T |∇|∈S1(L
2(R3))

}
,

S1(L
2(R3)) denoting the space of the trace-class operators on L2(R3). For all v∈

Xz,ΔE,rc,s, all W ∈C′, and all real numbers α and β such that

−η‖v‖−1
Xz,ΔE,rc,s

<α<η‖v‖−1
Xz,ΔE,rc,s

and −η‖W‖−1
C′ <β<η‖W‖−1

C′ ,
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we have

γ̃αv,βW (V PP
z )= γ̃0

z +
∑

(j,k)∈(N×N)\{(0,0)}
αjβk γ̃

(j,k)
v,W (V PP

z ), (3.28)

where γ̃0
z is the ground state density matrix for the pseudopotential V PP

z , where the

coefficients γ̃
(j,k)
v,W (V PP

z ) of the expansion are uniquely defined in S1,1, and the series is
absolutely convergent in S1,1.

In the next section, we will define optimality criteria based on first-order pertur-
bation method for choosing the “best” pseudopotential in the class Mz,ΔE,rc,s. These
criteria will involve the difference between the first-order response of the all-electron
model and that of the pseudopotential model to a given external perturbation W . A
natural external perturbation is the one obtained by subjecting the atom to an external
uniform electric field (Stark effect):

W Stark(r)=−r ·e, (3.29)

where e is the unit vector of the vertical axis of the reference frame. As the unperturbed
system is rotation-invariant, the direction of the electric field is unimportant. So is its
magnitude since we only consider here first-order perturbations (linear responses).

Note that it is not possible to apply the results in Proposition 3.10 to the perturba-
tion (3.29) since W Stark is not in C′. In the framework of the linear Schrödinger equation
(see e.g. [22] for a detailed analysis of the case of the Hydrogen atom), the spectrum
of a molecular Stark Hamiltonian is purely absolutely continuous and equal to R for
all non-zero values of the electric field. The eigenstates of the unperturbed Hamilto-
nian turn into resonances. On the other hand, the perturbation series is well-defined;
its convergence radius is equal to zero, but the energies and widths of the resonances
can nonetheless be computed from the perturbation expansion using Borel summation
techniques.

For the atomic Hartree model under consideration here, the perturbed energy func-
tional has no minimizer: for all β �=0,

inf

{
EAA

z (γ)−β

∫
R3

ργ(r ·e), γ∈Kz

}
=−∞.

The same holds true for the corresponding pseudopotential model for any V PP
z ∈

Mz,ΔE,rc,s. Physically, this corresponds to the fact that the infimum of the en-
ergy is obtained by allowing the electrons to go to infinity towards the regions where
W (r)=−βr ·e goes to −∞. As in the linear framework, each term of the perturba-
tion series is well-defined, but the convergence radius of the series is equal to zero. We
will only prove here the part of this result we need, namely that the first-order term
of the perturbation expansion is well-defined, and, in the pseudopotential case, that
the linear response is continuous with respect to the choice of the pseudopotential (see
Theorem 3.11 below). We are not aware of an extension of the theory of resonances to
nonlinear mean-field models of Kohn–Sham type.

For V PP
z ∈Mz,ΔE,rc,s and W ∈C′, we denote by γ̃

(k)
W (V PP

z ) := γ̃
(0,k)
0,W (V PP

z ), where

the right-hand side is defined in Proposition 3.10. We also denote by γ
(k)
z,W the kth-

order perturbation of the all-electron ground state γ0
z when atom z is subjected to an
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external potential W ∈C′. A consequence of [5, Theorems 5 and 12] and of the above
Proposition 3.10 is that the linear maps

C′�W �→γ
(1)
z,W ∈S1,1 and C′�W �→ γ̃

(1)
W (V PP

z )∈S1,1, V PP
z ∈Mz,ΔE,rc,s, (3.30)

are continuous.

Theorem 3.11 (Stark effect). Let z,ΔE,rc,s satisfying Assumption 1. The continu-
ous linear maps defined by (3.30) can be extended in a unique way to continuous linear
maps

Yz �W �→γ
(1)
W ∈S1,1 and Yz �W �→ γ̃

(1)
W (V PP

z )∈S1,1, V PP
z ∈Mz,ΔE,rc,s, (3.31)

where Yz is the Banach space

Yz :=C′+L2
w where L2

w :=

{
W ∈L2

loc(R
3) |
∫
R3

|W (r)|2e−
√

|ε0z,F||r| dr<∞
}
.

In addition, W Stark∈Yz and the mapping Mz,ΔE,rc,s�V PP
z �→ γ̃

(1)

WStark(V
PP
z )∈S1,1 is

compact.

3.7. Optimization of norm-conserving pseudopotentials. A natural way
to choose a pseudopotential in the class Mz,ΔE,rc,s is to optimize some criterion J(V PP

z )
combining the two requirements that the pseudopotential must be as smooth as possible
and as transferable as possible. The smoothness requirement leads us to introduce the
criterion

Js(V
PP
z ) :=

1

2
‖WPP

z ‖2Hs :=
1

2

(
‖Wz,loc‖2Hs +

lz∑
l=0

‖Vz,l‖2Hs

)
, (3.32)

where WPP
z is the self-consistent pseudopotential corresponding to the pseudopotential

V PP
z (see Proposition 2.5). Note that it is natural to use the self-consistent pseudopo-

tential WPP
z rather than V PP

z in the right-hand side of (3.32) since the smoothness of
the Kohn–Sham pseudo-orbitals is controlled by WPP

z . Let us first state a general result.

Theorem 3.12. Let z,ΔE,rc,s satisfying Assumption 1. Consider the criterion

J(V PP
z )=αJs(V

PP
z )+Jt(V

PP
z ),

where the smoothness criterion Js is defined by (3.32), where the transferability crite-
rion Jt :Mz,ΔE,rc,s→R is a bounded below weakly lower-semicontinuous function, and
where α>0 is a parameter allowing one to balance the smoothness and transferability
requirements. Then, the optimization problem

inf
{
J(V PP

z ), V PP
z ∈Mz,ΔE,rc,s

}
(3.33)

has a minimizer.

Many different transferability criteria Jt, based on various physical and chemical
properties, can be considered. A natural choice is the criterion

JStark
t (V PP

z ) :=
1

2

∥∥∥1R3\Brc

(
ρ̃
(1)

WStark(V
PP
z )−ρ

(1)

z,WStark

)∥∥∥2
C
, (3.34)
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where ρ
(1)

z,WStark =ρ
γ
(1)

z,WStark

and ρ̃
(1)

WStark(V
PP
z )=ρ

γ̃
(1)

WStark (V
PP
z )

are respectively the first-

order perturbations of the all-electron and pseudo densities of atom z, when the latter
is submitted to the Stark potential (3.29). The Coulomb space C is defined as

C=
{
ρ∈S ′(R3) | ρ̂∈L1

loc(R
3), ‖ρ‖2C :=D(ρ,ρ)<∞

}
,

where

D(f,g) :=4π

∫
R3

f̂(k) ĝ(k)

|k|2 dk. (3.35)

Let us recall that L6/5(R3)⊂C, that the definitions (2.3) and (3.35) agree for (f,g)∈
L6/5(R3)×L6/5(R3), and that C is therefore the space of all charge distributions ρ with
finite Coulomb energy.

The following lemma shows that the transferability criterion JStark
t is well-defined

and falls into the scope of Theorem 3.12.

Lemma 3.13. Let z,ΔE,rc,s satisfying Assumption 1. Then, JStark
t is a well-defined

bounded below weakly continuous mapping from Mz,ΔE,rc,s to R+.

4. Extensions to the Kohn–Sham LDA model
It is probably quite difficult to extend to the LDA model the results established

above for the Hartree model. As usual in the mathematical analysis of Kohn–Sham
models, the main obstacle is that we do not know whether the atomic ground state
density of atom z is unique. We will therefore limit ourselves to comment on the
extensions of our main results under some additional assumptions on the Kohn–Sham
LDA ground state.

Assuming that the LDA ground state density ρ0z of atom z is unique, hence radial,
and that the LDA Fermi level of atom z is negative, it is then easy to show that
the properties of the ground state density and of the atomic Hamiltonian listed in
propositions 1 and 8, as well as the result of uniqueness of the ground state density
matrix, still hold for the all-electron Kohn–Sham LDA model. Likewise, the results in
Proposition 5 are still valid for the LDA model under the assumption that the ground
state pseudo-density ρ̃0z of atom z is unique. Note that the self-consistent potentials are
then given, in the all-electron setting, by

WAA
z =− z

| · |+ρ0z � | · |−1+vxc(ρ
0
z),

where vxc(ρ
0
z)=

dεxc
dρ (ρ0z) is the exchange-correlation potential, and, in the pseudopoten-

tial setting, by

WPP
z =V PP

z + ρ̃0z � | · |−1+vxc(ρ̃
0
z,c+ ρ̃0z).

Still under the above assumptions, Lemma 11 (nonemptyness of the set Mz,ΔE,rc,s of
admissible pseudopotentials), Theorem 11 (Mz,ΔE,rc,s is a weakly closed subset of the
affine space Xz,ΔE,rc,s), and Theorem 16 (existence of an optimal pseudopotential in an
abstract framework) can all be extended to the LDA setting.

Note that, in practice, the calibration of pseudopotentials is made under the assump-
tion that the LDA ground state density (with or without pseudopotential) is radial. The
calculations then boil down to solving coupled systems of radial Schrödinger equations
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(see [6, 18, 28] for details). To the best of our knowledge, no numerical evidence that
the radial LDA ground state of an atom might not be unique has been published so far.

The extensions of our results involving nonlinear perturbation theory (Proposi-
tion 14, Theorem 15, and Lemma 17) require, on top of the above assumptions, an
additional assumption on the uniform coercivity of the Hessian of the energy functional
at the unperturbed local minimizer. As the exchange-correlation energy density is not
twice differentiable at 0 (it behaves as the function R+�ρ �→−ρ4/3∈R−), it is not clear
that such an assumption is satisfied. As already mentioned in [5, Section 5], this tech-
nical problem is not encountered in Kohn–Sham calculations with periodic boundary
conditions due to the fact that the ground state density then is both bounded and
bounded away from zero.

5. Proofs

5.1. Proof of Lemma 3.1. The three-dimensional Fourier transform of a radial
function u∈L2

r (R
3) is related to the one-dimensional Fourier transform of the function

Ru=R(u) by the simple relation

F3(u)(k)=
i√

2π|k|
F1(Ru)(|k|).

The above expression is a special case of the Grafakos–Teschl recursion formula [13].
We therefore have

‖u‖2Hs(R3)=

∫
R3

(1+ |k|2)s|F3(u)(k)|2dk=
1

2π

∫
R3

(1+ |k|2)s
|k|2 |F1(Ru)(|k|)|2dk

=2

∫ ∞

0

(1+k2)s|F1(Ru)(k)|2dk=
∫ +∞

−∞
(1+k2)s|F1(Ru)(k)|2dk=‖Ru‖2Hs(R).

5.2. Proof of Proposition 3.2. The proof of Proposition 3.2 is based on the
following observation.

Lemma 5.1. Let z∈N
∗ such that ε0z,F<0. The Hartree potential WAA

z is a radial

increasing negative function of L2
r (R

3)∩C∞(R3 \{0}) converging exponentially fast to
0.

Proof. The Hartree potential WAA
z satisfies −ΔWAA

z =4π(ρ0z−zδ0), where the
ground state density ρ0z is in C and satisfies

∫
R3 ρ

0
z = z. We also know from Proposition 2.1

that ρ0z is a radial positive function belonging to C∞(R3 \{0}). Therefore, WAA
z is radial

and belongs to C∞(R3 \{0}), and we infer from Gauss theorem that for all r>0,

4πr2
dWAA

z

dr
(r)=−4π

(
−z+

∫
Br

ρ0z

)
=4π

∫
R3\Br

ρ0z >0,

where Br is the ball of R3 with center 0 and radius r. Hence, WAA
z is a radial increasing

function. Its limit at infinity is necessarily equal to zero since WAA
z =− z

|·| +ρ0z � | · |−1

with ρ0z � | · |−1∈C′⊂L6(R3). As ε0z,F<0, the ground state density of the atom z is of
the form

ρ0z(r)=

n∑
i=1

pi|φi(r)|2,
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where the occupation numbers pi are such that 0≤pi≤2 and
∑n

i=1pi= z, and where
the orbitals φi satisfy

φi∈H2(R3), −1

2
Δφi+WAA

z φi= εiφi,

∫
R3

φiφj = δij .

As εi≤ ε0z,F<0 andWAA
z goes to zero at infinity, we deduce from the maximum principle

for second-order elliptic equations (see e.g. [9]) that for each 1≤ i≤n, φie
√

|ε0z,F||·|/2∈
L∞(R3). Therefore, there exists Cz ∈R+ such that

∀r∈R
3, 0<ρ0z(r)≤Cz e

−
√

|ε0z,F||r|. (5.1)

Hence,

∀r>0, 0≤ dWAA
z

dr
(r)=

1

r2

∫
R3\Br

ρ0z ≤
Cz

r2

∫
R3\Br

e−
√

|ε0z,F||r′|dr′.

Integrating the above inequality leads to

∀r≥ 2√
|ε0z,F|

, 0≥WAA
z (r)≥−4πr2Cz√

|ε0z,F|
e−

√
|ε0z,F|r.

Together with the fact that WAA
z =− z

|·| +ρ0z � | · |−1∈L2
loc(R

3), this bound implies that

WAA
z ∈L2

r (R
3).

The proof of Proposition 3.2 then follows from classical results on the spectra of
rotation-invariant Schrödinger operators (see e.g. [22]), which we recall here for com-
pleteness. First, as the function WAA

z is in L2
r (R

3), the operator WAA
z (1−Δ)−1|Hl

=
(WAA

z (1−Δ)−1)|Hl
is Hilbert–Schmidt for each l∈N by the Kato–Seiler–Simon inequal-

ity [23] and the continuity of Pl. Therefore, W
AA
z is a compact perturbation of the op-

erator − 1
2Δ|Hl

, and we deduce from Weyl’s theorem that σess(H
AA
z,l )=σess(− 1

2Δ|Hl
)=

[0,+∞).

The absence of strictly positive eigenvalues of HAA
z is a consequence of Lemma 5.1 and

[22, Theorem XIII.56]. The set of the negative eigenvalues of HAA
z is the union of the

sets of the negative eigenvalues of (3.4) for l∈N; this is a straightforward consequence
of the decomposition (3.2).

The fact that for each l∈N, the negative eigenvalues of (3.4), if any, are simple and
that the eigenfunctions associated with the nth eigenvalue have exactly n−1 nodes
on (0,+∞) is a standard result on one-dimensional Schrödinger equations (Sturm’s
oscillation theory), which can be read in [7, 16] for instance.

Lemma 5.1, together with [22, Theorem XIII.9], implies that for each l∈N, (3.4) has at

most (2l+1)−1
∫ +∞
0

r|WAA
z (r)|dr<∞ negative eigenvalues. Since this number is lower

than 1 for l large enough, HAA
z,l has no negative eigenvalue for l large enough. The

monotonicity of the sequence (nz,l)l∈N readily follows from the minmax principle. So
does the last assertion.

5.3. Proof of Lemma 3.5. Let us first establish a couple of intermediate
results.
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Lemma 5.2. Let W ∈L
3/2
r (R3)∩C0(R3 \{0}). We denote by B

c

r=R
3 \Br, by TW,r

the self-adjoint operator on L2(B
c

r) with domain H1
0 (B

c

r)∩H2(B
c

r) defined by TW,rφ=

− 1
2Δφ+Wφ for all φ∈H1

0 (B
c

r)∩H2(B
c

r), and by

TW (r) :=min(σ(TW,r))= inf
φ∈H1

0(Bc
r)‖φ‖

L2(Bc
r)

=1

∫
B

c
r

(
1

2
|∇φ|2+Wφ2

)
.

We also introduce the self-adjoint operator TW,0 on L2(R3) with domain H2(R3) defined
by TW,0φ=− 1

2Δφ+Wφ for all φ∈H2(R3). Then, two situations may occur:

• either min(σ(TW,0))=0, in which case the function TW is identically equal to
zero on (0,+∞);

• or min(σ(TW,0))<0, in which case there exists r̃c∈ (0,+∞) such that the
function TW is differentiable, strictly increasing, and bijective from (0, r̃c) to
(min(σ(TW,0)) ,0), and identically equal to zero on (r̃c,+∞).

Proof. Let W ∈L
3/2
r (R3)∩C0(R3 \{0}). Since for any 0<r<r′<∞, we have

B
c

r′ ⊂B
c

r, the function TW is non-decreasing on (0,+∞). As σess(TW,r)= [0,+∞), we
have for all 0<r<∞,

0≥TW (r)≥ inf
φ∈H1(R3)|‖φ‖L2=1

∫
R3

(
1

2
|∇φ|2+1B

c
r
W |φ|2

)
,

and it follows from [22, Theorem XIII.9] that the right-hand side is equal to zero for r
large enough.

It also holds that σess(TW,0)= [0,+∞). If TW,0 has no negative eigenvalue, then the
function TW is identically equal to zero by the minmax principle. Otherwise, denoting
by ε1 the lowest negative eigenvalue of TW,0, we have

lim
r→0

TW (r)= ε1.

This follows from the fact that C∞
c (R3 \{0}) is dense in H1(R3).

Lastly, for any r∈ (0,+∞) such that TW (r)<0, the operator TW,r has a nega-

tive non-degenerate ground state eigenvalue and a radial ground state φW,r ∈H1
0 (B

c

r)∩
H2(B

c

r) such that ‖φW,r‖L2(B
c
r)
=1 and φW,r>0 in B

c

r. By the Hopf’s maximum prin-

ciple for second-order linear elliptic equations [9],
∂φW,r

∂r >0 on ∂B
c

r=∂Br. It is then
well-known [24] that TW is differentiable at r and that

T ′
W (r)=−

∫
∂B

c
r

∂φW,r

∂n
=

∫
∂Br

∂φW,r

∂r
>0.

Therefore, if TW,0 has a negative eigenvalue, then the function TW is continuous, there
exists 0<r̃c<+∞ such that TW is differentiable and strictly increasing on (0, r̃c), and
identically equal to zero on [r̃c,+∞), and TW maps (0,+∞) onto (ε1,0].

It follows in particular from Lemma 5.2 that, since WAA
z ∈L

3/2
r (R3)∩C0(R3 \{0})

by Lemma 5.1, and εz,1=min(σ(HAA
z ))<E+<0, TWAA

z
maps (0,+∞) onto (εz,1,0] and

the equation TWAA
z

(r)=E+ has a unique solution r+z,ΔE,c.
The second intermediate result we need is the following.
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Lemma 5.3. Let l∈N, s∈R+, E+<0 and W ∈L
3/2
r (R3) vanishing at infinity and

such that W ∈Hs(B
c

ε), for any ε>0. Let Rl∈H2
o (R) and εl<E+ be such that

−1

2
R′′

l (r)+
l(l+1)

2r2
Rl(r)+W (r)Rl(r)= εlRl(r),

∫
R

R2
l =1.

Let r+c be the unique positive real number such that TW (r+c )=E+. Then, for all rc>r+c ,

there exists W̃ ∈Hs
r (R

3) such that

R̃l∈H1
o (R), (5.2)

− 1

2
R̃′′

l (r)+
l(l+1)

2r2
R̃l(r)+W̃ (r)R̃l(r)= εlR̃l(r), (5.3)∫

R

R̃2
l =1, (5.4)

R̃l=Rl on (rc,+∞), (5.5)

R̃l≥0 on (0,+∞), (5.6)

σ

((
−1

2
Δ+W̃

)∣∣∣∣
Hl

)
\{εl}⊂ [E+,+∞). (5.7)

Proof. Using the notation and the results in Lemma 5.2, we see that εl is an
eigenvalue of (TW,0)|Hl

, so that E+∈ (min(σ(TW,0)),0), which implies that there exists

a unique positive real number r+c such that TW (r+c )=E+.
The rest of the proof is dedicated to constructing an explicit solution to (5.2)–(5.7).

Let rc>r+c and mc=
∫ rc
0

R2
l . We denote by R the unique odd function in H1(−rc,rc)

such that

−1

2
R′′+

l(l+1)

2r2
R−εlR=0, R(rc)=1,

and by

F (d)=

∫ rc−d

0

R2(r)dr.

Note that the function u(r)= rcR(|r|)
|r| Ym

l ( r
|r| ) is the unique solution in H1(Brc) to

the boundary value problem − 1
2Δu−εlu=0 in Brc , u|∂Brc

=Ym
l , and that F (d)=

r−2
c

∫
Brc−d

|u|2. For all 0<α�1�A<∞, we introduce

θ−α,A=arcsin(α/A), θ+α,A=π−arcsin(Rl(rc)/A)−θ−α,A,

dα,A the unique solution in (0,rc) of

α2F (d)+A2 d

2

(
1−

sin(2(θ+α,A+θ−α,A))−sin(2θ−α,A)

2θ+α,A

)
=mc,

kα,A=
θ+α,A
dα,A

, vα,A= εl−
k2α,A
2

,

β−
α,A=

kα,AAcos(θ−α,A)
2α

− R′(rc−dα,A)

2R(rc−dα,A)
, β+

α,A=
R′

l(rc)−kα,AAcos(θ+α,A+θ−α,A)
2Rl(rc)

.
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Fig. 5.1. Sketch of the function Rα,A (green) and of the potential Wα,A+
l(l+1)

2r2
1(rc−dα,A,rc) (red).

When α→0+ and A→+∞, the above quantities behave as follows

θ−α,A→0+, θ+α,A→π−, dα,A∼ 2mc

A2
, kα,A∼ πA2

2mc
, vα,A∼−π2A4

8m2
c

,

β−
α,A∼ πA3

4mcα
, β+

α,A∼ πA3

4mcRl(rc)
.

(5.8)

Consider the function Rα,A∈H1
o (R) defined on (0,+∞) by

Rα,A=α
R

R(rc−dα,A)
1(0,rc−dα,A)+Asin

(
kα,A(r−rc)+θ−α,A+θ+α,A

)
1(rc−dα,A,rc)

+Rl1(rc,+∞).

It is easily checked that R̃l=Rα,A is solution of (5.2)–(5.6) for W̃ =Wα,A∈H−1
r (R3),

with radial representation given by

Wα,A=β−
α,Aδrc−dα,A

+

(
vα,A− l(l+1)

2r2

)
1(rc−dα,A,rc)+β+

α,Aδrc +W1(rc,+∞).

Denoting by

Hα,A=−1

2
Δ+Wα,A,

we are going to show that for α>0 small enough and A<+∞ large enough

σ

(
Hα,A

∣∣∣∣
Hl

)
\{εl}⊂ (E+,+∞).
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Let μα,A=min

(
σ

(
Hα,A

∣∣∣∣
Hl

)
\{εl}

)
. Assume that μα,A≤E+. As σess(Hα,A|Hl

)=R+,

μα,A is a discrete eigenvalue of Hα,A|Hl
. We denote by Uα,A an associated normalized

eigenfunction and by uα,A∈H1
o (R) the odd extension of its radial component multiplied

by r. As μα,A is in fact the second lowest eigenvalue ofHα,A|Hl
(counting multiplicities),

the function uα,A satisfies

−1

2
u′′
α,A+

l(l+1)

2r2
uα,A+Wα,Auα,A=μα,Auα,A,

and has exactly one node r0α,A in (0,+∞). This node cannot lay in the interval

[rc,+∞); otherwise, the function φ(r)=Uα,A(r)1[r0α,A,+∞)(|r|)Y0
l

(
r

|r|

)
would belong

to H1
0 (B

c

r0α,A
)\{0} and we would have

E+=TW (r+c )<TW (r0α,A)≤
〈φ|TW,r0α,A

|φ〉
〈φ|φ〉 =μα,A,

which contradicts the assumption that μα,A≤E+. It cannot either lay in the interval
(0,rc−dα,A]; otherwise, as the potential Wα,A is equal to zero on this interval, we would
have

1

2

∫ r0α,A

0

|u′
α,A|2+

l(l+1)

2

∫ r0α,A

0

|uα,A(r)|2
r2

dr=μα,A

∫ r0α,A

0

|uα,A|2<0,

which is obviously not possible. We therefore have rα,A∈ (rc−dα,A,rc), and without
loss of generality, we can assume that uα,A is positive in the neighborhood of +∞. As
Wα,A is equal to zero on (0,rc−dα,A), uα,A is negative and concave on this interval, so
that uα,A(rc−dα,A)<0 and u′

α,A((rc−dα,A)
+)<u′

α,A((rc−dα,A)
−)<0. We therefore

have

∀r∈ [rc−dα,A,rc], uα,A= Ãα,A sin
(
k̃α,A(r−(rc−dα,A))+ θ̃α,A

)
,

with Ãα,A<0, k̃α,A=
√
2(μα,A−vα,A), 0<θ̃α,A<π/2, and π<k̃α,Adα,A+ θ̃α,A<2π. It

follows from the jump condition at rc−dα,A and from the fact that uα,A is negative and
concave on (0,rc−dα,A) that

k̃α,A

tan(θ̃α,A)
=

u′
α,A((rc−dα,A)

+)

uα,A(rc−dα,A)
≥

u′
α,A((rc−dα,A)

+)−u′
α,A((rc−dα,A)

−)
uα,A(rc−dα,A)

=β−
α,A.

Thus,

tan(θ̃α,A)≤
k̃α,A

β−
α,A

≤ 2π

β−
α,Adα,A

∼ 4α

A
, when α→0+ and A→+∞. (5.9)

We can distinguish two cases:

• case 1: u′
α,A(rc−0)<0. In this case, k̃α,Adα,A+ θ̃α,A> 3π

2 , which, together with
(5.9), implies that for α>0 small enough and A>0 large enough,

k̃α,A≥ 5

4
kα,A or equivalently μα,A≥ εl−

9

16
vα,A∼ 9π2A4

128m2
c

,

which contradicts the assumption that μα,A≤E+;
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• case 2: u′
α,A(rc−0)≥0. In this case, the function uα,A is positive on (rc,+∞)

and the pair (uα,A,μα,A) is solution to the spectral problem on (rc,+∞) with
Robin boundary conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1

2
u′′
α,A(r)+

l(l+1)

2r2
uα,A(r)+Wuα,A(r)=μα,Auα,A(r), r∈ (rc,+∞)

u′
α,A(rc+0)=

(
k̃α,A

tan(k̃α,Adα,A+ θ̃α,A)
+β+

α,A

)
uα,A(rc).

(5.10)

When α→0+ and A→+∞, the parameter
˜kα,A

tan(˜kα,Adα,A+˜θα,A)
+β+

α,A goes to

+∞, so that μα,A converges to the ground state eigenvalue of TW,rc |Hl
, which

implies

lim
α↓0,A→+∞

μα,A=TW (rc)>TW (r+c )=E+.

Choosing α>0 small enough and A large enough, we obtain a contradiction
with the assumption that μα,A≤E+.

We therefore have obtained a function R̃l=Rα,A∈H1
o (R) and a potential W̃ =

Wα,A∈H−1
r (R3) such that (5.2)–(5.7) are satisfied. As Rα,A is in C∞(R\{±(rc−

dα,A),±rc}) and is positive on (0,+∞), we can construct a sequence (R̃l,n)n∈N of odd
functions of C∞(R)∩H1

o (R) positive on (0,+∞) and converging in H1
o (R) to Rα,A,

such that R̃l,n=Rα,A=Rl on (rc,+∞), R̃l,n=Rα,A on (0,rc−dα,A) and
∫
R
|R̃l,n|2=1.

Consider the sequence of radial potentials defined by

∀n∈N, ∀r∈ (0,+∞), W̃n(r)= εl+
1

2

R̃′′
l,n(r)

R̃l,n(r)
− l(l+1)

2r2
.

As R̃l,n(r) is bounded away from zero on the interval [(rc−dα,A)/2,rc+1] uniformly

in n, each W̃n is in Hs
r (R

3) for all s≥0, and the sequence (W̃n)n∈N converges to Wα,A in

H−1
r (R3). Consequently, the Rayleigh quotients Rn(φ)=

〈φ|− 1
2Δ+W̃n|φ〉
‖φ‖2 converge to

R(φ)=
〈φ|− 1

2Δ+W̃ |φ〉
‖φ‖2 for any φ∈Hl∩H1(R3), which implies, by the minmax princi-

ple, that the kth negative eigenvalue of
(
− 1

2Δ+W̃n

)∣∣∣
Hl

converges to the kth negative

eigenvalue of
(
− 1

2Δ+Wα,A

)∣∣
Hl

when n goes to infinity. Therefore, for n large enough,

conditions (5.2)–(5.7) are satisfied for W̃ =W̃n.

We are now in a position to prove the non-emptiness of Mz,ΔE,rc,s under the
assumptions of Lemma 3.5. Applying Lemma 5.3 successively for each 0≤ l≤ lz
with W =WAA

z , Rl=Rz,n�
z,l,l

, εl= εz,n�
z,l,l

, and rc>r+z,c, we obtain lz+1 functions

W̃l∈Hs
r (R

3) and lz+1 functions R̃l, satisfying for each 0≤ l≤ lz,

R̃l∈H1
o (R), (5.11)

− 1

2
R̃′′

l (r)+
l(l+1)

2r2
R̃l(r)+W̃lR̃l(r)= εz,n�

z,l,l
R̃l(r), (5.12)
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R

R̃2
l =1, (5.13)

R̃l=Rz,n�
z,l,l

and W̃l=WAA
z on (rc,+∞), (5.14)

R̃l≥0 on (0,+∞). (5.15)

We then introduce the functions

φ̃m
l (r)=

√
2R̃l(|r|)
|r| Ym

l

(
r

|r|

)
, −l≤m≤ l, (5.16)

and the density

ρ̃0(r)=

lz∑
l=0

l∑
m=−l

pz,n�
z,l,l

|φ̃m
l (r)|2,

and we consider a sequence (Wloc,k)k≥1 of local potentials in the class Hs
r (R

3) such that

Wloc,k≥WAA
z on R

3, Wloc,k=WAA
z in B

c

rc , and Wloc,k=k on Brc−1/k. We finally set

Vloc,k=Wloc,k− ρ̃0 � | · |−1 and ∀0≤ l≤ lz, Vl,k=W̃l−Wloc,k,

and

Vk=Vloc,k+

lz∑
l=0

PlVl,kPl.

By construction, the self-adjoint operator

Hk=−1

2
Δ+Vk+ ρ̃0 � | · |−1,

on L2(R3) is rotation-invariant, and for all 0≤ l≤ lz,

1(−∞,E+)(Hk|Hl
)=1(−∞,E+)

((
−1

2
Δ+W̃l

)∣∣∣∣
Hl

)
=

l∑
m=−l

|φ̃m
l 〉〈φ̃m

l |.

Lastly, for all l> lz,

minσ(Hk|Hl
)≥minσ

(
−1

2
Δ+Wloc,k

)
−→
k→∞

TWAA
z

(rc)>TWAA
z

(r+z,c)=E+.

Therefore, for k large enough, Vk ∈Mz,ΔE,rc,s.

5.4. Proof of Theorem 3.8. Let us prove that Mz,ΔE,rc,s is weakly closed
in the affine space Xz,ΔE,rc,s. For this purpose, we consider a sequence (V PP

z,k )k∈N of

elements of Mz,ΔE,rc,s weakly converging to some V PP
z in Xz,ΔE,rc,s. We denote by

HPP
z,k the Hartree pseudo-Hamiltonian obtained with the pseudopotential V PP

z,k and by

φ̃m
z,l,k its eigenfunctions of the form (3.15). We have for all k∈N,

HPP
z,k =−1

2
Δ+Wk, HPP

z,k φ̃
m
z,l,k= εz,n�

z,l,l
φ̃m
z,l,k, ‖φ̃m

z,l,k‖L2 =1, (5.17)
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ρ̃k(r)=

lz∑
l=0

l∑
m=−l

pz,n�
z,l,l

|φ̃m
z,l,k(r)|2, vk= ρ̃k � | · |−1,

Wk=Vz,loc,k+vk+

lz∑
l=0

PlVz,l,kPl.

Note that for all 0≤ l≤ lz, −l≤m≤ l, and k∈N, we have φ̃m
z,l,k=φm

z,n�
z,l,l

on R
3 \Brc

and

(Wkφ̃
m
z,l,k)(r)=

{
WAA

z (r)φm
z,n�

z,l,l
(r) if |r|≥ rc,

(Vz,loc,k(r)+vk(r)+Vz,l,k(r))φ̃
m
z,l,k(r) if |r|<rc.

As εz,n�
z,l,l

<0, vk≥0 in R
3, and ‖φ̃m

z,l,k‖L2 =1 we obtain, using the Sobolev inequality

in R
3, the boundedness of the sequence (‖Vz,l,k‖L2)k∈N, and Lemma 5.1, that for all

k∈N,

1

2
‖∇φ̃m

z,l,k‖2L2 =−〈φ̃m
z,l,k|Wk|φ̃m

z,l,k〉+εz,n�
z,l,l

≤−
∫
Brc

(Vz,loc,k+Vz,l,k)|φ̃m
z,l,k|2−

∫
R3\Brc

WAA
z |φm

z,n�
z,l,l

|2

≤
(
‖Vz,loc,k+Vz,l,k‖L2‖φ̃m

z,l,k‖
1/2
L2 ‖φ̃m

z,l,k‖
3/2
L6 +‖WAA

z ‖L∞(R3\Brc )

)
≤C(1+‖∇φ̃m

z,l,k‖
3/2
L2 ),

where the constant C is independent of k. This implies that for all 0≤ l≤ lz and all
−l≤m≤ l, the sequence (φ̃m

z,l,k)k∈N is bounded in H1(R3). We can therefore extract

from (φ̃m
z,l,k)k∈N a subsequence (φ̃m

z,l,kn
)n∈N which weakly converges in H1(R3) to some

function φ̃m
z,l∈H1(R3)∩Hl. As for all k∈N, φ̃m

z,l,k=φm
z,n�

z,l,l
in R

3 \Brc , we can assume,

without loss of generality, that the convergence of (φ̃m
z,l,kn

)n∈N to φ̃m
z,l also holds strongly

in Lp(R3) for all 1≤p<6 and almost everywhere in R
3. In particular,

∀0≤ l,l′≤ lz, ∀− l≤m≤ l, ∀− l′≤m′≤ l′,
∫
R3

φ̃m
z,lφ̃

m′
z,l′ = δll′δmm′ ,

and the associated functions R̃z,l defined by (3.15) satisfy (3.16) and (3.18)–(3.20). We

also infer from the strong convergence of (φ̃m
z,l,kn

)n∈N to φ̃m
z,l in L2(R3)∩L4(R3) that

the sequence (ρ̃kn
)n∈N strongly converges in L1(R3)∩L2(R3), hence in L6/5(R3) to the

function ρ̃ defined by

ρ̃(r)=

lz∑
l=0

l∑
m=−l

pz,n�
z,l,l

|φ̃m
z,l(r)|2,

which, in turn, implies that the sequence (vkn
)n∈N strongly converges in C′, hence in

L6(R3), to the function v= ρ̃� | · |−1. Lastly, as (Vz,l,kn)n∈N weakly converges to Vz,l

in Hs
0,r(Brc) for s>0, we can assume without loss of generality that the sequence

(Vz,l,kn
)kn∈N strongly converges to Vz,l in L2(Brc). Passing to the limit in (5.17), we

obtain that the functions R̃z,l satisfy

−1

2
R̃′′

z,l(r)+
l(l+1)

2r2
R̃z,l(r)+(v(r)+Vz,l(r))R̃z,l(r)= εz,n�

z,l,l
R̃z,l(r).
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To conclude that V PP
z ∈Mz,ΔE,rc,s, we just need to show that

1(−∞,E+)(H
PP
z )=

lz∑
l=0

l∑
m=−l

|φ̃m
z,l〉〈φ̃m

z,l|, (5.18)

where HPP
z =− 1

2Δ+V PP
z +v. If this was not the case, there would exists λ<E+ and

φ∈H2(R3)∩
(
Span

{
φ̃m
z,l, 0≤ l≤ lz,−l≤m≤ l

})⊥
such that ‖φ‖L2 =1 and HPP

z φ=λφ. Consider, for n large enough, the function

φn=

φ−
lz∑
l=0

l∑
m=−l

(φ̃m
z,l,kn

,φ)L2 φ̃m
z,l,kn∥∥∥∥∥φ−

lz∑
l=0

l∑
m=−l

(φ̃m
z,l,kn

,φ)L2 φ̃m
z,l,kn

∥∥∥∥∥
L2

.

We have

φn∈H2(R3)∩
(
Span

{
φ̃m
z,l,kn

, 0≤ l≤ lz,−l≤m≤ l
})⊥

, ‖φn‖L2 =1, (5.19)

and

〈φn|HPP
z,kn

|φn〉=
∥∥∥∥∥φ−

lz∑
l=0

l∑
m=−l

(φ̃m
z,l,kn

,φ)L2 φ̃m
z,l,kn

∥∥∥∥∥
−2

L2

(
λ+〈φ|V PP

z,kn
−V PP

z |φ〉

+

∫
R3

(vkn −v)φ2−
lz∑
l=0

l∑
m=−l

εz,n�
z,l,l

|(φ̃m
z,l,kn

,φ)L2 |2
)
.

Using the weak convergence of V PP
z,kn

to V PP
z in Xz,ΔE,rc,s, the strong convergence of vkn

to v in L2(R3) and the strong convergence of φ̃m
z,l,kn

to φ̃m
z,l in L2(R3), we obtain that

lim
n→∞〈φn|HPP

z,kn
|φn〉=λ.

Together with (5.17) and (5.19), this implies that for n large enough, HPP
z,kn

has at

least (lz+1)2+1 eigenvalues in (−∞,E+), which contradicts the fact that V PP
z,kn

∈
Mz,ΔE,rc,s. Therefore, V

PP
z ∈Mz,ΔE,rc,s, which proves thatMz,ΔE,rc,s is weakly closed

in Xz,ΔE,rc,s.

5.5. Proof of Lemma 3.9. The function φ̃z,l,m is an eigenfunction of the
Schrödinger operator − 1

2Δ+Wz,loc+Vz,l on L2(R3), with Wz,loc+Vz,l∈Hs
r (R

3). By

elliptic regularity, φ̃z,n,l∈Hs+2(R3), and therefore R̃z,l∈Hs+2
o (R) in view of Lemma 3.1.

It follows from the unique continuation principle for nonnegative solutions of second-
order ordinary differential equations that R̃z,l>0 on (0,+∞). The function R̃z,l is an
odd function which solves a differential equation, with regular singular point, of the
form

r2y′′− l(l+1)y+Vl(r)y=0, with Vl(0)=0. (5.20)
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Its indicial equation is

s(s−1)− l(l+1)=0,

with roots s1= l+1 and s2=−l. Since s1−s2=2l+1 is an integer, Fuchs’ theorem [16,
30] states that the fundamental system of solutions of (5.20) is{

y1(r)= rs1p(r)
y2(r)= cp(r)rs1 ln(r)+rs2q(r),

where p(0) �=0, q(0) �=0, and c is a constant. As y2 does not vanish at zero, R̃z,l is
proportional to y1.

5.6. Proof of Proposition 3.10. Observing that

EV PP
z

(γ̃,v,W )=Tr

((
−1

2
Δ+V PP

z

)
γ̃

)
+

1

2
D(ργ̃ ,ργ̃)+Tr (γ̃(v+W ))

allows us to follow the same lines as in the proofs of [5, theorems 5 and 12] (see also the
first point in [5, Section 5]). Indeed, the operator HPP

z has the same spectral properties
as the operator H0 in [5], and the key property on the perturbation that we need to
proceed as in [5] is that there exists a constant C ∈R+ such that

|Tr (γ̃(v+W ))|≤C
(
‖v‖Xz,ΔE,rc,s

+‖W‖C′
)
‖γ̃‖S1,1

, (5.21)

for all (γ̃,v,W )∈S1,1×Xz,ΔE,rc,s×C′. Let us prove that (5.21) actually holds true. On
the one hand, we have for all (γ̃,W )∈S1,1×C′,

|Tr (γ̃W )|=
∣∣∣Tr((1−Δ)−1/2(1−Δ)1/2γ̃(1−Δ)1/2(1−Δ)−1/2W

)∣∣∣
≤‖(1−Δ)−1/2‖‖(1−Δ)1/2γ̃(1−Δ)1/2‖S1

‖(1−Δ)−1/2W‖
≤‖(1−Δ)−1/2‖‖(1−Δ)1/2γ̃(1−Δ)1/2‖S1

‖(1−Δ)−1/2W‖S6

≤C‖γ̃‖S1,1
‖W‖L6 ≤C‖γ̃‖S1,1

‖W‖C′ ,

where we have used the Kato–Seiler–Simon inequality [23] in the Schatten class
S6(L

2(R3)) :=
{
T ∈B(L2(R3)) | ‖T‖S6

:=Tr(|T |6)1/6<∞
}
. Likewise, we have for all

(γ̃,v)∈S1,1×Xz,ΔE,rc,s,

|Tr (γ̃v)|=
∣∣∣∣∣Tr
((

vloc+

lz∑
l=0

PlvlPl

)
γ̃

)∣∣∣∣∣
≤
∣∣∣Tr((1−Δ)−1/2vloc(1−Δ)−1/2(1−Δ)1/2γ̃(1−Δ)1/2

)∣∣∣
+

lz∑
l=0

∣∣∣Tr(Pl(1−Δ)−1/2vl(1−Δ)−1/2Pl(1−Δ)1/2γ̃(1−Δ)1/2
)∣∣∣

≤C‖γ̃‖S1,1

(
‖vloc‖L2 +

lz∑
l=0

‖vl‖L2

)
≤C‖γ̃‖S1,1 ‖v‖Xz,ΔE,rc,s

,

where we have used that the Pl’s commute with the Laplace operator and the fact that
for all w∈L2(R3),

‖(1−Δ)−1/2w(1−Δ)−1/2‖≤‖|w|1/2(1−Δ)−1/2‖2≤‖|w|1/2(1−Δ)−1/2‖2S4
≤C‖w‖L2 ,
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by the Kato–Seiler–Simon inequality for p=4.
Proceeding as in the proofs of theorems 5 (non-degenerate case) and 12 (degenerate

case) in [5], we obtain that there exists η>0 such that for all (v,W )∈Bη(Xz,ΔE,rc,s)×
Bη(C′), problem (3.27) has a unique minimizer γ̃v+W (V PP

z ) and that, for each V PP
z ∈

Mz,ΔE,rc,s, the function (v+W ) �→ γ̃v+W (V PP
z ) is real analytic from Bη(Xz,ΔE,rc,s)+

Bη(C′) to S1,1. Expanding α �→ γ̃α(v+W )(V
PP
z ) as

γ̃α(v+W )(V
PP
z )= γ̃0

z +

+∞∑
k=1

αkγ
(k)
v+W (V PP

z ),

the coefficients γ̃
(j,k)
v,W (V PP

z ) in (3.28) are connected to the coefficients γ
(k)
v+W (V PP

z ) in the
above expansion by the relation

γ
(k)
αv+βW (V PP

z )=

k∑
j=0

αjβk−j γ̃
(j,k−j)
v,W (V PP

z ).

5.7. Proof of Theorem 3.11. It suffices to prove the results in the degenerate
case, since, in this setting, the non-degenerate case can be seen as a special case of the
degenerate case (take Np=0 in [5, Section 4]). We can also restrict ourselves to the
pseudopotential case, as the all-electron case works the same.

Let Vref ∈Mz,ΔE,rc,s be a reference pseudopotential fixed once and for all and M ∈
R+. We are going to establish a series of uniform bounds valid for all V PP

z ∈Mz,ΔE,rc,s

satisfying

‖V PP
z −Vref‖Xz,ΔE,rc,s

≤M. (5.22)

In the sequel, we will denote by CM constants depending on z, Vref , and M , but not
on V PP

z . It follows from the arguments used in Section 5.4 that the pseudo-orbitals
associated with V PP

z satisfy

max
0≤l≤lz

max
|m|≤l

‖φ̃m
z,l‖H1 ≤CM ,

which implies that ‖ρ̃0z‖L1∩L3 ≤CM , and therefore that ‖ρ̃0z � | · |−1‖L∞ ≤CM , from which
we infer that

max
0≤l≤lz

‖Wz,loc+Vz,l‖L3/2 ≤CM . (5.23)

Finally, using the Sobolev embedding H2(R3) ↪→L∞(R3), and the fact that for all φ∈
H2(R3), ‖φ‖L∞ ≤‖φ‖H2 , we obtain

max
0≤l≤lz

max
|m|≤l

‖φ̃m
z,l‖L∞ ≤ max

0≤l≤lz
max
|m|≤l

‖φ̃m
z,l‖H2 ≤CM . (5.24)

Using the fact that WPP
z =WAA

z in B
c

rc and the maximum principle for second-order
elliptic equations [9], we obtain that

max
0≤l≤lz

max
|m|≤l

‖φ̃m
z,le

√
|ε0z,F||·|/2‖L∞ ≤CM . (5.25)

As in [5], we decompose L2(R3) as the orthogonal sum of the fully occupied, partially
occupied, and unoccupied spaces

L2(R3) :=Hf ⊕Hp⊕Hu, (5.26)
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where Hf =Ran(1(−∞,ε0z,F)
(HPP

z )), Hp=Ran(1{ε0z,F}(H
PP
z )) and

Hu=Ran(1(ε0z,F,+∞)(H
PP
z )), and where Pf , Pp and Pu are the orthogonal projectors

from L2(R3) to Hf , Hp, and Hu, respectively. We then introduce

• the spaces

Aux :=
{
Aux∈B(Hx,Hu) | (Pu(H

PP
z −ε0F)Pu)

1/2Aux∈B(Hx,Hu)
}
,

for x∈{f,p}, endowed with the inner product

(Aux,Bux)Aux :=Tr(A∗
uxPu(H

PP
z −ε0F)PuBux);

• the finite dimensional spaces

Apf :=B(Hf ,Hp) and App :={App∈S(Hp) |Tr(App)=0};

• the product space

A :=Auf ×Aup×Apf ×App,

which we endow with the inner product

(A,B)A=
∑

x∈{f,p}
(Aux,Bux)Aux +

∑
x∈{f,p}

Tr
(
ApxB

∗
px

)
.

Note that the decomposition (5.26), as well as the space A, depend on V PP
z . Following

[5, Equation (43)], let us first show that the continuous linear map

ζ : C′→A′

W �→−(PuWPf ,PuWPpΛ,(2−Λ)PpWPf ,PpWPp),

where Λ is the diagonal matrix containing the partial occupation numbers at the Fermi
level, can be extended in a unique way to a continuous linear map from C′+L2

w to
A′. We first observe that for all W ∈C∞

c (R3) (where C∞
c (R3) is the space of the C∞

functions on R
3 with compact support), and all A∈A,

|Tr ((PuWPf)
∗Auf )|= |Tr (PfWPuAuf)|

=
∣∣∣Tr(PfW (HPP

z −ε0F)
∣∣−1/2

Hu
(Pu(H

PP
z −ε0F)Pu)

1/2Auf

)∣∣∣ ,
where (HPP

z −ε0F)
∣∣−1/2

Hu
denotes the bounded operator on L2(R3) block-diagonal in the

decomposition (5.26) identically equal to zero onHf ⊕Hp and equal to the inverse square
root of the invertible positive operator (HPP

z −ε0F)
∣∣
Hu

on Hu. As the space Auf consists
of finite-rank operators with rank lower or equal to Nf , the operator and trace norms
are equivalent on this space, and we therefore obtain

∀A∈A, |Tr ((PuWPf)
∗Auf )|≤ (E+−ε0z,F)

−1/2‖PfW‖‖Auf‖Auf

≤ (E+−ε0z,F)
−1/2 max

1≤n≤Nf

‖Wφn‖L2 ‖Auf‖Auf
,

where (φn)1≤n≤Nf
is an orthonormal basis of Hf . Similar arguments applied to the

other components of ζ(W ) lead to

∀W ∈C∞
c (R3), ‖ζ(W )‖A′ ≤CM max

0≤l≤lz,−l≤m≤l
‖Wφ̃m

z,l‖L2 .
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Using (5.25), we deduce from the above inequality that

∀W ∈C∞
c (R3), ‖ζ(W )‖A′ ≤CM‖W‖L2

w
.

As ζ is continuous from C′ to A′ (see [5]), we also have

∀W ∈C∞
c (R3), ‖ζ(W )‖A′ ≤CM‖W‖C′+L2

w
. (5.27)

The space C∞
c (R3) being dense in C′+L2

w, we obtain that the linear map ζ can be
extended in a unique way to a continuous linear map from C′+L2

w to A′.
Let us now consider a sequence (V PP

z,k )k∈N of elements of Mz,ΔE,rc,s which weakly

converges to some V PP
z inMz,ΔE,rc,s. As Vz,loc,k coincides with− z

|·| +ρ0z,c � | · |−1 outside

Brc , we obtain that (V PP
z,k )k∈N converges to V PP

z strongly in Mz,ΔE,rc,s/2. To prove the

compactness of the mapping Mz,ΔE,rc,s�V PP
z �→ γ̃

(1)

WStark(V
PP
z )∈S1,1, it is therefore

sufficient to show that the mapping V PP
z �→ γ̃

(1)

WStark(V
PP) is strongly continuous from

Mz,ΔE,rc,s to S1,1 for any s>0. Let us therefore consider a sequence (V PP
z,k )k∈N of

elements ofMz,ΔE,rc,s which strongly converges to some V PP
z inMz,ΔE,rc,s andM ∈R+

such that

sup
k∈N

‖V PP
z,k −Vref‖Xz,ΔE,rc,s

≤M.

Using [5, equations (42)–(43)], (5.27), the bound

‖HPP
z,k (1−Δ)−1‖≤CM ,

and the fact that there exists 0<cM ≤CM <+∞ such that

∀(A,A′)∈A×A, 〈Θ(A),A〉≥ cM‖A‖2A and 〈Θ(A),A′〉≤CM‖A‖A‖A′‖A,

where the bilinear form Θ is defined in [5, equation (59)], we obtain that

sup
k∈N

‖γ̃(1)
W (V PP

z,k )‖S1,1 ≤CM‖W‖C′+L2
w
. (5.28)

Let ε>0 and W ∈C∞
c (R3) be such that ‖W −W Stark‖C′+L2

w
≤ε/(3CM ), where CM is

the constant in (5.28). By the triangular inequality,

‖γ̃(1)

WStark(V
PP
z,k )−γ̃

(1)

WStark(V
PP
z )‖S1,1

≤ 2ε

3
+‖γ̃(1)

W (V PP
z,k )− γ̃

(1)
W (V PP

z )‖S1,1

≤ 2ε

3
+

∥∥∥∥ limβ→0
β−1
(
γ̃V PP

z,k −V PP
z ,βW (V PP

z )− γ̃0,βW (V PP
z )
)∥∥∥∥

S1,1

.

We then infer from the analyticity properties of the mapping (v,W ) �→ γ̃v,W (V PP) (cf.
Proposition 3.10) that for k large enough, the second term of the right-hand side is

lower than ε/3. Therefore, the mapping V PP
z �→ γ̃

(1)

WStark(V
PP
z ) is strongly continuous

from Mz,ΔE,rc,s to S1,1.

5.8. Proof of Theorem 3.12. Let (V PP
z,k )k∈N be a minimizing sequence for

(3.33). As α>0 and Jt is bounded below, the sequence (WPP
z,k )k∈N is bounded for

the norm ‖·‖Hs defined in (3.32). As WPP
z,k coincides with WAA

z outside Brc , we can

assume, without loss of generality, that (WPP
z,k )k∈N converges to some WPP

z =WPP
z,loc+
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l=0PlVz,lPl, weakly for the norm ‖·‖Hs , and strongly for the norm ‖·‖Hs−η for any

η>0. We then have

1

2
‖WPP

z ‖2Hs ≤ liminf
k→∞

Js(V
PP
z,k ). (5.29)

Reasoning as in the proof of Theorem 3.8, we obtain that the ground state density ρ̃k
of

inf

{
Tr

((
−1

2
Δ+V PP

z,k

)
γ̃

)
+

1

2
D(ργ̃ ,ργ̃) , γ̃∈KNz,v

}
converges, when k goes to infinity, to some ρ̃ in Hs(R3), which is in fact the ground
state density associated with the self-consistent pseudopotentialWPP

z . This implies that
V PP
z,loc,k=WPP

z,loc,k− ρ̃k � | · |−1 weakly converges to V PP
z,loc :=WPP

z,loc− ρ̃� | · |−1 in Hs
loc(R

3).

Therefore, (V PP
z,k )k∈N weakly converges in Xz,ΔE,rc,s to V PP

z =V PP
z,loc+

∑lz
l=0PlVz,lPl,

which belongs to Mz,ΔE,rc,s by virtue of Theorem 3.8, and WPP
z is the self-consistent

pseudopotential associated with V PP
z . Using (5.29) and the weak lower-semicontinuity

property of Jt, we finally obtain that

J(V PP
z )≤ liminf

k→∞
J(V PP

z,k ),

which implies that V PP
z is a minimizer to (3.33).

5.9. Proof of Lemma 3.13. Let (V PP
z,k )k∈N be a sequence of elements

of Mz,ΔE,c,s weakly converging to V PP
z in Xz,ΔE,c,s. By Theorem 3.8, V PP

z ∈
Mz,ΔE,rc,s and by Theorem 3.11, the sequence (γ̃

(1)

WStark(V
PP
z,k ))k∈N strongly converges

to γ̃
(1)

WStark(V
PP
z ) in S1,1. Consequently, (ρ̃

(1)

WStark(V
PP
z,k ))k∈N converges to ρ̃

(1)

WStark(V
PP
z )

strongly in L6/5(R3), which implies that (1R3\Brc
ρ̃
(1)

WStark(V
PP
z,k ))k∈N converges to

1R3\Brc
ρ̃
(1)

WStark(V
PP
z ) in L6/5(R3) and, hence, converges in C, which implies that the

sequence of non-negative real-numbers (JStark
t (V PP

z,k ))k∈N converges to JStark
t (V PP

z ).

Appendix A. List of the main symbols used throughout the article.
z: atomic number of the atom (atom z: atom with atomic number z);
KN : set of admissible (one-body) density matrices with N electrons.

Functional setting:
Hl=Ker(L2− l(l+1)): eigenspace of L2 (square of the angular momentum operator);
Pl: orthogonal projector on Hl (in L2(R3) or any Sobolev space Hs(R3));
(Ym

l )l∈N,−l≤m≤l: real spherical harmonics;
Bη(H): open ball of the Hilbert space H with center 0 and radius η;
B(H): space of bounded linear operators on the Hilbert space H;
S(H): space of bounded self-adjoint operators on the Hilbert space H;
Sp(H): Schatten class of order p on the Hilbert space H;
S1,1 :=

{
T ∈S1(L

2(R3))∩S(L2(R3)) | |∇|T |∇|∈S1(L
2(R3))

}
;

Lp
r (R

3), Hs
r (R

3), Hs
loc,r(R

3): spaces of radial Lp, Hs, Hs
loc functions on R

3;

L2
o(R), H

s
o(R): spaces of odd L2, Hs functions on R;

R: unitary mapping between Hs
r (R

3) and Hs
o(R) (for any s≥0);

C: Coulomb space, D(·, ·): Coulomb bilinear form (inner product of C); C′: dual of C.
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All-electron Hartree model:

EAA
z : all-electron energy functional of atom z (Hartree model);

IAA
z , ρ0z, γ

0
z : Hartree ground state energy, density and density matrix of atom z;

HAA
z =− 1

2Δ+WAA
z : all-electron Hartree Hamiltonian of atom z;

ε0z,F: Fermi level for atom z;

εz,j : lowest jth negative eigenvalue of HAA
z , counting multiplicities;

nz,l: number of distinct negative eigenvalues of HAA
z,l :=HAA

z |Hl
;

εz,1,l<εz,2,l< · · ·<εz,nz,l,l: eigenvalues of H
AA
z,l ;

(pz,n,l)1≤n≤nz,l
: occupation numbers of the states with energies (εz,n,l)1≤n≤nz,l

;
(φm

z,n,l)−m≤l≤m: Hartree orbitals associated with εz,n,l;
Rz,n,l: eigenfunction of the radial Schrödinger equation (3.4) associated with εz,n,l.

Pseudopotential model:
ΔE=(E−,E+)⊂R: energy window partitioning core and valence electrons;
n∗
z,l: unique integer such that εz,n∗

z,l,l
∈ΔE;

Nz,c, Nz,v: number of core and valence electrons of atom z (for a given ΔE);
l+z =min{l∈N |nz,l+1=0}; l−z =max{0≤ l≤ l+z |pz,1,l>0}; l−z ≤ lz ≤ l+z ;

V PP
z =Vz,loc+

∑lz
l=0PlVz,lPl: (generic norm-conserving) pseudopotential for atom z;

Vz,loc: local component of the pseudopotential;
ρ̃0z: ground state pseudo-density of atom z (for a given V PP

z );

WPP
z =V PP

z + ρ̃0z � | · |−1=Wz,loc+
∑lz

l=0PlVz,lPl: self-consistent pseudopotential;
Wz,loc=Vz,loc+ ρ̃0z � | · |−1: local component of the self-consistent pseudopotential;
HPP

z =− 1
2Δ+WPP

z : pseudo Hartree Hamiltonian;
ε̃0z,F: pseudo Fermi level (can be chosen equal to ε0z,F);

R̃z,l: radial part of the pseudo-orbital associated with Rz,n∗
z,l,l

;

ρ0z,c, ρ
0
z,v: core and valence all-electron ground state densities;

ρ̃0z,c=ρz0− ρ̃0z: core pseudo-density; Ez,c: core energy;
rc,l: core radius for shell l; rc=max0≤l≤lz rc,l: core radius;
r0z,ΔE,c: critical core radius for atom z and energy window ΔE;

r−z,ΔE,c, r
+
z,ΔE,c: (computable) lower and upper bounds of r0z,ΔE,c;

Mz,ΔE,rc,s: set of admissible pseudopotentials for atom z, energy window ΔE, core
radius rc and Sobolev regularity s.
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